
Context-Sensitive Malicious Spelling Error Correction

Hongyu Gong, Yuchen Li, Suma Bhat, Pramod Viswanath
University of Illinois at Urbana-Champaign

{hgong6, li215, spbhat2, pramodv}@illinois.edu

Abstract

Misspelled words of the malicious kind work
by changing specific keywords and are in-
tended to thwart existing automated applica-
tions for cyber-environment control such as
harassing content detection on the Internet and
email spam detection. In this paper, we fo-
cus on malicious spelling correction, which re-
quires an approach that relies on the context
and the surface forms of targeted keywords.
In the context of two applications–profanity
detection and email spam detection–we show
that malicious misspellings seriously degrade
their performance. We then propose a context-
sensitive approach for malicious spelling cor-
rection using word embeddings and demon-
strate its superior performance compared to
state-of-the-art spell checkers.

1 Introduction

Automatic spelling correction has been an im-
portant natural language processing component of
any input text interface of today (Jurafsky and
Martin, 2014). While spelling errors in common
writing could be regarded as innocuous omissions,
affecting opinions about the writer’s competence
at worst, those of the malicious kind can poten-
tially be highly offensive, since they are intended
to deceive an automated mechanism–be it a spam
filter for emails or a profanity detector for social
media. For those applications that rely on au-
tomatic detection of specific keywords to enable
real-time control of the cyber-environment, detect-
ing and correcting spelling errors is of primary im-
portance.

Perspective (Google, 2017), is one such ap-
plication that helps reduce abusive content on-
line by detecting profane language. It has been
pointed out that Perspective’s otherwise good per-
formance in detecting toxic comments is not ro-
bust to spelling errors (Hosseini et al., 2017). Con-

sider the sentence, “My thoughts are that peo-
ple should stop being stupid.” which was as-
signed a perceived toxicity score of 86% by Per-
spective. When the word “stupid” was misspelled
as “stup*d” in the same sentence, its toxicity
score reduces to 8%. This marked reduction in-
duced by the deceptive spelling error on the key-
word ‘stupid’ reflects the importance of accurate
spelling correction for optimal toxicity detection.
Had the spelling error been detected and corrected
before scoring for toxicity, the score would not
have lowered.

Likewise, deliberate typographic errors are
common in phishing scams and spam emails. For
instance, “Please pya any fees you may owe to our
company” where pya is clearly a spelling error, in-
cluded to deceive spam filters that are sensitive to
keywords. In both these instances, spelling cor-
rection as a preprocessing step of the messages are
critical for a robust performance of the target sys-
tem. Spelling correction in the preprocessing stage
in malicious settings constitutes the focus of this
study.

In this paper, we empirically demonstrate the
effect of spelling errors in a malicious setting by
adding synthetic misspellings to sensitive words
in the context of two applications–profanity de-
tection and spam detection. We propose an un-
supervised embedding-based algorithm to cor-
rect the targeted misspelled words. Earlier ap-
proaches to spelling correction primarily depend
on the edit distance to find words morphologi-
cally similar to corrections. More recently, spell
checkers have been improved with the addition of
contextual information (e.g., n-gram modeling in
(Wint et al., 2018)), often with intensive compu-
tation and memory requirements (to obtain and
store N-gram statistics). A recently studied neu-
ral network-based spell checker learns the mis-
spelling pattern from annotated train data in a su-

ar
X

iv
:1

90
1.

07
68

8v
1

 [
cs

.C
L

]
 2

3
Ja

n
20

19

pervised way, and was found to be sensitive to
data domains and dependent on human annota-
tions (Ghosh and Kristensson, 2017). Our ap-
proach to make the correction procedure context-
aware involves harnessing the geometric proper-
ties of word embeddings. It is light-weight in
comparison, unsupervised, and can be adapted to
a variety of data domains including Twitter data
and spam data, since domain information can be
well captured by tuning embeddings on domain-
specific data (Taghipour and Ng, 2015).

We first demonstrate the effect of spelling er-
rors in a malicious setting in the context of two
applications–profanity detection and spam detec-
tion. Then we propose an unsupervised algo-
rithm to correct the targeted spelling errors. Be-
sides performing well on the correction of syn-
thetic spelling errors, the algorithm also performs
well on spell checking of real data, and shows that
it can improve hate speech detection using Twitter
data.

