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ABSTRACT

Traffic consolidation has been proposed to save energy in data cen-
ter networks. However, existing centralized traffic consolidation
approaches focus on achieving optimal network energy saving,
without considering the need to be responsive to traffic variabil-
ity. In this paper, we present DREAM, a distributed flowlet-level
traffic consolidation framework for achieving energy efficiency in
data center networks. DREAM splits a TCP flow across multiple
paths based on ECN feedback by adapting the path selection prob-
ability for sending a flowlet. This helps to choose a path while
avoid congestion/queue build-up at switches. Distributed agents in
DREAM are implemented in Open vSwitch at each server without
modifying applications, TCP, or the hardware switches in the data
center network. Testbed evaluations using traces from Wikipedia
web service and Facebook MapReduce traffic prove that DREAM on
average achieves at least 15.8% energy saving for the data center
network, while state-of-the-art approaches such as CARPO and
ElasticTree produce 11.6% and 8.4% energy saving, respectively.
The packet drop ratio in DREAM is less than 0.01% while the best
among the alternatives, ElasticTree, has at least 0.19% drop ratio.
DREAM also has 30% lower application-level latency than state-of-
the-art centralized traffic consolidation approaches.
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1 INTRODUCTION

Energy consumption of data centers is significant enough to war-
rant effort to reduce it. In 2014, data centers in the U.S. consumed
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70 billion kWh of energy, representing 1.8% of the U.S. electric-
ity consumption [35]. Most of the energy is consumed in servers,
but aggressive energy savings have been recently developed and
applied in data centers [20, 22, 23, 37]. With energy-proportional
servers, the fraction of energy consumed by the networking compo-
nents can reach 50% on Google clusters, especially when the server
utilizations are low, at 15% [1]. Hence, it is desirable to design prac-
tical techniques for the energy-proportional Data Center Networks
(DCNs).

DCNs provide significant path redundancy and typically have
low link utilizations [34]. Traffic consolidation [17, 38, 42] proac-
tively shifts all traffic to a minimal subset of network devices and
completely turns off unused links and switches. Previous works
perform a centralized optimization periodically to decide the set of
active switches and links based on current traffic demands. These
techniques promise to yield considerable energy savings ranging
from 25-62% [17].

However, state-of-the-start centralized traffic consolidation ap-
proaches such as CARPO and ElasticTree formulate the energy
saving in DCNs as a linear programming model, which usually has
high computational complexity. For example, it may take hours
for the centralized linear programming model to find the minimal
subset of active switches and links in large DCNs [17, 38]. Current
traffic consolidation frameworks [17, 42, 44] run periodically, epoch
by epoch, to adapt to traffic variation. The epoch length should be
at least larger than the computation time of centralized optimizer.
Otherwise, we suffer energy inefficiency or link congestion. Poor
responsiveness of centralized traffic consolidation becomes worse
when traffic bursts [21] occur.

Even heuristics to improve the scalability of such centralized ap-
proaches (e.g., a greedy bin packing algorithm [17]) takes more than
1000 seconds to find the active portion of DCN topology for a net-
work topology with 10K hosts [38]. Orthogonal to the computation
time of these centralized optimization-based approaches, the epoch
length of these algorithms is still constrained by the frequency
with which we can monitor traffic statistics. Typically, a centralized
controller uses protocols such as Simple Network Management
Protocol (SNMP) [8] or Openflow [25] to obtain flow statistics. Nev-
ertheless, the polling frequency from hardware switches is limited,
considering overheads. For example, a HP switch [11] may only
refresh flow statistics every 20 seconds for Openflow protocol. Thus,
the epoch length for centralized optimizer needs to be at least 20
seconds.

For improved responsiveness, and thereby higher energy savings,
we propose DREAM, a DistRibuted Energy-Aware traffic Manage-
ment framework for data center networks. In DREAM, the dis-
tributed agents and hosts work cooperatively to consolidate traffic
to a portion (e.g., the left-most) of the DCN. It reacts to traffic bursts
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at the Round Trip Time (RTT) time scale. The network monitoring
is based on data plane of the hardware switch rather obtaining
values of flow counters of the forwarding plane through Openflow.
The distributed agents are implemented as a shim layer, such as
Open vSwitch [31]. We require no modification to the host protocol
stack or the data center networking fabric. This makes our design
easy for deployment.

In DREAM, we use the existing primitives in hardware switches
such as Explicit Congestion Notification (ECN) marking [3, 14, 32]
to report link congestion to DREAM’s distributed agents in servers.
The ECN marking in DREAM is also beneficial for controlling
latency for an application’s flow. The distributed agents monitoring
ECN feedback reroute traffic when a path is congested, but at a
flowlet granularity. DREAM reacts before significant queuing or
packet loss occurs.

The basic scheduling unit in DREAM is flowlet (i.e., a burst of
packets) [2]. This enables it to take advantage of the multiple active
paths in the DCN without any modification to the host protocol
stack. Flowlet scheduling also reduces fragmenting of the link ca-
pacity and allows for better energy savings. For each active path, a
value representing the probability of sending next flowlet on that
path is maintained. The selection probability value is increased
additively after successfully sending a flowlet over an uncongested
path, and decreases substantially when observing ECN feedback in-
dicating congestion on the path. Increasing the selection probability
of left-most path correspondingly reduces the selection probability
for the right-most path, thus eventually resulting in traffic consoli-
dation. Prior work [10] on proving that the equilibrium point for
Additive Increase Multiplicative Decrease (AIMD) can be re-used
to show that its use in our design can result in a stable operation.

