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ABSTRACT 
RNA-seq and Ribo-seq are popular techniques for quantifying 
cellular transcription and translation. These experiments use 
next-generation sequencing to produce genome-wide high-
resolution snapshots of the total populations of mRNAs and 
translating ribosomes within the investigated samples. When 
performed in concert, these experiments yield valuable 
information about protein synthesis rates and translational 
efficiency. Due to their intricate experimental protocols and 
demanding data processing requirements, quality control and 
analysis of such experiments are often challenging. Therefore, 
methods for accurately assessing data quality, and for 
identifying contaminated samples, are greatly needed. In the 
following we use a novel negative selection inspired algorithm 
called Boundary Detection Using Nearest Neighbors (BDUNN), 
for the identification of corrupted samples. Our algorithm 
constructs a detector set and reduced training set that defines 
the boundaries between normal data points and potential 
anomalies. Subsequently, a nearest neighbor algorithm is used 
to classify unseen observations. We compare the performance of 
BDUNN with other popular negative selection and one-class 
classification algorithms, and show that BDUNN is capable of 
accurately and efficiently detecting anomalies in standard 
anomaly detection datasets and simulated RNA-seq and Ribo-
seq data sets. Furthermore, we have implemented our method 
within an existing R Shiny platform for analyzing RNA-seq an 
Ribo-seq datasets, which permits downstream analysis of 
anomalous samples.  
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1 INTRODUCTION 
In this paper, we describe a novel negative selection inspired 

algorithm, and evaluate its ability to identify contaminated RNA-
seq and Ribo-seq datasets. RNA-seq and Ribo-seq are two of the 
most popular techniques for quantifying cellular translation and 
transcription [1]. By conducting paired RNA-seq and Ribo-seq 
experiments, researchers can quantify the number of ribosomes 
that are associated with individual transcripts, and estimate 
differential expression and translational efficiency. While these 
techniques are powerful methods for assessing dynamics of 
genes expression, they are often plagued by complications 
during sample preparation and data processing. These issues can 
make it difficult for researchers to interpret their data in 
biologically meaningful ways, and make data analysis and 
quality control challenging tasks that can require a considerable 
amount of expert knowledge. A valuable technique that can be 
used to aid researchers in identifying potentially impactful 
quality issues in these types of data before they perform 
downstream analyses is anomaly detection.  
 
Anomaly detection is the process of identifying unusual 
patterns, events, or observations that deviate from expected 
behavior. It has applications across a variety of fields, including 
network intrusion, fraud detection, health monitoring, and 
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image processing [3]. Due to its potential for such widespread 
usage, many techniques have arisen to address the various forms 
of the problem as efficiently and accurately as possible. 
Examples include classification techniques, such as support 
vector machines and neural networks, distance-based methods 
like k-nearest-neighbor, clustering methods, and more 
traditional statistical techniques such as regression [3]. Among 
these techniques, a class of biological inspired algorithms, called 
artificial immune systems, have gained traction in various 
classification and anomaly detection applications. Artificial 
immune systems are soft-computing techniques which are 
inspired by the biological mechanisms of the vertebrate immune 
system [4]. One of the most prevalent artificial immune system 
techniques is the negative selection algorithm (NSA), first 
proposed by Forrest et al. in 1994, which mimics the negative 
selection processes that occur during T cell maturation [5]. NSAs 
identify anomalies, also called non-self data points, by 
establishing sets of detectors which do not match elements from 
a collection of self points used for training. During the process of 
detector generation, random detectors are generated, and those 
which match self points are eliminated from the detector set, 
similarly to how the thymus gland eliminates T cells which 
recognize self cells. Detectors are then used to classify a set of 
training samples as self or non-self using a designated matching 
rule. In traditional NSAs, observations were represented as 
binary strings, which facilitated simple matching rules for 
detector generation. While these methods commonly produce 
accurate classification results, they have several disadvantages. 
Algorithms which rely on random detector generation often 
suffer often from long and unpredictable runtimes, and 
difficulties in determining the amount of coverage of the 
problem space. NSA methods have also been shown to perform 
poorly in high-dimensional space due to the ‘curse of high-
dimensionality’, which is a common characteristic of datasets in 
the current era of big-data, including problems in the field of 
bioinformatics [4].  
 
