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ABSTRACT 

Automatically locating named entities in natural language text – 

named entity recognition – is an important task in the biomedical 

domain. Many named entity mentions are ambiguous between 

several bioconcept types, however, causing text spans to be 

annotated as more than one type when simultaneously recognizing 

multiple entity types. The straightforward solution is a rule-based 

approach applying a priority order based on the precision of each 

entity tagger (from highest to lowest). While this method is 

straightforward and useful, imprecise disambiguation remains a 

significant source of error. We address this issue by generating a 

partially labeled corpus of ambiguous concept mentions. We first 

collect named entity mentions from multiple human-curated 

databases (e.g. CTDbase, gene2pubmed), then correlate them with 

the text mined span from PubTator to provide the context where 

the mention appears. Our corpus contains more than 3 million 

concept mentions that ambiguous between one or more concept 

types in PubTator (≈ 3% of all mentions). We approached this 

task as a classification problem and developed a deep learning-

based method which uses the semantics of the span being 

classified and the surrounding words to identify the most likely 

bioconcept type. More specifically, we develop a convolutional 

neural network (CNN) and along short-term memory (LSTM) 

network to respectively handle the semantic syntax features, then 

concatenate these within a fully connected layer for final 

classification. The priority ordering rule-based approach 

demonstrated F1-scores of 71.29% (micro-averaged) and 41.19% 

(macro-averaged), while the new disambiguation method 

demonstrated F1-scores of 91.94% (micro-averaged) and 85.42% 

(macro-averaged), a very substantial increase. 
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1  Introduction 

Mentions of concepts such as genes and diseases in the 

biomedical literature play a key role in knowledge integration and 

personalized medicine. Due to the rapid growth of the literature, 

automatically recognizing bioconcept mentions has become a very 

important task. The text mining tasks of named-entity recognition 

(NER) and normalization have been widely studied for a variety 

of bioconcept types, including genes/proteins [1-3], diseases [4, 

5], chemicals [5-7], species [8, 9], sequence variations [10-13], 

and cell lines [14]. Most of these methods achieved over 80% of 

F1-score, a level of performance sufficient to allow the creation of 

several online systems [15-18] integrating the annotations from 

multiple NER taggers to support various downstream text mining 

tasks. 
A variety of ambiguity issues accompany NER methods, making 

automated NER methods difficult. Among these issues are 

abbreviation ambiguity (e.g., “BD” can be Binswanger's disease 

and Behçet's disease) and term variants (e.g., erbb2 is also known 

as NEU; NGL; HER2; TKR1; CD340; HER-2; MLN 19; HER-

2/neu). These have been explored well in previous work, such as 

Ab3P [19] for abbreviation ambiguity. 

However, a specific term ambiguity issue that is rarely discussed 

is that many recognized mentions may be ambiguous among 

multiple bioconcept types. For instance, “CO2” is sometimes used 

as an abbreviation of the gene/protein “complement C2” 

(EntrezGene:717) but used for the chemical term “carbon 

dioxide” (MESH: D002245) in other articles. Previous work in 

PubTator [18], which integrates annotations from several NER 

taggers across articles in PubMed, used a straightforward rule-

based approach for disambiguating bioconcept types. This 

approach is a priority order based on the precision of the NER 

taggers, ordered from the highest to the lowest. Normally, the 

tagger with the higher precision produces annotations with higher 

confidence. While helpful, many false positives and false 

negatives remain after using this approach. For instance, mutation 

annotations are prioritized ahead of all other bioconcepts, 

however we find false positives of mutations are often cell lines 

(e.g., A2780S in PMID: 25026335) or chemicals (e.g., C3368-A 

in PMID:7767952).   

Unlike general named entity normalization studies which map the 

name entities found by NER to their corresponding concept 

identifiers [20-22], the task of biomedical concept disambiguation 

(BD) is to recognize the corresponding bioconcept type from a list 

of candidates (e.g., AP2 can be a name of gene (EntrezGene: 

2167), chemical (MeSH:C523965) or cell-line). In other words, 

BD is a task for optimizing the performance of named-entity 

recognition and normalization. Most NER corpora are created 



 

 

using a small number of bioconcept types to limit the annotation 

work required, limiting their usefulness for BD. For example, the 

GENETAG corpus [23] annotates only genes, proteins, and the 

BC5CDR corpus [24] annotates only chemicals and diseases. Due 

to the lack of a comprehensive training corpus for BD, it is 

difficult to develop a model to recognize the corresponding 

bioconcept types of highly ambiguous mentions (e.g., 

abbreviations). 