Finally, we propose a packet encapsulation format in the Open
vSwitch to achieve explicit path control. In prior works [17, 42, 44],
the routing path is decided by the centralized controller. DREAM has
to enforce explicit routing path in a distributed manner. Inspired
by Xpath [18], we pre-install the forwarding rules based on a com-
pressed path ID at switches. At the traffic source, the distributed
agent encapsulates packets and inserts the path ID in an encapsula-
tion header. Switches match on the path ID along with other header
fields to route the flows appropriately. To minimize encapsulation
overheads, we re-use primitives already in Open vSwitch.

DREAM is implemented in a testbed DCN with a leaf-spine
topology. The testbed evaluation uses the Wikipedia traffic trace
[36] and more bursty Facebook MapReduce traffic trace [9]. We
show that DREAM on average achieves at least 15.8% DCN energy
saving, while CARPO and ElasticTree produces 11.6% and 8.4%
energy saving, respectively. The packet drop ratio in DREAM is
less than 0.01% while the best among the alternatives, ElasticTree
[17], has 0.19% drop ratio on Facebook trace and 0.85% drop ra-
tio on Wikipedia trace. Finally, DREAM has at least 30% shorter
application-level latency compared to the alternatives. Our major
contributions include:

e To improve responsiveness and scalability, we consolidate
traffic to a subset of the DCN in a distributed manner, to
achieve energy saving. The distributed agent is implemented
in Open vSwitch without any modification to the host pro-
tocol stack or the data center network switches.
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e We propose to reroute traffic based on ECN feedback, with

congestion information obtained every RTT. The more fre-

quent, accurate feedback of incipient congestion on the pre-

cise path a flowlet traverses helps achieve much better net-

work latency.

Network traffic is scheduled at the granularity of flowlet to

take advantage of multiple active paths in the DCN, without

any host side modification. We propose a multi-path flowlet

scheduling algorithm for the energy efficient DCN.

e We propose a packet encapsulation format for explicit path
control in the network.

e We demonstrate the effectiveness of DREAM in a testbed
implementation with production switches.

2 BACKGROUND AND MOTIVATION

Traffic consolidation shifts network flows to a minimal number of
active switches and turns off idle switches and links to save power.
State-of-the-art traffic consolidation frameworks [17, 42, 44] are not
responsive to traffic variation because of the long computation times
involved with the optimization in a centralized manner and also
depends on the limited refresh rate for the flow-level statistics from
network switches. Poor responsiveness results in link congestion
or packet drops in the network as well as poor adaptation in terms
of managing energy consumption. This motivates us to design a
distributed energy-aware traffic management framework for the
DCN. The distributed design can quickly adapt to traffic fluctuation
in the DCN, and promises to fully take advantage of every energy
saving opportunity when the network load ebbs. What is more, it
also can move out traffic from congested paths in a more timely
manner. In such cases, it reduces the packet drop rate and latency.

2.1 Energy Efficient Data Center Networks

Data centers host tens of thousands of servers and consume tens
of Megawatts of power [37]. Power management on servers is an
important component, and the use of techniques such as Dynamic
Voltage and Frequency Scaling (DVFS) [20, 23, 37, 47] and Virtual
Machine (VM) migration [12, 40, 41] already seek to save power.
ElasticTree [17] and a number of other following works [42, 44, 45]
seek to make the data center network energy proportional as well,
to complement the power management on servers.

ElasticTree [17] converts the energy management of DCN into an
augmented Multi Commodity Flow (MCF) problem and then solves
it by using Linear Programming (LP). Typically, the LP program runs
at the centralized Software Defined Network (SDN) [7] controller.
The SDN controller leverages the Openflow [25] protocol to fetch
traffic statistics from the hardware switches periodically. The future
bit rate of flows is predicted based on the traffic history in the last
epoch, while providing for a safety margin [17]. Based on these
traffic statistics, the centralized optimizer in the SDN controller
runs every epoch to determine which subset of the DCN should
be active. The epoch length needs to be longer than optimizer’s
computation time and more importantly longer than the rate at
which the traffic statistics are reported by the hardware switches.
The centralized optimizer outputs the updated routing path for each
flow to achieve optimal network energy savings, which is enforced
by the centralized SDN controller.



DREAM: DistRibuted Energy-Aware traffic Management for Data Center Networks

Qo
= 150

Throughput
1)
o

v
o

150
Time (s)

100 200 250 300

Figure 1: Traffic in the DCN has high variation, as shown for
an example from the Microsoft search trace [3].

2.2 Traffic Variability and Responsiveness

Network traffic in data centers can be highly variable [6, 21]. Some
applications, such as MapReduce [13], generate bursty traffic in a
short time period, especially for the data shuffle phase. In Fig. 1,
we plot the traffic variation of Microsoft Search trace [3] spanning
a 5 min. interval. For example, the throughput at 34th second is
8.8Mbps but bursts up to 183Mbps at the next second.

In the ideal case for an energy proportional DCN, the energy
consumption should adapt to the traffic variation. Otherwise, we
suffer either link congestion or energy inefficiency. As we discussed
in the previous subsection, the responsiveness of the energy saving
framework depends on the epoch length for traffic scheduling. In
Fig. 2, we give an example to show how the epoch length might
impact energy saving as well as link congestion. The blue line rep-
resents one network flow in the data center. Its throughput varies
over the 60 seconds shown. First, we set the epoch length for traffic
consolidation at 10s. The red line is the predicted throughput based
on the 90th-percentile [42] throughput in last epoch. Then, the
centralized controller will reserve network bandwidth based on
this predicted traffic data rate. Due to prediction errors, the ob-
served flow’s throughput might be larger than the predicted value,
as shown in the interval 15s - 20s. But the centralized controller
will reroute traffic only at the end of current epoch (i.e., at 20s).
Packet drop and TCP retransmission could occur. A shorter epoch
length promises to achieve better energy savings. We also plot the
predicted workload for 5s epoch length (green line). During the
interval 15s - 20s, when the rate of the flow decreases, the opti-
mizer with 5s (smaller) epoch length will capture this energy saving
opportunity, which will be missed if a longer epoch is used.

