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ABSTRACT

Chinese word segmentation (CWS) is very important for Chinese
text processing. Existing methods for CWS usually rely on a large
number of labeled sentences to train word segmentation models,
which are expensive and time-consuming to annotate. Luckily, the
unlabeled data is usually easy to collect and many high-quality
Chinese lexicons are off-the-shelf, both of which can provide useful
information for CWS. In this paper, we propose a neural approach
for Chinese word segmentation which can exploit both lexicon
and unlabeled data. Our approach is based on a variant of poste-
rior regularization algorithm, and the unlabeled data and lexicon
are incorporated into model training as indirect supervision by
regularizing the prediction space of CWS models. Extensive ex-
periments on multiple benchmark datasets in both in-domain and
cross-domain scenarios validate the effectiveness of our approach.

CCS CONCEPTS

« Computing methodologies — Natural language process-
ing; Neural networks; Semi-supervised learning settings.
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1 INTRODUCTION

Chinese word segmentation (CWS) aims to segment Chinese sen-
tence into words [7, 10, 22]. For example, “>J V5 5 ¢ &8 F
1% is segmented into “>]ITF/ /5 /R 18/ HL1E”. Different
from English texts where whitespace is used to separate words,
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there is no natural word delimiter in Chinese. Thus, CWS is very
important for processing Chinese texts and is an essential step for
many downstream tasks [3, 5, 15].

In recent years, neural network based methods have been widely
used for CWS [1, 17, 23, 26]. Most of these methods model CWS as
a sequence labeling problem [22, 30], and utilize neural networks
to learn the hidden character features [2, 32]. For example, Chen et
al. [2] used LSTM [8] to learn character features by capturing the
global information of sentence. Peng and Dredze [18] proposed to
use LSTM for character feature learning and CRF [9] for character
label decoding. However, these methods usually rely on a large
number of labeled sentences to train word segmentation models,
which are expensive and time-consuming to annotate. Besides,
these methods usually have difficulty in segmenting sentences with
OOV (out of vocabulary) words or words that are rare in training
data [27]. For example, if “>J3F” and “FEHHE” are OOV words
in training data, then these methods will probably segment “>J 3/t
R SRR E B B E” into <) IT/ P/ 5 /R R E IR

Our work is motivated by following observations. First, the unla-
beled Chinese sentences are usually easy to collect on a large scale
and can provide useful information for Chinese word segmentation.
For example, if the character sequences “>] 1T %> and “ff B 3%~
appear many times in unlabeled data with different contexts, then
we can infer that they are probably Chinese words. Second, many
high-quality Chinese lexicons have been built and can cover a large
number of Chinese words. These lexicons can provide important
information of whether a Chinese character sequence can be a valid
Chinese word, which is useful for CWS. For example, if “>J 77
and “%FBA” are included in a Chinese lexicon, then we can better
segment aforementioned sentences. Thus, both unlabeled data and
lexicons have the potential to improve the performance of CWS,
especially on sentences with OOV and rare words.

In this paper, we propose a neural approach for Chinese word
segmentation which can exploit the useful information in both
Chinese lexicon and unlabeled data. More specifically, in our ap-
proach we propose a unified framework based on posterior regu-
larization [6] to incorporate Chinese lexicon and unlabeled data as
indirect supervision to regularize the prediction space of the neural
CWS models. The neural CWS architecture used in our approach is
CNN-CRF. The neural CWS model is trained based on both indirect
supervision inferred from lexicon and unlabeled data and the direct
supervision inferred from labeled sentences. Extensive experiments
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are conducted on multiple benchmark datasets in both in-domain
and cross-domain scenarios. The experimental results show that
our approach can effectively improve the performance of Chinese
word segmentation, especially when training data is insufficient.

2 RELATED WORK

In recent years, neural network based methods have been widely
used for Chinese word segmentation. These methods usually regard
CWS as a character-level sequence labeling task. For example, Chen
et al. [2] proposed to apply LSTM to Chinese word segmentation.
They used LSTM to learn hidden character features by capturing the
global context information of sentences. They also used a character
window to capture local contexts for building character features.
Peng et al, [18] used LSTM to learn the contextual character features
and used CRF to jointly decode the labels of characters. These
neural methods for CWS usually rely on a large number of labeled
sentences for model training. When the labeled data is insufficient,
the performance usually declines heavily [21, 27, 28].