In response, we firstly generated a partially labeled corpus of 

ambiguous concept mentions by utilizing multiple human-curated 

databases and text mined spans of PubTator, and then applied 

convolutional neural networks (CNN) [25] and long short-term 

memory (LSTM) [26] to develop a classification method for this 

task. Our method analyses the semantic and syntactic logic of 

both the target mention and the words surrounding the target to 

identify the most likely bioconcept types for the mentions. 

2  Benchmark Corpus 

Table 1. The list of repositories we collected for building a 

comprehensive corpus 

Repository Gene Disease Chemical Species Variant 
Cell 

Line 

gene2pubmed  √      

GeneRIF [30] √      

gene_interactions 

[30] 
√      

CTDbase [29] √ √ √    

RGD [31] √ √  √   

BioGRID [32] √   √   

NCBI  

Taxonomy [33] 
   √   

MeSH [34] √ √ √ √  √ 

ZFIN [35] √   √   

ClinVar [36]     √  

dbGAP [37]     √  

dbSNP [38]     √  

GWAS [39] √ √   √  

HPRD [40] √ √     

Cellosaurus [41]      √ 

 

While the data used for method development and training is 

usually prepared manually, creating new manual annotation is 

highly labor intensive. In this work we instead collected the 

necessary biomedical named-entity data from multiple sources 

already annotated manually, such as MeSH [27], gene2pubmed 

[28] and CTDbase [29] as shown in Table 1. These repositories 

associate PubMed identifiers (PMIDs) with a concept or database 

identifier (accession ID), such as <PMID:10021333, 

GeneID:41066> from gene2pubmed 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz).  

We have observed that the correct concept type for most 

ambiguous mentions can be identified by reviewing the context. 

However, none of the repositories record the location of the 

mentions corresponding to the concepts they annotate (i.e., offset 

and span). The absence of mention location significantly limits the 

immediate utility of the repository annotations for disambiguation. 

Unlike the manually annotated repositories, PubTator [18] 

provides the spans of the mentions which were automatically 

extracted by machine learning-based taggers (GNormPlus [3] for 

genes, tmVar [12, 13] for variants, SR4GN [9] for species, 

DNorm [4] for diseases and tmChem [6] for chemicals). Cell lines 

are another common concept type that are frequently ambiguous. 

In this work, we rebuilt an NER model in TaggerOne [5] to 

recognize cell line mentions. The model is trained and evaluated 

by the released corpus of BioCreative Bio-ID task [42] and 

obtained 83.10% of F1-score. These taggers were previously 

evaluated and achieved 80-90% of F1-scores in normalization 

results. To obtain the spans of the concepts in the repositories, we 

utilized the spans recorded in PubTator. For example, while 

MeSH associates PMID:23262785 with “Breast Neoplasms” 

(MeSH:D001943), the mention recognized by DNorm for 

MeSH:D001943 is “breast cancer.” We therefore consider the 

span of the mention “breast cancer” as the span for MeSH 

ID:D001943 in PMID:23262785 (as shown in Figure 1). 

 

  
Figure 1. An example of the confirmed MESH annotation with 

span 

 

Figure 2 shows the number of annotations in all the collected 

repositories and in PubTator respectively. The overlapping area 

represents the repository annotations that can be paired with spans 

in PubTator.  For example, <PMID:10022874, NCBIGene:1977, 

Spans: “Eukaryotic translation initiation factor 4E”&”eIF4E“>. 

Correlating annotations from the repositories and PubTator 

resulted in nearly 24 million repository records (25.6%) from 13 

million articles being associated with spans from PubTator. 

We further separated the records into individual spans. For 

example, <PMID:10022874, NCBIGene:1977, Spans: 

“Eukaryotic translation initiation factor 4E”&”eIF4E“>  can be 

separated into two individual records <PMID:10022874, 

NCBIGene:1977, Spans: “Eukaryotic translation initiation factor 

4E”> and <PMID:10022874, NCBIGene:1977, Spans:”eIF4E“>. 

We obtained a total of 33,173,360 records with individual spans. 

To focus on the subset of records representing ambiguous 

annotations, we filtered the spans to only retain spans tagged with 

multiple entity types, such as “XPID” in PMID: 23378296, which 

is recognized as both a disease and a gene in PubTator (“XPID” is 

manually annotated as a gene in MeSH). After filtering, 219,247 

annotations remain. 