The epoch length is limited by two considerations: the compu-
tation time of the optimizer and the measurement frequency to
obtain the traffic statistics. Modeling the traffic consolidation as a
linear programming model has high computation complexity [38].
Although a heuristic algorithm has been proposed to accelerate
this [17, 44], the computation time can still be high for large data
center network topologies. Fig. 3 shows the computation time of
linear programming and heuristic greedy bin packing [17] for dif-
ferent data center sizes. Greedy Bin Packing still takes more than
1000s for a medium size data center. We realize that this can be
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Figure 2: Poor responsiveness to traffic variation incurs link
congestion or energy inefficiency. The network provision-
ing (i.e., predicted workload in the Fig.) with 5s epoch length
has better energy saving than the one with 10s epoch length.
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Figure 3: Computation time of linear programming and
greedy bin packing for various network topology sizes.

speeded up with a faster server. However, the epoch length is still
constrained by measurement frequency of traffic statistics. In the
centralized design, the controller has to poll the hardware switches
for traffic stats using protocols such as SNMP, sFlow and Openflow.
The measurement frequency cannot be very high due to measure-
ment overheads. For example, a hardware switch in our testbed
only updates the traffic metrics for Openflow [25] protocol every
20 seconds [11]. That means the epoch length has to be 20 seconds
or even more.

The distributed design is a promising approach to make the
traffic consolidation more responsive to traffic variation in the
DCN. DISCO [46] proposes a host level and link level distributed
traffic consolidation. But they still use the centralized controller
to implement the distributed designed, modeled as a number of
sub-optimizers. We believe the granularity of deciding at the flowlet-
level in DREAM is better than scheduling an entire flow in DISCO,
as only a portion of the flow (i.e., a few flowlets) has to be rerouted
when congestion occurs. This alleviates any potential traffic oscilla-
tion [19]. Another distributed design, REsPoNse [38], requires the
full traffic history as prior knowledge to train their algorithm to
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derive the always-on path offline, over which traffic is routed. But
this depends on the assumption that the data center traffic pattern
doesn’t change significantly, which is not the case in real DCNs [6].
REsPoNse [38] relies on proactive link utilization feedback from
routers to perform traffic scheduling, which is also difficult in cur-
rent hardware switches. So, REsPoNse is only implemented in the
CLICK software switch [27]. On the other hand, reusing ECN in
DREAM is much more feasible for practical DCN deployment.

3 DREAM DESIGN

DREAM is a distributed traffic consolidation framework operating
at a flowlet-level to achieve energy savings in data center networks.
Its distributed and adaptive design makes it responsive to latency-
sensitive applications and rapidly adjusts to bursty network traffic
[21]. The flowlet-level scheduling by agents at endpoints takes ad-
vantage of the multiple paths potentially available in data center
networks without any modifications to existing data center infras-
tructures. Flowlet-level scheduling with the much shorter decision-
making epochs enables DREAM to fully utilize every energy saving
opportunity, as the workload varies. Finally, DREAM has lower
packet drop ratio and application-level latency by adopting ECN
for flowlet path selection.

3.1 Overview

The design of DREAM is shown in Fig. 4. Instead of using a central-
ized controller to do data center wide traffic engineering [17, 42, 44],
we use distributed agents at each end-system to work cooperatively
to achieve energy saving in the DCN. The distributed agent at
the servers is a shim layer between the host’s protocol stack and
the data center networking fabric. We use the Open vSwitch [31]
virtual switch as an example of this shim layer, since it is widely
used in virtualization environments for software-based switching
and forwarding and network automation. The distributed design
in DREAM has better scalability and is more responsive to bursty
traffic. In addition, there is no need to modify host applications or
the switches in the DCN.

For example, consider Fig. 4 where there are 4 paths (P1 to P4)
between Host 1 and Host 2. To save energy in the DCN, we seek to
consolidate traffic to a minimal number of paths, without violating
performance (i.e., latency) requirements, and then turn off idle
switches and links (e.g., the switch and links along path P4). At a
high level, DREAM consolidates traffic to a part (e.g., ‘left-most’ for
a Leaf-Spine topology) of the DCN topology. By ‘left-most’, we mean
the active switches of a single layer at the structured DCN topology
are chosen from left to right [17]. To avoid potentially large wake
up times for OFF switches impacting flows, a few backup paths
are reserved in the DCN topology, thus slightly over-provisioning
DCN capacity. Path P3 in Fig. 4 works as a backup path.

Reducing network delay is very important for latency-sensitive
applications. Similarly, avoiding packet drops is important to main-
tain TCP throughput [2, 3]. Hence, we leverage the commonly used
ECN feedback for congestion response. We also use ECN to steer
traffic to an alternate path when one is congested. Idle path such as
P4 can be turned off to save DCN energy. But, there are still 3 active
paths between Host 1 and Host 2 in Fig 4. When the end-systems
are not the bottleneck, the ability to use multiple paths between a
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Figure 4: The design overview of DREAM.

sender-receiver pair can improve throughput [43]. DREAM splits a
flow across multiple active paths in the DCN at the flowlet granu-
larity. For example, we split the flow between VM1 and VM3 among
active paths P1 and P2. A flowlet is a burst of packets of a flow
[2], where the inter-flowlet time gap is much longer than the inter-
arrival times of packets within a flowlet. The traffic sent on each
DCN path is a group of flowlets rather than a larger flow. Thus,
DREAM reduces the fragmenting of bandwidth capacity on each
active path, thus improving multiplexing efficiency on each path
(i-e., ‘packing’ more traffic).