Incorporating the useful information in unlabeled sentences and
lexicons into CWS has attracted increasing attentions [11, 20, 23].
For example, Li et al. [11] proposed to utilize unlabeled sentences for
CWS by using punctuation marks as implicit annotations. However,
punctuation marks are sparse in Chinese texts, and the annotations
of most characters cannot be obtained in this way. Sun et al. [20]
proposed to extract statistics-based character features such as mu-
tual information and accessor variety from unlabeled data, and use
these features to improve CWS. Designing these handcrafted fea-
tures needs a large amount of domain knowledge. Zhang et al. [27]
proposed to incorporate lexicon into a neural CWS method based on
LSTM-CREF architecture. They designed several handcrafted feature
templates to extract additional character features using lexicon, and
used another LSTM to learn character representations from these
lexicon based features. Liu et al. [12] proposed to utilize lexicon for
neural CWS via multi-task learning. They designed an auxiliary
task of word classification to exploit lexicon information. Then
they jointly trained CWS and word classification models using a
multi-task learning framework. However, these methods cannot
exploit the useful information in unlabeled data.

There are a few methods which can incorporate both lexicon
and unlabeled data into Chinese word segmentation. For example,
Liu et al. [13] proposed to build partially annotated data using
unlabeled data and lexicons via many handcrafted rules. Then they
trained CWS models based on both labeled and partially annotated
data using CRF. However, designing these rules requires a lot of
domain knowledge. Zhao et al. [31] used a similar way to build
partially labeled data for CWS by combining unlabeled data and
Chinese lexicons. They trained neural CWS models on both labeled
and partially labeled data using a variant of LSTM. However, in
these methods the partially annotated data is built simply by word
matching without considering the contexts of sentences. Thus, the
partially annotated data may contain heavy noise and is not suitable
to use directly as training data. Different from these methods, in
our approach the lexicon and unlabeled data are incorporated to
provide indirect supervision via posterior regularization.

Posterior regularization algorithm [6] can incorporate additional
knowledge into model training as constraints over the posterior
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Figure 1: The CNN-CREF neural architecture for CWS.

distributions of models. For instance, Zhang et al. [24] applied poste-
rior regularization to integrate various kinds of knowledge such as
bilingual dictionary, phrase table and coverage penalty into neural
machine translation and gained huge performance improvements.
Our approach is motivated by posterior regularization, and we ap-
ply it to incorporate the useful information in Chinese lexicon and
unlabeled data into neural Chinese word segmentation.

3 OUR APPROACH

We first introduce the CNN-CRF neural architecture in our approach
for Chinese word segmentation. Then we introduce our approach
to incorporate lexicon and unlabeled data into neural CWS.

3.1 CNN-CRF Architecture

Following many previous works [14, 29], we model Chinese word
segmentation as a character-level sequence labeling problem. For
each character in a sentence, our model assigns a tag from a pre-
defined tag set to it which indicates the position of this character
in a word. The tag set used in our model is {B, M, E, S}, where B,
M and E mean the beginning, middle and end position in a word
respectively, and S means single character word.

We use CNN-CRF as the neural architecture for CWS which
is illustrated in Fig. 1. The CNN-CRF architecture contains three
layers. The first one is character embedding. Given a sentence
x = [c1,¢2,...,cN], the character embedding layer will map each
character to a low-dimensional dense vector. Here c; is the i-th
character in the sentence, and N is the sentence length. The output
of this layer is x = [e1, e2, ..., eN ], where e; is the embedding of c;.

The second layer is a CNN network. It is used to learn contex-
tual representations of characters. The hidden feature of the i-th
character learned by a convolutional kernel is:

hi = f(w' Xe;_tiayy k) +b), (1)
where w and b are the parameters of the convolutional kernel, K is
the kernel size, and e;_ [Est ] Aot represents the concatenation

of the embeddings from i — [%]—th character to i + L%J—th
character. We use multiple kernels with different kernel sizes and
concatenate the outputs of these convolutional kernels as the fea-
ture representation for each character. The output of CNN layer is



[hi, hy, ..., hy], where h; € RF, and F is the number of kernels in
the CNN network.