2 Related Work

Spelling correction. Automatic spelling correc-
tion in non-malicious settings has had a long re-
search track as an important component of text
processing and normalization. Early works have
used edit distance to find morphologically simi-
lar corrections (Ristad and Yianilos, 1998), noisy
channel model for misspellings (Jurafsky and
Martin, 2014), and iterative search to improve cor-
rections of distant spelling errors (Gubanov et al.,
2014). Word contexts have been shown to be
improve the robustness of spell checkers with n-
gram language model as one approach to incorpo-
rate contextual information (Hassan and Menezes,
2013; Farra et al., 2014). Other ways of incor-
porating contextual information include n-gram
statistics capturing the cohesiveness of a candidate
word with the given context (Wint et al., 2018).
Effect of malicious misspellings. Misspellings
are commonly seen in online social platforms such
as Twitter and Facebook, and recent studies have
drawn attention to the fact that online users de-
liberately introduce spelling errors to thwart bul-
lying detection (Power et al., 2018) or to chal-
lenge to moderators of online communities (Pa-
pegnies et al., 2017). This is because simple ways
of filtering terms of profanity are rendered inad-
equate in the presence of spelling errors. Like-
wise, email spam filters are often obfuscated by

misspelled sensitive words (Zhong, 2014) because
word-based spam filters tend to make false deci-
sions in the presence of misspellings (Saxena and
Khan, 2015), and so are word-based cyberbullying
detection systems (Agrawal and Awekar, 2018).
Misspelling is also seen in web attacks where a
phishing site has a domain name as a misspelling
of a legitimate website (Howard, 2008).
Approaches to correct malicious misspellings.
Given the malicious intent of misspellings in the
context of the Internet, recent studies have pro-
posed correction strategies specifically for mali-
cious misspellings. Levenshtein edit distance is
commonly used in spell checking of detection sys-
tems. Spam filters (Zhong, 2014) and cyberbul-
lying detection systems (Wint et al., 2017) rely
on the idea of edit distance to recognize cam-
ouflaged words by capturing the pattern of mis-
spellings. For example, (Rojas-Galeano, 2013)
studied an edit distance function designed to re-
veal instances where spammers had interspersed
black-listed words with non-alphabetic symbols.
Lexical and context statistics, such as word fre-
quency, have also been used to make corrections
in social texts (Baziotis et al., 2017; Jurafsky and
Martin., 2017). Existing approaches have the
problem of domain specificity, since their lexical
statistics are obtained from a certain domain which
might differ from the domain of target applica-
tions.

Our study considers the spelling correction in a
malicious setting where errors are not random, but
are carefully introduced. Our context-aware ap-
proach to spelling correction relies on the geome-
try of word embeddings, which has the advantage
of efficient domain adaptation. As we will show in
Section 4.2, the embedding can be easily tuned on
a small corpus from the target domain to capture
domain knowledge.

3 Methods

We study malicious spelling correction for three
target applications–toxicity detection using the
Perspective API, email spam detection, and hate
speech detection on Twitter data. We work with
synthetic spelling errors in the first two applica-
tions, and study the real misspellings in the third.

For the toxicity detection task, we use the Per-
spective dataset (Google, 2017), which provides
a set of comments collected from the Internet with
human annotated scores of toxicity. Using the Per-

spective API we obtained the toxicity score for
2767 comments in the dataset.

The spam dataset consists of 960 emails from
the Ling-Spam dataset 1. We randomly split the
data into 700 train emails and 260 test emails.
Both the train and test sets were balanced with
respect to the positive and negative classes. The
most frequent 2500 words in the training data were
selected, and we counted the occurrence of each
word in the emails. The number of occurrences
of these frequent words were used as a 2500-
dimension feature vector for each email. We first
used these features to train a Naive Bayes classi-
fier. It achieved an accuracy of 98% in spam de-
tection.

As for the Twitter data, a total of 16K user posts
were collected from Twitter, a social communica-
tion platform and used in used in (Waseem and
Hovy, 2016). Of these tweets, 1937 were labeled
as being racist, 3117 were labeled as being sexist,
and the rest were neither racist nor sexist. The task
of hate speech detection is to classify these tweets
into one of the three categories racist, sexist, nei-
ther. We randomly split the tweets into train and
test data, and trained a neural-network based hate
speech detection system on the training data (de-
scribed later in Section 5.3).

3.1 Characterization

Here we summarize our assumptions on the char-
acteristics of the malicious spelling errors.
(1) Malicious errors are usually made on the sensi-
tive keywords in order to obfuscate the true inten-
tions and deceive detection systems that rely on
keywords (Weinberger et al., 2009).
(2) The error yields a word that is similar to the
original word in surface form. The misspelled
words would be words that humans can easily un-
derstand (thus the erroneous words still convey the
intended meaning, while being in disguise). Their
similarity is reflected in the small edit distance be-
tween the erroneous and the correct word (Mor-
gan, 1970). The errors often involve character-
level operations as shown in Table 1 (Liu et al.,
2011).
(3) With edit distance as the similarity criterion, it
is often the case that the word with an error is sim-
ilar to multiple valid words, making correction a
challenge in real applications. For example, both

1http://csmining.org/index.php/
ling-spam-datasets.html

stud and stupid can be thought of as the correct
form of the erroneous word stupd. In such cases,
spelling correction relies on the context in which
the word occurs.

