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ABSTRACT
A considerable body of research has demonstrated that online
search data can be used to complement current syndromic surveil-
lance systems. The vast majority of previous work proposes solu-
tions that are based on supervised learning paradigms, in which
historical disease rates are required for training a model. However,
for many geographical regions this information is either sparse or
not available due to a poor health infrastructure. It is these regions
that have the most to benefit from inferring population health sta-
tistics from online user search activity. To address this issue, we
propose a statistical framework in which we first learn a super-
vised model for a region with adequate historical disease rates, and
then transfer it to a target region, where no syndromic surveillance
data exists. This transfer learning solution consists of three steps:
(i) learn a regularized regression model for a source country, (ii)
map the source queries to target ones using semantic and tempo-
ral similarity metrics, and (iii) re-adjust the weights of the target
queries. It is evaluated on the task of estimating influenza-like ill-
ness (ILI) rates. We learn a source model for the United States, and
subsequently transfer it to three other countries, namely France,
Spain and Australia. Overall, the transferred (unsupervised) models
achieve strong performance in terms of Pearson correlation with
the ground truth (> .92 on average), and their mean absolute error
does not deviate greatly from a fully supervised baseline.
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1 INTRODUCTION
Syndromic surveillance systems aim to provide timely estimates
about the prevalence of a disease in a population. Their main source
of information is based on doctor assessments about the probable
health status of patients given a set of symptoms. For example, to
monitor the rate of influenza, syndromic surveillance relies on a
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network of doctors who report on a daily or weekly basis the num-
ber of patients exhibiting related symptoms, such as fever, cough
or a sore throat. Recent research efforts have shown that this tra-
ditional approach can be complemented by alternative methods
trained on data from online user activity, e.g. social media or online
search behavior [43]. Applications vary from modelling dengue
fever [24] to depression [17], but particular research focus has been
drawn to influenza, an infectious disease that is responsible for
290-650,000 deaths worldwide on an annual basis.1 Data from the
microblogging platform of Twitter [15, 32, 50] as well as from search
engines [21, 35, 53, 67] combined with statistical natural language
processing methods have produced promising outcomes, which
in some occasions have been incorporated into national influenza
surveillance schemes [9, 63]. The main advantages of these com-
plementary methods are timeliness, and sampling from a larger
segment of the population, including people who may not visit
a doctor while being ill. It is also commonly cited that such ap-
proaches may be very useful in regions where health infrastructure
is poor or absent. However, this is often impractical as the pro-
posed machine learning solutions rely on training data which apart
from the user-generated inputs, need to contain confirmed disease
rates at the target location, broadly referred to as “ground truth”.
This data is typically provided by existing syndromic surveillance
systems. Hence, for locations where ground truth is not available,
user-data driven approaches are not realistically applicable.

In this paper, we propose a statistical framework to circumvent
problems associated with no training data in some geographic
regions. Our approach is based on the broad notion of transfer
learning, where we aim to transfer parts of the knowledge gained
while solving a certain task to better solve a different, but related
one [49]. In particular, our goal is to transfer a well-performing
disease rate inference model from a source location, where super-
vised learning is possible, to a target location, where supervision is
not possible, given the lack of ground truth. We focus our experi-
ments on influenza (flu) and utilize Google search query statistics
as our descriptive variable for aggregate, population-level, online
user activity. For example, the US Centers for Disease Control and
Prevention (CDC) monitor and report influenza-like illness (ILI)
rates on a weekly basis, providing sufficient ground truth to learn a
function that maps online search query frequencies to these rates.
In our experiments we show that we can adapt this function to
derive estimates of ILI rates at different locations (outside the US).
Language may or may not differ between the source and target
locations. Online search statistics can be obtained for these target
locations, but we assume that there is no ground truth data.

1World Health Organization, who.int/mediacentre/news/statements/2017/flu/
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The proposed approach comprises 3 steps. After learning a source
regression model (step 1), we seek ways to map the selected source
search queries to sets of queries in the target location. To derive
this mapping we deploy a hybrid metric, which combines a seman-
tic similarity with a time series correlation component (step 2).
Semantic similarities are estimated using cross-lingual or monolin-
gual word embeddings and correlations are computed using query
frequencies. Finally, query weights from the source model are trans-
ferred to the identified target queries (step 3). This framework is
evaluated on three transfer learning tasks, where the source model
is always based in the US, and the target countries are France, Spain
and Australia. While ground truth is available for all the target
countries, we only use it to evaluate the performance of the trans-
ferred models. Transferred models, assessed on four flu seasons
(2012 to 2016), can accurately estimate the peak of each flu sea-
son, achieving on average Pearson correlations greater than .92
and root mean squared errors comparable to the ones obtained by
the corresponding fully supervised models (≤ 21.6% increase in
errors). Therefore, they can be considered as practical solutions for
locations that lack historical ground truth data.
Main contributions. A novel, end-to-end transfer learning frame-
work is proposed for mapping a disease model trained on online
search data from a location, where ground truth is available, to
a location, where ground truth is not available. Variations of this
model are investigated, exploring different query mapping func-
tions using semantic or temporal similarities or combinations of
the two. In addition, we empirically show that our approach works
in three case studies, two of which require a transfer to a different
language (English to French or Spanish), and one that maintains
the same language (English), but demands a model transfer to a
different hemisphere (US to Australia).

2 DATA SETS
We use two sources of data, namely Google search query frequency
statistics and ILI rates from established health organizations.
Google search query frequency statistics. Time series of weekly
search query frequencies were retrieved through Google Correlate.
A frequency represents the weekly search activity of a query (num-
ber of times issued) within a geographical region. It is normalized
by dividing by the total number of search queries issued during
that week. This normalization controls for variations in the num-
ber of searches issued each week which can be due to a variety
of causes, including summer vacations, responses to news events,
and a longer-term trend of increased web usage [45]. Normalized
query frequencies are subsequently standardized, such that their
time series have a zero mean and a standard deviation of one. This
results in expressing query frequencies under the same units for
different geographical regions with potentially varying population
sizes and search usage patterns. We obtained weekly frequencies
of search queries from September 1, 2007 to August 31, 2016 inclu-
sive (470 weeks) for US, France, Spain, and Australia. Given that
an exhaustive list of user search queries was not available to us,
we extracted them by first using a set of 12 flu-related queries per
country as a seed to Google Correlate and then iterating through
this process (using correlated queries as new seeds). This process
extracted 34,121, 29,996, 15,673 and 8,764 queries for US, France,

Spain and Australia, respectively. Queries were not limited to the
topic of flu, given that various other spurious queries may also
correlate with the seeds.
ILI rates. We obtained weekly ILI rates for the US, France, Spain
and Australia from their established syndromic surveillance sys-
tems, namely the Centers for Disease Control and Prevention (CDC),
GPs Sentinelles Network (SN), Spanish Influenza Sentinel Surveil-
lance System (SISSS), and Australian Sentinel Practices Research
Network (ASPREN), respectively.2 ILI rates represent fraction of the
population that has been diagnosed with influenza-like symptoms.3
The data spans from September 1, 2007 to August 31, 2016 inclusive,
which covers approximately 9 consecutive influenza seasons. Note
that for Spain, we only have ILI rates from week 40 in a year to
week 20 in the following year. The prevalence of influenza outside
this period is typically very low.4 We denote the ILI rates from each
syndromic surveillance system using the corresponding country
code (US, FR, ES, and AU).

