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ABSTRACT
Variability-aware metrics are designed to measure qualitative as-
pects of software product lines. As we identified in a prior SLR [6],
there exist already many metrics that address code or variability
separately, while the combination of both has been less researched.
MetricHaven fills this gap, as it extensively supports combining in-
formation from code files and variabilitymodels. Further, we also en-
able the combination of well established single system metrics with
novel variability-aware metrics, going beyond existing variability-
aware metrics. Our tool supports most prominent single system and
variability-aware code metrics. We provide configuration support
for already implemented metrics, resulting in 23,342 metric vari-
ations. Further, we present an abstract syntax tree developed for
MetricHaven, that allows the realization of additional code metrics.
Tool: https://github.com/KernelHaven/MetricHaven
Video: https://youtu.be/vPEmD5Sr6gM
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• General and reference → Metrics; • Software and its engi-
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1 INTRODUCTION
In software engineering, metrics are an established approach to
characterize properties of software [7]. However, variability man-
agement is a key part of Software Product Lines (SPLs), which is not
covered by traditional metrics. The SPL research community devel-
oped variability-aware metrics to address this issue, which received
increasing attention over the last decade [5]. While a few very spe-
cializedmetrics have been integrated into SPL-specific IDEs, there is
still a lack of publicly availablemetric tool suites. Here, we introduce
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MetricHaven, an extension of KernelHaven [12], for the flexible
execution and combination of variability-aware code metrics.

MetricHaven provides support for the measurement of tra-
ditional code metrics that ignore variability, SPL metrics that
measure only variability, and the combination of both. Further,
we allow the flexible combination of variability-aware code
metrics with feature metrics, e.g., to detect complexity that arises
through the combination of the variability model and code artifacts.
MetricHaven provides configuration support to select among
23,342 metric variations (as of spring 2019). This is achieved by
a specialized Abstract Syntax Tree (AST), which covers relevant
information for measuring this broad variety of metrics. Through
the underlying architecture of KernelHaven, which is optimized
for parallelization, MetricHaven is able to measure a small number
of selected code metrics on the whole Linux Kernel in less than 5
minutes, while the computation of all 23,342 metric variations takes
around 3,5 hours. This means that in average each metric requires
less than 1 second to measure the complete source code of Linux.

We regard MetricHaven as an experimentation workbench [11]
for the analysis of SPL metrics. The provided concepts support
researchers in developing and evaluating new variability-aware
metrics. More precisely, we plan to analyze the potential of the
metrics for fault prediction, by applying machine learning on the
produced data. Also, practitioners may benefit from MetricHaven
as they can directly use the tool for the detection of code smells.

2 CONCEPT
MetricHaven supports metrics for single systems, variability-aware
metrics for SPLs, and arbitrary combinations of both. Further, we al-
low the combination of featuremetrics for variability-awaremetrics,
if they count the number of features as part of their computation. As
a result, MetricHaven supports more than 23,000 metric variations.
Below we list the most important design decisions of MetricHaven:

Decoupling of Parsers and Metrics. The underlying architec-
ture of KernelHaven provides data models, which serve as input for
different kind of analyses [12]. This allows reuse of extractors and
data models for the realization of new analyses. For the implemen-
tation of MetricHaven, we could benefit from existing extraction ca-
pabilities for variability and build models. The extraction of the vari-
ability model and its data model required minor adaptations for stor-
ing hierarchy information, which serve as input for some of the fea-
ture metrics. Only new extractors are required for measuring prod-
uct lines that use modeling techniques that are not supported so far.

Common AST. To allow the arbitrary implementation of
single system and variability-aware code metrics, we require one
common AST that stores elements of the annotation language, e.g.,
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Figure 1: Excerpt of MetricHaven’s AST.

C-preprocessor, and elements of the programming language, e.g.,
C statements1. This is a challenging task, since the preprocessor is
not part of the programming language and can be used at arbitrary
positions inside a code file, independently of any syntax definitions.
On the other side, we do not need a syntactical correct and
complete AST, since the AST should not be used for compilation
tasks or type checking analyses. Figure 1 presents an excerpt of our
AST, which was motivated by our systematic literature study on
variability-aware metrics [6] and an informal survey on traditional
code metrics. The two most import elements are:
• The CppBlock is used to store preprocessor blocks (#if, #ifdef,
#ifndef, #elif, #else). Since it inherits from two classes
(ICode and CodeElementWithNesting), it allows the insertion
of preprocessor directives at arbitrary positions in our AST.