3.2 Effect of malicious spelling errors
We quantify the effect of spelling errors by show-
ing that a simple mechanism of injecting malicious
spelling errors greatly degrades the performance
of toxicity detection and spam detection. Toward
this, we first describe the general mechanism to
generate synthetic errors and then study their im-
pact on toxicity and spam detection. We point
out that owing to the absence of a dataset with in-
tended malicious errors, we had to generate them
synthetically.

Spelling error generation. We first choose the
“sensitive” words that the detection algorithm re-
lies (the mechanism will be discussed separately
for each application we consider). We then replace
these words with their erroneous forms (which
may not be real words). Given the characteristics
of malicious errors mentioned in Section 3.1, our
assumption is that as a result of these errors the
altered words will appear similar to the original
ones. As illustrated in Table 1, we consider four
basic character-level operations to change the sen-
sitive words: insertion, permutation, replacement,
and removal. In our experiments we perform these
operations on randomly picked characters of the
sensitive word. For permutation, we exchange this
character with the next one. Each operation in Ta-
ble 1 increases the edit distance by 1, and we gen-
erate malicious misspellings of the sensitive word
that are at most 2 edit distance from the correct
word.

Table 1: Common spelling errors

Type insertion permutation replacement removal
Error idio.t moeny chanse stupd

Correction idiot money chance stupid

Finally, we obtain revised sentences by replac-
ing the sensitive words in the original sentences
with their erroneous counterparts. Next, we intro-
duce our mechanism for selecting the “sensitive”
words for each application.

Perspective toxicity detection. We select 2767
clean comments from a total of 2969 comments
in the Perspective data, with the selection criteria
given below.

• The most toxic word in a comment should

http://csmining.org/index.php/ling-spam-datasets.html
http://csmining.org/index.php/ling-spam-datasets.html

contain more than two characters. A word
that is too short is not likely to be a meaning-
ful toxic word, and can have too many candi-
date corrections in the dictionary.

• The most toxic word in a comment should ap-
pear at least 100 times in the dataset, since
rare words tend to be misspellings in online
texts.

• The most toxic word in a comment should
be a content word, i.e., it should not be-
long in the list of function words such as
“must”, “ought”, “shall” and“should”. Func-
tion words are not toxic and so were excluded
from our experiments.

For each comment, its predicted toxicity score
lies in the range of [0, 1]. The higher the score, the
more toxic the sentence is. For each sentence, we
chose the most toxic word to be that word, with-
out which the toxicity score reduced the most. We
then added malicious errors, as described above, to
this word. We note that for 2380 toxic comments
with toxicity scores higher than 0.5, spelling er-
rors brought down their predicted toxicity by 32%.
Section 5 provides the details of the degradation in
toxicity detection.

Spam detection. A Naive Bayes spam detec-
tion model provides the likelihood of each word
given the spam and non-spam classes. For a given
word, the difference between these probabilities
reflects how important that word is in spam detec-
tion. We sorted all the words in decreasing order
of this difference in probabilities, and picked the
most spam-indicative words. We then added ma-
licious errors to these words in test spam emails.
For a spam filtering system which relies heavily
on the counts of spam-indicative words, the errors
can easily disguise spams as non-spams. This is
seen in the test accuracy dropping from 98% on
the original test data to 72% on the revised test
data.

We note that for the Perspective data, we added
errors to only one word per sentence, but did not
have such limits for the spam data. Also, we do
not limit the number of corrections during the spell
check process.

4 Spelling Correction

We have shown that malicious errors degrade the
performance of toxicity detection and spam de-

tection. In this section, we introduce our unsu-
pervised algorithm on non-word error correction
based on the relevant context.

Our correction method proceeds in two stages.
In the first stage of candidate enumeration, the
algorithm detects the spelling error and proposes
candidates that are valid words and similar in sur-
face form to the misspelled word. In the next
stage, correction via context, the best candidate
is chosen based on its context.