In recent years, NSAs have been adapted for use in a much wider 
variety of applications. In 2003, Gonzalez et al. proposed the real-
valued negative selection algorithm (RNSA), which applied the 
logic of traditional NSAs to problems in a real-value space [6]. Ji 
and Dasgupta presented V-detector in 2009, which was the first 
NSA to implement variable sized detectors to reduce the number 
of total detectors required to define the non-self space [7]. The 
demands of the big-data era have led to significant increases in 
the number of algorithms capable of efficiently analyzing large, 
multidimensional real-valued datasets [9]. The inefficiencies of 
early NSAs greatly limited their applications in problems such as 
these. To address these problems, numerous algorithms have 
been developed that attempt to increase the accuracy and 
efficiency of NSAs for more complex datasets, such as GB-RNSA, 
BIORV-NSA, and Vor-NSA [9-11]. GB-RNSA uses a grid 
mechanism to reduce the time cost of calculating distances and 
the overlapping coverage between detectors. BioRV-NSA 
implements variable self radii and a method for dynamically 
replacing ineffective detectors to decrease redundancy and the 
overall number of detectors. Vor-NSA uses Voronoi diagrams to 

calculate the optimal position for detectors. Their method 
achieves much faster computation by breaking away from the 
random detector generation steps of traditional NSAs to a 
method which places detectors in specific locations. NSAs such 
as these have proven to be powerful tools for performing 
anomaly detection in real valued datasets from various fields, 
and are therefore good candidates for identifying anomalies in 
RNA-seq and Ribo-seq samples [7-11]. 
 
Here we present Boundary Detection Using Nearest Neighbors, 
or BDUNN, an anomaly detection algorithm inspired by NSAs. 
BDUNN generates a set of detectors and a reduced set of self 
observations that define the boundary between self and non-self 
space, and employs a nearest neighbor algorithm to make data 
testing fast and accurate. We demonstrate that BDUNN can 
perform anomaly detection via one-class classification and 
matches the performance of comparable methods, and also show 
that BDUNN can be used to identify low quality RNA-seq and 
Ribo-seq samples using a set of informative data quality metrics. 
Additionally, we have implemented BDUNN within riboStreamR, 
a platform for quality control of RNA-seq and Ribo-seq data [12]. 
RiboStreamR uses BDUNN to highlight user-supplied samples 
which exhibit anomalous quality, and can be used to visualize 
characteristic features of the anomalous data.    

2 Properties of BDUNN 

2.1 Detector generation 
In this section, we describe the process of detector 

generation in BDUNN, our one-class classification algorithm for 
anomaly detection. Detectors can be generalized as points which 
do not match (by some matching rule) the self training data and 
can be used during testing to identify non-self data. The 
algorithm is inspired by the detector generation process 
employed by NSAs, but instead of using detectors to define the 
entirety of the non-self space, it establishes a condensed set of 
detectors and training points that define the boundary of the self 
and non-self spaces in order to facilitate a nearest neighbor (NN) 
classification. A visual comparison between a tradition RNSA, V-
detector, and BDUNN are shown in Figure 1.  
 
The algorithm takes as input a set of training points which 
represent the self class, or normal observations, such as those in 
Figure 2A. A self space around each training point is determined 
based on a self radius rs. The algorithm first establishes a 
designated number, n, of initial non-self detectors, Dp, by 
randomly generating detectors within the problem space, and 
removing points which are less than rs away from any training 
point, as seen in Figure 2B and described in Algorithm 1a. 
Additional detectors are not added in subsequent steps of the 
algorithm, and therefore the initial number of randomly 
generated detectors, n, represents the maximum number of 
detectors that BDUNN will use during the testing phase. In 
general, it is safer to use a large value of n in order to ensure that 
sufficient coverage of the problem space is attained, although 
increasing the value of n leads to longer runtimes. 
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Figure 1. Two dimensional comparison of a traditional 
RNSA (top right), V-detector (bottom left), and BDUNN 
(bottom right) using a set of self training observations (top 
left). A self radius of 0.05 was used for all methods. RNSA 
and V-detector required 513 and 53 detectors, respectively, 
to reach 99% coverage. BDUNN generated a reduced set of 
34 detectors.  
 