At each distributed agent, we maintain a probability for select-
ing each active path. The path selection decision for an incoming
flowlet is made based on the selection probability for each path. We
dynamically change the path selection probability for each active
path based on network conditions. For example, in a Leaf-Spine
network, we indirectly consolidate traffic to the left-most paths
by increasing the selection probability for the left-most path and
reducing the selection probability for the right-most path. When
ECN marks are received for traffic on a particular path, the selection
probability for that path is reduced to mitigate congestion. Only a
portion of flowlets are moved to different less-utilized path (that has
a higher selection probability), rather than moving the entire flow,
as used in prior distributed designs [38, 46]. This significantly re-
duces the oscillations [19] typically observed in distributed designs
for DCN energy reduction.

Unlike previous centralized designs that do not consider the
new arrivals of flows [17, 42, 44], DREAM explicitly deals with
new arrivals of flows. DREAM first places a new flow on the right-
most path (i.e., P2 in Fig. 4) and then gradually moves traffic to
the left part of active DCN topology. This avoids congesting paths
with existing flows and only migrates the new flows to the favored
left-most paths as network conditions warrant. Previous works
factor only existing flows as a variable in a linear programming
formulation and do not deal with online flow arrivals.

Finally, we use packet encapsulation by the distributed agents
to achieve explicit path control. In DREAM, the forwarding rules
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Figure 5: DREAM implementation in the data plane of Open
vSwitch (OVS).

at hardware switches are set up by re-utilizing the schemes de-
scribed in Xpath [18], with highly compressed rules to save Ternary
Content-Addressable Memory (TCAM) resources in switches. The
path IDs are inserted into the outer packet header by the distributed
agent. Hardware switches forward packets accordingly, based on
the path ID. For the sake of efficiency, we utilize the existing primi-
tives in Open vSwitch for the packet encapsulation.

3.2 Distributed Agents

In DREAM, the distributed agent is implemented at the shim layer
between host’s protocol stack and the DCN’s networking fabric,
for the sake of easy deployment. Open vSwitch (OVS) has already
implemented the Generic Routing Encapsulation (GRE) and VXLAN
packet encapsulation for tunneling, which we utilize in DREAM.
As all the traffic goes through the OVS data plane, it is an ideal
place for the distributed agent of DREAM.

The basic scheduling unit in DREAM is a flowlet. Packet reorder-
ing is minimized if the idle interval between flowlets is more than
the maximum difference between the delays across different paths
[2]. Moreover, the TCP protocol stack has increasingly supported
packet reordering to support multi-path, and we take advantage of
it, when it does occur across flowlets.

In DREAM, we consolidate flowlets on a path until we observe
ECN on that path. While ECN is usually used for network conges-
tion feedback [3, 14, 32], we leverage it to steer packets to avoid
congested paths in the DCN. ECN provides feedback of incipient
congestion and thus reduces packet drops and latency by having
ECN-enabled TCP connections respond to ECN marks. Hardware
switches with ECN capability use an Active Queue Management
(AQM) at the interface level to mark the CE bit, which is reflected
back in the ECE bit of TCP ACK packets. Our distributed agent
monitors the ECE bit in the TCP header to sense path congestion,
and moves flowlets from congested paths to alternate under-utilized
paths.

Fig. 5 shows the implementation of DREAM in the data plane of
Open vSwitch. The probability of sending a flowlet on each possible
path (columns) is maintained in a table for each flow identified by
the 5-tuple (protocol type, src.IP, dst.IP, src.port and dst.port packet
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header fields). This selection probability is used to select the path ID
which is stored as the Selected Path ID in an additional column. The
selected path ID is for the currently identified flowlet of the flow.
Note that each cell in the Selection Probability Table is a probability
value but each cell in the column of Selected Path ID is an integer
ID.

First, we introduce the workflow of the outgoing traffic from the
host’s protocol stack to the DCN. Based on the packet inter-arrival
time, the Flowlet Detection module will decide if we have found
a new flowlet. The packets of an existing flowlet will be directly
encapsulated with path ID before sending it out on the wire. Upon
finding a new flowlet, the selection probability of previously com-
pleted flowlet has to be updated. The details on how to change the
selection probability are described in Section 3.3. We then choose a
path for the new flowlet based on the path selection probability. As
a last step, packets are encapsulated.

Second, the processing of incoming traffic from the DCN is
shown at the bottom of Fig. 5. After decapsulating the packet, we
check the ECN flags. If congestion has been detected on a path
(indicated by the ECE bit of ACK packets), DREAM will update
the selection probability of that path and reroute the flowlet to an
alternate under-utilized path before forwarding the packet to the
host’s protocol stack. Otherwise, the incoming traffic is directly
forwarded to the host’s protocol stack.

3.3 Scheduling Algorithm

Whenever we detect a flowlet in DREAM, the distributed agent
makes a decision to choose a path for this flowlet, with all the
packets in the flowlet following the same path. DREAM schedules
the flowlet on a path based on the selection probability, f; for path
i. We seek to set the value of f; such that we don’t observe ECN
on the active routing path. In Fig. 6, we give the state machine for
flowlet scheduling.

Over-utilized. We start our algorithm description with the sys-
tem being in equilibrium, where the traffic is consolidated onto
a few active paths and none of the paths see congestion (as ob-
served with ECN). Traffic fluctuation is common in DCNs [6, 34].
When we sense that one of the active paths is congested, some traf-
fic have to be moved to another under-utilized path. Unlike prior
works [17, 42, 44], that move the entire TCP flow every time epoch,
DREAM does this at the flowlet-level. This enables DREAM to
be more responsive and dramatically eliminate traffic oscillation.
A subset of the flowlets on a congested path are re-routed, thus
alleviating congestion but also ensuring that there is no traffic os-
cillation [19]. Traffic are routed on uncongested paths by adapting
the probability of sending the subsequent flowlets on those paths.