4.1 Candidate Enumeration

As in the case of non-word spelling correction
(Jurafsky and Martin, 2014), we check whether
an erroneous word is valid or not using a vo-
cabulary of valid words. For toxicity detection
and spam detection, the vocabulary consists of
words that occur more than 100 times in En-
glish Wikipedia corpus 2 For hate speech detec-
tion, the vocabulary consists of standard words
from Wikipedia and the list of internet slang words
as detailed in Section 5.3, since slang words fre-
quently occur in tweets. For an invalid word, we
find candidate words with the smallest Damerau-
Levenshtein edit distance (Damerau, 1964; Leven-
shtein, 1966). This distance between two strings
is defined as the minimum number of unit oper-
ations required to transform a string into another,
where the unit operations include character addi-
tion, deletion, transposition and replacement. We
note that because there are potentially multiple
candidates having the smallest distance to the mis-
spelled word, the output of this stage is a set of
candidate corrected words.

4.2 Correction via Context

After enumerating all possible candidates, we
choose the one that fits the best in the context.
We propose a word-embedding-based method to
match the context with the candidate.
Pretrained embedding. We use word2vec
CBOW model to train embeddings (Mikolov et al.,
2013). The Perspective and Twitter data have an
informal style, while email data consists of rela-
tively formal expressions. Word embeddings are
known to be domain-specific (Nguyen and Gr-
ishman, 2014) and naturally domain-specific cor-
pora are used to train word embeddings for use
in a given domain. We note that in the absence

2available at: http://www.cs.upc.edu/˜nlp/
wikicorpus/

http://www.cs.upc.edu/~nlp/wikicorpus/
http://www.cs.upc.edu/~nlp/wikicorpus/

of a large enough representative corpus to train
domain-specific high-quality embeddings for this
study, we reconcile with word embeddings trained
on a large WikiCorpus (Al-Rfou et al., 2013) to
capture the general lexical semantics and further
tuned on a domain-specific corpus, such as that of
the Perspective dataset, the spam emails data and
the Twitter data. This step allows us to combine
domain information in trained embeddings.
Error Correction. Word vectors permit us to de-
cide the fit of a word in a given context by consid-
ering the geometry of the context words in relation
to the given word. Firstly, the embedding of the
compositional semantics of phrases or sentences
can be approximated by a linear combination of
the embeddings of their constituent words (Salehi
et al., 2015). Let vw be the embedding of the token
w. Take the phrase “lunch box” as an example, it
holds that

vhate group ≈ αvhate + βvgroup,

where α and β are real-valued coefficients.
This enables us to represent the context as a lin-

ear space of the component words. Another prop-
erty is that semantically relevant words lie close in
the embedding space. If a word fits the the con-
text, it should be close to the context space, i.e.,
the normalized Euclidean distance from the word
embedding to the context space should be small
(Gong et al., 2017). We quantify the inconsistency
between the word and its context by the distance
between the word embedding and the span of the
context words.

For a misspelled word in a sentence, all words
occurring within a window of size p are considered
to be its context words. Let the context Tp be the
set of words within distance p from w0:

Tp = {w−p, w−p+1, . . . , w0, . . . , wp−1, wp},

where w0 is the misspelled word. Let C be the
set of candidate replacements of w0. Let vi be the
word embedding of context word wi. We denote
by dist(c, Tp), the distance between a candidate c
and the linear span of the words in its context Tp,
termed as the candidate-context distance of a can-
didate, defined as the normalized distance between
the word embedding of the candidate, vc and its
linear approximation obtained by the context vec-

Table 2: Correction Accuracy on Perspective and Spam

Dataset Our system PyEnchant Ekphrasis Google
Perspective 0.840 0.476 0.713 0.323

Spam 0.786 0.618 0.639 0.526

tors:

dist(c, Tp) = min
{ai}

1

‖vc‖2
‖

p∑
i=−p,
i 6=0

aivi − vc‖22. (1)

This is a quadratic minimization problem for
which we can find a closed-form solution.

Instead of fixing one context window size, we
consider multiple window sizes and weigh the dis-
tances obtained using different window sizes. The
context words that are closer to the misspelled
word are more informative in candidate selection.
In the sentence “the stu*pid and stubborn adminis-
trators”, the word stubborn suggests that the mis-
spelled word should be a negative personality ad-
jective, and the word administrator that it should
be an adjective for people. Thus, the closest con-
text word stubborn provides more relevant infor-
mation than the distant word administrator.

