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Abstract

Among the various directions that SPLE promotes, extractive adop-
tion of complex product lines is especially valuable, provided that appro-
priate approaches are made available. Complex variability can be encoded
in different ways, including the feature model (FM) formalism extended
with multivalued attributes, UML-like cardinalities, and references con-
necting separate FMs. In this paper, we address the extraction of vari-
ability relationships depicting connections between systems from separate
families. Because Formal Concept Analysis provides suitable knowledge
structures to represent the variability of a given system family, we ex-
plore the relevance of Relational Concept Analysis, an FCA extension to
take into account relationships between different families, to tackle this
issue. We investigate a method to extract variability information from de-
scriptions representing several inter-connected product families. It aims
to be used to assist the design of inter-connected FMs, and to provide
recommendations during product selection.

1 Introduction

As families of similar software systems grow in size and complexity, managing
them by adopting an approach based on software product line (SPL) engineer-
ing becomes more and more relevant. When various software systems of a same
family have been individually developed in an undisciplined way, migrating to an
SPL may be done through an extractive approach, by analyzing their common-
alities and differences, and by identifying the reusable assets and a reference ar-
chitecture. Complex variability extraction may result in Feature Models (FMs)
[KCH™90, CW07] extended with multivalued attributes, UML-like cardinalities,
or references connecting separate FMs [CBUE02].

Previous research work has studied variability extraction in the boolean
case [LP07, HLE11, RPK11, ACP*12, AMHS*14, MZB*17, SSS17], and in



presence of multi-valued attributes and cardinalities [BBGA15, CHN19b]. More
specifically, in [CHN19b], we show how Formal Concept Analysis (FCA) and its
extension to Pattern Structures help in extracting variability relationships from
a product family described by multi-valued attributes and cardinalities. It leads
to binary implications, groups and mutex involving boolean features as well as
attribute values and cardinalities.

In this paper, we address the problem of cross-family variability relationship
extraction from descriptions representing several inter-connected product fami-
lies (see Figure 1). These families may correspond to various concerns or prod-
uct pieces, and may be connected by different relationships, e.g., use, part-of,
compatible-with, provide. We introduce a method based on Relational Concept
Analysis (RCA), an FCA extension to take into account these relationships be-
tween the product families. This method produces concept lattice families from
which are extracted cross-family features and cross-family relationships that can
be binary implications, mutex, co-occurrences or groups involving both boolean
features and cross-family features. This is part of a general approach we envis-
age, thus we also discuss how in the future this method can assist the design of
FMs with new kinds of references, and the exploration of existing configurations
for the sake of recommendation.

lattice families future work

interconnected
product families feature models
relationships @

between fecommandation selection of
product families system a product

cross-family
features and
relationships

cross-family
variability
extraction

Figure 1: Schema of the envisaged approach.

In Section 2, we introduce the foundations of variability extraction with
FCA. Addressing cross-family variability extraction with Relational Concept
Analysis is developed in Section 3. Then, we discuss how the extracted cross-
family variability can help in inter-connected FMs design and in configuration
exploration (Section 4). We develop related work in Section 5, before concluding
and drawing perspectives of this work in Section 6.

2 Background: Assisted variability extraction
with FCA

Variability modeling. Variability modeling appears in the earliest steps for
extractive adoption of a software product line from a family of product vari-
ants. To elaborate a variability model in the context of a feature-oriented mod-



eling approach [KCH'90], the main existing approaches need to identify (a)
representative and discriminating features and (b) relationships between these
features (e.g. implications, mutually exclusive features or groups). Then the
extracted information is represented through feature models [KCHT90, CW07,
SHTBO7], propositional logics [Bat05], description logics [BEGB11], or con-
straints [SDMT11]. Relationships between features are usually extracted from
the product variant descriptions depicting variants along with their features.
For example, these descriptions may take the form of tabular descriptions,
such as Product Comparison Matrices that can be found in Wikipedia! and
extracted thanks to API such as OpenCompare?, produced by random or man-
ual sampling from generators, such as using the web application generator
JHipster3[HNA*17], or by analysing software developed by communities, such
as Robocode*. These tabular descriptions generally expose characteristics (as
columns) and their values (in cells) for the different product variants (as rows).
They need to be cleaned, manually, or automatically [BSAT14] before auto-
mated exploitation. From the cleaned tabular descriptions, several methods ex-
tract relationships for boolean features, leading to FM synthesis or more simply
logical relationships extraction [LP07, HLE11, RPK11, ACP*12, AMHS'14,
MZB*17, SSS17, CHN19a]. A few approaches [BBGA15, CHN19b] address
the problem of extracting more complex variability information to take into
account multi-valued attributes and cardinalities. Several of these approaches
[LP07, RPK11, AMHS*14, SSS17, CHN19b, CHN19a] are based on Formal
Concept Analysis, which can be seen as a structuring framework for variabil-
ity analysis and representation, in which some of the other approaches can be
embedded, as shown in [AMdSH*14, CHN19a).