In our experiments we are transferring a flu model trained on US
data to one of the other three countries. To provide some insight
about the difficulty of the task, we have plotted the historical ILI
rates for all countries in Fig. 1. ILI rates may correlate between
countries, e.g. the Pearson correlation between the US and FR rates
is equal to .6 (p ≈ 3·10−54), but peaks and troughs are occurring at
different times and with very different intensity. The US and AU ILI
rates are negatively correlated (−.4, p ≈ 8·10−17), as expected, since
these countries are situated in different hemispheres and influenza
is strongly seasonal. The optimal correlation we can obtain by
shifting the ILI rate time series is equal to .68 (US-ES). Notably, the
metric for ILI may differ in the countries we considered in this paper.
Therefore, in our experiments we are working with a standardized
representation of ILI (z-score).

3 METHODS
Disease rate estimation from online search data is commonly for-
mulated as a regression task [21, 35]. The aim is to learn a function
f : X → y that maps the input space of search query frequencies,
X∈Rn×s , to the target variable, y∈Rn , representing disease rates; n
denotes the number of samples and s is the size of the feature space,
i.e. the number of unique search queries we are considering. More
specifically, X contains the time series of search query frequencies,
and y represents a rate of disease diagnoses in a population (as
reported by a health agency) at corresponding times. The time in-
terval for computing the frequency of queries is often set to one
week to match the frequency of syndromic surveillance reports.

Regression approaches require observations of the target vari-
able y (ground truth) for training a machine learning model. This
restricts the application of such techniques to areas where historical
disease rates are available. We attempt to address this limitation by
proposing a transfer learning methodology, that maps an existing
disease model, f : X → y, from a source location, where disease
rates are available, to another location, where disease rates are not
possible to obtain. We define the source domain as DS =

{
(xi ,yi )

},
2Links: CDC (US), cdc.gov; SN (FR), websenti.u707.jussieu.fr/sentiweb; SISSS
(ES), eng.isciii.es/ISCIII; ASPREN (AU), aspren.dmac.adelaide.edu.au
3ILI is defined as the presence of high fever plus cough or sore throat [11, 46].
4In Figs. 1 and 2, we have set the missing ILI rates for ES to zero for visualization
purposes. However, we are not using these rates to train or evaluate models for ES.
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Figure 1: ILI rates for the United States (US), France (FR), Spain (ES) and Australia (AU).

i ∈ {1, . . . ,n}, where xi is an s-dimensional vector holding the fre-
quencies of the s queries for the time interval i , yi is the corre-
sponding disease rate, and n is the number of observations. The
target domain is denoted byDT =

{
x′i
}
, i ∈ {1, . . . ,m}, where x′i is a

t-dimensional vector of the frequencies of the t queries in the target
domain that are going to be associated with the s queries in the
source domain. No ground truth is available for the target domain.
Note that t need not equal s , thus allowing one-to-many query
mappings. In theory, them time intervals may precede or overlap
the n time intervals in the source region. In our experiments, we
them target intervals are always after the n source intervals.

3.1 User search behavior in different countries
As the transfer learning framework is detailed in the next para-
graphs, it will become apparent that it is grounded on a funda-
mental assumption, which is that online user search behavior will
be similar in the source and the target countries. Narrowing this
assumption down to our specific task, this implies that the condi-
tional probability of issuing a query q under a certain health status
h (with or without experiencing disease symptoms), P (q |h), will be
similar for the populations of the source and the target countries.
Relevant literature offers some evidence about this with regards to
user search behavior for various health-related themes [1, 3, 25, 68].
In addition, we also provide some empirical evidence using our data.
Table 1 shows the average query frequency over the corresponding
ILI rate ratio for three basic queries in the US and AU. It also shows
these ratios for translations of these queries in FR and ES (e.g. flu
→ grippe (FR)→ gripe (ES)). The main observation is that these
ratios do not vary much over the time span of our data, which is
almost a decade. Although this is a limited observation, in that it
does not involve many different search queries, it serves as a strong
indication that user search behavior, at least for this specific area
of interest, has similarities among different countries. The transfer
learning framework, described in the following paragraphs, tries
to exploit these similarities.

3.2 Transfer learning framework
The proposed transfer learning framework consists of three steps
which are described in detail in the following sections.

3.2.1 Step 1 — Learning a regression function in the source domain.
Regularized regression has been successfully applied to various
text regression tasks, including the estimation of disease rates from
social media or online search data [32, 35]. In this paper, we use
elastic net [74] as our regression function, similarly to previous
work on the topic [35, 37]. Elastic net combines ℓ1-norm regulariza-
tion, commonly known as the lasso [58], with ℓ2-norm, or ridge [26],
regularization. In addition to the sparsity encouraged by the ℓ1-
norm regularization, the ℓ2-norm regularizer attempts to address
model consistency problems that arise when collinear predictors
exist in the input space [69], which is common in text regression
tasks [34, 36, 54]. Given X ∈ Rn×s and y ∈ Rn from the source
domain DS, we apply a constrained version of elastic net which
solves the following optimization problem:

argmin
w,β

(

y − Xw − β

2
2 + λ1 ∥w∥22 + λ2 ∥w∥1

)
subject to w ≥ 0 , (1)

where λ1 > 0, λ2 > 0 are respectively the ℓ1-norm and ℓ2-norm
regularization parameters, and β denotes the intercept term. The
non-negativity constraint for w may result in a worse performing
model for the source country, but, at the same time, makes the
weight transfer from a source to a target country more comprehen-
sible (positive weights are easier to interpret) and eventually more
accurate in terms of performance (see Section 4.2).

Due to the seasonal nature of influenza, our dataset of candidate
queries contains a significant number of confounders, i.e. queries
with frequencies that are correlated to ILI rates, but have no link to
flu, such as ‘college basketball’ or ‘spring break’. To remove these
unrelated queries we applied a semantic filter based on word em-
bedding representations, similar to the one proposed in [38, 72, 73].
Word embeddings were trained on the English Wikipedia corpus
using the fastText method [12]. A topic about flu, T , was defined
as a simple set of two flu-related terms, T = {‘flu’, ‘fever’}. For each
of the source queries, we calculate a similarity score defined as the
product of the cosine similarities between the embeddings of the
terms in T and eq, i.e.

д (q,T ) = cos
(
eq, eT1

)
× cos

(
eq, eT2

)
, (2)

where each cosine similarity component is mapped to [0, 1] via
(cos(·, ·) + 1) /2.5 Queries from the source domain with д ≤ .5 are
5This resolves misleading similarity scores based on different sign combinations.
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Table 1: Mean ratio of query frequency over ILI rate (and standard deviation of the mean) in four countries.

Search queries US FR ES AU
flu (US/AU), grippe (FR), gripe (ES) .036 (.010) .033 (.012) .032 (.011) .031 (.016)

symptoms of flu (US/AU), symptômes de la grippe (FR), síntomas de gripe (ES) .030 (.009) .031 (.012) .029 (.009) .027 (.014)
flu in children (US/AU), grippe chez le bébé (FR), gripe en el bebé (ES) .017 (.007) .020 (.008) .019 (.009) .022 (.010)

filtered out and are not considered in our experiments. The remain-
ing queries are used to train an elastic net. This operation further
reduces the selected queries to a subset QS, i.e. the ones that have
been allocated a nonzero weight.

