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ABSTRACT
Under increasing scrutiny, many web companies now offer bespoke
mechanisms allowing any third party to file complaints (e.g., re-
questing the de-listing of a URL from a search engine). While this
self-regulation might be a valuable web governance tool, it places
huge responsibility within the hands of these organisations that
demands close examination. We present the first large-scale study
of web complaints (over 1 billion URLs). We find a range of com-
plainants, largely focused on copyright enforcement. Whereas the
majority of organisations are occasional users of the complaint
system, we find a number of bulk senders specialised in targeting
specific types of domain. We identify a series of trends and patterns
amongst both the domains and complainants. By inspecting the
availability of the domains, we also observe that a sizeable portion
go offline shortly after complaints are generated. This paper sheds
critical light on how complaints are issued, who they pertain to and
which domains go offline after complaints are issued.

1 INTRODUCTION
The web has proven a powerful platform for the large-scale distri-
bution of content. Notoriously difficult to regulate, individual web
organisations have been frequently left to decide how to best han-
dle issues related to legal, regulatory and even moral matters, e.g.,
moderation of online discourse, removal of copyright infringing
content, mitigation of online harassment. This has generated sig-
nificant societal attention, with major companies like Google and
Twitter coming under increasing public scrutiny [22, 48]. Conse-
quently, large web organisations have begun to implement bespoke
mechanisms to allow third parties to register complaints. For ex-
ample, Google’s complaint system allows anybody to issue notices
requesting the removal of specific results from their search listings,
whereas Twitter enables users to report posts they believe to be
infringing policy (e.g., because of bot activity [? ]). Although a
valuable tool in the wider landscape of web governance, this places
considerable responsibility within the hands of these organisations,
who must decide which complaints are legitimate and how they
should be dealt with (often referred to as self regulation [55]). Yet,
to date, we have little evidence regarding how these complaint
procedures are handled, how successful they are, or who they are
targeted against and by whom.

We argue that the scale of these complaints and their impact
on the wider society’s perception of the web, warrant detailed
investigation. There are multiple interesting questions, such as

who generates complaints? Whom do these complaints pertain to?
What are the characteristics of domains that receive complaints?
Does content remain online after complaints? With these questions
in mind, this paper presents a large-scale study of web complaints.
Building on past work within the legal domain [44, 53, 54], we
have gathered complaints from hundreds of transparency reports
made available by organisations including Google, Vimeo, Bing and
Twitter, and reflected in the Lumen database (§2). These reports
expose detailed information about web complaints covering over 1
billion URLs ranging from copyright infringement to governmental
notices.

We start our analysis by characterising the nature and scale of
organisations that generate notices (complainants). Despite the pres-
ence of numerous complaint categories, copyright notices largely
dominate, with 98.6% of all complaints (§3.1). A critical minority of
organisations play a remarkably prominent role in this, with the
top 10 alone contributing 41% of all notices sent (§3.2). Our analysis
reveals that the majority of notices are generated by large content-
based organisations (e.g., NBC, Fox). Despite this, we find that the
majority of notice senders are occasional users of the complaint
system: 94% of complainants issue fewer than 100 notices. These
different groups tend to rely on different types of complaints. For ex-
ample, large copyright enforcers (e.g., Rivendell) generate millions
of copyright notices, whereas governmental agencies (e.g., Roskom-
nadzor) issue a far smaller set of targeted court and governmental
notices. This leads us to focus on the categories of websites that
these different types of notices pertain to (§3.3). We find that notices
are heavily biased towards certain types of website. For example,
websites categorised as ‘File Sharing’ and ‘Elevated Exposure’ are
hugely over-represented amongst our complaint dataset. Similarly,
individual notice senders tend to target specific topics, e.g., 60% of
complaints by Cam Model Protection target adult websites, whereas
55% by NBCUniversal target Entertainment, shedding light on the
priorities of organisations utilising the complaint services.

This leads us to investigate if equivalent dynamism exists on the
part of the reported websites themselves (§4). We find that a small
(and constantly evolving) set of websites dominate the ranking
of the most reported, with a few domains that remain prominent
throughout our entire measurement period: the top 1% of domains
accumulate 63% of complaints (§4.1). These include many obscure
websites, which are unlikely to be widely known, e.g., 22 out of
the top 30 most frequently reported websites are not even in the
Alexa Top 100K, and the correlation between the popularity of
domains in terms of notices and Alexa rank is just 0.13. Deeper
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analysis reveals that these trends are dictated by the activity of
a small set of extremely aggressive notice senders (§4.3), whose
‘bursty’ behaviour creates high levels of instability.

We finally inspect the availability of the webpages that are com-
plained about, with the conjecture that websites receiving many
complaints may be more likely to go offline (§4.4). We confirm that
many are highly ephemeral: 22% of all domain names soon get
taken offline (NXDOMAIN), whereas our HTTP liveness checks
show that a further 19% of all resources fail to return 200 OK re-
sponses within 1 week of a complaint. We correlate these with a
number of factors to find that the ‘success’ rate of complainants
differs dramatically, with the most successful (Rivendell) seeing
55% of its complaints acted upon in contrast to others complainants
where the figure is below 1%. The published version of this report
is available at [? ].

2 METHODOLOGY & DATASET
This section presents our data collection methodology. This has
two goals: (i) To provide vantage into a broad set of web complaints,
covering enough domains to provide meaningful insight; and (ii) To
annotate these complaints with sufficient metadata to shed light
on domain activities and topics.

2.1 Website Complaints
First, we detail our methodology for gathering complaints issued
about websites. Naturally, it is impossible to get complaints issued
to all websites, because the vast majority do not make this informa-
tion available. Hence, we focus on sites that expose transparency
reports, e.g., Bing, Twitter, Google, Vimeo. These reports list com-
plaints received by the organisations, including relevant metadata.
To gather these, we utilise Lumen1 — a database run by the Berk-
man Klein Center for Internet & Society. It aggregates and publishes
transparency report data pertaining to complaints issued towards
223 organisations. The exact purpose of each complaint differs, e.g.,
a complaint to Bing will normally request the removal of search
results, whilst complaints to Vimeo will concern the removal of
videos. However, each notice (i.e., complaint) includes the following
standard fields:

• Notice Type: the category of notice which has been reported.
For example, a Digital Millennium Copyright Act (DMCA),
trademark or data protection etc.

• Notice Sender: or complainant, is the organisation who sub-
mitted the notice.

• Notice Recipient: the web publisher or service provider where
the infringing notice is sent to.

• Notice Principal: in cases of a copyright-related notice, this
is the person or organisation that holds the copyright on the
content reported.