Formal Concept Analysis (FCA) Formal Concept Analysis (FCA) [GW99]
can be summarized by the equation: “objects + attributes = concept hierar-
chy”. In other words, based on a set of objects (entities, individuals) described
by a set of attributes (properties, characteristics), FCA helps to: (1) group a
maximal set of objects sharing a maximal set of attributes into a concept, and
(2) hierarchically organize the set of concepts.

In the simplest form, FCA considers as input a formal context K = (O, A, J),
where O is a set of objects, A is a set of attributes and J C O x A is a binary
relationship, where (0,a) € J when “o possesses a”. Table 1 represents in a
tabular form a formal context K ET describing (in a simplified way) Knowledge
Engineering (KE) tools (left-hand-side), and a formal context K FC describing
basic Knowledge Engineering (KE) components (right-hand-side). The first col-
umn of a formal context presents the objects (here in the form of an identifier
representing KE tools or components), and the first row gathers the attributes
(here the boolean features). KE tools are described by their import/export

lE.g. comparisons on software systems: https://en.wikipedia.org/wiki/Category: Soft-
ware_comparisons, last accessed in March 2019

2https://github.com/OpenCompare

Shttps://www.jhipster.tech/

4https://github.com/butdreuse/RobocodeSPL_teaching



formats, their distribution mode (commercial or open source) and if they are
delivered in SaaS mode (Software as a Service). Basic KE components are dedi-
cated to resource creation (ontology, rules or raw file) or to implement a machine
learning algorithm from the categories: rule extraction, decision tree or neural
network. The strategy can be supervised or unsupervised. The components can
be classified as a symbolic method or as a statistical method.

Table 1: Product descriptions of Knowledge Engineering Tools K ET (lhs), and
Knowledge Engineering Components K EC' (rhs).
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FCA extracts a set of formal concepts. Each concept C = (E, I) is a maximal
group of objects E associated with a maximal group of attributes I these objects
share. £ ={o € O | Va € I,(0,a) € J} is the concept extent and I = {a €
A | Yo € E,(o,a) € J} is the concept intent. For example (using short names),
objects Egy = {odl,0d2,rdl, f1,rel,re2} share attributes I, = {sy, kec}. As
these sets cannot be extended, (Fsy, Is,) is a concept.

Extent inclusion (and intent containment) induces a specialization order
<cr between concepts: for two concepts Cy = (E1,I1) and Cy = (Es, 1),
C1 <c¢r Co if and ounly if F1 C Fy (and equivalently I; O Ip). For example,
if we consider the concept (E,¢,I..) with E.. = {odl,0d2,rd1, f1} and I,. =
{re, sy, kec}t, (Ere,Ire) <cr (Esy,Isy). The concept lattice is the set of all
concepts Ci of the formal context K, provided with the order <cr,. Attribute-
concepts (resp. Object-concepts) are particular concepts that contain at least an
attribute (resp. an object) which is not present in a super-concept (resp. sub-
concept). An AOC-poset (for Attribute-Object-Concept partially ordered set)
is the restriction of the concept lattice to these specific concepts. The AOC-
poset which classifies the KE tools (resp. components) of the left-hand-side
(resp. right-hand-side) of Table 1 is shown in Figure 2 (resp. Figure 3). A
concept is shown as a 3-part box containing: (1) the concept identifier, (2) its
intent deprived from the attributes inherited from the super-concepts, and (3)
its extent deprived from the objects that appear in the sub-concepts.
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Figure 2: AOC-poset of Knowledge Eng. Tools KET.