PMID 23262785

Accession id MESH:D001943

Span breast cancer

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2pubmed.gz


 

 

 
Figure 2. The annotations in repositories and the annotations in 

PubTator (with spans).  

 

Table 2. The number of annotations <PMID, Concept ID, Spans> 

in repositories.  

Bioconcept 

# of 

annotations 

with spans 

from multiple 

repositories 

Individual 

mentions 

with spans 

found in 

PubTator 

Ambiguous 

mentions 

with spans 

Gene 2,076,650 3,093,005 79,418 

Disease 9,683,680 14,356,863 27,591 

Species 4,677,865 6,575,790 65,113 

Chemical 7,431,195 9,014,513 46,400 

Variation 92,411 108,019 262 

Cell line 20,76,650 25,170 463 

Total 23,986,864 33,173,360 219,247 

Articles 

in Total 
13,203,651 184,671 

 

Table 3. The number of annotations in the training and test sets, 

for each concept type. 

Bioconcept 
Random sampling Independent sampling  

Training set Test set Training set Test set 

Gene 63,521 20,952 58,466 15,897 

Disease 22,065 2,158 25,433 5,526 

Species  52,175 12,479 52,634 12,938 

Chemical 37,041 10,120 36,280 9,359 

Variation 210 62 200 52 

Cell line 385 74 389 78 

Total 175,397 45,845 173,402 43,850 

 

We created two versions of the training and test sets, using 

different sampling strategies, as shown in Table 3. We first 

selected 20% of the ambiguous mentions with spans for testing 

and the other 80% for training/validation (random sampling). 

However, under random sampling most of the mentions in the test 

set would also appear in the training set if the test mentions. To 

sufficiently reflect real-world performance, we prepared another 

training/test set split (independent sampling), where the test set 

only contains mentions that do not appear in the training set, 

though they were selected randomly otherwise. 

3  Method 

As illustrated in Figure 3, we first collected the manual 

annotations from various repositories (in Figure 3a) and 

associated them with the text mined mention spans from PubTator 

(in Figure 3b), and further separated the corpus into training and 

test sets (in Figure 3c). We applied the training set for the 

development of the classifier and the test set for performance 

evaluation (in Figure 3d). 

 

 
Figure 3. Method overview. 

 

As shown in Figure 4, we used the surrounding words before and 

after the target mention within the context window (size = 10). 

For an example in the first sentence of PMID:10022874 

“Eukaryotic translation initiation factor 4E (eIF4E) binds to the 

mRNA 5' cap and brings the mRNA into a complex with other 

protein synthesis initiation factors and ribosomes.”, the context 

words before the target mention “eIF4E”, are “Eukaryotic 

translation initiation factor 4E eIF4E” and the context words after 

it are “eIF4E binds to the mRNA 5 cap and brings the RNA”. 

Generally, LSTM is more effective than CNN on sequential input, 

 

93,711,518 records
19,717,175 PMIDs

Repositories

104,046,605 records
29,691,822 PMIDs

23,986,864 records | 13,203,651 PMIDs

Record : <PMID, Concept ID, Spans>

(a) Collecting annotations 

from repositories
(b) Filling the spans 

by 

(c) Preparing 

the corpus 

Test set

PMID Type Identifier Repositories

10021770 Gene 35587 Gene2pubmed

10022083 Gene 775 Gene2pubmed

10022118 Gene 1026 gene2pubmed|gene_interactions|HARD

10022118 Gene 836 gene_interactions|gene2pubmed|HARD

… … … …

Training set

(d) Training & Evaluation

CNN

PMID: 10022874 

Spans: eIF4E

GeneLSTM



 

 

 
Figure 4. The system overview that includes three major layers: word embedding layer, CNN+LSTM layer and concatenation layer. 

 

because LSTMs model sequential data directly by considering the 

input features of the previous token, while CNNs only consider 

the input features of the current token. Thus, we used LSTM for 

the surrounding words features and CNN for semantic features. 

To emphasize the importance of the target mention, we applied 

two LSTM models with opposite directions to the forward and 

backward strings. The last states of the two LSTM models are 

passed to the final fully connected layer for predicting the concept 

type of the mention. 