• The SingleStatement is the most fine-grained element of
our AST, which is sufficient for the measurement of the most
prominent metrics. Expressions are stored as unparsed elements.
Preprocessing Framework. The metric calculation operates

on a per-function basis. This simplifies the implementation of met-
rics and also creates parallelization opportunities. However, some
metrics (e.g. the Fan-In/-Out and Scattering Degree metrics) require
a complete view on the whole code. For this, we implemented
pre-processing components that run before the metric computation
on the full models supplied by the extractors. The results of these
pre-processing components are passed to the metric calculation
component, which can look up these pre-calculated values.

2.1 Variability-aware Code Metrics
The AST given in Figure 1 stores enough information to realize tra-
ditional code metrics for single systems, variability-aware metrics
for SPLs, and arbitrary combinations of both. Below, we present
currently realized metrics, which may be selected by users to mea-
sure properties of SPLs (cf. Section 3). However, these metrics are
not complete as the AST supports the definition of further metrics.

McCabe’s Cyclomatic Complexity Measure [15] is a very
common metric for single systems that computes the number of lin-
ear independent paths of the control flow representation. This may
be computed by adding 1 to the sum of all branching statements
(if, while, for, case, . . . ) [3]. This approach was also applied
to variation points to measure complexity of variation points
[14]. We support three alternatives to compute the cyclomatic
complexity: The first counts only branching statements of the

1The concepts we propose here, could also be applied well beyond C.

programming language. The second counts only variation points,
e.g., #ifdef-blocks. The last one counts both kinds of branching
statements, independently whether branching statements of the
programming language are repeated in multiple variation points.

Nesting Depth (ND) measures the maximum / average nesting
level of statements within control structures [3]. The authors argue
that each nesting increases the complexity as a developer needs
to consider all enclosing conditions when editing the code. This
concept was also applied to variation points [13]. We support
three variations of this metric by counting the nesting depth of
statements of the programming language, variation points, and
the combination of both.

Fan-In/-Outmetrics are designed to trace how data is processed
inside a program [3]. Ferreira et al. [8] designed metrics that
measure the incoming and outgoing connections of functions in
combination with the number of features used for the selection
of these connections. Based on these metrics, we defined 3
variations of Fan-In/-Out metrics. The first variation measures only
connections between functions and ignores the variability of the
code. The second variation counts only conditional connections,
that are function calls surrounded by at least one variation point
inside the function. The third variation counts the number of
features used to control the conditional inclusion of a function call.

Lines of Code (LoC) measures are very important metrics
for single systems, but also in the context of SPLs. There exist
a plethora of interpretations how to measure LoC. Jones [10]
recommended to count statements instead of lines in order to
have a formatting independent measure. Lines of Feature code (LoF)
measures the lines of code that are controlled by a variation point
[13]. In addition, the Fraction of Annotated Lines of Code (PLoF)
computes LoF

LoC . We support LoC, LoF, and PLoF on statement level.
Please note that the data model given in Figure 1 also conceptually
supports to measure the lines of code instead of statements, as we
also store the start and end line of each element.

Features per Function are designed to measure the complexity
induced by the presence of #ifdef-blocks in the code [8]. We
implemented 5 variations: 1.) Measures the number of features
used inside a function. 2.) Measures the number of features that
control the presence of the function, excluding the build model.
3.) Measures the number of features that control the presence of
the function, including the build model. 4.) The union of the first
and second metric. 5.) The union of the first and third metric.

Blocks per Function measure the number of variation points,
instead of the features, used inside a code function [8]. The authors
do not specify whether #else/#elifs are treated as separate blocks
or as part of the #ifdef-block. For this reason, we implemented
two variations of this metric: The first metric counts only the
number of #ifdef-blocks and ignores its siblings. The second
treats related #else/#elifs as separate blocks.