Variability information extraction with FCA Variability information
can be extracted from the AOC-poset and used to guide the FM synthesis
[CHN19a]. Table 2 explains how variability information can be extracted from
AOC-posets and translated into FM constructs. The first row considers the sit-
uation in which a concept introducing a feature f is a sub-concept of a concept
introducing f; (denoted by Cy, <cr Cy,). In this case, all configurations having
f2 also have fi, that leads to the propositional formula. Such an implication
can be translated into 3 different FM constructs: a refinement relationship @,
an optional relationship @ or a requires constraint @.

The second row shows how logical equivalences can be read in AOC-posets.
When f; and f; are introduced in the same concept, this means that features f;
and fy are always present together (f1 <> f2). In a feature diagram, this can be
represented: with a mandatory relationship @ or with two requires constraints
®.

The third row shows how mutual exclusions can be read in an AOC-poset.
Two features fi and fo (respectively introduced in Cy, and Cy,) are mutually
exclusive if the common sub-concepts of Cy, and Cy, (denoted Cy, M Cy,) do
not introduce any object.

The fourth row presents the mapping of or-groups @ into AOC-posets. We
consider {f1,..fx} the features involved in an or-group, and f; the parent-feature
of this group. All configurations having one of the features in {fi,..fx} should
also have fjy, and conversely, configurations having the parent-feature f, have
at least one feature of the or-group. Thus, the union of the extents of concepts
introducing features of { f1, .. fx } is equal to the extent of the concept introducing
fo. Moreover, the concept introducing the parent-feature of an or-group is not
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Figure 3: AOC-poset of Knowledge Eng. Components K EC.

an object-concept, as at least one feature of {fi,..fr} has to be selected. It is
denoted by Cy, & OC, Cy, being the concept introducing the parent-feature,
and OC the set of object-concepts of the AOC-poset. Besides, we consider that
there always exists a root feature, which appears in the top concept containing
all configurations.

The last row presents the mapping of xor-groups ® into AOC-posets. Xor-
groups are like or-groups, but concepts introducing the features of {fi,..fr}
do not have a common sub-concept introducing an object. Indeed, features
involved in a xor-group and features involved in an ezclude cross-tree constraint
have a similar behaviour, as they are mutually exclusive in both situations.

3 Cross-product family variability extraction with
RCA

Product line engineering faces inescapable issues related to the growth in size
and complexity of software systems and to their evolution [HGR12]. Decompos-
ing systems and considering separated concerns or gradual construction are so-
lutions that have been investigated, e.g. in multi-product lines [HGR12, Bot13,
RSKuRO08]. Extending the variability extraction from a product family to a
set of interconnected product families means that we need to consider both
intra-family and inter-family (cross-family) variability information.

Relational Concept Analysis Cross-family variability extraction can be as-
sisted by Relational Concept Analysis (RCA) [RHHNV13] which considers sev-



Table 2: Mapping between AOC-posets and FMs [CHN19a]. The extent of a
context C is denoted by EXT(C)
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eral object categories (one per product family). While FCA groups objects
sharing commonalities in their intrinsic attributes, RCA additionally groups
objects sharing commonalities in their similar relations to other objects having
themselves commonalities. To that aim, RCA iteratively applies FCA to prop-
agate similarities from objects in one category to objects in (possibly) another
category through relations. To follow up our illustrative example, identifying
the group of statistical KE components can be propagated to KE tools through
a provides relation, leading to identify the group of KE tools dedicated to sta-
tistical analyses.

The considered dataset in RCA is a Relational Context Family (RCF), which
is a set of object-attribute contexts (objects described by intrinsic attributes)
and a set of object-object contexts (relations between objects of the different
categories). For our example, the RCF is composed of the object-attribute
contexts KEC and KET (Table 1), and the object-object relation provides C
KET x KEC (Table 4). In the general case, an RCF contains n object-attribute
contexts K; = (O;,A4;,J;),i € {1,...,n} and m object-object contexts R; =
(Ok,Oy,715), 7 € {1,...,m}, with r; € O x Oy is a binary relation such that
k, 1 € {1,...,n}, Oy is the domain of the relation, and O; is the range of the
relation.