• Infringing URL(s): the list of URL(s) that the notice sender is
requesting to be dealt with. Note that this is not necessarily
a set of URLs owned by the recipient, e.g., Bing may receive
complaints requesting the removal of a third-party URL from
its search results.

1https://lumendatabase.org/

We collected all complaints from the Lumen database between
01/01/2017 and 31/12/2017 using their API. In total, we extract
1,054,248,823 URL complaints from 38,523 notice senders.

2.2 Website Metadata
Once we extract the reported URLs, we compile further metadata.
This section explains the metadata collected.

Website Categorisation.We classify each domain using the Virus-
Total API.2 This API has been used in a wide set of research, and is
known to provide good accuracy [28, 31, 56]. The API provides a
classification for each domain in our dataset, e.g., games, education,
file sharing, blogs etc.We later use this to understand the types of
complaints generated. Due to the usage limitations of the API, we
only categorise the top 240K domains with the most reported URLs.
Note that 22% of these could not be categorised by VirusTotal. We
further annotate each domain with its Alexa ranking to gain insight
into its global popularity.

DNS Probes.We utilise the Domain Name Service (DNS) to map
the domains to their respective DNS records on 29/07/2018. We
performed queries (IPv4), which yield 849,023 responses and 206,863
IP addresses. We use this data to check if the domain name is still
live.

Webpage Probes. For each URL, we download its HTML and parse
it to extract all embedded domains. This allows us to identifymirrors
of websites hosted on multiple domains/URLs, by comparing the
HTML contents. Tests are performed from a university campus,
where we have confirmed no web filtering is performed. In total,
we collect the HTML structure for 770,737 webpages.

Liveness Checks.We also perform periodic checks on the domains
and URLs to verify if the websites are still active (i.e., returning an
HTTP 200 status code). This allows us to explore the potential effi-
cacy of organisations seeking to remove content. Due to the sheer
scale of the complaints (>1 billion URLs), we only perform checks
for 2M URLs complained about between 14/07/2018 to 17/07/2018.
Upon recording a complaint from Lumen, we added its URL to a
queue and began weekly checks that executed between 18/07/2018
to 14/08/2018. We record the HTML response and HTTP status
code, alongside whether or not the TCP handshake timed out. Each
week, we exclude URLs that have already been deleted.

2.3 Limitations & Ethical Considerations
We emphasise that Lumen only provides vantage into 223 com-
plaint recipients, obviously a small fraction of the world’s online
organisations. These consist primarily of: Google—79%, Bing–15.6%,
Twitter–3.8%, Periscope–0.8% and Vimeo–0.4%. We do not assert
that our findings generalise beyond these organisations, although
the scale of these five companies indicates that the insights are
highly valuable nevertheless. We should also highlight that our
research covers websites that may participate in illegal activity (e.g.,
copyright infringement). We restrict this collection to downloading
the webpage HTML and checking server liveness, ensuring that
no measurements involve participating in a websites activities, e.g.,
registering user accounts or downloading content. Note that this

2https://www.virustotal.com/

https://lumendatabase.org/
https://www.virustotal.com/


Notice
Type

% of
notices

% of
URLs

% of
senders

% of
principals

% of
domains

DMCA 98.6 99.99 94.46 99.87 97.78
Defamation 0.95 <0.01 0.15 <0.01 1.50
Court Order 0.19 <0.01 4.87 0.07 0.41
Government Request 0.15 <0.01 0.15 0.02 0.13
Private Information <0.01 <0.01 0.071 - 0.003
Data Protection <0.01 <0.01 - - <0.001
Law Enforcement Request <0.01 <0.01 0.02 0.03 <0.001
Trademark <0.01 <0.01 0.02 - <0.001
Other 0.08 <0.01 0.26 <0.01 0.16
Total 1,885,267 1,054,248,823 38,523 20,686 1,090,173

Table 1: Dataset summary with the percentages of notice
types, and the corresponding share of URLs, senders, prin-
cipals and domains.

may still result in advertisement revenue being generated by the
website. Unfortunately, this was impossible to avoid considering
the nature of our measurements. That said, we limit ourselves to
accessing URLs a small number of times (< 10), minimising any
potential revenue.

3 COMPLAINTS & NOTICE SENDERS
In this section, we investigate the senders and receivers of com-
plaints. Specifically, we are interested in exploring who sends com-
plaints and what they pertain to.

3.1 What Types of Complaints Exist?
We identify complaints from 38,523 unique senders, covering 1.05
Billion URLs, which are hosted across 1,090,173 domains. Individual
complaints tend to contain multiple URLs, with an average of 560
URLs and 31 domains per notice. In terms of the types of notices,
there is a remarkable skew towards DMCA complaints. This is
partly driven by the prominence of search engine recipients within
our data. Table 1 presents a breakdown of the types of complaints
across the entire dataset. We find that DMCA notices make up
98.6% (1.05B URLs) of the dataset and a similar share of domains
(97.8%). DMCA notices are a US-enforceable complaint which cov-
ers takedown notices for (allegedly) copyright infringing content.
The senders largely appear to be third party organisations who act
on behalf of the actual copyright owners: just 9% of notice senders
listed are also the principal. This contrasts with a 2006 study [53]
where 98.5% of notices were sent by right owners, suggesting a
shift in behaviour (as seen in [54]). Measured by frequency, DMCA
notices are followed by Defamation (52K), Court Orders (29K) and
Government Requests (2.7K), covering nearly a third of the recip-
ients (31%). We also observe a number of less popular complaint
types, such as Law Enforcement Requests, Data Protection and
Trademark infringements. Whereas these make up less than 0.001%
of the dataset, they cover more than 20% of the recipients.

3.2 Who Are the Notice Senders?
The previous section suggests that notice senders are more diverse
than simply the owners of copyright material, and that different
reporting practices coexist. To shed light on these aspects, we next
inspect the entities behind the notices submitted. We find that the
distribution of notices is highly skewed towards a few extremely
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Figure 1: Number of reported URLs per complainant. The
X-axis present each complainant, sorted by the two metrics:
(i) number of days a complainant reports on; and (ii) notices
generated by each complainant.

active senders. The top 10% of notice senders report over 1 billion
URLs, in stark contrast to just 550K by the bottom 90%.