Tangling Degree (TD) counts the number of features used in
variation point expressions [13]. We realized only one version, as
we do not know about a relevant variation of it.
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2.2 Feature Metrics
MetricHaven allows a flexible combination of code metrics with
feature metrics. This can be done since most of the variability-
aware code metrics count the number of features used to control the
variation points. For these metrics we allow the usage of a feature
metric to measure the complexity of the variation point instead of
counting the number of used features only. Below, we introduce 7
feature metrics. Most of them are based on existing measures, but
we developed also some new metrics for unmeasured properties.

Scattering Degree (SD) metrics are used to analyze whether
a feature is implemented in a modularized way (low scattering)
or is spread over the code base (high scattering) [17]. A high
scattering indicates a fragile design and may significantly increase
system maintenance. We re-implemnted two variations: SDVP[13]
is a commonly used metric that counts the number of variations
points (i.e., #ifdef-blocks) a feature is used in. SDFile[9] is a more
coarse-grained version as it counts the number of code files, in
which a feature is used in at least one variation point.

Feature Size is inspired by the LoF-metric of the previous
section. We count for each feature the statements controlled by
that feature. We count a statement to all features that (in-)directly
control the inclusion of the statement. For instance, the statements
in Lines 3–5 of Figure 2 are controlled by the feature A. The idea
of this metric is to provide an alternative to the previously defined
scattering degree metric, which shows the impact of a feature to
the implementation of the SPL.

The Number of Constraints (NoC) metric [1] is often used to
measure the complexity of feature models, by counting the number
of cross-tree constraints. We refined this metric and provide 3 fea-
ture metric derivations: NoC counts the number of all constraints
of the feature model, where the respective feature is used in. Some
modeling approaches allow a differentiation among constraints,
e.g., the modeling approach of Linux requires that constraints are
modeled as attributes of features [4]. We allow a separate analysis
of constraints modeled as attributes of a feature (NoCout) and con-
straints of other features referring to the measured feature (NoCin).

The Coefficient of Connectivity-Density (CoC) is designed
to measure how well graph elements are connected [1]. This is
done by dividing the number of edges (parent child relations and
constraints) by the number of features in a feature model. We
modified this metric to operate on features instead of the complete
feature model only and provide two alternative measures: The first
alternative counts the number of non-transitive child features, to
measure the number of parent-child edges. We do not count the
parents, since it would increase all numbers by one only, excerpt
for the root feature. The second alternative considers also all
incoming and outgoing constraint connections, which are also
measured by the NoC-metric of the previous Section.

The Feature Types metric is inspired by work that analyzes
the amount of non-Boolean features used in publicly available
SPLs [16]. We allow to specify weights for each feature type. This
facilitates an analysis whether the usage of non-Boolean features
in variation points increases the code complexity.

Feature Hierarchies is inspired by work on how structural
properties impact the complexity of feature models. This includes
the measurement of the depth of tree, the number of top features,

1 void func ( ) {
2 # i fde f A
3 i f ( . . . ) {
4 a_ s t a t emen t ;
5 }
6 #endif
7 }

void func() {. . . #ifdef A

if (. . . ) {

a_statement;

}

#endif}

1 2

3

Figure 2: Code example and its variable control-flow.

or the number of leaf features [1]. We support two variations of
hierarchy-based feature metrics: The first variation uses the nesting
level of the feature as a feature metric. The second variation allows
user-defined weights for top-level, intermediate, and leaf features.

This Feature Locality metric is a novel metric designed for the
modeling behavior of Linux. Its variability model is spread over
several hundred files [2]. The used include mechanism provides a
modularization concept at which a sub feature-model can be stored
at the same location as the realizing implementation. In addition,
it is possible to provide alternative sub feature-models containing
the same features with different constraints for different CPU
architectures. We provide a feature metric to measure the distance
of a feature realization and the feature definition. This is done by
computing the distance in the file system of the sub feature model
that defines the feature and the measured code artifact, which
uses the respective feature. If the feature is defined by multiple
alternative files, we count the shortest distance.

2.3 Example
Based on the variable control flow representation shown in Figure 2,
we demonstrate how MetricHaven supports the computation
of McCabe’s cyclomatic complexity metric [15] as well as the
variability-aware version of the metric [14]. Further, we demon-
strate how to combine the variability-aware code metrics presented
in Section 2.1 with feature metrics presented in Section 2.2.

McCabe on Code. McCabe’s metric [15] computes the linear
independent paths of the control flow representation of a program.
Our example contains two linear independent paths, drawn with
black lined arrows. This can be counted by adding 1 to the number
of Branch- and LoopStatements.