To consider the provides relation, information is added to the description
of objects of its domain (KET). A straightforward integration scheme could



be to simply add to the object-attribute context K ET attributes of the form
(provides, kec), and to add a cross when an object of K ET provides the corre-
sponding object of KEC. For example, (provides,odl) could be added to the
description of ket0 in a new column of K ET. This would allow to group KETs
that own the same KECs, but we would loose the valuable knowledge given by
the KEC concepts. Remember that these concepts indicate what are the shared
characteristics of KECs, e.g. dt1 and nnl are grouped in K EC'_8 because both
are statistical-based KECs (see Fig. 3). Now if we consider the way provides
describes ket7 and ket8 (resp. by (provides,dtl) and (provides,nnl)), these
two KETs do not share any KEC, whereas they share the fact that they al-
low statistical-based learning. To acquire such information, we propagate the
knowledge highlighted in the K EC AOC-poset to the K ET AOC-poset through
relational attributes. These relational attributes are formed using scaling quan-
tifiers inspired by constructors used in descriptions logics [BCM™03], such as 3
and 3v°, as illustrated in Table 3. For example, ket7 and ket8 descriptions will
be enhanced by a relational attribute Iprovides(K EC_8) to indicate that both
ket7 and ket8 have a link to at least one object of the K EC'_8 extent.

In the RCA process, a scaling quantifier ¢ is associated with each relation
r, and systematically applied to form all the relational attributes of the form
gr(C) with C a concept formed on the objects of the range of r. These relational
attributes are added to the context of the domain of r and a new extended AOC-
poset can be built. For example, Fig. 4 shows the AOC-poset built for KET
extended with the relational attributes formed with the quantifier 3V applied to
provides. In this AOC-poset, K ET_4 now highlights new shared information
about ket7 and ket8 which is the fact that both provide only (3V) statistical-
based learning components (the components they provide are all in KEC 8
extent).

RCA can consider complex and possibly cyclic entity-relationship models.
A non-trivial modeling phase is central in this perspective, to determine which
are the object-attribute contexts (separate product families) and which are the
object-object contexts (interconnections between the families), and the adequate
scaling quantifiers.

Cross-family features Table 3 shows two examples of the new features that
this framework makes available to describe cross-family variability. These fea-
tures are abstractions of links between an object o (a product configuration of
the domain of r in our context) and a concept C' (a group of product configura-
tions of the range of r). Existential features (Ir(C')) indicate if a configuration
o0 is linked by r to at least one configuration in the extent of Concept C'. In our
example, Iprovides(C') is the feature “provides a KEC with the features of C”.
Feature Iprovides(K EC _8) can be read “provides a statistical learning compo-
nent”. Universal features (Ivr(C)) indicate if all r links of a configuration o
are towards configurations in the extent of Concept C ; for our example, it can

53V is used instead of V to avoid assigning to an object o a relational attribute formed on
r when 7(0) is empty (and would be included in any concept extent).



be summarized as “provides only KEC with the features of C”. As presented
previously, IVprovides(K EC 8) can be read “provides only statistical learning
components”.

Table 3: Examples of cross-family features

Relational attribute
Object links vs. concept extent Schema Cross-family Feature

r(o) N Extent(C) # 0 existential 3r(C)

r(0) C Extent(C) (o) #0 universal IVr(C)

Cross-family variability relationships Variability information can be ex-
tracted from the AOC-poset resulting from RCA, using the same mappings as
introduced in Table 2. The found relationships also involve cross-family features.
Three examples are given below using the AOC-poset of Figure 4.

Example of co-occurrence. By the second row of Table 2, rdf and
IVprovides(K EC_12) are co-occurrent, since both are introduced in the same
KET 5. In other words, since K EFC'_12 corresponds to symbolic components,
that means that tools exporting in rdf only use symbolic methods.

Example of implication. By the first row of Table 2, KET_1 is below
KET9, thus IVprovides(K EC_6) — Saas: the knowledge engineering tools
providing components that only deal with ontology definition (KEC_6) are
delivered in SaaS mode. This can be translated through several ways in a
feature model (see cases @, @ and @ in Table 2).