3.2.2 Step 2 — Mapping source to target queries. The identified and
weighted set of search queries in the source domain (QS) should be
mapped to a set of queries in the target domain from a potential
pool of target query candidates (PT). Queries about the same topic
may vary in their textual formulation, especially when they are
issued by users located in different countries. Even in cases, where
countries share the same language, cultural and socioeconomic
differences may result into different querying preferences. Thus,
simple approaches, where search queries from the source country
are translated or directly mapped to queries in the target country,
are not effective.6 In our approach, we utilize word embeddings
(mono- or cross-lingual) to map source to target queries based on
their broad semantic relationship. We consider both one-to-one
and one-to-many query mappings from the source to the target
domain. In addition, the weight associated with each source query
reflects on how correlated the query is with the modeled disease
rate. Therefore, another desired property is to map source queries
to target ones based on their pairwise temporal correlation as this
may enhance the statistical relevance of the mapping. Consequently,
there is a trade-off between mapping based on semantic similarity
and based on the similarity in temporal correlation. To capture both,
we define a combined similarity metric, Θ, that is the weighted sum
of a semantic similarity Θs and a correlation similarity, Θc, i.e.

Θ = γΘs + (1 − γ )Θc , (3)

where γ ∈ [0, 1] controls the relative weighting of each. When γ = 1
the mapping is based only on semantic similarity. Conversely, when
γ = 0 the mapping is based only on the correlation similarity.
Semantic similarity (Θs). If the source and target domains have
different languages, a translation module is required. For this pur-
pose, we deploy cross-lingual word embeddings. Cross-lingual
embeddings are trained using corpora from multiple languages,
and can be used to compute word similarities in different lan-
guages [57, 60, 61]. Empirical evidence indicates that they can also
facilitate better knowledge transfer between languages [2, 44, 47].
The majority of cross-lingual word embedding models are trained
by exploiting sources of monolingual text alongside a smaller cross-
lingual corpus of aligned text [56]. The alignment can be made
at word [2, 5, 18, 41, 57, 60], sentence [39, 75], and document
level [44, 62]. In this paper, we utilize a method for learning bilin-
gual word embeddings proposed by Smith et al. [57].

First, for each of the source and target languages, we respec-
tively learn a word embedding space based on monolingual text. For
all languages considered in our experiments (English, French and

6We have empirical evidence about this, obtained during the first stages of this work.

Spanish) we obtained word embeddings by applying fastText on
corresponding Wikipedia corpora [12].7 The dimensionality of the
word embeddings was set to d = 300. Then, we used a core se-
lection of exact translation pairs (σ → τ ) from the source to the
target domain language to generate bilingual embeddings. Given
the embedding matrices of this alignment dictionary, Eσ and Eτ
both ∈ Rm×d , wherem, d denote the number of translation pairs
and the dimensionality of the word embedding respectively, we
learn a transformation matrix W ∈ Rd×d such that Eτ ≈ Eσ W. W is
an orthogonal matrix learned by minimizing the squared Euclidean
distance between Eσ and Eτ , i.e.

argmin
W

∥Eσ W − Eτ ∥22 , subject to W⊤W = I . (4)

The orthogonality constraint ensures that the transformation works
both ways, that is Eτ ≈ Eσ W, Eσ ≈ Eτ W⊤, and Eτ ≈ Eτ W⊤W [57].
In addition, Artexte et al. have empirically shown that it also im-
proves the performance of machine translation [4]. The exact so-
lution of Eq. 4 is given by W = VU⊤, where E⊤τ Eσ = UΣV⊤ is the
singular value decomposition of E⊤τ Eσ [4, 23].

A query’s embedding is defined as the average of the embeddings
of its tokens, an effective practice for short texts [8, 42, 66, 72]. We
denote with vSi , vTj both ∈R1×d , the embeddings of a source query
(from QS) and of a target query from PT, respectively. Then, an
element ωi j from the cosine similarity matrix Ω∈Rs×|PT | between
the embeddings of source and valid target queries is given by ωi j =(
vSi W v⊤Tj

)
/
(
∥vSi W∥2∥vTj ∥2

)
. Note that the cosine similarities

are computed after projecting the embeddings of the source domain
to the target domain using the transformation matrix W.

In theory, we can directly useωi j to determine the k most similar
target queries to the source query, thus providing a one-to-many
mapping. However, in practice when conducting translations based
on cross-lingual word embeddings, this may result in the presence
of “hubs”, i.e. target words or queries that are similar to unrealisti-
cally many different source words, a development that reduces the
performance of translation [18, 57]. Smith et al. mitigate this effect
by using an inverted softmax ranking, described next [57].

Given qi in the source language, its translation is determined by
finding candidate target queries q′j that maximize the probability
defined by

Pj→i =
exp
(
η ωi j

)
α j

s∑
z=1

exp (η ωiz )

, (5)

where α j is a normalization factor that ensures Pj→i is a prob-
ability, and s is the number of source queries in the vocabulary.
The inverted softmax estimates the probability Pj→i that a candi-
date target query translates back to the source query, rather than

7The embeddings were obtained from github.com/facebookresearch/fastText
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the other way around, Pi→j [18, 57]. If a target query is a hub,
then the denominator in Eq. 5 will be large, preventing this target
query from being selected. The parameter η is learned by maxi-
mizing the log probability over the alignment dictionary (σ→τ ),
i.e., argmaxη

∑
pairs i j ln

(
Pj→i

)
. The top-k queries from PT with

the highest pairing probability (Pj→i ) are then selected as possible
translations of the source query qi . Finally, we compute the seman-
tic (cosine) similarity score Θs between the source query qi and the
target query qj using Θs (qi ,qj ) =

(
eqi W e⊤qj

)
/
(
∥eqi W∥2∥eqj ∥2

)
,

where eqi , eqj are the embeddings of qi , qj , respectively. Our ex-
periments report results for a variety of values of k .

If the language in the source and the target domain is the same,
the previously described approach is not applicable. Given poten-
tial differences in querying preferences across different countries,
some of the source queries, QS, may not be present in the pool of
candidate target queries, PT. Therefore, we use cosine similarity to
map each source query to the k most similar target ones using the
common word embedding space for the shared language.
Temporal correlation similarity (Θc). We compute the Pearson
correlation between the frequency time series of the source and
target queries over a fixed period (set to 5 years in our experiments).
Since the flu season may be offset in the target domain with respect
to the source domain, we computed the maximum correlation be-
tween these two frequency time series using a shifting window of
±ξ weeks. The range of possible values for ξ is determined based
on the seasonal offset between the source and target countries (see
Section 4). Given a source query, qi , and a target query, qj which
is a member of a mapping set Ti (consisting of k ≥ 1 queries from
PT), and their associated daily search frequencies, xi (t ) and xj (t ),
respectively, the temporal correlation similarity, Θc, is given by

Θc (qi ,qj ) = ρ
(
xi (t ), xj (t + li j )

)
, (6)

where ρ (xi (t ),x j (t + li j )) denotes the optimal Pearson correlation
coefficient between xi , xj within the shifting window. Note that the
optimal window is independently computed for each target query
in Ti , and thus optimal shifts may vary.

3.2.3 Step 3 — Weighting target queries. In the previous steps, we
have established that a source query qi , which has received a re-
gression weight wi , is mapped to a set, Ti , of k ≥ 1 queries in the
target domain. If k = 1, then we can directly assignwi to the single
target query. If k > 1, then the source query’s weight, wi , should
be distributed across these k mapping target queries. To perform
this, we have considered two alternatives:
• Uniform. We divide the source query weight,wi , by the number

of queries q′j in Ti , and assign each query in Ti a weight equal to
w ′j = wi/k .
• Non-uniform. The k target query weights are determined based

on each target query’s similarity score Θi j , j ∈ {2, . . . ,k }, with
the source query (see Eq. 3). More specifically, a target weight
w ′j is defined as w ′j = wiΘi j′/

∑
q′j ∈Ti

Θi j′ .
To obtain a baseline performance estimate, we randomly shuffle the
established query mappings in Step 2, and then transfer the source
weights to k target queries using the uniform approach. We repeat
this process multiple times and report the mean performance of
these randomized transfer learning models.