Figure 1 presents the number of reported URLs from each notice
sender. The X-axis is sorted by two metrics: (i) the number of days
that a sender generates notices on; and (ii) the number of notices
sent (note that Y-axis is in log scale). The distribution is highly
unbalanced, with a large majority of notice senders (94%) issuing
fewer than 100 complaints. The figure reveals two broad categories
of complainants: (i) active, who send complaints on multiple days
and (ii) occasional, only generating notices on a single day. Whilst
the active group represents just 25% of all complainants, it is re-
sponsible for almost all notices (99.92%). In contrast, the occasional
senders, consisting of the remaining 75%, collectively contribute
just 0.08% of the total number of complaints. It can also be observed
that the curve in Figure 1 is not monotonic. This is because the
number of notices issued each day can vary. Whereas occasional
senders, by definition, only issue complaints on a single date, some
send multiple notices. Although the daily average is just 1.4 notices,
there are some occasional senders who send a large number of
complaints in a single burst. For example, Idreto (an occasional
sender) generated 350K notices on a single day. As a result, even
occasional senders can have a significant impact on the overall
ranking of reported domains.

We now inspect the types of complaints generated by these two
groups of notice senders. Table 2 presents the top 10 complainants.
Similar to the findings of [44, 54], we find that active senders are
dominated by copyright enforcement and trade organisations e.g.,
the British Phonographic Industry (BPI), Apdif Brasil, Apdif Mex-
ico, etc. These organisations represent hundreds of music recording
companies in their respective jurisdictions. Also within this group
are copyright protection agencies such as Muso, Aiplex, Mark Mon-
itor and Entura who specialise in tracking pirated content. These
companies aggregate complaints from many different copyright
holders, and act as enforcers on their behalf. This partly explains



Notice
Sender

% of
reported URLs

% of
notice

% of
reported domains

# of
reported days

Rivendell 13.17 1.65 4.97 357
Aiplex 9.76 1.88 1.30 364
BPI 8.60 2.52 2.72 355
Apdif Mexico 8.52 0.55 0.16 208
Mg Premium 7.77 0.47 0.49 341
Apdif Brasil 7.56 0.52 0.39 244
Remove Your Media 7.28 0.92 2.45 346
Mark Monitor 5.29 1.13 5.12 365
Fox Group Legal 4.36 0.14 2.26 355
Protek Media, S.C. 4.20 0.31 0.67 365

Total 806,358,505 188,158 224,076

Table 2: Top 10 complainants (by # of reported URLs).
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Figure 2: Percentage of reported URLs, domains and com-
plainants for the 20 most reported domain categories vs. the
share of Alexa Top 100K per category.

their broad coverage and ability to produce large volumes of com-
plaints. In contrast, occasional senders are predominantly made
up of small organisations and private entities. We see that the
categories of Private Information and Trademark are particularly
dominated by occasional notice senders, making up 94% and 70%
respectively. Conversely, active senders hold sway among other
notice types, i.e., DMCA. These striking differences between the
categories of sender highly differing strategies based on the nature
of the complaints, with the ability of a small hub of complainants
to dominate the wider system.

3.3 What Topics Do Complaints Target?
To better understand the main drivers behind the complaints, we
investigate which categories of websites notices senders complain
about. Figure 2 presents the percentage breakdown of complaints,
domains and complainants based on the reported domain cate-
gory. Although it is clear that these classifications contain noise,
we believe they offer useful insight into wider activity. To better
understand how this relates to the general web ecosystem, we also
depict the distribution of the Alexa Top 100K websites.

There is a remarkable divergence between our dataset and Alexa,
highlighting a clear bias towards complaints for certain types of
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Figure 3: Distribution of (top 20) domain categories (in %)
reported by (top 30) complainants.

websites. The largest fraction of domains are categorised as busi-
ness (for both Alexa and Lumen), which includes websites such
as 4shared.com, mangapark.me and gorillavid.in.3 The most
over-represented categories in the Lumen dataset are Elevated Ex-
posure4 (8% vs. 0.3% for Alexa), Entertainment (13% vs. 3%), File
Download (2% vs. 0.6%), File Sharing (2% vs. 0.6%), Blogs (8% vs.
6%), and Adult Content (9% vs. 7%). While File downloading and
sharing are expected, the other ones are less intuitive. In contrast,
categories that are under-represented include Education (2% for
Lumen vs. 12% for Alexa) and Marketing (1% vs. 9%).

These trends suggest that notice senders tend to focus on indi-
vidual categories. To explore this, Figure 3 presents the fraction of
complaints that target each of these top 20 categories for the top
30 complainants. In-line with our conjecture, several complainants
exhibit significant bias towards a single category. For example, 42%
of MG Premium’s complaints target adult websites, 45% of NBCU-
niversal’s focus on Entertainment, and 34% of Rico’s is Business,
demonstrating the prevalence of a high degree of specialisation.
Considering the practice of using web crawling to collect links [54],
this specialisation makes sense as it allows individual organisa-
tions to streamline their activities (based on which sites they have
crawlers for).

Briefly, we also note that these categories tend to attract different
types of notices too. For example, we find that the majority of
Data Protection (60%) notices are logged against adult domains.
This aligns with the well known high litigiousness of the adult
content industry [41]. In contrast, 10% of complaints catagorised as
Defamation pertain to news. The remaining notice types (DMCA,
Government, and Private Information) are typically made about
business domains, representing 31%, 33% and 60% for each category
respectively; with the exception of Court Order notices where most
complaints are regarding shopping domains (27%). These clear
trends confirm that the majority of notice senders are quite focused
in their activities, with clear specialisation.

3We note that this category covers a number of business facing websites, including
those engaged in Hollywood copyright theft.
4This category refers to malicious websites that camouflage their true nature
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4 WEBSITES & WEBPAGES
Whereas the previous section explored the complaints and com-
plainants, we next inspect the websites (domains) and webpages
(URLs) which the complaints pertain to. Specifically, we are inter-
ested in understanding which websites gain most attention, and
their availability.

4.1 How ‘Hot’ Are Websites?
We start by inspecting the number of complaints generated about
each website. Figure 4 presents a CDF showing the distribution of
notices per domain. We separate the data depending on the domain
popularity, based on its position in the Alexa ranking. Again, we
observe a noticeable skew: it is clear that there are a small number
of ‘hot’ websites that gain the most attention from notice senders.
In particular, the most reported domains (the top 1% by the number
of reported URLs), receive 63% of all complaints. To provide insight
into the characteristics of these domains, Table 3 summarises the
Top 10 in terms of the number of complaints. A range of uncommon
websites are seen within this list. Although, overall, 60% of notices
relate to websites in the Alexa Top 100K, only 4 of the most reported
10 domains, and 8 out of the top 30 are within this Alexa rank (we
find a Pearson correlation of just 0.13 between these two rankings).
The reasons behind these relatively obscure sites gaining ‘notoriety’
are quite diverse, but they do share one common attribute: their
position in the ranking is typically driven by a single complainant
that repeatedly targets them. In fact, 9 out of the top 10 domains
receive at least 50% of their complaints from a single organisation.
This is a general pattern across all domains: we find that 82% of them
receive at least half of their complaints from a single complaint. To
visualise this dominance by a few complainants in each domain,
we depict in Figure 5 the percentage of URLs reported by the top 3
complainants of each domain (in green). The rest of complainants
(in red) tend to contribute little to nothing. The vast majority of
domains receive nearly all complaints from just a tiny set of senders.
For example, mp3toys.xyz receives 99.9% of complaints from a
single party (Apdif Brasil). Upon closer inspection, it is clear that
this organisation uses an algorithm to ‘guess’ potential infringing

URLs based on song titles [54]. Although we envisage that these
URLs are checked for liveness before complaints are generated,
we note that mp3toys.xyz dynamically generates 200 OK HTTP
responses for any URL requested, likely disrupting any liveness
checks. These type of bulk sending activities do not appear to be
rare occurrences. For example, the same organisation reported over
17M URLs for file hosing domain 4shared.com, despite the website
only hosting 2M pages [50]. As well as confirming that these highly
active senders are heavily automated, it also suggests that rigorous
procedures are not always followed.