Table 4. The list of the semantic and word features 

Feature types Features 

Semantic features 

Concept types detected by NER 

taggers 

Concept identifiers detected by NER 

taggers 

The concept type of the full name 

detected by NER taggers 

The concept identifier of the full 

name detected by NER taggers 

Word features 
Prefix (Length = 1~3) 

Suffix (Length = 1~3) 

 

We further applied a CNN model on the semantic and word 

features collected by the rules list in Table 4. Word features 

includes the prefixes and the suffixes of all tokens of the target 

mention. Semantic features include those generated by the NER 

taggers, including concept type, identifiers of the target mentions 

and its correspond full name recognized by Ab3P [19]. Our 

method uses word embeddings to translate word to vectors, which 

generalizes well for biomedical text. The embedding layer of the 

word and semantic features use one-hot embeddings. 

Due to the lack of the variant and cell line records, two types are 

weakened significantly. To increase the number of training 

records of the two types, we repeatedly loaded the records of the 

two types in training sets for 10 times. We implemented the 

CNN/LSTM model using Keras and the TensorFlow library. 

Table 5 summarizes the hyperparameters we applied in our 

network. Our word embedding was the 200-dimensional vector 

which used the word2vec [43] skip-gram implementation on all 

PubMed abstracts and Wikipedia pages. We also applied dropout 

to reduce the effect of overfitting. 

Table 5. The parameters of the CNN model 

Hyper-parameter Value 

Embedding dimension 
Word embedding 200 

Ono-hot embedding 200 

Convolutional layer 1 

(Con1D1) 

Number of filters 200 

Number of kernels 5 

Max pooling size  5 

Dropout rate 0.2 

Convolutional layer 2 

(Con1D2) 

Number of filters 1000 

Number of kernels 5 

Global Max pooling 

LSTM layer 

Number of units 128 

Dropout rate 0.2 

Recurrent dropout 0.2 

Concatenate layer 
Number of units 1256 

Activation Relu 

Fully connected layer 
Number of units 5 

Activation Softmax 

 

3.1 Baseline methods 

…
…

Word embedding

Forward

surrounding

words

Fully connected layer

output

One-hot embedding

Backward

surrounding

words

Semantic 

and word 

features

CNN+LSTM layer

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

…
…

…

Con1D1

Max Pooling

+ Dropout

…

… …
Con1D2

Global 

Max Pooling



 

 

We applied three additional methods for comparison: a rule-based 

method used in the original version of PubTator, maximum 

entropy classification (MaxEnt) [44] and BioBERT [45]. The 

rule-based method is a priority order based on the precision of 

each concept tagger, which is mutation > species > gene > 

chemical > disease > cell line. Secondly, we applied MaxEnt and 

to handle this task as a multiple classification problem. The 

MaxEnt has been widely used to deal with multi-type text 

classification problems in past decades and obtained comparable 

performance. We also applied BioBERT, which is a BERT model 

retrained on the entire PubMed/PMC and has obtained significant 

improvements on named-entity recognition, relation extraction, 

and question answering tasks. We converted the task to a sentence 

classification problem for BERT and all the contextual and 

semantic features are arranged as a sentence input. We also built a 

model which using a CNN layer for surrounding words and 

semantic features to determine how the LSTM helps the 

performance. 

4  Result 

4.1  Evaluation metrics 

We used the F1-score to evaluate the performance of the methods. 

The precision (P) represents the percentage of records correctly 

predicted divided by the total number of predictions. The recall 

(R) represents the percentage of records correctly predicted 

divided by the total number of records. Given the precision and 

recall, F1-score can be calculated as (P×R×2)÷(P+R). Given the 

lower number of variant and cell line type mentions in the test set, 

we also calculated the macro-averaged P, R, and F1-score, to give 

equal weight to each type. Macro-averaging is to average the P, R, 

and F1-score in all concept types. 

4.2  Evaluation 

Table 6. Performance on the benchmark corpus 

 Random sampling Independent sampling 

Micro 

F1-score 

Macro 

F1-score 

Micro 

F1-score 

Macro 

F1-score 

CNN+LSTM 93.56% 92.55% 91.94% 85.42% 

CNN only 93.34% 91.09% 91.78% 84.88% 

BioBERT 91.36% 88.26% 89.31% 82.22% 

MaxEnt 92.38% 87.69% 89.03% 82.44% 

Rule-based 68.99% 41.34% 71.29% 41.19% 

In our experiments, the performance of all the machine learning-

based (ML) methods on the randomly selected set provided 

excellent performance – F1-scores of over 90% –in both micro 

and macro averages. The performance dropped slightly, by 2% 

micro F1-score and 7% of macro F1-score, on the independent 

sampling set, indicating that the ML methods are robust in 

handling the unknown mentions. In addition, using the LSTM 

layer for surrounding words features slightly outperforms the 

model using CNN layers for all the features. Overall, our method 

presents the highest performance in both the random and 

independent sampling sets and can significantly improve the 

quality of PubTator ambiguous annotations (~25% improvement 

on micro F1-score and 40-50% improvement on macro F1-score). 