The third layer is CRF [9]. Given a sentence x = [c1, ¢2, ..., N ]
and a tag sequence y = [y1,Y2,...,yN ], the score of sentence x
having tag sequence y is formulated as follows:

N N-1
s(x,y) = Z Ui,yi + Z Ayi»yms 2
i=1 i=1

where U 4, represents the unary score of assigning tag y; to the
i-th character, and Ay, y,,, represents the score of jumping from
tag y; to tag y;+1. The unary score U; € RT is formulated as:

U; = W¢h; + b, 3)

where W, € RT*F and b, € R7 are trainable parameters, and T is
the size of the tag set. Then the likelihood probability of sentence
x having tag sequence y is defined as:

eS(xy)
2y e, esxy)’

where Yy represents the set of all possible tag sequences of sentence
x. And the loss function is formulated as follows:

plylx) = 4

N
L) = - ) log(p(yilxi; 0)), ®)
i=1
where x; is the i-th training sentence, y; is its ground truth tag
sequence, Nj is the number of labeled sentences in training set, and
0 represents all parameters of the neural CWS model.

3.2 Neural CWS with Lexicon and Unlabeled
Data via Posterior Regularization

In this section we introduce our approach to exploit lexicon and
unlabeled data to train a neural CWS model. Our approach is based
on posterior regularization [6], and we propose a unified framework
to incorporate the useful information in lexicon and unlabeled data
as indirect supervision into model training by regularizing the
prediction space of neural CWS model. In our approach the neural
CWS model is trained in an iterative manner. Following [24], in
iteration t, the loss function of the indirect supervision is:

Nu
LPR0) = ) KUQ(ylxi: D, 0")lIp(ylxi; 0)), ()
i=1

where 0 is the parameter set of CNN-CRF model, 8* is the model
learned in iteration ¢ —1, D represents Chinese lexicon, and Ny, is the
number of unlabeled sentences. KL is the KL divergence function.
Q(y|x; D, 8") is the probability distribution of tag sequence y for
unlabeled sentence x given lexicon D and previous model 6*:

exp(¢(y. x; D, 6"))
Yyeyx) P, x D, 0"))
where ¢(y, x; D, %) is a score function of tag sequence y for sen-
tence x, and Y (x) is the set of all possible tag sequences of x.

$(y;x, D, 0") is designed to encode both lexicon information and
the predictions of previous CWS model towards this sentence:

n(x,y; D)
n(x,y)

Q(ylx; D,0") = (7)

¢(y;x, D, 0" = +a - s(x, y;Ot), 8)

where n(x,y) is the number of words in the segmentation result,
n(x,y; D) is the number of words in segmentation result which are
included in lexicon D, s(x, y; 87) is the segmentation score predicted
by the CWS model 6’ trained in previous iteration according to
Eq. (2), and « is a positive coefficient. According to Eq. (8), if a tag
sequence y for an unlabeled sentence x can lead to more lexicon-
included words and has higher segmentation score according to
existing CWS model, then it will have a higher probability in Eq. (7),
and we regularize our neural CWS model so that it tends to generate
this tag sequence in Eq. (6). In this way, the useful information
in lexicon and unlabeled sentences can be incorporated into the
learning of neural CWS model as indirect supervision.

Since a sentence usually has many possible tag sequences, fol-
lowing [24], KL function in Eq. (6) is approximated as:

Q(ylxi; D, 6")

) . t
2, Qi D.0") log(= 2

yeS(x:)

) ©)

where S(x;) is a subset of Y(x;) whose elements have the highest
prediction scores according to existing CWS model 6. Q is an
approximation of Q on the subset S(x;) as follows:

exp(¢(y. xi: D, 0"))
YyeSt) exp($(F, xi; D, 6"))
In our approach, in each iteration the neural CWS model 0 is up-
dated based on both labeled sentences and the indirect supervision
from lexicon and unlabeled data. The objective function for model
update at iteration t is formulated as follows:

Olylxi; D, ") =

(10)

N; Nu
JO) ==Y logp(yilxi:0) =1, > QFlxiiD, 8")log(p(yIxi;0)),
i=1 i=1 yeS(x;)
(1

where A is a positive coefficient to control the relative importance
of indirect supervision in model training. In the first iteration, the
initial neural CWS model 8" is trained on labeled sentences.

4 EXPERIMENT

4.1 Datasets and Experimental Settings

Two benchmark datasets released by the third international Chinese
language processing bakeoff' [10] are used in our experiments.
The first one is the MSRA dataset, which contains 46,364 labeled
sentences for training and 4,365 labeled sentences for test. The
second one is the UPUC dataset, which contains 18,804 and 5,117
labeled sentences for training and test.