4.2 Are Domains Unique?
The above is based on unique domain counts, however, we also posit
that some of these domains may actually host the same content,
or even resolve to the same IP address. To test this, we turn to our
DNS and webpage probes, which downloaded the HTML from all
domains. We extract their <title> and all metadata tags. In cases,
where two domains’ tags match, we assume they host the same
page. We term these replicas. The vast majority of domains host
different content. Fewer than 0.01% of domains have any replicas.
From those that do, 73% refer to the same IP address, indicating that
the web server operator has simply created multiple domain names.
Just 2% of these have matching second-level domains (with a differ-
ent TLD), whereas the remainder actually are entirely distinct. We
conjecture that this may be an evasion tactic to avoid DNS-based
blocking schemes. We also observe certain outliers; in the most ex-
treme case, we find that 1fichier.com uses 3,838 different domain
names, which map to 78 IP addresses. This is a file sharing service
well known for hosting illegal content. Another key driving force
in the case of these extreme examples is the presence on numer-
ous unblocker websites in our dataset. These websites essentially
operate as proxies, generating third level domains for any website
requested. For example, s-s.www.cats.com.prx2.unblocksites.
co provides access to www.cats.com via unblocksites.co. Table 4
presents the top 10 (in terms of reported URLs) of these unblocking
services. Remarkably, unblocksites.co actually constitutes 10% of
all reported URLs. In other words, we find that many complainants
target these unblocker sites, by replicating their complaints for both
the origin domain and the unblocked version. Understanding an
exploring these is a key area of our future work.

4.3 How Stable are Domain Rankings?
The previous sections indicate that complaints about a domain
are often dominated by a single sender. We conjecture that this
dominance may result in significant temporal instability. This can
be represented as a ranked list, capturing the domains most fre-
quently reported on each day. To explore this, Figure 6 presents
the count of domains that are reported on x days. 81% of domains
are complained about on fewer than 5 days, with only 0.2% being
complained about on more than 300 days. This suggests a high
degree of instability, with the make-up of complaints changing on a
daily basis. In line with our previous findings, the majority of these
infrequently complained about domains are outside the Alexa Top
1M, whereas 87% of domains which are complained about on over
300 days are within the top 1M. In Figure 6 this can be seen as an
upturn on the right-hand side of the graph.



Domain # of
TLDs

# of times in
top 10

Domain
category

# of
complainants

Major complainant (s)
(% of complaints)

# of days
reported

Alexa
Rank

mp3toys.xyz 10 3 elevated exposure 10 Apdif Brasil (99.9%) 109 -
4shared.com 15 4 filesharing 40 Apdif Brasil (99.8%) 246 -
googlevideo.com 1 7 entertainment 84 Comeso (78.2%), Remove Your Media (17.3%) 239 -
mangapark.me 3 4 business 18 Remove Your Media (99.1%) 28 3,901

gorillavid.in 3 3 business 16 Fox Group Legal (55%), Mark Monitor (25.2%),
Vobile (17.1%) 365 6,778

tvad.me 1 2 business 14 Fox Group Legal (59.9%), Mark Monitor (39.9%) 94 45,766
israbox.vip 101 5 media file download 19 Rivendell (99.6%) 46 -

uploaded.net 3 2 filesharing 216 Rivendell (31.7%), Skywalker(18.1%)
Mark Monitor (14.9%), Fox Group Legal (12.3%) 365 662

genteflowmp3.uno 11 2 media file download 6 Apdif Mexico (99.6%) 149 -
deep-warez.org 1 2 radiomusic 43 Rivendell (98%) 345 183,305

Table 3: Top 10 domains with most complaints and the number of TLDs associated with each domain, times it appeared in the
top 10 (in terms of complaints) per month, domain category, major complainant (with the share of complaints), number of
days receiving complaints and its Alexa ranking position.
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Figure 5: Percentage of reported URLs by the top 3 com-
plainants for each domain (on X-axis) vs. the rest of com-
plainants.

Unblocking
Site

% of
Reported URLs

% of
Domains

Unblocking Site
Category

Alexa
Rank

unblocksites.co 10 0.13 uncategorised 12,252
freeproxy.fun 2.4 0.02 webproxy 26,517
unblocked.lol 2 0.04 proxy avoidance 8,552
unblockall.xyz 0.9 0.02 proxy avoidance 820,291
proxydude.xyz 0.6 0.007 elevated exposure -
immunicity.gold 0.5 0.03 proxy avoidance -
unblockall.org 0.5 0.01 business 4,947
unblocked.cam 0.5 0.02 proxy avoidance
unblocker.cc 0.4 0.009 proxy avoidance 15,535
unlockproj.club 0.4 0.02 uncategorised

Table 4: Top 10 unblocking services present in our dataset.

To explore this trend, We next calculate the statistical variance
of each domain’s daily complaint count to understand how the
number of daily complaints change. Figure 7 presents a CDF show-
ing the per domain variance over the entire dataset (for domains
with complaints on multiple days). About 15% of domains have a

variance of zero because they receive the same number of com-
plaints each day they are reported; 94% of these are reported under
six times. However, many remaining domains exhibit significant
daily variance: 7% of domains have a variance greater than 1K and,
remarkably, 0.9% of domains even have a daily variance greater
than 1M. This means that the number of complaints to a domain
varies heavily on a day-to-day basis.