Example of exclusion. KET 5 and KET_6 do not have a common sub-
concept introducing a configuration. By the third row of Table 2,
IWprovides(KEC 6) — —pf. We can deduce that none of the KETs providing
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Table 4: Relation provides between Knowledge Engineering Tools K ET (rows)
and Knowledge Engineering Components K EC' (columuns).
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Ket2 3v provides( KEC_10) 3v provides( KEC_5)| [3v provides( KEC_4)
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Figure 4: AOC-poset of Knowledge Engineering Tools K ET after integration
of information about provides, using 3V quantifier.

components based only on symbolic methods (K EC_12) is based on a propri-
etary format.

4 Exploiting cross-family variability

In this section, we draw tracks of future research to exploit cross-family vari-
ability information.

Extended (semi-automated) FM synthesis Intra-family information has
been used to assist FM synthesis [CW07, SLBT11, HLE11, RPK11, ACP*12,
HLE13, AMdSH* 14, SRA*14, CHN19b]. The methods that use FCA to assist
FM synthesis [RPK11, AMdSH™' 14, CHN19b| exploit a concept structure to de-
rive automatically an FM or to provide user guidance by reducing their choices
during FM construction. For example, the FM of KETSs in Fig. 5 (resp. of KECs

10



in Fig. 6) can be extracted from the AOC-poset of Fig. 2 (resp. Fig. 3) by an
FM designer, assisted by the rules presented in Sect. 2. Cross-family variability
information can in turn be used to assist the synthesis of interconnected FMs,
either by writing constraints between two different FMs (as shown in Sect. 3), or
to enhance an FM from one family by features coming from knowledge about re-
lations in real configurations. We illustrate this by using information extracted
from the AOC-poset of KET (Fig. 4). First, we introduce a reference kec be-
low the FM root, with cardinality -many (*). Then the AOC-poset states that
in observed real configurations (as shown in K ET 4), some KETs propose only
supervised learning algorithms (IVprovides(K EC_9)), thus if a user chooses
that option when he designs a KET, he should be guided afterwards to config-
ure only components implementing supervised learning algorithms. The AOC-
poset also shows (in KET_5) that a group of KETs is dedicated to symbolic
approaches only (IVprovides(K EC_12)) and a subgroup of them is dedicated to
ontology definitions only (IVprovides(K EC _6)). From these observations, the
FM designer could decide to introduce a feature supervised ket (sup), a fea-
ture symbolic ket (sy) with a sub-feature ontology dedicated (o). These
choices are represented as an extension of the FM K ET, as shown in Fig. 7 in
the grey rectangular box. The introduced features in the KET FM should be
used in configuration tools to reduce the choices in the KEC FM when they are
selected. It can be tricky for an FM designer to choose to add features to the
KET FM depending on the relations that are observed between KET configura-
tions and KEC configurations. This indeed propagates structuring information
from the target of provides (KEC) to the source (KET), and in many cases, this
could break the separation of concerns. In this case, it should be preferred to
use cross-family constraints. Using cross-family constraints to write cross-tree
constraints nevertheless requires that the concept carrying the constraint corre-
sponds to a feature. If this is not the case the constraint should be redistributed
on the existing children if any exists.

knowledge engineering tool (ket)

_— N

—— T
import/(%gort (ie) distribution (di) sass (sa)
o
json ‘<1-3> rdf <t-1>

commercial (co)
proprietar'y format (pf) open source (0s)

Cross-tree constraints : pf — co ; co — pf

Figure 5: an FM extracted from the AOC-poset of Figure 2.

Introducing in a feature model F M7 cross-family features that are derived
from another feature model F M, can be seen as a way to achieve feature model
composition, and especially the union operation. Traditional methods merge

11
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ontologb_rl/-% Raw learning (le)

definition | file \.
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definition  algorithm strategy (str)

(rd) (al) /O\
A;\ <1-1>
rule extraction /

supervised (su) unsupervised (un)

(re) decision tree  neural network
(dt) (nn)
Cross-tree constraints: un - re ; dt — sta;nn - sta;sta - su

Figure 6: an FM extracted from the AOC-poset of Figure 3.

the common features of two models and keep the specific features of both initial
FMs. It produces a single output FM gathering features from two different con-
cerns into one model [ACLF10, CHMN17]. Cross-family features group features
of interest from F M5 into more “abstract features” that will enrich FM; with
external concerns.