We thus weigh the distance by the inverse of the
context window size, i.e., the weight 1

p for the win-
dow size p. Suppose that T is the full context, and
the candidate-context distance is defined below:

dist(c, T) =
P∑

p=1

1

p
· dist(c, Tp), (2)

where P = 4 in our experiments.
Given the context T , the suggested correction

c∗ is the candidate with the smallest distance to
the linear space of context words, i.e.,

c∗ = argmin
c∈C

dist(c, T). (3)

5 Experiments

We evaluated our spelling correction approach in
three settings: toxicity and spam detection with
synthetic misspellings, and hate speech detection
with real spelling errors. Even though some recent
works using neural networks (Ghosh and Kris-
tensson, 2017) are available, they require ground
truth corrections for supervised training. For our
unsupervised approach, we compare its perfor-
mance with that of three strong unsupervised base-
lines below, which are generic off-the-shelf tools

Table 3: Correction on perspective data

original sentence the stupid and stubborn administrators anti American hate groups you’re a biased fuck
revised sentence the stu*pid and stubborn administrators anti American ahte groups you’re a biased fucdk
Our correction the stupid and stubborn administrators anti American hate groups you’re a biased fuck
PyEnchant the sch*pid and stubborn administrators anti American hate groups you’re a biased Fuchs
Ekphrasis the stupid and stubborn administrators anti American ate groups youre a biased fuck
Google the stupid and stubborn administrators anti American ahte groups you’re a biased fucdk

used in many NLP systems such as AbiWord (abi,
2018) and Google search engine (goo, 2018).
(1) Pyenchant: a generic spell checking library of
multiple correction algorithms (Kelly, 2015). We
use the MySpell library in this work.
(2) Ekphrasis: a spelling correction and text nor-
malization tool for texts from social networks
(Baziotis et al., 2017).
(3) Google spell checker: a Google search engine-
based spell check (Coad, 2018). We chose it for its
ability to undertake context-sensitive correction on
the basis of user search history.

5.1 Toxicity Detection

Figure 1: Toxicity scores by different approaches

We took 2380 sentences from Perspective
dataset whose toxicity scores were higher than 0.5
and added synthetic errors maliciously to these
sentences as described in Section 3. Some ex-
ample Perspective sentences, revised sentences
and corrections given by different algorithms are
shown in Table 3. The correction accuracy
achieved by different approaches is reported in Ta-
ble 2.

We divided toxic sentences into 5 bins accord-
ing to their original toxicities. In Fig. 1, we report
the average toxicity of the original, revised and
corrected sentences in each bin. We see that the
malicious errors drastically reduce the sentences’
toxicities. The original average toxicity in the first

bin is 0.55, whereas the revised toxicity is only
0.33 (a drop by 40%). This shows that toxicity
detection is very sensitive to spelling errors.

From the same figure we see that our proposed
error correction results in toxicity scores closer to
the original ones when compared with the base-
lines, validating the effectiveness of our approach.
We note that in some cases our approach might re-
sult in a slightly higher toxicity score than the orig-
inal one, because of the pre-existing misspellings
in the original sentences. For example, original
sentences “you are a fagget”, “fukkin goof’s track
record” and “I suspect that closedmouth is g*y”
have crude misspellings, which are used as In-
ternet slang. Our approach corrects these pre-
existing misspellings in addition to the errors we
add later, resulting in higher toxicity scores of cor-
rected sentences. We perform corrections of all
spelling errors, recovering more toxic words than
we added maliciously.

5.2 Spam Detection

Figure 2: Spam detection accuracy on test emails

We next evaluate our spelling correction on the
spam data. Synthetic malicious errors were added
to spam-indicative words in spam mails based on
our misspelling generation mechanism.

Some example spams are shown in Table 4.
Sensitive words such as “money” which are in-
dicative of spams are highlighted, and the cor-
rections given by different approaches are shown.

Table 4: Correction examples on spam data

Original sentence
it really be a great oppotunity to make relatively
easy money , with little cost to you .

we have quit our jobs , and will soon buy a home on
the beach and live off the interest on our money .

Revised sentence
it really be a grfat opportunity to make relatively
easy fmoney, with little cosgt to you.

we have quit our tobs, and will soon buy a home on
the beach and live off the interest on our jmoney.

Our correction
it really be a great opportunity to make relatively
easy money, with little cost to you.

we have quit our jobs, and will soon buy a home on
the beach and live off the interest on our money.

PyEnchant
it really be a graft opportunity to make relatively
easy fmoney, with little cost to you.

we have quit our bots, and will soon buy a home on
the beach and live off the interest on our money.

Ekphrasis
it really be a great opportunity to make relatively
easy money, with little cost to you.

we have quit our tobs, and will soon buy a home on
the beach and live off the interest on our money.

Google
it really be a great opportunity to make relatively
easy fmoney, with little cosgt to you.

we have quit our jobs, and will soon buy a home on
the beach and live off the interest on our jmoney.

Table 2 shows the spelling correction accuracy
achieved by our algorithm and the baselines for
the spam data.