 

 
Figure 2. Phases of BDUNN. A) Training set with self radii. 
B) Random detector generation. C) Voronoi diagram of all 
training points and detectors. D) Training points and 
detectors which share an edge in the Voronoi diagram. E) 
Set reduction using detector-radii. 
 

2.2 Boundary Set Determination 
Given points from both classes, the training set S and 

initial detector set Dp, the algorithm attempts to determine a 
subset of the points in each class which adequately define the 
self and non-self spaces with respect to a one nearest neighbor 
classification, a task similar to the condensed nearest neighbor 
problem[13]. BDUNN uses Voronoi diagrams and Delaunay 
triangulations to condense the detectors and training sets [14]. 
The training set and detector set are reduced to only the points 
which share an edge in a Voronoi diagram with a point of the 
opposite class. A Delaunay triangulation, the dual of a Voronoi 
diagram, is used to compute the set of shared edges, as points 
which are connected by an edge in a Delaunay triangulation also 
share an edge in the Voronoi diagram. Therefore, any point in S 
or Dp which is connected in the Delaunay triangulation with a 
point of the other class is retained. The reduced set of detectors, 
Db, and training points, Sb, form the minimum set which defines 
the boundary between the two classes in the Voronoi diagram. 
Points within these sets are guaranteed to not be redundant, as 
their removal from the set would effect on the boundary 
between the classes. These points are depicted in Figure 2d and 
described in Algorithm 1b. In k-dimensional problem spaces, the 
Delaunay triangulations are represented as simplices formed 
from k+1 points. In these cases, detectors and training points 
which occur in a simplex with a point from the other class are 
retained. 
 

2.3 Boundary Set Reduction 
Additionally, we establish a method for reducing the total 

number of detectors and training points without significantly 
impacting performance. We accomplish this by simply merging 
points of the same class which are within a certain distance of 

Algorithm 1a. Initial Detector Generation: 

Input: Set of all self points S, self radius rs, detector sample size n;  

Output: Initial detector set Dp; 

 

While length(Dp) < n: 

     Generate random detector d; 

     If  d > rs for all s S: 

          Add d to Dp; 

Done; 

 

Algorithm 1b. Boundary Set Determination: 

Input: Set of all self points S, initial detector set Dp;  

Output: Boundary detector set Db, boundary self set Sb; 

 

Compute Delaunay triangulation T of SDp; 

For all Delaunay simplices t  T: 

     If t contains points from both S and Dp: 

          Add points in t from S to Sb; 

          Add points in t from Dp to Db; 

Done; 

 

Algorithm 1c. Detector Reduction: 

Input: Boundary detector set Db, detector radius rd; 

Output: Reduced detector set Dr; 

 

Calculate Euclidean distance matrix of Db; 

Repeat: 

    Find the closest pair of detectors A and B; 

         dAB = distance{A,B} 

          If dAB < rs: 

 Replace A and B in Db by their centroid; 

                  Update distance matrix; 

Until: dAB  rs; 

Done; 
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one another. Any points which are within a set detector radius rd 
from one another are replaced by a single point, positioned at 
their centroid. The closest pair of points are merged first, and so 
forth, until there are no two points of the same class less than rd 
apart. This process is described in Algorithm 1c, and the effect of 
reduction is shown in Figure 6. To avoid generating new 
detectors which lie within the self space, it is advised to use a 
detector radius no larger than the self radius. 
 

2.4 Testing 
The testing phase of the BDUNN algorithm consists of 

using a nearest neighbor algorithm to classify test samples as 
either self or non-self.  This process is shown in Algorithm 2. 
Here we employ a variation of the NN algorithm which utilizes 
KD trees to improve the runtime of the algorithm [15]. A KD 
tree is a space-partitioning data structure in which the terminal, 
or leaf, nodes, correspond to  individual k-dimensional points, 
and every non-leaf node corresponds to a splits via a separating 
hyperplane. This method reduces the number of points which 
need to be considered when finding a nearest neighbor, and in 
turn can speed-up the computation of nearest neighbors 
considerably. 
 