Recommendation Information embodied in AOC-posets can be used to guide
the users in their choices when selecting a valid configuration. Concepts repre-
sent maximal groups of valid configurations sharing a maximal set of features,
that may be intrinsic or cross-family. If we consider that the conjunction of a
concept’s features forms a query, then the concept’s set of configurations can be
seen as the result of this query. The concepts kept in an AOC-poset represent
the maximal queries that can be formulated by a user, i.e., the maximal fea-
ture conjunctions representing each configuration subset. For instance, if a user
wants to retrieve all KETs supporting the RDF format, the corresponding max-
imal query in Figure 4 corresponds to the concept introducing the feature rdf
(KET.5), and the result is ket0-3. This can be applied for cross-family features
too: it enables to query the KET configurations depending on their relation-
ships to KECs. For instance, if a user wants to retrieve KETs providing only
neural network KECs (K EC_5), this query corresponds to the concept K ET_13
of Figure 4 introducing IVprovides(K EC_5) and it results to the unique con-
figuration ket8. The querying can benefit from the variety of quantifiers and
their different semantics [BDHB18]. If, this time, a user wants to retrieve KET's
providing at least one neural network KEC, we should consider the AOC-poset
built with the existential quantifier.

The different quantifiers are ordered by generalization [BDHB18] thus a con-
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Cross-tree constraints:
pf - co;co - pf; sy - rdf; rdf -~ sy; o - saas; sup - co

Figure 7: FM that can be extracted from the AOC-poset of Figure 4, and
cross-family information.

cept formed in an AOC-poset with a quantifier g; can be projected in the AOC-
poset formed with g4, if g, is more general than g;. For instance, 3 is more
general than 3V. Choosing the right quantifier can be useful to tune the degree
of observed variability and the precision of the recommendation systems.
Concepts’ position in the AOC-poset and to each other reveals other useful
information about the structured family. Concepts on top of the AOC-poset usu-
ally possess less features and more configurations and therefore represent groups
of features shared by most of the considered configurations. Dually, concepts at
the bottom generally possess more features and less configurations, and repre-
sent more specialised features, i.e., the ones shared by few configurations. For
instance Figure 3 reveals that there are more symbolic KECs (K EC_12) than
statistical ones (K EC_8): this information may be used in recommendation sys-
tems to propose, for instance, popular features to a user. It is also noteworthy
that the closer two concepts are in the structure, the more similar are their sets
of features and configurations. Therefore, navigating from one concept to one of
its neighbours represents modifications that can be applied on the corresponding
query. This navigation has different properties depending the used conceptual
structure (e.g. AOC-poset, concept lattice). Retrieving a concept based on a set
of features can be seen as querying information from the relation concept family.
Navigating from a concept to another in the structure enables a user to ezplore
the set of available configurations by progressively refining the query. Let us
imagine that a user wants to retrieve all the available open source KETs: this
query corresponds to K ET_7 of Figure 4. If the user wants to refine this query to
find a more specific KET, the AOC-poset can be used to recommend the smallest
modifications that may be applied: here, it proposes to either explore KETSs hav-
ing features json and saas (i.e., moving to K ET_0) or explore KETs supporting
rdf format and providing only symbolic KECs (i.e., moving to K ET_5). Cross-
family features allow to switch between AOC-posets: here, the user can “jump”
to the concept referenced by IVprovides(K EC-12) in the KECs’ AOC-poset of
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Figure 3 and then refine the corresponding query. For instance, they can choose
to focus on symbolic KECs specialised on ressource creation (KFEC_10) and
then jump back to the previous KETs’ AOC-poset, but this time in the concept
introducing Ivprovides(K EC_10) (i.e., KET_1) with ket0 and ketl.

5 Related Work

Interconnected variability models Several tracks have been followed to
represent modularity, and FMs extensions have been proposed, among which
we can notice Feature Models with References (FMR) [CBUE02, CHE04] and
Modular Feature Models (MFM) [BEGB11]. These two extensions enable the
separation of a single FM into several FMs dedicated to sub-product lines or
to separate concerns. In FMRs, a reference is a feature of an FM represent-
ing the root of another FM. Cross-FM constraints may be established between
features of the two FMs. In MFMs, the authors encourage the definition of
FMs modules, and the features in different FM modules are connected through
cross-FM implications in module bridges. The approach is developped using
the description logic &/ £6.7¢ for describing the FMs and the cross-tree and
cross-FM constraints.