In DREAM, the moving average of ECN history is maintained
for each path. epeq is the fraction of marked packets with ECN
bits in the current time window. The ECN marking history e is
smoothed using Exponentially Weighted Moving Average (EWMA)
as (1—a)xeypq +  * epery. @ is the weight for new fraction of ECN
markings. Thus, the distributed agents can react to link congestion
at RTT timescales. Since the RTT in data center networks is usually
a few microseconds [26], it enables DREAM to be very responsive.
When the agent detects ECN on path i, the selection probability f;
is decreased by X%. X% is defined as f; * e/2.
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Figure 6: The state machine for flowlet scheduling.

Under-utilized. To save energy, we seek to consolidate traffic to
one portion (e.g., left-most active paths) in the DCN. Let us consider
a TCP flow with 4 groups of flowlets routing on 4 different active
paths. The probability of sending the next flowlet on each of the
pathsis fi, f2, f3 and f3, respectively. For each path i (=1, 2, 3, 4), we
increase the value of f; if the distributed agent successfully sends
a flowlet on path i without observing any congestion feedback
signals. The probability increase follows the Additive Increase rule,
ie, increase f; by a fixed amount (e.g., 1%). Since we guarantee that
the sum of fi, f2, f3 and f; is 100%, we correspondingly decrease the
value of right-most active path (i.e., path 4) by 1%. In this design,
flowlets are more likely to be routed on the left-most available
active paths. One major concern is that the Additive Increase of f;
will finally result in queue build-up on path i. Then, we will revert
to the case of over-utilized paths, in which we move a subset of
flowlets to the under-utilized right most paths. The motivation of
this design is to take advantage of every energy saving opportunity
during the period when there is traffic variation and to react each
traffic burst as well, just like TCP varies the congestion window.

New Arrivals. Unlike ElasticTree [17] and CARPO [42], which
are offline solutions for a fixed set of flows, DREAM supports new
flows for an online solution. Newly arriving flows are initially
routed over the right-most active path j, to avoid congesting the
heavily utilized left-most paths (1 to j — 1) in the network. As the
new flow’s flowlets generate traffic, they gradually move to the
left-most active paths (1 to j — 1) at the probability of 1%, as long as
these paths are not congested. If we successfully send a flowlet on
path i, then we enter the under-utilized case for path i.

Finally, we show the state machine for our flowlet-level sched-
uling in Fig. 6. The state machine starts with the arrival of a new
flow. First, we place all the flowlets on the right-most path j. The
selection probability f; for right-most active path j is (100-j+1)%.
To gradually consolidate traffic to the left-most paths, we set fi
until fj_; to 1%. For any path i completing the transmission of one
flowlet, we increase its probability value f; by 1%. Correspondingly,
the selection probability value of right-most path j decreases by 1%.
When observing ECN feedback on path i, we enter state 3. Here,
the distributed agent decreases the probability value f; by X% de-
pending on the smoothed value of the ECN feedback. After that,
each probability value f except the right-most one f; recovers its
probability value to reach a dynamic balance.
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Algorithm 1: Distributed Flowlet Scheduling
1 fj = (100 - j + 1)%
2 while 1<i<j—-1do

3 ‘ fi=1%

4 end

5 while true do

6 if observe ECN on path i then
7 if i == j then

8 | j=j+1

9 end

10 fi=fi—X%

11 fi=fi+X%

12 end

oy

13 f finish one flowlet on path i then
if f; ==100% then

‘ continue

14
15
16 end
17
18
19

20

21

22

23

send packet and enforce path control

24 end

The pseudo code of this scheduling policy is given in Algorithm
1.In lines 1-4, we place the new arrival of flows on the right-most ac-
tive path j. The path 1 to j— 1 begin to enter the process of Additive
Increase. The while loop between lines 5-24 is the send() function
in the data plane of Open vSwitch. Whenever we observe ECN in
line 6, the selection probability f; is decreased. Lines 13-22 is for the
Additive Increase of the selection probability. Prior work [10] on
proving that the equilibrium point for Additive Increase Multiplica-
tive Decrease (AIMD) can be reused to show that the algorithm will
result in a stable operation. In our design, the throughput of TCP
flow is only determined by the host side congestion window. Our
distributed flowlet scheduling algorithm only adjusts the splitting
ratio of flowlets among different active paths and consolidates the
traffic to left-most paths.

3.4 Packet Encapsulation

In data centers, the switches locally decide the next hop using
Equal Cost Multiple Path (ECMP) or Valiant Load Balancing (VLB)
[15]. In energy-proportional networks, we need to route traffic
over a minimal number of switches and links thus turning off idle
networking components. For this, explicit path control is essential.

There are many approaches such as Myrinet [28] and Multi
Protocol Label Switching (MPLS) [33] to achieve the explicit path
control. MPLS uses distributed protocols such as CR-LDP [4] or
RSVP-TE [5] to populate labels in the network to set policy-based
paths, but can be complex [18]. Previous centralized traffic consoli-
dation frameworks [17, 42] leverage the SDN controller to insert
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Figure 7: The packet encapsulation format in DREAM. Our
encapsulation header is between the IP header and In-
ner TCP/UDP header. The original Src. port field of Outer
TCP/UDP header is replaced by Path ID.

forwarding rules at the Openflow switches, but the refresh rate
on the Openflow TX/RX counters in hardware switches can be a
limiting factor for responsiveness.