 

3 Experiments and Results 

3.1 Synthetic Datasets 
3.1.1 Shapes. Synthetic 2D datasets of points distributed in 

various shapes were generated in order to test the effectiveness 
of BDUNN, and to display the effects of the different parameters. 
The shapes chosen for this analysis were a bar, a square, a frame, 
and an hourglass. Each problem space is a 2D square [0,1]2, 
where we assume the points are randomly distributed 
throughout the boundaries of the shape. Figure 4 displays the 
results of BDUNN for each shape. A set of 300 self points 
randomly distributed within a defined self space were used for 
training. The red points represent the reduced self points, while 
the black points represent the detectors. In the testing phase, 
new data which occurs in the gray regions would be classified as 
anomalies, while those in the white regions would be classified 
as normal. 

 
Figure 4. The different shape distributions for evaluating 
BDUNN.  
 

3.1.2 Effect of Parameters. Using these 2D shapes, we can 
evaluate the effect of varying the different parameters of 
BDUNN, including the self radius, detector radius, and detector 
sample size. The top row of Figure 5 shows how the detection 
rate (DR) and false alarm rate (FAR) for each shape are effected 
by varying the parameters, while he bottom row of Figure 5 
shows the effect these parameters have on the overall detector 
number (DN). The definitions of the detection rate and false 
alarm rate are shown in equations 1 and 2. The results of this 
analysis show that increasing the self radius generally decreases 
the DR, FAR, and number of detectors. For the investigated 
shapes, a self radius of 0.05 seems optimal. From these results, 
increasing the detector radius seems to have little effect on the 
detection rate, but increases the false alarm rate. Additionally, an 
increase in the initial detector set size increases the detector rate, 
slightly increases the DN, and has little effect on the DR. 

 

                                       𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (1) 

 
 

                                      𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
         (2) 

 
 

3.1.3 Detector Optimization and Reduction. The results of 
detector reduction for the 2D shape datasets are shown in Figure 
6. The initial detector sets were reduced using a range of 
detector radii in order to assess the parameter’s effect on the DN, 
DR, and FAR. These results show that this technique can be used 
to reduce the number of detectors by 10 to 15 percent while 
having a minimal effect on the DR and reducing the FAR by 1 to 
2 percent.  

 

Algorithm 2. Sample testing: 

Input: Detector set Db, reduced self set Sr, test samples Test; 

Output: Self samples Testself, non-self samples TestNS.; 

For all ti   Test: 

    If NearestNeighbor(ti)   Db, add ti to TestNS; 

    If NearestNeighbor(ti)   Sr, add ti to Testself ; 

Done; 
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Figure 5. Top row: Effect of the self radius parameter, detector radius parameter, and detector set size on detection rate and 
false alarm rate. Solid lines represent DR, dotted lines represent FAR. Bottom row: Effect of the self radius parameter, centroid 

radius parameter, and training set size on the size of the detector set. The Bar, Square, Frame, and Hourglass shapes are 
adopted. 

 

Figure 6. Effects of detector reduction in 2D shape datasets. Solid lines do not use reduction, dotted lines use reduction. 

 
3.2 Outlier Detection Datasets 

We evaluate the performance of BDUNN using four 
different standard datasets for anomaly detection and 
classification: Skin Pigmentation, Fisher’s Iris data, Glass, and 
Haberman’s survival. [16,17]. The experimental parameters of 
these datasets can be found in Table 1. The chosen performance 
metrics are detection rate (DR), false alarm rate (FAR),  detector 
number (DN),  data training time (DT), and data testing time 
(DTT). All data points are normalized to [0,1] using min-max 
normalization. 
 

 

3.2.1 Iris, Glass, and Haberman’s survival. We compare the 
performance of BDUNN to a traditional RNSA, V-detector, and a 
OC-SVM, using the Iris, Glass, and Haberman’s Survival datasets. 
The OC-SVM uses RBF kernel functions, a nu of 0.5 and a gamma 
of 0.33. The self radius of RNSA, V-detector, and BDUNN are set to 
0.1. An estimated coverage of 99% was used for RNSA and V-
detector. Boundary set reduction in BDUNN was performed using 
a detector radius of 0.05 and an n of 1000.  