Fig. 2 shows the spam detection accuracy on the
original, revised and corrected test emails. Again
we see that malicious errors resulted in a large
accuracy drop, the accuracy was restored after
spelling correction, and the increase in accuracy
using our approach was the maximal among those
compared.

5.3 Real Misspellings in Tweet Hate Speech
Detection

Table 5: Example of tweets and hate speech categories

Category Example sentence

Racism
#isis #islam pc puzzle: converting to a religion
of peace leading to violence? http://t.co/tbjusaemuh

Sexism
Real question is do feminist liberal bigots
understand that different rules for men/women
is sexism

Neither The mother and son team are sooooo nice !!!

We have shown that synthetic misspellings are
able to deceive the toxicity detector and the spam
detector, and reported the performance of spell
checkers on the synthetic data. We also experi-
mented with data containing real spelling errors
collected from Twitter, where instances of hate
speech contain user-generated spelling errors. The
correction performance of spell checkers are now
compared on the real misspellings.

Tweet normalization. Some example tweets
of racist and sexist nature are shown in Table 5.
Tweets are notoriously noisy and unstructured
given the frequent occurrences of hashtags, URLs,
reserved words and emojis. These non-standard
tokens greatly increase the vocabulary size of
tweets while also injecting noise to classifica-
tion tasks. We use Tweet Preprocessor, a tweet

preprocessing tool which can replace aforemen-
tioned tokens with a special set of tokens. For
example, one tweet is “#isis #islam pc puzzle:
converting to a religion of peace leading to vio-
lence ?,http://t.co/tbjusaemuh http://t.co/g4xoh...”,
which becomes “$HASHTAG$ $HASHTAG$ pc
puzzle: converting to a religion of peace leading
to violence? URL URL...” after preprocess-
ing. This preprocessing stage can clean texts with-
out dealing with misspellings. Tweets are prepro-
cessed right before they are fed into the neural net-
work.

Hate speech detection. The state-of-the-art
system for hate speech detection is a Bidirectional
Long Short Term Memory (BLSTM) network
with attention mechanism (Agrawal and Awekar,
2018). The model takes a sequence of words in a
tweet, obtains word embeddings in the embedding
layer, and passes them to bidirectional recurrent
layers to generate a dense representation of the in-
put tweet. The feedforward layer takes the tweet
vector and predicts its probability distribution over
all three classes. The class with the highest likeli-
hood is chosen as the category of the input tweet.
In our experiment, we use a BLSTM model for the
hate speech detection task.

Vocabulary construction. Firstly we build a
vocabulary list using both a standard dictionary
and the frequent words (frequency higher than 5)
in the training data. This list will serve as a ref-
erence for spelling correction; words outside the
list will be taken as spelling errors and replaced
with legal words from the vocabulary. The rea-
son for collecting words from the training data is
to include the Internet slangs in tweets which may
not exist in the standard dictionary. Some exam-
ples are “tmr” (for tomorrow), “fwd” (for forward)
and “lol” (for laughing out loudly). Some previ-

Table 6: Hate speech detection results with different spelling corrections

Category Metric Original Our system PyEnchant Ekphrasis Google

racist
Precision 0.630 0.640 0.630 0.630 0.569

Recall 0.617 0.681 0.617 0.617 0.702
F1 score 0.623 0.660 0.623 0.623 0.628

sexist
Precision 0.641 0.630 0.629 0.629 0.649

Recall 0.775 0.767 0.790 0.790 0.759
F1 score 0.701 0.692 0.701 0.701 0.700

Macro average over
all categories

Precision 0.721 0.721 0.718 0.718 0.703
Recall 0.741 0.757 0.743 0.743 0.759

F1 score 0.727 0.737 0.727 0.727 0.727

ous works proposed to replace these slang terms
with their standard forms (Gupta and Joshi, 2017;
Modupe et al., 2017), which require either ex-
pert knowledge or human annotations. We argue
that because these Internet slangs change rapidly
we should understand them in a data-driven man-
ner instead of standardizing them based on hu-
man knowledge. Since the representation of these
slangs and their use in hate speech will be learned
by the neural network from the train data, we add
these slangs to our vocabulary as legal words.

Spelling correction. Misspellings are another
source of text noise which cannot be handled in the
tweet normalization stage. Some misspellings are
user-created to deceive the online detection sys-
tem. For example, the swear word “fucking” has a
lot of variants in tweets such as “fckn”, “f*ckin”,
“f**king”, “fckin”, “fuckin”, “fking”,“fkin” and
“fkn”. When a new variant of a swear word arises
in the test data, the model takes it as an out-of-
vocabulary word, and is unable to match it with
any learned pattern. The purpose of spelling cor-
rection is to map these new variants to words that
are known to the model. As discussed in Section 4,
we enumerate the candidates of a misspelled word,
and choose the candidate which best fits with the
context as its correction.