Xpath [18] proposes an efficient way to do explicit path con-
trol in the DCN. It uses a compressed hierarchical path ID to save
TCAM space in the switch. A data center operator pre-installs the
forwarding rules at hardware switches based on this path ID. In our
design, we use packet encapsulation at DREAM’s distributed agents
to achieve explicit path control by making path selection decisions
and putting the path ID in the encapsulation header. Fig. 7 gives the
packet format of our design. Similar to the existing encapsulation
protocols such as GRE in Open vSwitch, DREAM’s encapsulat-
ing packet header comes between the original IP header and the
TCP/UDP header (shown as Inner TCP/UDP header). We directly
copy the fields in inner TCP/UDP header to the outer TCP/UDP
header, maintaining the rest of the layer 4 information, except for
using the source port number in the outer header to store the path
ID. Existing hardware switches match on this path ID, and require
no modification. The original source port number is stored at inner
TCP/UDP packet header which will be used by the end-system
protocol stack after packet decapsulation at the destination server.

4 IMPLEMENTATION

4.1 Testbed

DREAM is implemented on a testbed shown on Fig. 8. In the testbed,
we have 8 blade servers and 6 switches. The servers and switches
are hosted at two different racks. In the network, we create a 2-layer
leaf spine DCN topology. There are two types of switches in the
network: HPE 3800 J9574A leaf switches and Arista 7050X-72Q
spine switches. A pair of 2 servers as a group is connected to a leaf
switch.

Each server has a 32 core AMD Opteron 6272 CPU, 64G memory,
1G Ethernet Network Interface Card (NIC), 50G SSD and 12 TB
shared RAID file system. The TCP protocol on our CentOS 7.2 oper-
ating system is TCP Cubic. We also disable the Nagle algorithm on
the operating system to have more accurate latency results. ECN is
enabled in the Linux kernel. We take control of the host NIC by a
modified version of Open vSwitch 2.4, in which we implement the
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Figure 8: The servers and switches in DREAM.

distributed agents of DREAM. For Open vSwitch, most of codes of
DREAM are implemented at the data plane module. We re-utilizes
the sk_buffer primitives in Open vSwitch for efficient packet encap-
sulation and decapsulation. At the endpoints, flows are generated
by a Python-based traffic generator with TCP Cubic connections.

On the switches, ECN is enabled. All the port queues share a
memory of 12MB. Each queue can have up to 6.9MB memory. We
set the minimum queue length threshold as 20 TCP segments and
maximum threshold as 500 TCP segments. When the queue length
is less than 20 TCP segments, no ECN bits are marked. When the
queue length is between 20 segments and 500 segments, the ECN
is marked probabilistically according to the queue length. Switches
mark ECN bits on all the packets when the average queue length is
larger than 500 TCP segments.

To implement the centralized approaches such as ElasticTree
and CARPO, we use the ONOS [30] SDN controller to control all the
software and hardware switches. There are 2 VLANS in the testbed
to avoid affecting the accuracy of our measurement results. All the
data traffic is routed over VLAN 20 and all the Openflow control
messages are routed over VLAN 1. The Openflow protocol version
we used is 1.3. The power consumption of switch is measured by
using Watts Up power meter with a granularity of 0.01 watt.

4.2 Workloads

We use two application workloads that are typical of those observed
in current data centers: Web service like Wikipedia and MapReduce
as seen in Facebook to evaluate the benefit of DREAM.

Wikipedia Trace. The Wikipedia trace [36] contains about 280
Billion HTML page requests to Wikipedia database servers. As in
[42], we extract all the requests to the English Wiki pages and
group the requests into different prefix folders. For example, the
URL https://en.wikipedia.org/wiki/American is grouped into folder
A. Thus we have 61 folders (A-Z, a-z and 1-9). We assume that each
folder is served by one database server. Thus, we have 61 flows
in the virtual network. Three of them are shown on Fig. 9 (a) and
(b). Fig. 9 (a) is the trace for 6 days and Fig. 9 (b) is the results for
60 seconds. The Wikipedia trace exhibits diurnal and day-of-week
pattern over the 6 days.

Facebook MapReduce Trace. We use a MapReduce trace ob-
tained from a 2009 Hadoop log file of a Facebook cluster [9]. The
SWIM [9] benchmark allows us to replay jobs from the Hadoop log
file and submit these jobs to actual clusters of machines. To get the
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Figure 9: We use the Wikipedia web service [36] (part a and b) and Facebook MapReduce [9] (part c and d) trace to evaluate

DREAM.

traffic matrix, we set up a 8 virtual machine cluster on a host with
64 cores and 64G memory. Each virtual machine has 2 CPU cores,
2G memory, a 140G hard disk and runs Ubuntu 14.04. In this cluster,
we log the task information. Then we regenerate these tasks on our
testbed using Python. The generated network traffic depends on
the topology and environment we implement.

Fig. 9 (c) and (d) show the features of our MapReduce trace.
The incoming and outgoing traffic at each slave node is negligible
(about 4 Kbps) most of the time. However, as seen in Fig. 9 (c), there
are very short time-scale spikes in the traffic. The burst in link
throughput peaks for a few seconds, going up to 400Mbps. The
burstiness of the trace comes from the shuffle phase in MapReduce
framework. In Fig. 9 (d), we find that there is traffic between each
pair of servers in the cluster.

5 EVALUATION RESULTS

In this section, we evaluate DREAM on the testbed described in
Section 4.1. The Wikipedia web service [36] and the more bursty
Facebook MapReduce trace [9] are used. For comparison, we also im-
plement the baseline ECMP, as well as ElasticTree [17] and CARPO
[42] designs. Baseline ECMP is implemented on a centralized ONOS
[30] SDN controller. Both CARPO and ElasticTree are centralized
approaches that periodically run a linear programming model to
decide the routing paths for flows. We use GLPK programming
language [24] to implement the linear programming model. The
scheduling granularity for ElasticTree and CARPO is the single
TCP flow-level.