The results of these experiments, depicted in Table 2, show that 
BDUNN performs similarly to V-detector, and better than RNSA, 
in terms of DR, FAR, and DT, but with significant improvements 
in DN and DTT. While the OC-SVM performed well in terms of 
DR, DT, and DTT, it consistently exhibited very large FARs. 
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3.2.2 Skin Pigmentation. We further the compare performance 
of BDUNN against GB-RNSA, BIORV-NSA, Vor-NSA, and a one-
class support vector machine (OC-SVM) using the UCI skin 
segmentation dataset. Each sample reports three features, which 
represent the R, G and B values of the skin texture. As before, the 
OC-SVM uses RBF kernel functions, a nu of 0.5 and a gamma is 
0.33. A self radius of 0.1 was used for RNSA, V-detector, VorNSA, 
and BDUNN. An estimated coverage of 99% was used for all NSAs.  

The RNSA and BioRV-NSA algorithms were allowed a maximum 
of 3000 and 1000 detectors, respectively. BDUNN was run with a 
detector radius of 0.05, and an n of 1000. Each algorithm was run 
20 times, and the means and standard deviations are reported in 
Table 3. The results in Table 3 for all algorithms other than 
BDUNN come from Zhu et al. [11]. 
 
From the results, it can be seen that BDUNN performs favorably to 
the other methods in terms of DR and DN. BDUNN has a slightly 
worse FAR than RNSA, V-detector, and VorNSA, but the 
differences appear minor. Although the DT and DTT results for 
BDUNN seem very promising, valid comparisons between the 
other methods cannot be made, as BDUNN and the other 
algorithms were run on different machines. 

 

3.5     Analysis of RNA-seq and Ribo-seq Quality 
 

Furthermore, we evaluate the efficacy of BDUNN for 
identifying contaminated RNA-seq and Ribo-seq samples by 
leveraging information from samples which we know are of 
normal quality. To assess whether BDUNN is capable of this task, 
we require a dataset which contains reliable features from both 
normal and low-quality RNA-seq and Ribo-seq samples. As 
acquisition, mapping, and processing of a sufficiently large 
number of real datasets would take considerable time, we look to 
use artificial datasets for training. 
A set of descriptive quality features for RNA-seq and Ribo-seq 
samples were chosen based on the experience of data quality 
control experts [18]. For RNA-seq, the features are as follows:  

 Mean of sample read lengths 
 Standard deviation of sample read lengths 

 Mean of read GC%  
 Standard deviation of read GC%  
 Mean coverage, calculated as the mean number of reads 

per base. 
 Sample complexity, calculated as the number of unique 

alignment coordinates divided by the number of total 
reads 

  Percentage of reads aligned in: 
o an exon 
o an rRNA region  
o an intragenic region 
o any region not mentioned above 

 
The following quality metrics were collected for the Ribo-seq 
datasets: 

 Mean of sample read lengths 
 Standard deviation of sample read lengths 
 Mean of read GC%  
 Standard deviation of read GC%  
 Sample periodicity, calculated as the percentage of reads 

in a coding sequence that align to the major frame 
 Sample complexity, calculated as the number of unique 

alignment coordinates divided by the number of total 
reads 

  Percentage of reads aligned in: 
o a coding sequence 
o an rRNA region  
o a tRNA region 
o any region not mentioned above 

Using eighteen publication quality RNA-seq and Ribo-seq 
Arabidopsis Thaliana samples from Merchante et al., Hsu et al., 
and Liu et al., we performed bootstrap simulation to generate 2000 
artificial samples consisting of the aforementioned quality metrics 
[2,19,20]. 
 