The lexicon used in our experiments is the Sogou Chinese lex-
icon?. The size of character embeddings is 200. These character
embeddings are pretrained on the Sogou news corpus® using the
word2vec [16] tool. We use 400 convolutional kernels in the CNN
network, and the sizes of these kernels vary from 2 to 5. A in
Eq. (11) and @ in Eq. (8) are set to 0.5 and 1 respectively. We apply
dropout technique to the embedding layer and the CNN layer, and
the dropout rate is 0.3. RMSProp [4] algorithm is used for model
training. The learning rate is 0.001 and the batch size is 64. These
hyper-parameters are selected using validation data. Following [2],

!http://sighan.cs.uchicago.edu/bakeoff2006/download.html
Zhttp://www.sogou.com/labs/resource/list_lan.php
3http://www.sogou.com/labs/resource/ca.php



we use the last 10% sentences in the training set as validation data,
and the remaining labeled sentences for model training. In addition,
we randomly sample 50% training data as unlabeled data. Each
experiment is repeated 5 times and the average results are reported.

4.2 Performance Evaluation

In this section we evaluate the performance of our approach by
comparing it with many baseline methods for Chinese word seg-
mentation. These methods include: (1) LSTM-CREF, the most popular
neural method for CWS based on the LSTM-CRF architecture [18];
(2) CNN-CREF, the neural CWS method based on the CNN-CRF ar-
chitecture, which is the basic model in our approach; (3) Chen [2],
a neural CWS method using LSTM to learn character features and
also considering local contexts; (4) Zhang [27], an LSTM-CRF based
CWS method which integrates lexicon into model training via
feature templates; (5) Liu [12], a neural CWS method which in-
corporates lexicon into model training via multi-task learning; (6)
Liu [13], a CRF based CWS method which utilizes lexicon and un-
labeled data to build partially labeled data for model training; (7)
Zhao [31], an LSTM based CWS method which incorporates lexicon
and unlabeled data via building partially labeled data; (8) LUPR, our
proposed neural CWS approach with both lexicon and unlabeled
data via posterior regularization. We conducted experiments on
different ratios of training data, and the experimental results of
different methods are summarized in Tables 1 and 2.

Table 1: The results on the MSRA dataset. P, R and F represent
precision, recall and Fscore respectively.

1% 5% 10%
P R F P R F P R F
LSTM-CRF | 75.87 | 76.18 | 76.01 | 82.81 | 82.18 | 82.49 | 8524 | 84.68 | 8495
CNN-CRF | 77.19 | 75.35 | 76.26 | 87.19 | 86.64 | 86.91 | 89.95 | 89.48 | 89.71
Chen [2] | 77.20 | 7432 | 7573 | 84.19 | 83.44 | 83.80 | 87.50 | 86.05 | 86.76
Zhang [27] | 76.64 | 76.55 | 76.60 | 87.15 | 86.73 | 86.94 | 89.49 [ 89.10 | 89.29
Liu[12] | 78.06 | 77.55 | 77.80 [ 87.60 | 86.50 | 87.05 | 90.06 | 89.47 | 89.77
Liu[13] | 81.48 | 78.92 [ 80.18 [ 83.76 | 81.58 | 82.66 | 85.20 | 83.09 | 84.13
Zhao [31] | 80.68 | 80.26 | 80.47 [ 86.94 | 85.67 | 8630 | 88.69 | 87.21 | 87.94
LUPR [ 81.98 | 79.74 [ 80.84 | 88.42 [ 87.92 [ 88.17 | 90.35 [ 89.83 | 90.09

Table 2: The results on the UPUC dataset.

1% 5% 10%
P R F P R F P R F
LSTM-CRF | 7049 | 73.44 | 71.92 | 79.66 | 80.95 | 80.29 | 82.97 | 84.73 | 83.84
CNN-CRF | 72.03 | 74.50 | 73.22 | 82.60 | 84.23 | 8340 | 87.75 | 88.79 | 8827
Chen [2] | 73.04 | 74.24 | 73.61 | 80.87 | 8156 | 81.20 | 85.03 | 87.08 | 86.04
Zhang [27] | 74.93 | 73.45 | 74.18 [ 84.39 | 85.94 | 85.15 | 88.15 | 89.05 | 88.60
Liu [12] | 73.01 | 7633 | 74.63 | 83.82 | 85.70 | 84.75 | 87.71 | 89.27 | 88.48
Liu[13] [ 79.50 | 75.65 [ 77.53 [ 81.83 | 78.25 | 80.00 | 8339 [ 80.22 | 81.77
Zhao [31] | 77.11 | 7757 | 77.34 [ 82.70 | 82.07 | 8239 | 85.19 | 86.07 | 85.63
LUPR [ 78.18 [ 78.49 [ 78.33 | 86.89 | 87.36 [ 87.13 | 89.48 | 90.29 [ 89.88