Due to the refresh rate of hardware stats in our testbed, which
is 20 seconds, we set the epoch length for ElasticTree and CARPO
at 25 seconds. CARPO considers the correlation between flows
and avoids placing positively-correlated flows together compared
to ElasticTree. Another major difference is that CARPO uses the
90th%tile of the last epoch to predict the flow’s bit rate at the next
epoch, while ElasticTree uses the peak value in the last epoch.
In contrast, the epoch length for DREAM is at most one RTT as
the hardware switch can mark ECN on each packet. Finally, we
obtain the energy savings by using a Watts up power meter with
granularity of 0.01 watt. The packet drop ratio is calculated by using
the TX/RX drop counters at the switches and latency is measured
at the application-level.
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5.1 Energy Saving

We first compare DREAM with CARPO and ElasticTree with regard
to the energy saving. All the energy saving results are normalized
to the energy consumed with ECMP. In the first experiment, we
evaluate DREAM and the other alternatives using the Wikipedia
web service workload. Each server has 8 consistent flows to other
servers in the testbed. Half of them are sent to the servers within
the same Top of Rack (ToR) switch. The destination of remaining 4
flows are randomly selected outside the ToR switch. We use a traffic
generator to generate the Wikipedia web service flows with TCP
connections implemented on Linux. As the original Wikipedia trace
has a low data rate for flows, we scale up its rate in our experiments,
and utilize more than the Minimum Spanning Tree (MST) topology
in the DCN.

The energy saving results on Wikipedia trace, as it varies over
time (up to 60 minutes) is given on Fig. 10 (a) and the average results
are shown on Fig. 10 (b). Among all the 3 frameworks, DREAM has
the highest energy saving results throughout the experiment, except
for 6 sample points. On average, the energy saving of DREAM is
15.9%. The improved energy saving with DREAM is due to it being
more responsive to traffic variation because of its distributed design.
When the traffic load ebbs, it immediately reconfigures the routing
of flowlets and thus leaves more idle switches and links. On the
other hand, the centralized CARPO and ElasticTree have longer 25
seconds epoch length. They miss a large number of opportunities to
save energy as the traffic load decreases. The longer epoch length
of the centralized approaches is constrained by the running time
for the optimization and the refresh rate of TX/RX stats from the
switches.

Of the alternatives, CARPO has better energy saving results
compared to ElasticTree, because of its more aggressive data rate
prediction and that it reserves less network bandwidth for fu-
ture traffic variations. But this sacrifices congestion, reflected in
packet drop rate and delay. On average, CARPO and ElasticTree
save 11.6% and 8.6% DCN’s energy, respectively. Only at a few
time instants (note the six peaks), CARPO saves more energy com-
pared to DREAM in Fig. 10 (a). Because the distributed agents in
DREAM reroute flowlets to alternative paths while we observed
ECN feedback as the flow’s data rate increases. On the other hand,
CARPO has to wait until the end of current epoch and wakes up
an alternative path in next epoch. That is why CARPO saves more
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Figure 10: Because of good responsiveness and flowlet-level traffic scheduling, DREAM saves more DCN energy compared
with CARPO and ElasticTree on both Wikipedia and Facebook trace.

energy at those six peaks. When the traffic ebbs at next epoch,
CARPO reserves bandwidth based on large data rate predicted at
last epoch, thus resulting in switches and links being left active and
under-utilized.

The second experiment is to evaluate the schemes based on
the more bursty Facebook MapReduce trace. In the MapReduce
framework, the network throughput bursts only when the data
shuffle phase occurs. Most of the time, traffic in the network are
just the heartbeats between master and slave nodes. This is just
a few Kbps in our trace. In order to have more traffic variability,
we add the Wikipedia trace as background traffic in the second
experiment. The energy saving results on the Facebook MapReduce
trace is shown in Fig. 10 (c). Once again, DREAM saves the most
DCN energy all the time. The average energy saving over 60 mins is
18.4%, which is 26% better than CARPO and ElasticTree. The average
energy saving for CARPO and ElasticTree are similar, around 14%.
Most of this is because of their poor responsiveness to bursty traffic.

5.2 Packet Drop

One major performance concern in traffic consolidation is that
some links are heavily utilized while others are idle, to save energy.
Higher link utilization increases the probability of packet drops and
delay. Mitigating this requires scheduling schemes such as CARPO
and ElasticTree to be able to reroute the flows quickly, especially
for traffic bursts. Nevertheless, being responsive to bursty traffic
is still challenging for CARPO and ElasticTree because of their
long epoch length. In DREAM, we observe that queue build-up
at switches mainly contributes to the high packet drop and delay.
The ECN signal in our design detects the queuing at switches early
and notifies the distributed agents before the queue at switches is
full. At high link utilization, DREAM can reroute the bursty traffic
in a timely manner to reduce packet drop and delay. Also, path
redundancy in a DCN is exploited as we transmit the flowlets of
one TCP connection across multiple active paths. In this section,
we compare DREAM, CARPO and FElasticTree, in terms of packet
drop rates. Then, we show the application-level latency results in
the next section.

The average packet drop ratios are given on Fig. 11 (a). On both
the Wikipedia web service and Facebook MapReduce trace, the
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packet drop ratio of DREAM is less than 0.01%, mainly because it
adapts the flowlet transmission based on queue build-up informa-
tion obtained from ECN feedback. In DREAM, traffic will be moved
from a path if the queue length at switches on the path exceeds the
threshold. On the Wikipedia web service workload, the packet drop
probability for CARPO and ElasticTree is 1.23% and 0.85%, respec-
tively. Compared with DREAM, they are much worse due to their
poor responsiveness to traffic variation. CARPO has 44% worse
packet drop ratio than ElasticTree because of its more aggressive
data rate prediction for a flow. It uses the 90th-percentile data rate
in last epoch to predict the rate rather than the peak value used in
ElasticTree. On the Facebook MapReduce trace results, the packet
drop ratio for CARPO and ElasticTree is around 0.2%. Although the
average packet drop ratio results for CARPO and ElasticTree are
lower compared with those on the Wikipedia trace, the packet drop
ratio can be as high as 6.2% when the data shuffle phase in MapRe-
duce happens. Because there is only heartbeat traffic in the network
most of time. Packet drops don’t occur for those heartbeats. The
average packet drop ratio on Facebook MapReduce trace is lower
(which is somewhat misleading), but the larger number of drops
during the MapReduce data shuffle phase significantly impacts the
application’s performance.