4 EXPERIMENTS
We deploy the proposed transfer learning framework to estimate
ILI rates in three target countries without using any ground truth
from these countries to supervise modeling. US is always set as
the source country, while the target countries are FR, ES and AU.
We assess the performance of the proposed model, comparing it to
various baselines, and also provide a qualitative analysis, aiming to
interpret some of the intrinsic properties of our approach.
Settings. After applying the semantic filter (Eq. 2) to the pool of
34,121 US queries, 1,403 queries were retained. The applied evalua-
tion protocol is as follows. We train a source model (US) using the
first 5 flu seasons (2007-12). A flu season is conventionally defined
as the 1-year long period from the first week in September to the
last week of August in the next year.8 Prior to applying elastic net,
we maintain search queries that have a ≥ .3 Pearson correlation
with the US ILI rates (these queries may vary per training fold). We
then transfer the model to FR, ES, and AU and test it in the following
flu season (2012-13). Then, we move our training data window to
include the 2012-13 flu season and remove the first flu season (2007-
08), and test in the following season (2013-14), so that we still have
5 flu seasons to train. We repeat this process until we have tested on
the last flu season in our data set (2015-16), evaluating performance
4 times in total. The window size (ξ ) used for identifying optimal
correlations between the frequency time series of the source and
target queries (see Section 3) is set to ±6 weeks for FR and ES. The
window is the same for AU, although prior to applying it, the query
frequency time series are shifted by 6 months to account for the
seasonal difference in the northern and southern hemispheres. For
the one-to-k mapping from a source to a set of target queries, we
explore sizes up to k = 5 (values > 5 did not yield any different
insights). We measure the performance of transferred models by
comparing our estimates with their national public health estimates,
using Pearson correlation (r ), mean absolute error (MAE), and root
mean squared error (RMSE). Regression errors are computed after
reverting inferences back to their corresponding non standardized
values.
Baseline models. To demonstrate the effectiveness of our transfer
learning framework, we compare it with four baseline models:
• Random. After determining the mapping between source and

target queries, the pairs (one-to-k) are randomly permuted. The
source query weight is uniformly distributed across the mapped
k target queries. We repeat this process 2,000 times and report
the average inference performance. This random assignment of
query weights provides a possibly worst case baseline.
• Transfer component analysis (TCA). TCA is a transfer learn-

ing approach that aims to learn transfer components across
source and target domains in a reproducing kernel Hilbert space
using maximum mean discrepancy [48]. After we map source
to target queries, TCA is applied to source and target query fre-
quencies.
• Unsupervised query selection based on semantic similar-

ity. We apply a semantic filter (described in Eq. 2) to remove
queries that are irrelevant to the flu topic. The term pairs {‘grippe’,

8Note that for AU this may result into including the end of a flu season and the
beginning of the next in training and test folds.
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Table 2: Performance estimates for the US→FR transfer learning task. Different values ofγ determine how queries are mapped
from the source to the target domain (γ=1: semantic similarity only, γ=0: temporal correlation only, γ∈(0, 1): joint similarity
score). Numbers in parentheses represent the standard deviation of the error. The best performance among all transfer learning
models is denoted in bold. The best performance among models under a common γ value is underlined. Only the best random
mapping performance (R) is enumerated per choice of γ . The last two rows show the performance of the baseline models.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .797 78.905 136.098 .789 59.584 93.752 .900 56.107 92.324 .855 51.533 78.073 .835 (.045) 61.532 (10.429) 100.062 (21.690)
2 U .803 80.044 137.247 .794 59.961 94.853 .890 58.372 96.282 .843 55.532 84.438 .833 (.038) 63.477 (9.696) 103.205 (20.179)
3 U .802 79.010 135.905 .796 59.750 95.350 .896 57.241 94.451 .844 57.306 86.588 .834 (.040) 63.327 (9.111) 103.073 (19.260)
4 U .798 79.077 135.892 .795 59.529 95.295 .895 58.380 95.852 .834 59.729 90.180 .830 (.040) 64.179 (8.617) 104.305 (18.370)
5 U .799 78.881 135.743 .794 58.508 95.036 .893 58.439 96.988 .829 60.075 91.182 .829 (.040) 63.976 (8.630) 104.737 (18.023)
2 NU .803 80.012 137.180 .794 59.971 94.869 .891 58.360 96.268 .843 55.502 84.399 .833 (.038) 63.461 (9.689) 103.179 (20.159)
3 NU .802 78.999 135.881 .796 59.763 95.360 .896 57.244 94.453 .844 57.271 86.538 .834 (.040) 63.319 (9.110) 103.058 (19.259)
4 NU .799 79.068 135.875 .795 59.519 95.278 .895 58.367 95.834 .834 59.676 90.106 .830 (.040) 64.157 (8.623) 104.273 (18.381)
5 NU .799 78.868 135.725 .794 58.499 95.015 .893 58.434 96.972 .829 60.029 91.110 .829 (.040) 63.957 (8.632) 104.706 (18.033)
1 R .771 125.422 152.275 .731 93.122 105.769 .807 138.579 158.000 .825 102.972 113.607 .783 (.036) 115.024 (17.943) 132.413 (22.982)

γ = 1

1 — .964 51.885 77.728 .928 24.373 35.801 .974 51.623 69.254 .917 75.416 92.946 .946 (.024) 50.824 (18.071) 68.932 (20.927)
2 U .967 41.298 68.164 .939 22.993 33.287 .973 62.869 81.119 .924 84.469 102.422 .951 (.020) 52.907 (23.049) 71.248 (25.099)
3 U .967 39.789 67.336 .947 21.219 30.446 .972 58.654 79.471 .933 76.235 93.338 .955 (.016) 48.974 (20.564) 67.648 (23.366)
4 U .965 40.120 65.882 .947 24.037 33.095 .970 63.290 85.390 .939 77.601 93.301 .955 (.013) 51.262 (20.638) 69.417 (23.224)
5 U .965 37.632 61.217 .952 26.136 35.651 .972 66.825 90.248 .943 78.479 93.855 .958 (.011) 52.268 (21.190) 70.243 (23.642)
2 NU .968 41.272 68.016 .939 22.925 33.213 .973 61.971 80.280 .924 83.058 101.160 .951 (.020) 52.306 (22.495) 70.667 (24.658)
3 NU .967 39.665 66.933 .948 21.189 30.378 .973 58.568 79.476 .933 75.661 92.917 .955 (.016) 48.770 (20.388) 67.426 (23.280)
4 NU .966 39.754 65.480 .948 23.794 32.767 .971 62.957 85.275 .939 76.868 92.866 .956 (.013) 50.843 (20.486) 69.097 (23.236)
5 NU .966 37.295 60.749 .952 25.925 35.383 .972 66.890 90.583 .943 77.969 93.647 .958 (.012) 52.020 (21.167) 70.091 (23.805)
3 R .891 83.535 113.537 .890 79.396 86.904 .949 116.532 124.478 .922 109.746 119.219 .913 (.024) 97.302 (16.084) 111.034 (14.459)
2 C .968 39.972 65.695 .941 21.639 31.190 .974 59.103 77.964 .926 78.798 97.444 .952 (.019) 49.878 (21.313) 68.073 (24.117)
3 C .967 38.062 64.349 .949 20.408 29.002 .973 56.188 77.822 .933 72.492 90.289 .956 (.016) 46.788 (19.501) 65.365 (22.911)
4 C .965 38.225 63.063 .949 22.869 31.161 .971 60.623 83.764 .938 73.644 90.367 .956 (.013) 48.840 (19.629) 67.089 (23.059)
5 C .966 35.827 58.820 .953 24.940 33.619 .973 63.562 87.764 .942 74.547 90.793 .958 (.012) 49.719 (20.094) 67.749 (23.325)