Closer inspection reveals that this is driven by extremely aggres-
sive complainants who periodically inject large sets of (sometimes
repeat) notices. For example, for domains with variance greater
than 1M, we find that 92% receive an average of 116 duplicates
from the same sender. To better highlight this aggressive activity,
Figure 8 presents timeseries measuring the number of daily com-
plaints for several example domains. We select the top two domains
with the largest variance in each Alexa ranking category (top 100K,
top 1M, outside Alexa). Significant instability exists across each of
these domains, with labels in the figure highlighting the individual
sender causing each spike. For instance, the top ranked domain,
mp3toys.xyz, receives an average of 500K daily complaints from
Apdif Brasil between Jan & Feb, yet this collapses to below 6 per day
in March. Similarly, mp3taringa.net receives a significant number
of complaints between 03/Jan – 05/Jan by Apdif Mexico, but follow-
ing this the numbers collapse to almost zero. We posit that these
senders are not always careful in the complaints they generate but,
rather, send bulk notices, leaving the recipient to make sense of the
content.

4.4 Are Reported Websites Alive?
We finally inspect the availability of reported domains and webpage
resources. As it is impossible to draw causal links between a notice
being issued and the removal of content, we limit our analysis to
inspecting the availability of URLs, rather than inferring the reason
for their (un)availability.

Understanding Domain Liveness. We first check the liveness
of each domain’s DNS record using our DNS dataset. This reveals
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Figure 7: CDF of the variance of the number of complaints
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that 22% of reported domains return an NXDOMAIN response.5
These domains account for over 183M (17%) of infringing URLs,
with just 3% (1,426) of them belonging to domains that rank within
Alexa’s Top 1M. As different domain registrars may have differing
policies regarding the removal of records, we next group domains by
their TLD, and check the likelihood of domains being taken offline;
Figure 9 presents the results. We plot both the number of websites
(domains) that are unavailable, as well as the number of specific
URLs that become unavailable (because the domain is offline). For
context, we plot the density of Alexa top 1M domains that have each
TLD. The majority of TLDs with a high percentage of NXDOMAIN
responses do not frequently occur in the top Alexa rankings. Instead,
we see that the majority of domains are from the recent wave of new
generic TLDs [46]. Themost extreme is .lol, where 98% of domains
are NX; it is noteworthy that this TLD is operated by Uniregistry,
which has been accused of predominantly hosting spam [1]. These

5This is returned when a domain name does not exist on the authoritative name server
any longer.

Remove your media
Remove your media

Fox Group Legal, Mark Monitor, NBCUniversal

MG Premium, xfc inc.MG Premium, xfc inc.

Apdif MexicoApdif Brasil

Link-busters.com
m

Muso

Figure 8: Timeseries with complaints to selected domains
and complainants causing complaints’ bursts.

trends indicate that the usage and behaviours across these TLDs
are quite different, with some far more likely to contain unavailable
domains.

Understanding URL Availability. Next, we turn to our periodic
HTTP liveness checks to see if resources (URLs) are still alive (for
those domains that do not return NXDOMAIN). We see that the
number of 200 (OK) responses decline slowly but steadily over the
4 week period that we monitored. After week 4, 22% of URLs are
inactive (i.e., non-200). This trend, however, is relatively shallow
with the majority of URLs (19%) becoming inactive in the first week
after the notice has been observed in Lumen.6 We also note that
the statuses returned evolve across the four weeks. In week 1, the
number of HTTP 4XX responses is 168K, yet in week 2 we only
observe a further 12K webpages responding with 4XX. Instead, the
number of HTTP 5XX and TCP timeouts increase, suggesting that
these websites go through several stages that start with removing
of content (therefore returning a 4XX) before total shutdown of the
web server. The latter makes sense, as it may be unnecessary to
continue running a server if most content has been removed.

Understanding Category Availability. We continue our analy-
sis by inspecting which category of URLs are most likely to go
offline. Figure 10 breaks down all URLs into their categories and
presents the share within each group that reports non-200 HTTP
responses after complaints are generated. Certain categories are
significantly more likely to return non-200 responses. For example,
10% of URLs classified as File Download return a 404 response;
similar traits are also seen across Parked (9%) and Newly Registered
Website (9%). In contrast, 24% of URLs classified as Dynamic Con-
tent (i.e., websites that generate different material for each visit)
return a TCP connection timeout, i.e., the web server is no longer
online. Other examples of categories with high numbers of URLs
that timeout include Elevated Exposure (22%), and File Download
(17%). The category which contains fewest unavailable sites is News,
where only 1.34% of URLs become non-200. This indicates that the
6Note that it is also possible that the URL was not live when the complaint was
generated. Unfortunately, we cannot check this.
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Figure 10: URLs going offline (i.e.,non-2XX response) for the
top-20 most reported domain categories (in %).

robustness of sites differs substantially across categories. That said,
it is reasonable that domains more clearly engaging in suspicious
activity are most likely to become unavailable.

Understanding Complainant Success An obvious question is
which complainants are most likely to see their reported URLs
deleted. To measure this, we calculate the percentage of reported
URLs from each notice sender that later sees the URL resource re-
turning a non-200 response. Figure 11 presents the weekly percent-
age of complaints that return a non-200 response after each weekly
liveness check for the top 10 senders (based on the complainant
with most not 2XX responses). The websites targeted by these dif-
ferent notice senders have very different availability properties.
Complaints from rights enforcement organisations (e.g., Riven-
dell, MarkScan, AudioLock.net) appear more effective compared
to trade organisations (e.g., British Phonographic Organisation).
For example, about 53% of complaints in the first week of submis-
sion from Rivendell return non 2XX response code whilst just 8%
from British Phonographic Organisation return same. These results
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Figure 11: Weekly share (non-cumulative) of URLs with a
non 2XX response for the top 10 complainants.

confirms that the efficacy of these different organisations differs
greatly, and that the websites they pursue have extremely different
characteristics in terms of resilience to takedown.

5 RELATEDWORK
There are two main areas of related work: (i) studies that rely on
Lumen for exploring web complaints; and (ii) studies that have
explored illegal online activities more generally.

Web Complaint Studies. There have been numerous studies into
web complaints. Of most relevance are the small set of data-driven
papers that have empirically explored the nature of takedown re-
quests in the legal domain. For example, Heins et al. [23] examined
320 takedown notices to determine if the takedown process is fairly
used by reporting organisations. They discovered that 20% of notice
senders send weak copyright claims, an assertion our results agree
with. Previous studies from Seng [44] and Urban et al. [54] explored
the entities behind notices from approximately 500K and 300K com-
plaints, respectively. Both studies reveal that a small fraction of
senders (mainly copyright protection companies and trade associ-
ation) are responsible for the majority of notices. This is a result
that is consistent with our findings. [54] also classified the websites
present in complaints; our work further builds on this to explore
which categories of websites each sending entity specialises in. In
an earlier study, Urban et al. [53] examined nearly 900 notices in an
attempt to discover the primary reporting organisations that file
them. They also saw that business entities and corporations were
the main users of takedown notices. To the best of our knowledge,
our study is the largest of its kind.