Furthermore, we separated the concept types to see the individual 

performance. Four concepts (i.e., species, mutation, chemical and 

gene) present higher performance than the overall macro-averaged 

F1-score, but disease and cell line types both present lower 

performances. The reason of the lower recall of cell line may due 

to the insufficient training data for the cell line type, which is less 

than 1% of the other types. The majority of the errors for cell line 

mentions are incorrectly predicting genes or chemicals, because 

chemicals and genes in the training set are frequently recognized 

by cell line tagger incorrectly. Disease scored the lowest 

precision, because many of the human disease names are confused 

with disease-causing viruses or bacteria (species names). More 

discussions of these points are in the error analysis. 

Table 7. Performances of individual concepts of the CNN+LSTM 

method in independent test set 

Concept type Precision Recall F1-score 

Disease 71.37% 71.21% 71.29% 

Species 99.60% 94.06% 96.75% 

Mutation 93.10% 87.10% 90.00% 

Cell line 93.75% 60.81% 73.77% 

Chemical 92.79% 83.85% 88.10% 

Gene 88.77% 96.74% 92.59% 

Micro average 91.93% 91.94% 91.94% 

Macro average 89.90% 82.30% 85.42% 

4.3 Error analysis 

Table 8. Bioconcept disambiguation error types in test set 

Description # % 

Conflict concepts are correct 143 72% 

One concept is a substring and associate 

with the other 
31 16% 

Abbreviation is not the same concept 

type to the full name 
15 8% 

Others 11 3% 

Total reviewed 200 100% 

To understand the causes of errors made by our method, we 

manually reviewed the incorrectly classified examples from the 

independent set made by the model which presented the best 

micro F1-score (91.93%), and further classified 200 randomly 

selected errors into several categories. In our observation, the 

most frequent overlapping types are species and disease. For 

example, “African Horse Sickness virus” is a name of species, but 

it can be also the name of an infectious disease. However, the 

repositories only one of the types were annotated in the 

repositories (i.e. either species or disease). In the other case, one 

concept is a substring of the other concept and is strongly 

associated with it, such as the gene name “breast cancer 2”, which 

includes the disease name “breast cancer” as a substring. The 

other frequent errors are due to conflicts between the abbreviation 

and its full name. For example, “Alkaptonuria” is a disease, but 

the abbreviation AKU is also associated with the gene that causes 



 

 

Alkaptonuria. In such cases, the classifiers are very easily 

confused. 

5  Conclusion 

Bioconcept disambiguation is an important task in the field of 

biomedical text mining. Our previous bioconcept tagging work 

found more than 3 million ambiguous concept mentions in 

PubMed and 17 million ambiguous concept mentions in PMC full 

text. In this study, we presented a deep learning-based method to 

address the task of bioconcept disambiguation, applying CNNs 

and LSTMs to respectively capture the semantic and syntactic 

features. To reduce the effort required to manually curate a 

benchmark set, we proposed a method to generate partially 

labeled data by gathering manual annotations from multiple 

existing repositories, then integrating them with the spans of 

PubTator annotations. The rule-based priority ordering approach 

demonstrated an F1-score of 71.29% on this dataset, while our 

proposed disambiguation method demonstrated an F1-score of 

91.94%, a very substantial improvement.  

There are two primary use cases for this work. One is to optimize 

the performance on ambiguous annotations when using several 

taggers to identify multiple concept types. For example, this 

method significantly improves the NER performance of our 

recently published text mining system PubTator Central [46]. The 

other primary use case is as a post-processing tool for a single 

NER tagger (e.g., TaggerOne), to improve the performance on the 

desired entity types by filtering predicted mentions more likely to 

be another type (false positives).  

An obvious limitation of this work is the relative lack of the 

ambiguous spans that could be collected form the existing 

repositories for cell lines (only 463 annotations available) and 

variants (only 262 annotations available). In the future, we intend 

to increase the number of annotations available for cell lines and 

variants through manual curation. 
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