Results. We do a random 80:20 train-test
split of the Twitter dataset. A detection system
was trained on the normalized train data (with-
out spelling correction) using the state-of-the-art
BLSTM model. There were 3218 test tweets, 571
of which had misspellings. We applied the dif-
ferent spelling correction approaches to these 571
tweets, and the corrected tweets were then cleaned
as described in the tweet normalization stage. Pro-
cessed tweets were input to the trained detection
system. We compared the hate speech detection

results on the 571 test tweets to evaluate the ef-
fect of spelling correction on this downstream ap-
plication. As shown in Table 6, We report results
on the original test data, and also on the test data
which are corrected by our approach, PyEnchant,
Ekphrasis, and google spell checker. We report
precision, recall and F1-score of racist and sexist
classification respectively and the macro-averages
(to evaluate the overall performance).

The best performance of each metric is high-
lighted in the table. Compared with the classifica-
tion performance on the test data with spelling er-
rors for the racist category, our approach improves
the precision by 1%, the recall by 6.4%, and the F1
score by 3.7% absolute points. Both PyEnchant
and Ekphrasis spell checkers improve the recall of
sexist category, but decrease the precision, so their
corrected forms achieve F1 scores similar to the
original test data. Google spell checker also gives
similar F1 score on both racist and sexist classes.
Our approach outperforms the other baselines in
terms of F1 score for the racist class and the macro
F1 score.

For sexism-related tweets, our approach does
not improve the results compared to the original
test data. Taking a closer look at the nature of
the sexist tweets we notice that they often con-
tain some abbreviations which might be taken as
misspellings, and that their contextual informa-
tion is insufficient to decide the appropriate cor-
rections. For example, in the sexist tweet “I’m
sorry but if you watch women ufc fights kys”. Our
approach replaces kys with keys, and the trained
neural network misclassified the corrected tweet.
Another sexist-related tweet is “these nsw promo
girls think way too highly of themselves”, where
nsw is incorrectly replaced with new by our ap-
proach.

6 Conclusion

In this study, we showed how malicious spelling
errors can deceive profanity- and spam detec-
tors. To deal with these malicious misspellings,
we proposed a context-sensitive spelling correc-
tor based on word embeddings. Our spell checker
is light-weight, unsupervised and can be easily
incorporated into downstream applications. It
achieved a favorable spelling correction perfor-
mance when compared with general purpose spell-
checking tools such as PyEnchant, Ekphrasis and
Google spell checkers on both synthetic and real
misspellings from different datasets.

References
2018. Abiword. Available at: https://www.
abisource.com.

2018. Google search engine. Available at: https:
//www.google.com.

Sweta Agrawal and Amit Awekar. 2018. Deep learn-
ing for detecting cyberbullying across multiple so-
cial media platforms. In European Conference on
Information Retrieval, pages 141–153. Springer.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations
for multilingual nlp. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192, Sofia, Bulgaria.
Association for Computational Linguistics.

Christos Baziotis, Nikos Pelekis, and Christos Doulk-
eridis. 2017. Datastories at semeval-2017 task
4: Deep lstm with attention for message-level and
topic-based sentiment analysis. In Proceedings of
the 11th International Workshop on Semantic Eval-
uation (SemEval-2017), pages 747–754, Vancouver,
Canada. Association for Computational Linguistics.

Noah Coad. 2018. Google spell check. Avail-
able at: https://github.com/noahcoad/
google-spell-check.

Fred J Damerau. 1964. A technique for computer de-
tection and correction of spelling errors. Communi-
cations of the ACM, 7(3):171–176.

Noura Farra, Nadi Tomeh, Alla Rozovskaya, and Nizar
Habash. 2014. Generalized character-level spelling
error correction. In ACL (2), pages 161–167.

Shaona Ghosh and Per Ola Kristensson. 2017. Neural
networks for text correction and completion in key-
board decoding. arXiv preprint arXiv:1709.06429.

Hongyu Gong, Suma Bhat, and Pramod Viswanath.
2017. Geometry of compositionality.

Jigsaw Google. 2017. Perspective. Available at:
https://www.perspectiveapi.com/.

Sergey Gubanov, Irina Galinskaya, and Alexey Baytin.
2014. Improved iterative correction for distant
spelling errors. In ACL (2), pages 168–173.

Itisha Gupta and Nisheeth Joshi. 2017. Tweet nor-
malization: A knowledge based approach. In Info-
com Technologies and Unmanned Systems (Trends
and Future Directions)(ICTUS), 2017 International
Conference on, pages 157–162. IEEE.