 
 
 
 

Dataset Record 
Number 

Dimensions Self sets Non-self sets Training set  Testing set  

Skin pigmentation 245,057 3 Skin: 50,859 Non-skin: 194,198 Skin: 50 Skin: 50,809 
Non-skin: 194,198 

Iris 150 4 Setosa: 50 Versicolour: 50 
Virginica: 50 

Setosa: 25 Setosa: 25 
Versicolour: 25 
Virginica: 25 

Glass 214 7 Normal: 206 Abnormal: 9 Normal:25 Normal: 181 
Abnormal: 9 

Habermans 
survival 

306 3 Survived: 225 Died:81 Survived: 150 Survived: 50 
Died: 50 

Artificial RNA-Seq 2000 10 Normal Quality:1600 Low Quality: 400 Normal Quality: 
50 

Normal: 1550 
Low: 400 

Artificial Ribo-Seq 2000 10 Normal Quality:1600 Low Quality: 400 Normal Quality: 
50 

Normal: 1550 
Low: 400 

Table 1. Properties of the datasets used for performance evaluation. 
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The samples were aligned to the Arabidopsis Thaliana genome 
using Tophat with default parameters [21]. Read positions were 
adjusted to their approximate p-site. The p-site of the ribosome 
holds the tRNA that is linked to the growing polypeptide chain, 
and plays a vital role in translation initiation, elongation, and 
termination [22]. 
 
In the bootstrap simulation, for each of the ten data features, 
10,000 samples of size 18 are sampled with replacement from the 
original features/data sets. These samples are used to estimate 
the mean and standard deviation of the distribution of each 
feature, and artificial samples are subsequently generated by 
randomly drawing values from each of these ten feature 
distributions. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To create a set of anomalous low-quality samples, we 
synthetically adjust the feature values of 400 of the high-quality 
samples. Between 1 and 10 features in these samples are adjusted 
randomly between 10 and 40 percent. Feature values are adjusted 
in a realistic manner, i.e. features that would appear lower in a 
real contaminated dataset are adjusted in the same manner.   
Tables 4 and 5 show the results of running BDUNN, RNSA, V-
detector, and a OC-SVM on these artificial datasets. The 
parameters for each algorithm are the same as those used 
previously, except that the self radius used for BDUNN, RNSA, 
and V-detector are increased to 0.2 to account for the higher 
dimension and larger problem space in this experiment. The 
initial number of detectors for BDUNN was set to 2000. 
 

Dataset  
Algorithm 

DR% FAR% DN DT (s) DTT (s) 

Mean SD Mean SD Mean SD Mean SD Mean SD 

 OC-SVM 100 0 52.05 0.11 - - 0.007 0.002 0.0002 0.0001 

Iris RNSA 98.74 .63 2.66 1.18 415.47 99.01 3.78 0.63 25.60 400.49 

 V-detector 99.94 .25 1.31 0.82 209.91 45.83 3.12 0.85 5.56 325.50 

 BDUNN 100 0 1.36 1.43 69.5 5.21 1.12 0.023 0.0003 0.0001 

 OC-SVM 77.83 13.30 55.04 9.24 - - 0.02 0.004 0.008 0.001 

Glass RNSA 85.32 .63 7.67 1.48 8414.70 906.55 38.73 13.24 3586.2 595.61 

 V-detector 91.06 .27 10.98 3.22 2569.54 476.15 82.71 23.86 984.55 325.50 

 BDUNN 89.63 9.13 9.19 3.56 1031.57 40.02 15.27 0.45 0.002 0.005 

 OC-SVM 77.21 7.07 61.66 6.67 - - 0.02 0.005 0.01 0.007 

Haberman’s RNSA 79.42 8.33 55.4 7.04 2141.1 152.8 6.54 0.88 1481.94 302.94 

Survival V-detector 84.90 3.23 27.41 5.25 804.07 174.66 10.19 23.86 482.09 95.45 

 BDUNN 80.88 3.78 23.12 7.32 515.91 51.56 11.70 2.38 0.0044 0.003 

 
Algorithm 

DR% FAR% DN 

Mean SD Mean SD Mean SD 

OC-SVM 99.09 .7 51.2 6.67 - - 

RNSA 98.42 .63 0.66 1.48 3000 0 

V-detector 99.05 .27 1.31 1.22 469.85 174.66 

BIORV -NSA 99.42 .34 3.29 2.72 1000 0 

VorNSA 99.20 .16 1.48 1.49 172.25 11.06 

VorNSA /MR 99.43 .24 1.56 1.37 176.90 11.96 

BDUNN 99.63 .20 1.16 1.65 151.83 8.98  

Table 2. Results for Iris, Glass, and Haberman’s survival datasets 
 

Table 3. Results for Skin Pigmentation dataset. 
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From these results, we can see that BDUNN performs favorably 
compared to RNSA and V-detector in all metrics, including large 
improvements in DN, DT, and DTT. The OC-SVM attains the 
highest DR but has an average FAR of over 70%. 