Closely related is the Right To Be Forgotten (RTBF), established
in 2014 within the European Union. This allows individuals to
request the de-listing of personal information from search engines,
which is “inaccurate, inadequate, irrelevant or excessive". Bertram
et al. [8] inspected the RTBF requests issued to Google. This work
is complementary to our own, as we focus on different complaint
mechanisms, i.e., Lumen does not cover RTBF. This is evident from
the contrast between types of URLs in [8] vs. our study, e.g., 33%
of RTBF URLs relate to social media, and 20% to news. This can be



compared against §3.3, where we find a greater propensity towards
Entertainment and Business URLs (driven by the prominence of
copyright enforcement notices).

IllegalWeb Activities. George et al. [21] examined the challenges
that comes with the ease of sharing User Generated Content (UGC),
highlighting the roles played by hosting providers and proposing
stronger legislation to address the illegal sharing of UGC.Wong [58]
suggested a more flexible legislation, whilst Sawyer [42] recom-
mended that platforms that share UGC should develop solutions
to mitigate against the sharing of infringing material. Clay and
Lucas discussed how a UGC platform (YouTube) has been exploited
for such purpose [9, 24]. Raman et al. also identified pirated con-
tent being shared via Facebook Live [39]. To prevent the sharing
of infringing content on such platforms, Dutta et al. proposed a
signature-based detection to mitigate against infringing material
remaining accessible online [16].

Peer-to-Peer networks and file hosters are also a frequently used
to disseminate illicit or illegal material. Despite several anti-piracy
efforts through the injection of fake content on BitTorrent por-
tals [14, 15, 17, 30] and the shutdown of file hosters services [34],
about 90% of files shared using BitTorrent protocol are judged to
be infringing [40, 57]. Furthermore, 80% of files shared through file
hosters are also in the same category [33]. Ibosiola et al. measured
the availability of illegal content on streaming cyberlockers [27].
They found that the majority of copyright infringing content is
hosted on a small number of platforms. A large portion of com-
plaints in our data also pertain to adult content. While there have
been several studies on online adult content [51? , 52], few focus
on illegal adult content [26]. Of course, there are also a number of
related studies looking at video content more generally [? ]. Our
work is orthogonal as we primarily focus on the complaints that
are related to these activities.

6 DISCUSSION AND FUTUREWORK
This paper has explored the nature of web complaints. With in-
creasing scrutiny on illegal and illicit web activities, and the recent
ability to streamline complaints against different stakeholders, this
study offers a critical input into the wider ongoing debate about
web governance and the use of so-called self-regulation [55].

Summary of Findings. We have found a large and complex
ecosystem dominated by a small set of complainants. While there
are a large number of organisations (38,523) that generate over 1
billion reported URLs, the top 10 complainants alone contribute
over 41% of all notices. It therefore appears that these complaint
procedures have become the dominion of a small group of large
and very active organisations. Dominant players consists of a mix
of influential copyright owners (e.g., Fox) and third-parties spe-
cialised in pursuing copyright infringers (e.g., Rivendell). Bursts
of complaints are common with most of the complaints towards
each domain originating from 2–3 complainants, driving the un-
usual instability we see in the rankings. Complainants are highly
specialised in terms of the types of notices they generate and the
domains they target. This leaves some domain categories (e.g., File
Sharing) regularly reported, and others rarely seen (e.g., Educa-
tion). Surprisingly, many of the most frequently reported domains
are quite obscure, and fail to score highly in popularity rankings.

Finally, we find that complaints do seem to matter. Many domain
names are soon taken offline and 22% of the URLs are inaccessible
within just 4 weeks of us observing the complaints. Hence, it is
clear that we shed light on a highly dynamic environment from the
perspective of domain operators too.

Societal andLegal Implications. Web governance and the (mis)use
of web complaint mechanisms have important social and legal im-
plications. Transparency is critical and, as a society, it is important
to know how and why information is filtered. This is particularly
the case as we have found that these mechanisms might not be
always used wisely, e.g., with some complainants generating hun-
dreds of repeat notices, and seemingly auto-generated URLs (§ 4.3).
We argue that this might overwhelm recipients, who will not nec-
essarily have the resources to deal with these large numbers. As
these highly centralised models of operation have the potential for
misuse, understanding the activity of senders is therefore critical.

Our results further suggest that there is opportunity to improve
and streamline the procedures. For notice recipients, the filtering
of invalid complaints would no doubt be a valuable innovation.
That said, we do not discount the veracity of many complaints, and
therefore developing mechanisms to support this process from the
perspective of (notice senders would also be worthwhile. This, of
course, should not be done at the expense of website operators, who
should always be given paths to recourse. Developing techniques
that automate the above three things is important. Arguably, Lumen
and similar platforms can play a powerful role in this process.

Future Work. There are a number of lines of future work. First,
we hope to expand our access to more diverse datasets. Within
the paper, we have not investigated the role that recipients might
play within the nature of complaints observed. This is likely to
open up new lines of interesting investigation. Our analysis has
also revealed traits of a cat-and-mouse game, with complainants
bulk sending notices, and websites replicating themselves across
multiple domains and TLDs. Exploring the temporal attributes of
this game will no doubt reveal a number of yet unseen behaviours.
Last, we also wish to explore if search engines cease to index URLs
that are complained about. Quantifying this forms a key strand of
our future work.

REFERENCES
[1] 2016. Famous Four rubbish Spamhaus Worst TLD league. http://domainincite.

com/20164-schilling-famous-four-rubbish-spamhaus-worst-tld-league.
[2] 2018. FreeNOM. http://www.freenom.com/en/freeandpaiddomains.html.
[3] 2018. The World’s Most Abused TLDs. https://www.spamhaus.org/statistics/

tlds/.
[4] Greg Aaron and Rod Rasmussen. 2016. Global Phishing Survey: Trends and

Domain Name Use in 2016. APWG Reports October (2016), 1–30.
[5] Faraz Ahmed, M Zubair Shafiq, and Alex X Liu. 2016. The internet is for porn:

Measurement and analysis of online adult traffic. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 88–97.

[6] Internet Assigned Numbers Authority. 2018. IANA Top Level Domain Directory.
https://data.iana.org/TLD/tlds-alpha-by-domain.txt

[7] Ann Bartow. 2012. Copyright law and pornography. Or. L. Rev. 91 (2012), 1.
[8] Theo Bertram, Elie Bursztein, Stephanie Caro, Hubert Chao, Rutledge Chin Feman,

Peter Fleischer, Albin Gustafsson, Jess Hemerly, Chris Hibbert, Luca Invernizzi,
et al. [n. d.]. Three years of the Right to be Forgotten. Under Submission ([n. d.]).