γopt = .5

1 — .968 33.475 53.775 .951 22.615 34.416 .973 34.793 58.007 .944 45.324 62.417 .959 (.012) 34.052 (8.043) 52.153 (10.687)
2 U .959 37.461 60.529 .939 24.885 38.056 .967 43.197 69.883 .930 54.504 74.766 .949 (.015) 40.012 (10.671) 60.809 (14.097)
3 U .954 38.786 63.909 .939 26.390 39.771 .968 44.241 71.312 .931 61.182 81.592 .948 (.014) 42.650 (12.503) 64.146 (15.410)
4 U .948 41.150 69.125 .934 29.553 43.996 .966 47.021 74.662 .932 62.330 82.811 .945 (.014) 45.014 (11.810) 67.649 (14.498)
5 U .945 41.936 71.322 .925 30.387 46.164 .963 46.108 75.703 .931 61.750 82.670 .941 (.015) 45.045 (11.233) 68.965 (13.772)
2 NU .959 37.414 60.456 .939 24.881 38.036 .967 43.118 69.763 .930 54.329 74.599 .949 (.015) 39.936 (10.610) 60.714 (14.045)
3 NU .954 38.675 63.792 .940 26.423 39.789 .968 44.452 71.495 .931 61.147 81.601 .948 (.014) 42.674 (12.495) 64.169 (15.428)
4 NU .948 40.867 68.727 .935 29.381 43.748 .966 47.093 74.691 .932 62.323 82.804 .945 (.014) 44.916 (11.890) 67.492 (14.591)
5 NU .946 41.610 70.892 .926 30.201 45.863 .963 46.192 75.685 .931 61.788 82.685 .942 (.015) 44.948 (11.333) 68.781 (13.881)
1 R .913 86.752 110.096 .846 72.130 83.158 .943 94.681 109.176 .942 97.352 104.952 .911 (.039) 87.729 (9.813) 101.845 (10.962)

Unsupervised — — .936 — — .870 — — .947 — — .910 — — .916 (.030) — —
Supervised — — .977 27.331 50.643 .979 23.665 33.994 .992 34.345 62.803 .987 15.011 21.956 .984 (.006) 25.088 (6.970) 42.349 (15.595)

k : number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

‘fièvre’}, {‘gripe’, ‘fiebre’} and {‘flu’, ‘fever’} are used to define this
semantic filter in FR, ES and AU, respectively. Queries with д ≤ .5
are filtered out and are not considered in our experiments. The
mean weekly frequency of the retained queries is regarded as a
proxy of the estimated ILI rates. These estimates are in different
scale with the true ILI rates, thus we only report their Pearson
correlation (r ).
• Supervised learning. We first apply a semantic filter (see point

above) to the queries of each target country. We then train an
elastic net, after maintaining only queries that have a moderate
correlation with the ground truth (r ≥ .3 with the target values in
the training data). This is inline with previously proposed, state-
of-the-art supervised models for the task [38] and is considered as
the top performance we could obtain, if we had access to ground
truth in the target countries.

4.1 Quantitative analysis
Performance estimates are enumerated in Tables 2, 3, and 4 for
each transfer learning task (US→FR, US→ES, US→AU). We first

explored the extreme cases of γ = 0 and γ = 1 (Eq. 3) that result to
using only temporal correlation or semantic similarity, respectively.

For γ = 0, spurious queries could be included in the target do-
main’s mappings. This is a result of the way the pool of target
queries, PT, was originally formed (see Section 2). Seasonal search
queries, correlating with the occurrence of flu incidents in a popula-
tion, are very likely to be selected as mappings, e.g. “symptoms flu”
was mapped to “ski serre chevalier” in the US→FR task. Seasonal
activities or expressions may change in time, and thus such queries
are very unstable predictors. In fact, the best average performance
we can obtain for γ = 0 is considerably worse (MAEs of 61.532,
25.977 and 42.348 for FR, ES, and AU) than for alternative values.
Setting k = 1 provides the best results on average. In general, per-
formance is not affected much by different choices of weighting
(uniform, non-uniform) or the number of queries in a mapping (k).

For γ = 1, we obtain on average more accurate estimates than
for γ = 0. As a precursor to the joint similarity, we also introduce a
correlation-based weighting scheme (denoted by “C”), which uses
the optimal correlation between source and target queries (after
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Table 3: Performance estimates for US→ES transfer learning task. Please refer to Table 2’s caption for further information.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .808 25.068 41.104 .807 25.789 42.137 .843 29.221 47.360 .791 25.134 38.497 .812 (.019) 26.303 (1.708) 42.275 (3.222)
2 U .799 25.589 42.631 .843 23.850 39.092 .844 30.069 48.120 .821 24.470 36.902 .827 (.019) 25.994 (2.434) 41.686 (4.240)
3 U .795 25.756 42.883 .840 23.669 38.934 .843 29.509 48.189 .813 24.989 37.713 .823 (.020) 25.981 (2.169) 41.930 (4.088)
4 U .783 26.504 43.662 .835 23.671 39.207 .844 29.850 48.335 .809 25.715 38.745 .818 (.024) 26.435 (2.226) 42.487 (3.884)
5 U .783 26.579 43.391 .840 23.605 38.861 .842 30.336 48.800 .806 26.586 39.843 .818 (.025) 26.776 (2.388) 42.724 (3.892)
2 NU .799 25.579 42.610 .843 23.852 39.095 .844 30.060 48.111 .821 24.472 36.907 .827 (.019) 25.991 (2.430) 41.681 (4.233)
3 NU .795 25.748 42.867 .840 23.670 38.936 .843 29.503 48.176 .813 24.989 37.712 .823 (.020) 25.977 (2.167) 41.922 (4.082)
4 NU .784 26.491 43.643 .835 23.671 39.209 .844 29.842 48.325 .809 25.708 38.734 .818 (.023) 26.428 (2.223) 42.478 (3.881)
5 NU .783 26.567 43.380 .840 23.605 38.866 .842 30.324 48.785 .806 26.575 39.826 .818 (.025) 26.768 (2.384) 42.714 (3.887)
3 R .830 40.548 46.584 .903 36.241 40.718 .846 53.929 61.098 .813 45.762 49.637 .848 (.034) 44.120 (6.591) 49.509 (7.419)