Friess et al. [FSSP07] work on modelling composition rules between different
feature models representing independent product lines that can be combined.
The authors define what they call a feature configuration, which represents a
subset of an FM valid configurations satisfying some constraints. Then, they
define composition rules (e.g., uses, parts-of ) between feature configurations of
different FMs. Feature configurations permit to finely tune the set of configura-
tions involved in a composition rule. Similarly, Rosenmuller et al. [RSKuR08|
work on reinforcing constraint expressiveness between different yet connected
FMs by relying on product line specialisation [CHEO04]. The latter was intro-
duced by Czarnecki et al. [CHEO04] as a way to prune the set of valid config-
urations of an FM by partially configuring this FM. Rosenmuller et al. argue
that, when modelling complex product line, relying on domain constraints at
the domain level is not sufficient, and that modelling constraints involving prod-
uct line instances (i.e., valid configurations) is necessary. They use UML class
diagrams to model these constraints on configurations, where a class represents
an FM, a sub-class represents an FM specialisation and relations are used to
define constraints at the configuration level. These “instance models” are used
in association with classic domain models such as FMs. Urli et al. [UBC14]
propose a domain model regrouping several FMs and relations between these
FMs. In this approach, the domain model defines the different abstract concepts
of the modelled complex product line, and each FM characterises the variability
of one of these concepts. Contrarily to approaches presented before, constraints
between FMs involved features and not subsets of configurations. Dhungana et
al. [DSBT11] propose an approach to ease the integration of different kinds of
variability models into a unique infrastructure. They present Invar, a frame-
work allowing to manage a repository of different variability models. When
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a new model is loaded , constraints between the new model and the existing
ones need to be specified. These constraints take the form of ”if condition then
action”. Conditions involve the selection or deselection of a feature. Actions
may be to include another variability model (similar to model modularisation
of [CHEO04]), or to select or deselect a feature in another variability model.

Extraction of interconnected variability models Most of the existing
methods for FM reverse engineering exclusively focus on boolean FMs [CW07,
RPK11, ACP"12, DDH"13, HLE13, LLE14]. Becan et al [BBGA15] were the
first to propose a reverse engineering method for more complex FMs taking the
form of FMs with attributes. During previous work [CHN19b], we introduced
the usage of Pattern Structures [GKO01] to extract complex variability informa-
tion in the form of logical relationships corresponding to the logical semantics
of FMs extended with both multivalued attributes and UML-like cardinalities.
Here we elaborate on RCA, both being possibly combined. To the best of our
knowledge, there is still no work about the extraction of “cross-family” variabil-
ity information.

6 Conclusion

As software systems grow and the software product line engineering is spreading,
collaborative design of huge product lines which combine several concerns will
become more and more critical. Complex variability can take various forms,
including variability among inter-connected software families. In this paper,
we address the aim to extract such cross-family variability from a set of inter-
connected product configurations. We propose to employ Relational Concept
Analysis (RCA), an extension of Formal Concept Analysis to assist this ex-
traction. We introduce cross-family features and cross-family relationships that
take the form of binary implications, mutex, co-occurrences or groups that in-
volve both boolean features and cross-family features. Extracting such informa-
tion has the inherent complexity of related data-mining methods. We expect
reasonable complexity for exact extraction of binary implications, mutex, co-
occurrences, and probably difficulties, if not unfeasibility, for groups, requiring
approximate methods. We then discuss the possibility to use this variability
information to assist the design of FMs with new kinds of references, or to ex-
plore a set of inter-connected configurations. As future work, we plan to apply
the method to inter-connected product descriptions, such as connected PCMs,
or by dividing large tabular descriptions, like the one produced for JHipster in
[HNAT17], into separate concerns. Previous work that applied FCA and RCA
to Wikipedia’s or synthetic PCMs [CHG15] gave us some preliminary results
on the feasibility. Exploring the effects of the different RCA scaling quantifiers
on these datasets will be very informative to tune the method. We also are
interested by the possibilities of composing different inter-connected FMs with
the support of our method. Finally, we will study the way this cross-family
variability has to be taken into account to guide the users during a product
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selection/construction.
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