[9] Andrew Clay. 2011. Blocking, tracking, and monetizing: YouTube copyright
control and the downfall parody. Institute of Network Cultures: Amsterdam,
219–233.

[10] US Congress. 2011. Preventing Real Online Threats to Economic Creativity and
Theft of Intellectual Property Act of 2011. (2011).

http://domainincite.com/20164-schilling-famous-four-rubbish-spamhaus-worst-tld-league
http://domainincite.com/20164-schilling-famous-four-rubbish-spamhaus-worst-tld-league
http://www.freenom.com/en/freeandpaiddomains.html
https://www.spamhaus.org/statistics/tlds/
https://www.spamhaus.org/statistics/tlds/
https://data.iana.org/TLD/tlds-alpha-by-domain.txt


[11] ConnellyWorks. 2014. Role of Social Media in Law Enforcement Significant and
Growing. LexisNexis (July 2014).

[12] Contributor. 2012. Hotfile is Out Cold, But Google’s DMCA Safe Harbor
Debate Is Heating Up. (March 2012). https://techcrunch.com/2012/03/25/
hotfile-google-safe-harbor/?guccounter=1

[13] Isabel F Cruz, Slava Borisov, Michael A Marks, and Timothy R Webb. 1998.
Measuring structural similarity among web documents: preliminary results. In
Electronic Publishing, Artistic Imaging, and Digital Typography. Springer, 513–524.

[14] Rubén Cuevas, Michal Kryczka, Angel Cuevas, Sebastian Kaune, Carmen Guer-
rero, and Reza Rejaie. 2013. Unveiling the incentives for content publishing in
popular bittorrent portals. IEEE/ACM Transactions on Networking (2013).

[15] Ruben Cuevas, Michal Kryczka, Roberto González, Angel Cuevas, and Arturo
Azcorra. 2014. TorrentGuard: Stopping scam and malware distribution in the
BitTorrent ecosystem. Computer Networks (2014).

[16] Rabindranath Dutta and Kamal Chandrakant Patel. 2008. Detecting copyright
violation via streamed extraction and signature analysis in a method, system and
program.

[17] Reza Farahbakhsh, Angel Cuevas, Ruben Cuevas, Reza Rejaie, Michal Kryczka,
Roberto Gonzalez, and Noel Crespi. 2013. Investigating the reaction of BitTorrent
content publishers to antipiracy actions. 13th IEEE International Conference on
Peer-to-Peer Computing, IEEE P2P 2013 - Proceedings (2013), 1–10.

[18] Center for Applied Internet Data Analysis. 2015. The CAIDA UCSD AS classifi-
cation dataset. http://www.caida.org/data/as_classification

[19] The Internet Corporation for Assigned Names and Numbers. [n. d.]. ICANNWiki.
https://icannwiki.org/

[20] WPO Foundation. 2018. Web-Page Test CDN Domain Pattern List. https://
github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h

[21] Carlisle George and Jackie Scerri. 2007. Web 2.0 and User-Generated Content:
legal challenges in the new frontier. Journal of Information, Law and Technology
(2007).

[22] G Anthony Giannoumis. 2014. Regulating web content: the nexus of legislation
and performance standards in the United Kingdom and Norway. Behavioral
sciences & the law 32, 1 (2014), 52–75.

[23] Marjorie Heins, Waldman Michael, and Goldberg Deborah. 2005. Will Fair Use
Survive? Free Expression in the Age of Copyright Control. Brennan Center for
Justice (2005).

[24] Lucas Hilderbrand. 2007. YouTube: Where cultural memory and copyright con-
verge. FILM QUART 61, 1 (2007), 48–57.

[25] Florian Hoof. 2016. Live Sports, Piracy and Uncertainty: Understanding Illegal
Streaming Aggregation Platforms. 86–93 pages.

[26] Ryan Hurley, Swagatika Prusty, Hamed Soroush, Robert J Walls, Jeannie Albrecht,
Emmanuel Cecchet, Brian Neil Levine, Marc Liberatore, Brian Lynn, and Janis
Wolak. 2013. Measurement and analysis of child pornography trafficking on P2P
networks. In Proceedings of the 22nd international conference on World Wide Web.
ACM, 631–642.

[27] Damilola Ibosiola, Benjamin Steer, Alvaro Garcia-Recuero, Gianluca Stringhini,
Steve Uhlig, and Gareth Tyson. 2018. Movie Pirates of the Caribbean: Exploring
Illegal Streaming Cyberlockers. Association for the Advancement of Artificial
Intelligence(ICWSM) (2018).

[28] Muhammad Ikram, Rahat Masood, Gareth Tyson, Mohamed Ali Kaafar, Noha
Loizon, and Roya Ensafi. 2019. The Chain of Implicit Trust: An Analysis of the
Web Third-party Resources Loading. arXiv preprint arXiv:1901.07699 (2019).

[29] Rajendra Jain, Dah-Ming Chiu, and William R. Hawe. 1984. A quantitative
measure of fairness and discrimination for resource allocation in shared computer
system. , 38 pages.

[30] Sebastian Kaune, Ruben Cuevas Rumin, Gareth Tyson, Andreas Mauthe, Carmen
Guerrero, and Ralf Steinmetz. 2010. Unraveling bittorrent’s file unavailability:
Measurements and analysis. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth
International Conference on. IEEE, 1–9.

[31] Dae Wook Kim, Peiying Yan, and Junjie Zhang. 2015. Detecting fake anti-virus
software distribution webpages. Computers & Security 49 (2015), 95–106.

[32] Kideuk Kim, Ashlin Oglesby-Neal, and Edward Mohr. 2017. 2016 Law Enforce-
ment Use of Social Media Survey. International Association of Chiefs of Police and
the Urban Institute (February 2017).

[33] Tobias Lauinger, Kaan Onarlioglu, Abdelberi Chaabane, Engin Kirda, William
Robertson, and Mohamed Ali Kaafar. 2013. Holiday pictures or blockbuster
movies? Insights into copyright infringement in user uploads to one-click file
hosters. Lecture Notes in Computer Science 8145 LNCS (2013), 369–389.

[34] Tobias Lauinger, Martin Szydlowski, Kaan Onarlioglu, Gilbert Wondracek, Engin
Kirda, and Christopher Kruegel. 2013. Clickonomics: Determining the Effect of
Anti-Piracy Measures for One-Click Hosting. Network and Distributed System

Security Symposium (2013), 1–14.
[35] Mark A. Lemley. 2007. Rationalizing Internet Safe Harbors. Journal on Telecom-

munications & High Technology Law 6 (2007), 101–119.
[36] Nick Marx. 2013. Storage Wars: Clouds, Cyberlockers, and Media Piracy in the

Digital Economy. Journal of e-Media Studies 3, 1 (2013), 1–27.
[37] Peter S Menell and Herman Phleger. 2011. Jumping the Grooveshark : A Case

Study in DMCA Safe Harbor Abuse. Berkeley Center for Law & Technology (2011),
1–3.