γ = 1

1 — .954 28.614 34.944 .976 27.777 30.129 .919 44.638 50.082 .899 43.761 46.590 .937 (.030) 36.197 (8.013) 40.436 (8.175)
2 U .955 27.342 33.979 .976 27.118 29.294 .923 44.723 50.213 .925 44.518 49.547 .945 (.022) 35.926 (8.696) 40.758 (9.274)
3 U .958 25.523 31.885 .971 28.293 32.055 .916 47.603 53.909 .917 48.513 54.053 .941 (.024) 37.483 (10.625) 42.975 (11.006)
4 U .960 25.316 31.623 .973 27.998 31.797 .918 46.862 53.458 .918 47.443 52.823 .942 (.025) 36.905 (10.294) 42.425 (10.718)
5 U .957 24.445 30.821 .975 27.169 30.959 .917 45.775 52.620 .914 45.854 51.505 .941 (.026) 35.811 (10.050) 41.476 (10.594)
2 NU .955 26.336 32.978 .977 26.069 28.232 .923 43.543 49.056 .925 43.389 48.409 .945 (.022) 34.834 (8.632) 39.669 (9.221)
3 NU .958 25.532 31.879 .971 28.327 32.076 .917 47.471 53.737 .917 48.356 53.908 .941 (.024) 37.422 (10.543) 42.900 (10.923)
4 NU .960 25.324 31.587 .973 28.020 31.814 .919 46.770 53.334 .917 47.391 52.769 .942 (.025) 36.876 (10.251) 42.376 (10.678)
5 NU .958 24.432 30.759 .975 27.197 30.990 .917 45.778 52.576 .915 45.951 51.574 .941 (.026) 35.839 (10.073) 41.475 (10.607)
2 R .731 47.277 53.345 .804 44.924 52.394 .795 60.370 70.934 .719 48.986 56.506 .762 (.038) 50.389 (5.940) 58.295 (7.454)
2 C .954 25.520 33.516 .976 24.408 26.693 .923 41.827 47.782 .924 41.142 46.278 .944 (.022) 33.224 (8.273) 38.567 (8.816)
3 C .957 23.642 31.398 .970 25.353 29.090 .916 44.358 50.846 .916 45.405 51.174 .940 (.024) 34.690 (10.217) 40.627 (10.416)
4 C .960 23.339 30.912 .973 24.900 28.709 .919 43.431 50.236 .918 44.297 49.873 .942 (.025) 33.992 (9.892) 39.933 (10.153)
5 C .957 24.137 30.513 .974 26.555 30.466 .917 44.598 51.464 .915 45.662 51.359 .941 (.026) 35.238 (9.936) 40.950 (10.461)

γopt = .2

1 — .931 21.419 30.004 .948 15.403 23.900 .907 27.050 39.864 .888 26.762 35.420 .918 (.023) 22.658 (4.751) 32.297 (5.974)
2 U .926 21.433 29.944 .941 17.334 25.525 .899 30.166 43.243 .877 30.662 40.272 .911 (.025) 24.899 (5.705) 34.746 (7.260)
3 U .936 21.249 28.841 .961 18.189 24.028 .908 31.608 42.568 .900 35.661 43.995 .926 (.024) 26.677 (7.186) 34.858 (8.608)
4 U .945 21.016 28.161 .965 18.720 23.647 .917 32.235 41.483 .910 37.141 44.448 .934 (.022) 27.278 (7.654) 34.435 (8.742)
5 U .946 20.977 28.041 .967 18.727 23.321 .910 33.330 43.018 .903 36.846 44.547 .932 (.026) 27.470 (7.760) 34.732 (9.219)
2 NU .926 21.427 29.932 .941 17.321 25.510 .899 30.135 43.214 .877 30.626 40.233 .911 (.025) 24.877 (5.694) 34.723 (7.251)
3 NU .936 21.254 28.845 .961 18.186 24.037 .908 31.583 42.554 .900 35.629 43.969 .926 (.024) 26.663 (7.171) 34.851 (8.595)
4 NU .945 21.023 28.158 .965 18.739 23.682 .917 32.241 41.509 .910 37.128 44.438 .934 (.022) 27.283 (7.643) 34.447 (8.734)
5 NU .946 20.983 28.033 .967 18.747 23.364 .910 33.337 43.028 .903 36.872 44.568 .932 (.026) 27.485 (7.762) 34.748 (9.215)
1 R .865 32.859 40.942 .931 33.323 38.687 .878 49.262 57.762 .814 45.799 51.424 .872 (.042) 40.311 (7.325) 47.204 (7.763)

γ = .5 1 — .945 20.016 28.161 .965 17.720 23.647 .917 31.235 41.483 .910 36.141 44.448 .934 (.022) 26.278 (7.654) 34.435 (8.742)
Unsupervised — — .936 — — .976 — — .910 — — .878 — — .925 (.036) — —
Supervised — — .968 19.788 24.487 .993 30.642 41.059 .972 24.779 35.861 .954 13.271 20.992 .971 (.014) 22.120 (6.392) 30.600 (8.166)

k : number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

deploying a shifting window) to determine the proportion of the
source weight that will be allocated to the k mapped queries. In
countries that deploy a translation module based on bilingual word
embeddings, the “C” scheme (k = 2 or 3) outperforms the other
two (uniform, non-uniform). For the US→AU task, where high
semantic similarity often means that very similar queries are being
mapped to each other (given the common language), the optimal
model is obtained for k = 1, and thus, no further distribution of
the weights is required. With or without the “C” weighting scheme,
better performance is achieved compared to setting γ = 0 (MAEs of
46.788/48.77, 33.224/34.834 and 34.509/30.275 for FR, ES, and AU).

The joint similarity scheme attempts to combine the positive at-
tributes of semantic and correlation based similarities. To assess its
potential contribution, we performed a grid search using 9 values of
γ (from .1 to .9), and presented the results for the best performing
one (γopt). For completeness, we also show results for the default
choices of γ = .5 and k = 1. Firstly, the application of the joint
similarity leads to significant performance improvements in all
tasks (MAEs of 34.052, 22.658 and 22.043 for FR, ES, and AU). Sec-
ondly, the best performing model consistently occurs for k = 1, i.e.
for one-to-one query mappings, where no weight redistribution is
required. Finally, although results do not deviate much from the

default settings ofγ = .5 and k = 1, there are discrepancies between
the optimal γ value for each task (γopt = .5, .2 and .9 for FR, ES, and
AU). One possible explanation may be that this is an artefact of the
intrinsic characteristics (size, semantic/temporal similarities) of the
pool of candidate target queries used for each task (see Section 4.2).

Better performance is always obtained (in terms of MAE and
RMSE) compared to the random mapping allocation baseline (“R”),
the best performance estimates of which per γ value are provided.
The same holds for TCA, which performs even worse than random
(results are omitted). One explanation for this is that TCA fails to
capture the time series structure of this particular data set, an es-
sential property for producing a meaningful solution. Furthermore,
the optimal models (joint similarity) outperform the unsupervised
baseline in terms of correlation, the only metric which is relevant in
this case. Finally, compared to the fully supervised elastic net, the
transfer learning unsupervised approach reaches to a comparable
performance, which is worse by 23.15%, 5.55%, and 17.5% (in terms
of RMSE), for FR, ES, and AU, respectively.

Fig. 2 plots the time series of a selection of these estimates, in-
cluding the ones of the best performing models, in comparison
to the ground truth, for each target country. We can see how es-
timates become significantly better when the joint similarity is
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Table 4: Performance estimates for the US→AU transfer learning task. Please refer to Table 2’s caption for further information.