According to Tables 1 and 2, our approach can outperform many
neural Chinese word segmentation methods such as CNN-CREF,
LSTM-CRF and Chen [2]. In addition, the advantage of our approach
over these baseline methods becomes bigger when the number of
training samples decreases. This is because these methods rely on a
large number of labeled sentences to train neural CWS models, and
cannot exploit the useful information in lexicon and unlabeled data.

0.9
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(a) MSRA dataset. (b) UPUC dataset.

Figure 2: The performance of the basic CNN-CRF model and
our approach with only unlabeled data (UPR) and with both
lexicon and unlabeled data (LUPR).

When training data is insufficient, it is very difficult for these meth-
ods to train accurate and robust CWS models. Since our approach
can exploit the useful information in both lexicon and unlabeled
data, it can reduce the dependence on labeled sentences and achieve
better performance than these baseline methods.

Although the methods proposed in [27] and [12] can also incor-
porate lexicon information into neural CWS model training, our
approach can consistently outperform them. In [27] the lexicon is
utilized via handcrafted feature templates, which need a lot of do-
main knowledge to design and may not be optimal. In addition, an
extra LSTM network is incorporated to learn hidden character rep-
resentations from these lexicon based features, making the neural
model more difficult to train when labeled data is scarce. In [12] the
lexicon is utilized via an auxiliary word classification task which is
jointly trained with CWS model. Although these methods can uti-
lize the lexicon for neural CWS, the useful information in massive
unlabeled data is not considered. Our approach can exploit both
lexicon and unlabeled data for neural Chinese word segmentation.
Thus, our approach can consistently outperform them.

Although the methods in [13] and [31] can also exploit both lexi-
con and unlabeled data for CWS, our approach can still outperform
them. In [13] and [31], the lexicon and unlabeled data are used to
build partially annotated datasets. However, the partially annotated
data constructed by word matching based on lexicons may contain
heavy noise and the context information of sentences is not consid-
ered. In our approach, the lexicon and unlabeled data are used to
provide indirect supervision for model training by regularizing the
prediction space of the neural CWS model. The experimental re-
sults show that our approach is more effective in exploiting Chinese
lexicon and unlabeled data for CWS than [13] and [31].

4.3 Effect of Lexicon and Unlabeled Data

In this section, we conducted experiments to explore the effec-
tiveness of lexicon and unlabeled data for neural Chinese word
segmentation. The experimental results are summarized in Fig. 2.
According to Fig. 2, incorporating unlabeled data can effectively
improve the performance of CWS in our approach. This is because
the massive unlabeled data contains rich useful information for
word segmentation. For example, if the character sequence “4% B>
frequently appear in unlabeled sentences with different contexts,
then we can infer that it is probably a unique Chinese word. The
result in Fig. 2 shows that our approach is effective in exploiting



0.88 0.88

0.87

0.86

0.85

0.84 0.84 =———
—4—Precision Precision
——Recall —o—Recall

o8 ooor 083 —=—Fscore
—=—Fscore

082 0.82

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

(a) Ratio of unlabeled data. (b) Ratio of words in lexicon.

Figure 3: Influence of unlabeled data and lexicon size.

0.89

0.885

0.88

0.875

0.84 —A—Precision

—4—Precision —e—Recall
0.87 —e—Recall 0.83 —=—Fscore
—=—Fscore
0.865 0.82
0 1 2 3 4 5 0 1 2 3 4 5

(a) MSRA dataset. (b) UPUC dataset.

Figure 4: Influence of S size in Eq. (9).

the useful information in unlabeled data for CWS. In addition,
according to Fig. 2 after incorporating lexicon the performance of
our approach can be further improved. This is because the Chinese
lexicon can provide important information of whether a character
sequence can be a valid Chinese word, which is useful for the CWS
task. The result in Fig. 2 validates that our approach can effectively
exploit Chinese lexicon to improve the performance of neural CWS.