McCabe on Variation Points. The variability-aware version
of McCabe considers only paths created by variation points [14].
The example contains two paths. The black lined arrows are treated
as one path (keeping the #ifdef-block) and the blue dotted arrows
(removal of the #ifdef-block). This can be counted by adding 1
to the number of CppBlocks.

McCabe on Variation Points and Code. Further, Met-
ricHaven allows a combination of the single system and the
variability-aware code metric in a manner, which was not done
before. For the combination of both metrics, we need to count all
three paths of the control flow graph.

Combination with Feature Metrics. McCabe proposed to
treat compound expressions in the form of Exp1 and/or Exp2 as
separate paths as they could alternatively be realized with multiple
if-then-else blocks [15]. Following his idea, we support measuring
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of features in conditions rather than counting variation points only.
Instead of adding 1 for each measured feature, we add the complex-
ity value of a selected feature metric of Section 2.2. For example, we
facilitate using the number of modeled constraints (NoC-metric) in
which feature A appears in instead of counting the blue dotted path.

3 USAGE
MetricHaven is implemented as a plug-in for the KernelHaven
infrastructure, which requires the Java runtime version 8 or higher.
We recommend at least 16 GiB of RAM for the computation of
all 23,342 metric variants. The default release of KernelHaven
includes MetricHaven and required extractors for analyzing the
Linux Kernel up to version 4.17. The variability and build model
extractors work only on a Linux system with an installed GCC
compiler plus the prerequisites for compiling the Linux Kernel.
Other extractors may be supplied as additional plug-ins that allow
analyzing other SPLs, which may not have these limitations.

An execution of MetricHaven requires a KernelHaven release2
to be downloaded and unpacked. The release includes the
code_metrics.properties configuration file, which can be used
as a basis for the execution of MetricHaven. The KernelHaven
process is started with the following command3:
java -jar KernelHaven.jar code_metrics.properties

KernelHaven’s pipeline and the analysis components may be
configured via Java properties files. The most relevant settings
with respect to MetricHaven are:
• source_tree specifies the path to the SPL to analyze. For exam-
ple, this can be the root directory of an unpacked Linux Kernel.

• By default, all 23,342 metric variations are executed. metrics-
.code_metricsmay be used to select all variations of one metric.
The provided configuration file contains a list of supported met-
rics. Further, metrics.function_measures.all_variations
may be used to select a single metric variation.

• code.extractor.threads controls the number of threads used
for parsing the source code of the product line.

• metrics.max_parallel_threads controls the number of
threads used for calculating the metrics for a single function. This
may be used for the computation of a large number of metric
variations, otherwise the overhead of multithreading is too high.

4 CONCLUSION
We presented MetricHaven, an extension of KernelHaven for
measuring metrics for single systems, variability-aware metrics
for SPLs, and arbitrary combinations of both. Further, it supports
the combination of feature metrics with variability-aware code
metrics. Its flexibility allows the combination of 23,342 metric
variations. This is achieved by an common AST that combines
information of parsed code annotations (e.g., C-preprocessor) and
the programming language (e.g., C-code).

MetricHaven is very fast. For example, it requires 3,5 hours for
measuring all 23,342 metric variations on the complete Linux ker-
nel4. This is about half a second per metric. Or, to put it differently,
measuring 23,342 metrics, requires about 40ms per code function.
2https://github.com/KernelHaven/KernelHaven
3More details in appendix of https://sse.uni-hildesheim.de/en/research/publications/p
ublikation-einzelansicht/?lsfid=41623&cHash=b244065d45b8c85e2cd7560559dda3dd
4Measurement of Linux version 4.15 on 2 Xeon E5-2650 v3 with 128 GB memory

MetricHaven is a publicly available experimentation workbench
designed to support researchers and practitioners in the analysis
of annotation-based SPLs. New metrics may be developed based
on the presented AST, without the need to develop new parsers.
On the other side, the existing metrics may be applied without any
changes to other imperative code files through the implementation
of new extractors. This supports researchers in evaluating new
SPL metrics. Also practitioners may benefit from MetricHaven as
they can directly use the tool for the detection of code smells of
annotation-based SPLs.
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