Mapping k w 09/2012 – 09/2013 09/2013 – 09/2014 09/2014 – 09/2015 09/2015 – 09/2016 Average
r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

γ = 0

1 — .704 38.804 50.140 .677 39.151 48.508 .630 51.412 65.215 .787 40.025 57.421 .700 (.056) 42.348 (5.359) 55.321 (6.830)
2 U .622 41.824 55.943 .663 41.708 50.752 .633 52.017 66.448 .763 40.557 59.312 .670 (.055) 44.027 (4.734) 58.114 (5.873)
3 U .621 42.263 56.819 .669 42.900 51.487 .631 53.041 67.754 .769 41.330 59.468 .672 (.058) 44.883 (4.840) 58.882 (6.055)
4 U .607 42.040 56.755 .669 42.501 51.008 .634 51.868 66.404 .759 40.287 58.660 .667 (.056) 44.174 (4.611) 58.207 (5.678)
5 U .600 41.900 56.618 .671 41.950 49.692 .647 50.958 64.744 .761 40.899 58.979 .670 (.058) 43.927 (4.164) 57.508 (5.561)
2 NU .623 41.886 55.947 .663 41.642 50.818 .633 52.068 66.590 .763 40.617 59.384 .670 (.055) 44.053 (4.747) 58.185 (5.908)
3 NU .620 42.263 56.812 .668 42.857 51.533 .631 53.062 67.852 .769 41.373 59.540 .672 (.058) 44.889 (4.845) 58.934 (6.081)
4 NU .607 42.031 56.745 .669 42.466 51.039 .634 51.909 66.504 .759 40.343 58.732 .667 (.056) 44.187 (4.621) 58.255 (5.708)
5 NU .600 41.885 56.601 .671 41.928 49.723 .647 51.011 64.844 .761 40.935 59.032 .670 (.058) 43.940 (4.186) 57.550 (5.589)
1 R .653 60.835 71.392 .710 52.090 62.045 .628 67.895 78.856 .738 69.695 75.320 .683 (.043) 62.629 (7.069) 71.903 (6.468)

γ = 1

1 — .916 23.447 26.436 .871 13.994 18.129 .902 35.315 42.126 .971 48.344 50.617 .915 (.035) 30.275 (13.143) 34.327 (13.150)
2 U .900 28.828 33.029 .880 18.583 22.656 .925 39.274 45.149 .989 59.174 60.026 .923 (.040) 36.465 (15.320) 40.215 (14.366)
3 U .896 30.804 35.148 .881 19.492 23.743 .938 36.748 42.294 .990 57.829 58.516 .926 (.041) 36.218 (14.216) 39.925 (12.999)
4 U .889 30.876 35.549 .872 21.475 26.089 .935 37.484 42.966 .994 57.871 58.397 .922 (.047) 36.926 (13.636) 40.750 (12.180)
5 U .882 31.248 35.738 .868 21.320 25.883 .936 37.615 43.059 .992 58.773 59.318 .919 (.047) 37.239 (14.002) 41.000 (12.584)
2 NU .902 28.789 32.947 .880 18.497 22.565 .925 39.278 45.150 .989 59.007 59.861 .924 (.039) 36.393 (15.287) 40.131 (14.347)
3 NU .897 30.805 35.137 .882 19.510 23.775 .938 36.973 42.482 .990 57.779 58.462 .927 (.041) 36.267 (14.193) 39.964 (12.978)
4 NU .890 30.839 35.484 .873 21.367 25.986 .936 37.554 42.999 .994 57.825 58.354 .923 (.046) 36.896 (13.655) 40.706 (12.205)
5 NU .884 31.217 35.678 .870 21.261 25.830 .936 37.609 43.019 .992 58.770 59.309 .920 (.047) 37.214 (14.022) 40.959 (12.603)
1 R .825 58.539 60.310 .793 42.200 46.818 .890 55.940 61.462 .963 65.023 66.924 .868 (.064) 55.426 (8.491) 58.878 (7.627)
2 C .905 27.444 31.356 .881 17.547 21.520 .925 37.373 43.387 .989 58.318 59.229 .925 (.040) 35.171 (15.399) 38.873 (14.510)
3 C .900 28.802 32.701 .882 18.039 22.091 .939 34.534 40.310 .990 56.660 57.516 .928 (.041) 34.509 (14.381) 38.154 (13.316)
4 C .894 28.643 32.867 .874 19.505 23.747 .938 34.613 40.360 .994 56.309 57.011 .925 (.045) 34.768 (13.828) 38.496 (12.579)
5 C .888 29.149 33.118 .870 19.259 23.507 .939 34.622 40.252 .992 57.220 57.962 .922 (.047) 35.063 (14.211) 38.710 (12.993)

γopt = .9

1 — .922 11.997 14.986 .879 15.084 18.011 .898 24.898 31.110 .985 36.191 38.271 .921 (.039) 22.043 (9.649) 25.594 (9.796)
2 U .892 16.642 19.922 .881 15.719 19.009 .923 23.858 30.280 .988 39.919 41.175 .921 (.041) 24.034 (9.895) 27.596 (9.282)
3 U .890 18.641 22.543 .876 18.391 21.453 .930 23.965 29.934 .989 41.232 42.249 .921 (.043) 25.557 (9.510) 29.045 (8.549)
4 U .883 19.078 23.494 .866 19.766 22.757 .928 23.691 29.686 .991 40.159 41.138 .917 (.047) 25.673 (8.721) 29.269 (7.590)
5 U .875 20.091 24.960 .862 18.791 21.614 .933 23.474 29.474 .991 41.433 42.483 .915 (.050) 25.947 (9.288) 29.633 (8.171)
2 NU .894 16.565 19.826 .882 15.679 18.961 .923 23.830 30.226 .988 39.809 41.071 .922 (.040) 23.971 (9.873) 27.521 (9.270)
3 NU .892 18.588 22.457 .877 18.312 21.353 .930 23.995 29.967 .989 41.230 42.245 .922 (.042) 25.531 (9.534) 29.005 (8.589)
4 NU .885 19.043 23.410 .867 19.639 22.621 .929 23.690 29.673 .991 40.229 41.204 .918 (.047) 25.650 (8.781) 29.227 (7.665)
5 NU .877 19.983 24.795 .864 18.716 21.530 .933 23.414 29.390 .991 41.416 42.462 .916 (.049) 25.882 (9.318) 29.544 (8.210)
1 R .844 47.859 50.120 .817 37.727 40.926 .900 54.008 59.263 .940 55.980 59.071 .875 (.047) 48.893 (7.254) 52.345 (7.791)

γ = .5 1 — .871 18.642 23.367 .848 17.735 20.735 .873 27.140 32.733 .930 39.651 43.484 .880 (.298) 25.792 (8.982) 30.080 (9.208)
Unsupervised — — .815 — — .810 — — .881 — — .942 — — .862 (.054) — —
Supervised — — .891 19.353 25.297 .865 22.048 25.200 .939 18.658 22.473 .971 11.255 14.159 .916 (.041) 17.829 (4.001) 21.782 (4.545)

k : number of target queries (1-to-k mapping), w: weighting approach, U: uniform, NU: non-uniform, C: correlation, R: random

used versus its extremes. The transferred models can very often
estimate the peak of the flu season accurately. This includes the
time of occurrence as well as its intensity. Notably, ILI rates in the
target countries differ in terms of scale compared to ones of the
source, but the proposed models are capable of capturing different
scales effortlessly, providing further evidence about the user search
behavior similarities among different countries (Section 3.1). At the
same time, most models show some inaccuracies, especially during
the time periods with very moderate flu circulation (e.g. summer).

4.2 Qualitative analysis
A fair criticism for the proposed framework is that in a practical sce-
nario the optimal values for γ and k cannot be validated. However,
we have already demonstrated that the default settings of γ = .5
and k = 1 provide very satisfactory performance in all our case stud-
ies. Fig. 3 looks further into this, depicting performance estimates
(MAE) for different values of γ . As discussed previously, optimal
γ values differ per target country. Interestingly, all error trends
are monotonically decreasing (as γ increases) until they reach a
minimum, and then begin to monotonically increase. We argue
that γopt reflects on the actual pool of candidate target queries (PT),
although we have a small sample size to be able to empirically prove

this. In our data, the average correlation over the average semantic
similarity ratio between all source-target query pairs is equal to
1.143, .982 and 2.261, for the FR, ES, and AU tasks respectively.
These ratios depend on characteristics of the target queries which
we are not controlling for in our approach. They do correlate with
the respective optimal γ values (.5, .2, and .9), an insight that can
be used to make a more informed choice of γ in future applications
of the proposed framework.