 

4 IMPLEMENTATION 
           We have implemented BDUNN within riboStreamR, a 
platform for quality control, visualization, and analysis of RNA-
seq and Ribo-seq data [12]. Within this platform, users can 
upload their own data in the form of BAM alignment files.  
 
RiboStreamR calculates each of the previously mentioned quality 
metrics for the user’s data, and uses BDUNN to scan for 
anomalous samples. BDUNN tests the user’s data’s quality 
against the previously established artificial RNA-seq and Ribo-
seq datasets for Arabidopsis. The Summary Table tool within 
riboStreamR displays the results of performing anomaly 
detection within the user’s datasets using BDUNN. This 
environment contains 9 additional customizable tools which 
facilitate downstream inspection of different quality metrics of 
the user’s data. Researchers can use this information to inform 
further decisions on data processing and analysis steps, and to 
make improvements to subsequent experiments. Future work 
will go into expanding this platform to include artificial datasets 
from more species. We also plan to develop a system which  
automatically highlights features which are irregular within 

anomalous samples, and identifies reads which are potentially 
contaminates. 

5 CONCLUSION 
In this paper, we use the novel negative selection inspired one-
class classifier for anomaly detection to identify contaminated 
RNA-seq and Ribo-seq datasets. Our algorithm, BDUNN, 
establishes a minimal set of detectors and a reduced training 
point set which define the boundaries between the self and non-
self spaces, and subsequently uses a nearest neighbor algorithm 
to classify test observations. Our algorithm avoids many of the 
pitfalls of traditional negative selection methods, such as random 
detector generation, estimated coverage calculations, and slow 
testing phases. Using an artificial dataset, we show that BDUNN 
can identify low-quality RNA-seq and Ribo-seq samples after 
training with a set of normal samples. Additionally, we 
established BDUNN within the riboStreamR framework, which 
facilitates a more thorough inspection of metrics of anomalous 
datasets. This allows users to classify their own samples and 
generate a downstream visualizations of their quality metrics. 
While there are analysis tools which measure the quality of 
RNA-seq and Ribo-seq alignments [21], BDUNN, in concert with 
riboStreamR, employs a more informative, downstream set of 
quality metrics, and  assesses the quality of user’s data based on 
its similarity to known high-quality samples. In the future, we 
aim to further evaluate the efficacy of BDUNN on more real 
experimental datasets by testing its ability to identify known 
contaminated samples from various species.  

 
Algorith
m 

DR FAR DN DT DTT 

Mea
n 

SD Mea
n 

SD Mean SD Mean SD Mean SD 

OC-SVM 99.08 0.14 70.45 5.01 - - 0.002 0.0003 0.002 0.0003 

RNSA 88.91 1.12 9.77 3.09 5188.91 8857.23 209.97 74.06 1675.33 651.04 

V-
Detector 

91.14 1.87 6.93 2.75 1755.32 401.82 51.98 15.15 698.97 190.25 

BDUNN 92.03 1.15 3.38 0.69 1345.90 200.50 39.01 4.30 0.048 0.017 

 
Algorithm 

DR FAR DN DT DTT 

Mean SD Mean SD Mean SD Mean SD Mean SD 

OC-SVM 99.60 0.17 72.21 4.85 - - 0.002 0.0004 0.004 0.0003 

RNSA 89.94 0.99 9.15 2.67 5570.09 904.11 220.57 80.03 1756.98 655.94 

V-
Detector 

92.11 1.50 5.05 2.03 1980.83 302.07 45.34 15.77 614.40 181.12 

BDUNN 92.84 1.02 2.66 .62 1486.15 228.67 33.77 4.99 0.051 0.019 

Table 4. Results for Artificial RNA-seq dataset 
 

Table 5. Results for Artificial Ribo-seq dataset 
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