Hany Hassan and Arul Menezes. 2013. Social text nor-
malization using contextual graph random walks. In
ACL (1), pages 1577–1586.

Hossein Hosseini, Sreeram Kannan, Baosen Zhang,
and Radha Poovendran. 2017. Deceiving google’s
perspective api built for detecting toxic comments.
arXiv preprint arXiv:1702.08138.

Fraser Howard. 2008. Web attacks: Modern web at-
tacks. Network Security, 2008(4):13–15.

Dan Jurafsky and James H Martin. 2014. Speech and
language processing, volume 3. Pearson London.

Daniel Jurafsky and James H. Martin. 2017. Dis-
tributed representations of words and phrases and
their compositionality. In Speech and Language
Processing, chapter 5, pages 1–12.

Ryan Kelly. 2015. Pyenchant. Available at: https:
//github.com/rfk/pyenchant.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions, and reversals. In
Soviet physics doklady, volume 10, pages 707–710.

Fei Liu, Fuliang Weng, Bingqing Wang, and Yang Liu.
2011. Insertion, deletion, or substitution?: nor-
malizing text messages without pre-categorization
nor supervision. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: short
papers-Volume 2, pages 71–76. Association for
Computational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their composition-
ality. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems
26, pages 3111–3119. Curran Associates, Inc.

Abiodun Modupe, Turgay Celik, Vukosi Marivate, and
Melvin Diale. 2017. Semi-supervised probabilis-
tics approach for normalising informal short text
messages. In Information Communication Technol-
ogy and Society (ICTAS), Conference on, pages 1–8.
IEEE.

Howard L. Morgan. 1970. Spelling correction in sys-
tems programs. In Communications of the ACM,
pages 90–94.

https://www.abisource.com
https://www.abisource.com
https://www.google.com
https://www.google.com
http://www.aclweb.org/anthology/W13-3520
http://www.aclweb.org/anthology/W13-3520
https://github.com/noahcoad/google-spell-check
https://github.com/noahcoad/google-spell-check
https://www.perspectiveapi.com/
https://github.com/rfk/pyenchant
https://github.com/rfk/pyenchant

Thien Huu Nguyen and Ralph Grishman. 2014. Em-
ploying word representations and regularization for
domain adaptation of relation extraction. In ACL
(2), pages 68–74.

Etienne Papegnies, Vincent Labatut, Richard Dufour,
and Georges Linares. 2017. Impact of content fea-
tures for automatic online abuse detection. In Inter-
national Conference on Computational Linguistics
and Intelligent Text Processing.

Aurelia Power, Anthony Keane, Brian Nolan, and
Brian O’Neill. 2018. Detecting discourse-
independent negated forms of public textual cyber-
bullying. Journal of Computer-Assisted Linguistic
Research, 2(1):1–20.

Eric Sven Ristad and Peter N Yianilos. 1998. Learning
string-edit distance. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(5):522–532.

Sergio A Rojas-Galeano. 2013. Revealing non-
alphabetical guises of spam-trigger vocables. Dyna,
80(182):15–24.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2015.
A word embedding approach to predicting the com-
positionality of multiword expressions. In HLT-
NAACL, pages 977–983.

Manish Saxena and PM Khan. 2015. Spamizer: An
approach to handle web form spam. In Computing
for Sustainable Global Development (INDIACom),
2015 2nd International Conference on, pages 1095–
1100. IEEE.

Kaveh Taghipour and Hwee Tou Ng. 2015. Semi-
supervised word sense disambiguation using word
embeddings in general and specific domains. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 314–323.

Zeerak Waseem and Dirk Hovy. 2016. Hateful sym-
bols or hateful people? predictive features for hate
speech detection on twitter. In Proceedings of the
NAACL student research workshop, pages 88–93.

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning. In Pro-
ceedings of the 26th annual international conference
on machine learning, pages 1113–1120. ACM.

Zar Zar Wint, Theo Ducros, and Masayoshi Aritsugi.
2017. Spell corrector to social media datasets in
message filtering systems. In Digital Information
Management (ICDIM), 2017 Twelfth International
Conference on, pages 209–215. IEEE.

Zar Zar Wint, Théo Ducros, and Masayoshi Aritsugi.
2018. Non-words spell corrector of social media
data in message filtering systems. Journal of Dig-
ital Information Management, 16(2).

Xinwang Zhong. 2014. Deobfuscation based on edit
distance algorithm for spam filitering. In Machine
Learning and Cybernetics (ICMLC), 2014 Interna-
tional Conference on, volume 1, pages 109–114.
IEEE.