4.4 Size of Lexicon and Unlabeled Data

In this section, we conduct experiments to explore the influence
of the sizes of unlabeled data and Chinese lexicon on the perfor-
mance of our approach. The experiments were conducted on the
UPUC dataset, and we randomly sampled 5% of the training data
for model training. The experiments on the MSRA dataset show
similar patterns. The experimental results of unlabeled data size
are summarized in Fig. 3(a). We can see that as more unlabeled
data is incorporated, the performance of our approach consistently
improves. This result further validates that the unlabeled data con-
tains a lot of useful information for Chinese word segmentation,
and our approach is effective in exploiting unlabeled data for neural
CWS methods. The experimental results of lexicon size are shown in
Fig. 3(b). According to Fig. 3(b), as more Chinese words are included
in the lexicon, the performance of our approach improves. This
is because with more Chinese words in the lexicon, our approach
can have better capacity in recognizing the boundaries of words
which rarely or never appear in training data but are included in
the Chinese lexicon.

4.5 Influence of Hyper-parameters

In this section, we conducted experiments to explore the influence of
three important hyper-parameters, i.e., the size of set S in Eq. (9), A in
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Figure 6: Influence of iteration number.

Eq. (11) and iteration number, on the performance of our approach.
The experimental results of the size of set S in Eq. (9) are shown
in Fig. 4. In these experiments, we randomly sampled 5% of the
training data for model training. According to Fig. 4, when the
size of S in Eq. (9) increases from 0 to 1, the performance of our
approach significantly improves. This is because when the size
of S is 0, the useful information in unlabeled data and lexicon is
not incorporated. Thus, the performance is not optimal. When
the size of S becomes too large, the performance of our approach
slightly decreases. It indicates that the number of informative tag
sequences of unlabeled sentences inferred from lexicon is usually
limited, and incorporating too many of them may introduce some
noisy information. A moderate size of S (e.g., 2) is most suitable for
our approach.

The experimental results of A are shown in Fig. 5. A is used to
control the relative importance of the indirect supervision from
unlabeled data and lexicon in Eq. (11). According to Fig. 5, as A
increases, the performance of our approach first increases and
then slightly decreases. This is because when A is too small, the
useful information in the lexicon and unlabeled data is not fully
exploited. Thus, the performance is not optimal. However, when 4
becomes too large, the indirect supervision inferred from lexicon
and unlabeled data is over-emphasized and the labeled sentences
are not fully respected. Thus, the performance starts to decline. A
moderate value of A is most appropriate for our approach.

The experimental results of iteration number are shown in Fig. 6.
According to Fig. 6, as the iteration number grows, the performance
of our approach first improves and then gradually becomes stable.
This is because in each iteration the neural CWS model can be
enhanced by incorporating the unlabeled data and lexicon, and the
refined CWS model in turn can help improve the indirect supervi-
sion in the next iteration of our approach. This result validates the



effectiveness of our approach in iteratively training neural CWS
model by exploiting both labeled sentences and the indirect super-
vision inferred from the unlabeled sentences and Chinese lexicons.

4.6 Domain Adaptation for CWS

In Chinese word segmentation field, several domains (e.g., news)
have accumulated much labeled data, while in many other domains
(e.g., medical records) labeled data for CWS is scarce and even
nonexistent. Although annotating sufficient labeled data for these
domains is time-consuming and expensive, the unlabeled sentences
are usually easy to collect. In addition, in many target domains there
are off-the-shelf lexicons or it is relatively easy to build one. Thus,
an interesting application of our approach is domain adaptation
for Chinese word segmentation, i.e., using labeled sentences in
a source domain (e.g., news) and unlabeled sentences in a target
domain (e.g., medical records) as well as the lexicon from the target
domain to train a robust neural CWS model for target domain. In
this section we conduct experiments to explore the performance of
our approach in domain adaptation for word segmentation.