[38] Michael Piatek, Tadayoshi Kohno, and Arvind Krishnamurthy. 2008. Challenges
and directions for monitoring P2P file sharing networks. Proceedings of the 3rd
conference on Hot topics in security (2008), 1–7.

[39] Aravindh Raman, Gareth Tyson, and Nishanth Sastry. 2018. Facebook (A) Live?:
Are Live Social Broadcasts Really Broad casts?. In Proceedings of Web Conference.

[40] Layton Robert and Watters Paul. 2010. Investigation into the extent of infringing
content on BitTorrent networks. Internet Commerce Security Laboratory (2010).

[41] Matthew Sag. 2014. Copyright trolling, an empirical study. Iowa L. Rev. 100 (2014),
1105.

[42] Michael S Sawyer. 2009. Filters, Fair Use & Feedback: User Generated Content
Principle and the DMCA. Berkeley Technology and Law Journal (2009).

[43] Quirin Scheitle, Oliver Hohlfeld, Julien Gamba, Jonas Jelten, Torsten Zimmer-
mann, Stephen D Strowes, and Narseo Vallina-Rodriguez. 2018. A Long Way to
the Top: Significance, Structure, and Stability of Internet Top Lists. arXiv preprint
arXiv:1805.11506 (2018).

[44] Daniel Seng. 2014. The State of the Discordant Union: An Empirical Analysis of
DMCA Takedown Notices. Virginia Journal of Law & Technology 18, 3 (2014),
369–473.

[45] Leron Solomon. 2015. Fair Users or Content Abusers: The Automatic Flagging of
Non-Infringing Videos by Content. Hofstra Law Review 211, 237 (2015).

[46] Daniela Michele Spencer. 2014. Much Ado About Nothing: ICANN’s New GTLDs.
Berkeley Tech. LJ 29 (2014), 865.

[47] Oleksii Starov, Yuchen Zhou, Xiao Zhang, Najmeh Miramirkhani, and Nick Niki-
forakis. 2018. Betrayed by Your Dashboard: Discovering Malicious Campaigns via
Web Analytics. In Proceedings of the 2018 World Wide Web Conference on World
Wide Web. International World Wide Web Conferences Steering Committee,
227–236.

[48] Zack Stiegler. 2013. Regulating the web: network neutrality and the fate of the open
internet. Rowman & Littlefield.

[49] Web Technology Surveys. 2018. Usage of top level domains for websites. https:
//w3techs.com/technologies/overview/top_level_domain/all

[50] Ernesto TorrentFreak. 2016. Google Asked to Remove
50 Million 4shared Links. https://torrentfreak.com/
google-asked-to-remove-50-million-4shared-links-161104/

[51] Gareth Tyson, Yehia Elkhatib, Nishanth Sastry, and Steve Uhlig. 2013. Demysti-
fying porn 2.0: A look into a major adult video streaming website. In Proceedings
of Internet measurement conference. 417–426.

[52] Gareth Tyson, Yehia Elkhatib, Nishanth Sastry, Steve Uhlig, et al. 2015. Are
people really social in porn 2.0?. In ICWSM.

[53] Jennifer Urban and Laura Quilter. 2005. Efficient Process or Chilling Effects?
Takedown Notices under Section 512 of the Digital Millennium Copyright Act.
Santa Clara Computer & High Technology Law Journal 22, 4 (2005), 621–693.

[54] Jennifer M Urban, Joe Karaganis, and Brianna L Schofield. 2016. Notice and
Takedown in Everyday Practice. Berkeley Center for Law & Technology (2016).

[55] Joshua Urist. 2006. Who’S Feeling Lucky-Skewed Incentives, Lack of Trans-
parency, and Manipulation of Google Search Results under teh DMCA. Brook. J.
Corp. Fin. & Com. L. 1 (2006), 209.

[56] Xiaolei Wang, Sencun Zhu, Dehua Zhou, and Yuexiang Yang. 2017. Droid-
AntiRM: Taming Control Flow Anti-analysis to Support Automated Dynamic
Analysis of Android Malware. In Proceedings of the 33rd Annual Computer Security
Applications Conference. ACM, 350–361.

[57] Paul A. Watters, Robert Layton, and Richard Dazeley. 2011. How much material
on BitTorrent is infringing content? A case study. Information Security Technical
Report (2011).

[58] Mary W S Wong. 2009. "Transformative" User-Generated Content in Copyright
Law: Infringing Derivative Works or Fair Use? Vand. J. Ent. & Tech. Law (2009).

[59] Apostolis Zarras, Alexandros Kapravelos, Gianluca Stringhini, Thorsten Holz,
Christopher Kruegel, and Giovanni Vigna. 2014. The dark alleys of madison
avenue: Understanding malicious advertisements. In Proceedings of the 2014
Conference on Internet Measurement Conference. ACM, 373–380.

[60] Ethan Zucherman, Hal Roberts, Jillian York, Robert Faris, and Palfrey John. 2010.
2010 Circumvention Tool Usage Report. Berkman Center for Internet & Society
(2010), 1–13.

https://techcrunch.com/2012/03/25/hotfile-google-safe-harbor/?guccounter=1
https://techcrunch.com/2012/03/25/hotfile-google-safe-harbor/?guccounter=1
http://www.caida.org/data/as_classification
https://icannwiki.org/
https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
https://github.com/WPO-Foundation/webpagetest/blob/master/agent/wpthook/cdn.h
https://w3techs.com/technologies/overview/top_level_domain/all
https://w3techs.com/technologies/overview/top_level_domain/all
https://torrentfreak.com/google-asked-to-remove-50-million-4shared-links-161104/
https://torrentfreak.com/google-asked-to-remove-50-million-4shared-links-161104/

	Abstract
	1 Introduction
	2 Methodology & Dataset
	2.1 Website Complaints
	2.2 Website Metadata
	2.3 Limitations & Ethical Considerations

	3 complaints & Notice Senders
	3.1 What Types of Complaints Exist?
	3.2 Who Are the Notice Senders?
	3.3 What Topics Do Complaints Target?

	4 Websites & Webpages
	4.1 How `Hot' Are Websites?
	4.2 Are Domains Unique?
	4.3 How Stable are Domain Rankings? 
	4.4 Are Reported Websites Alive?

	5 Related Work
	6 Discussion and Future Work
	References