5.3 Application-Level Latency

Finally, we show the application-level latency results in Fig. 11 (b),
(c) and (d). In the experiments, we put the time stamp in the payload
of packets originating from the sender of TCP flows. On the re-
ceiver side, our program echos the inserted time stamp without any
additional processing or delay. Then the application-level perceived
latency can be calculated simply as (timepeyw — timestamp,;q)/2.
Fig. 11 (b) is the CDF for application-level latency on Wikipedia
web service trace. The average values are given on Fig. 11 (c). The
latency in DCN mainly comes from the queuing time at switches.
The baseline ECMP has the shortest latency results, with an average
0f 19.12 ms. Because of traffic consolidation in DREAM, CARPO and
ElasticTree, all of them have longer latency than ECMP. The average
latency for ElasticTree is 30.5 ms. CARPO has larger average latency
result of 31.5 ms due to its aggressiveness. CARPO reserves a much
smaller headroom bandwidth. In DREAM (which has an average of
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Figure 11: DREAM has the least average packet drop ratio on both Wikipedia web service trace and Facebook MapReduce trace.
Part (b), (c) and (d) plot the application-level latency results. DREAM achieves the shortest latency among all the alternatives.

21.6 ms), we have early reaction to queue build-up by using ECN
feedback. So, DREAM has 29% shorter average latency compared
with ElasticTree.

The application-level latency results for the Facebook MapRe-
duce trace are shown in Fig. 11 (c) and (d). As there is only a small
amount of heartbeat traffic in the network most of time and all the
schemes have the same active topology (i.e., the Minimum Span-
ning Tree), the average latency for ECMP, DREAM, CARPO and
ElasticTree are almost the same in Fig. 11 (c). However, when the
shuffle phase in Mapreduce happens, we observe the latency dif-
ferences among the traffic consolidation alternatives. So, we focus
on the CDF of the latency for MapReduce only during the shuffle
phase in Fig. 11 (d). For bursty traffic, DREAM achieves at least 39%
shorter latency compared to the other traffic consolidation schemes.
Overall, the responsiveness and flowlet scheduling in DREAM pro-
duces much higher energy savings. The early reaction to queue
build-up at switches by using ECN feedback reduces packet drops
and application-level latency.

6 RELATED WORK

Gupta et al. [16] first proposes a position paper exploring possible
opportunities to save Internet power. At the device level, idle compo-
nents of a switch can be put into sleep. At the network level, traffic
can be rerouted to a few links while letting other idle switches go to
sleep. The following works [1] and [29] demonstrate that DCN can
be energy-proportional at device level. GoogleP [1] combines flat-
tened butterfly topology and rate adaption to dynamically change
link speed and power consumption. Research [29] buffers packets
at edge switches for a little while to have longer traffic gaps. In
such a way, intermediate switches can have longer sleep time.
ElasticTree [17] proposes three centralized optimizers which
consolidate traffic to the minimal subnet of the network and turn
off the unused switches. Traffic consolidation in ElasticTree can
have better power saving than device level techniques. However, it
is impractical in production data centers because of its high com-
putation complexity. GreenTE [44] proposes a heuristic algorithm
to accelerate centralized traffic consolidation. EATe [39] solves a
complex linear programming model at edge switch to consolidate
traffic on pre-defined paths. Similarly, DISCO [46] has a few sub-
optimizers in the centralized controller to mimic distributed traffic
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consolidation at per switch level. In REsPoNse [38], the author
hopes to find energy-critical paths offline and schedule flows on
those paths online. But it needs traffic history as prior knowledge.
CARPO [42] considers traffic correlation while consolidating traffic.
However, it still uses the complex centralized optimizer. Finally,
FCTcon [45] designs the deadline aware traffic consolidation in
DCN with network latency feedbacks.

7 CONCLUSION

We show in this paper that energy-aware traffic consolidation in
DCNes is best performed in a distributed manner. State-of-the-art
centralized traffic consolidation approaches have poor responsive-
ness to traffic variation in a DCN, especially for bursty traffic. The
poor responsiveness results in much poorer energy savings, as
well as higher packet drop rates and packet delays. Our distributed
energy-aware traffic management framework, DREAM, consoli-
dates traffic to a minimal portion of DCN at the flowlet granularity.
Flowlet scheduling produces less fragmenting of the link capacity
and allows for better energy savings. The distributed agent is im-
plemented in Open vSwitch and utilizes ECN to sense the queue
build-up at the intermediate switches. As reaction to ECN operates
at RTT timescales, DREAM has good responsiveness to traffic vari-
ations and bursts. As a result, DREAM fully utilizes every energy
saving opportunity and quickly reroutes flowlets to avoid packet
drops and long delays. Testbed results using the Wikipedia trace
and the Facebook MapReduce trace prove that DREAM on average
saves at least 15.8% DCN energy, compared to existing schemes
such as CARPO which saves only 11.6% and ElasticTree which saves
8.4% energy. The packet drop ratio in DREAM is less than 0.01%
while the best among the alternatives, ElasticTree [17], has 0.19%
drop ratio on Facebook trace and 0.85% drop ratio on Wikipedia
trace. For application-level latency, DREAM achieves at least 30%
shorter latency compared to the alternatives.
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