Two datasets are used in our experiments. The first one is the
Zhuxian dataset* built by Zhang et al. [25] from a Chinese online
novel. We used the same lexicon® as [31] for this domain. In addition,
we used the same unlabeled data as [13] which contains about 16K
sentences. The second dataset is the Weibo dataset® released by the
Weibo word segmentation task of NLPCC2016 [19]. This dataset
contains 20,135 sentences for training and 8,592 sentences for test.
Since there is no off-the-shelf lexicon for Weibo word segmentation,
we built one using the words extracted from the training data. In
addition, we regarded the training sentences as unlabeled data. We
used Zhuxian and Weibo datasets as two target domains, and used
the UPUC dataset as source domain. The experimental results are
summarized in Table 3. The settings of our approach and baseline
methods are consistent with previous experiments.

Table 3: Experimental results of domain adaptation.

Zhuxian Weibo

P R F P R F
CNN-CRF | 87.95 | 87.68 | 87.81 | 86.11 | 88.23 | 87.16
LSTM-CRF | 85.94 | 86.26 | 86.10 | 86.39 | 88.35 | 87.36
Chen[2] | 8524 | 87.57 | 8639 | 86.87 | 89.28 | 88.06
Zhang [27] | 8870 | 87.89 [ 88.29 | 88.94 [ 90.89 | 89.90
Liu[12] [ 87.79 | 88.04 [ 87.91 | 86.24 [ 88.49 | 87.35
Liu[13] [ 89.86 | 89.04 [ 89.44 [ 90.31 [ 89.89 [ 90.10
Zhao [31] | 88.50 | 91.32 [ 89.90 | 89.83 [ 85.07 | 87.39

LUPR [ 90.53 [ 89.39 [ 89.95 [ 89.85 | 90.73 | 90.29

According to Table 3, the performance of neural models that are
trained on labeled data of source domain such as CNN-CRF, LSTM-
CRF and [2] is relatively low in target domains. This is because
there is huge difference in word distribution between source and
target domains. Many words in target domain may not or rarely
appear in the labeled data of source domain, making it difficult for
these CWS methods to segment the sentences in target domain.

“http://zhangmeishan. github.io/eacl14mszhang.zip
5This lexicon is crawled from http://baike.baidu.com/view/18277.htm
Shttps://github.com/FudanNLP/NLPCC-WordSeg-Weibo

The methods proposed in [27] and [12] which incorporate lexicon
can effectively improve the performance of CWS in target domains.
Our approach can outperform these methods because beyond the
lexicon information our approach can also incorporate massive
unlabeled data into neural model training, which can provide useful
information for CWS. Although [13] and [31] can incorporate both
lexicon and unlabeled data for word segmentation, our approach
can outperform them in the domain adaptation scenario. This result
implies that incorporating the lexicon and unlabeled data as indirect
supervision via posterior regularization is more suitable for domain
adaptation of CWS than utilizing them to build partially labeled
data through word matching, which may introduce heavy noise.

4.7 Case Study

In this section, we conducted several case studies to further explore
why our approach can improve the performance of CWS. We stud-
ied several cases in the domain adaptation experiments, where the
source domain is UPUC and the target domain is Weibo. Several
examples are illustrated in Table 4.

Table 4: Several examples of Chinese word segmentation.

‘ Example 1 ‘ Example 2
Sentence ‘ T = KE S ‘ BRI — &
CNN-CRF | 7/ &/ R/ =/ K/ s/l | B8 AT /R — /%
LUPR | & &/ =/ KRS/ | B85 %

According to Table 4, our approach performs better than baseline
methods in domain adaptation scenario, especially on the sentences
with OOV and rare words of source domain. For example, in the
first example “FF#E 4" is a rare word in the training data of source
domain, and in the second example “MFIF —JE" is an OOV word
in source domain. The segmentation results of the basic CNN-CRF
model on these words are not correct. Since “¥£ & 4" is a popular
word in the unlabeled data of target domain and “#F —J&" is
included in the target domain lexicon, our approach can correctly
segment these sentences. Thus, our approach can improve the per-
formance of Chinese word segmentation by exploiting the useful
information in both lexicon and unlabeled data.

5 CONCLUSION

In this paper, we propose a neural approach for Chinese word seg-
mentation which can exploit the useful information in both Chinese
lexicon and unlabeled sentences for model training. Our approach
is based on the posterior regularization algorithm, and we pro-
pose a unified framework to incorporate both unlabeled data and
lexicon to provide indirect supervision for model training by regu-
larizing the prediction space of the neural CWS models. Extensive
experiments are conducted on multiple benchmark datasets in both
in-domain and cross-domain scenarios. The experimental results
validate that our approach can effectively improve the performance
of neural Chinese word segmentation.
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