Table 5 lists the top-5 query mappings that were the most im-
pactful in the ILI estimates on average during the 10 weeks with
the lowest and greatest MAEs (for the optimal transfer models).
Impact is determined by the percentage of an estimated ILI rate
that is contributed by a query (frequency × weight / estimated
ILI rate). The identified pairs during the weeks with the lowest
errors are topically coherent (about flu) and in many occasions are
accurate translations from the source to the target language. On
the other hand, pairs responsible for the largest errors include inac-
curate translations that sometimes lead to an off-topic target query
selection. For example, “24 hour flu” is mapped to “grippe intesti-
nale” (impact: 13.2%),9 “child fever” to “sinusitis” (7.7%), and “child
temperature” to “warmer” (9.8%). Nevertheless, it is encouraging
9“Grippe intestinale” translates to “stomach flu” (formally “viral gastroenteritis”).
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Figure 2: Comparison of transfer learning models for estimating ILI rates in France (A), Spain (B) and Australia (C) with the
corresponding actual ILI rates obtained by health agencies in these countries.

ILI rate). The identi�ed pairs during the weeks with the lowest
errors are topically coherent (about �u) and in many occasions are
accurate translations from the source to the target language. On
the other hand, pairs responsible for the largest errors include inac-
curate translations that sometimes lead to an o�-topic target query
selection. For example, “24 hour �u” is mapped to “grippe intesti-
nale” (impact: 13.2%),9 “child fever” to “sinusitis” (7.7%), and “child
temperature” to “warmer” (9.8%). Nevertheless, it is encouraging
that some of these mappings may have been avoided by carefully
preprocessing the target query candidates to avoid spurious queries.

The optimal joint similarity transfer models do not improve by
increasing the number of target queries (k > 1). An interpretation
for that might be drawn by the fact that for k = 1 at most 77.9% of
the selected target queries are unique (at least 22.1% are repetitive

9“Grippe intestinale” translates to “stomach �u” (formally “viral gastroenteritis”).

selections). Hence, the method seems to be converging to a subset
of queries already for k = 1. As k increases, the error increases
monotonically. This might be due to the existence of various spu-
rious queries in the feature space which are being introduced as
additional mappings.

Finally, the choice of adding a non-negativity constraint to the
regularized regression function for the source domain (Eq. 1), was
also empirically justi�ed. When it is removed, we can learn a more
accurate source model for the US, but the MAE on the target coun-
tries increases on average by 20.6%, 21.6%, and 20.5% for FR, ES,
and AU respectively. This con�rms our original assumption that
transferring negative weights is a harder task, and thus, error-prone.

Figure 2: Comparison of transfer learning models for estimating ILI rates in France (A), Spain (B) and Australia (C) with the
corresponding actual ILI rates obtained by health agencies in these countries.

that some of these mappings may have been avoided by carefully
preprocessing the target query candidates to avoid spurious queries.

The optimal joint similarity transfer models do not improve by
increasing the number of target queries (k > 1). An interpretation
for that might be drawn by the fact that for k = 1 at most 77.9% of
the selected target queries are unique (at least 22.1% are repetitive
selections). Hence, the method seems to be converging to a subset
of queries already for k = 1. As k increases, the error increases
monotonically. This might be due to the existence of various spu-
rious queries in the feature space which are being introduced as
additional mappings.

Finally, the choice of adding a non-negativity constraint to the
regularized regression function for the source domain (Eq. 1), was

also empirically justified. When it is removed, we can learn a more
accurate source model for the US, but the MAE on the target coun-
tries increases on average by 20.6%, 21.6%, and 20.5% for FR, ES,
and AU respectively. This confirms our original assumption that
transferring negative weights is a harder task, and thus, error-prone.

5 RELATED WORK
The fundamental properties of transfer learning have been thor-
oughly discussed in relevant literature [6, 7, 40, 49, 59, 65]. In con-
trast to traditional machine learning methods, which assume that
the training and test data belong to the same domain, i.e. they are
drawn from the same feature space and distribution, transfer learn-
ing aims to improve the learning function in a target domain by
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Table 5: Top-5 target queries (with source mappings) in terms of mean ILI estimate impact (%) in the 10 weeks with the lowest
and greatest MAE (all test periods), for all target countries (TC), based on their respective optimal transfer learning models.

TC Mappings during accurate estimates Mappings during inaccurate estimates
FR flu incubation period→ grippe durée (10.9), cough fever→ la toux (6.3), how to

treat flu→ comment soigner une grippe (6), fever flu→ fièvre de la grippe (5.47),
flu treatment→ traitement de la grippe (4.95)

24 hour flu→ grippe intestinale (13.24), influenza a treatment→ grippe traite-
ment (8.07), remedies for colds → rhume de cerveau (6.75), child tempera-
ture→ température du corps (6.37), child fever→ fièvre adulte (6.04)

ES symptoms of flu→ symptômes grippe (9.04), fever flu→ con gripe (7.49), cough
fever→ la tos (6.34), flu incubation period→ cuanto dura una gripe (5.19), how
to treat a fever→ para bajar la fiebre (5.03)

mucinez for kids→ tratmiento de la grippe (20.76), child fever→ sinusitis (7.76),
influenza a treatment→ con gripe (7.02), symptoms pneumonia→ bronquitis
(6.04), child temperature→ temperatura corporal (5.62)

AU treatment for the flu → flu treatment (9.85), cough fever → cough and fever
(8.05), flu type → influenza type (5.37), symptoms of flu → symptoms of flu
(5.11), flu incubation period→ flu incubation period (5.03)

24 hour flu → flu duration (11.51), child temperature → warmer (9.77), how
to treat a fever → have a fever (6.94), tamiflu and breastfeeding → flu while
pregnant (6.81), robitussin cf→ colds (5.18)

transferring knowledge from a related, source domain. This concept
has been successfully applied to various tasks, including text clas-
sification [14, 16, 22, 48], part of speech tagging [10, 28], machine
translation [20, 29], and image classification [19, 30, 71].

In this work, we present a statistical framework for transferring a
disease surveillance model from a source country, where supervised
learning is applicable, to a target country, where no ground truth is
available. We formulate it as a cross-lingual transductive regression
task [49], which poses the following challenges: (a) ground truth is
not available in the target domain, and (b) features (queries) may
not belong in the same feature space due to linguistic or cultural
differences. Due to (a), multi-task learning models, such as this
solution for ILI [72], cannot be used because they still require partial
ground truth from the target domain to capture the relationship
between the different tasks [13]. To solve (b), a few studies have
attempted to learn a mapping of both source and target languages to
the same space [27, 55, 57, 64]. For example, Prettenhofer and Stein
used unlabeled documents along with a word translation oracle to
automatically induce task-specific, cross-lingual correspondences
for cross-lingual text classification [55]. In this paper, we used cross-
lingual word embeddings to align different languages [57].

Methods have also been proposed for reducing the distance be-
tween the source and target features [48, 70]. For example, Pan et
al. proposed TCA to learn transfer components across source and
target domains in a reproducing kernel Hilbert space using maxi-
mum mean discrepancy [48]. Zhou et al. constructed a sparse fea-
ture transformation matrix based on compressive sensing theory to
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Figure 3: MAE under differentγ values for the transfer learn-
ing models for FR, ES, and AU (k = 1).

map the weight vector of classifiers learned from the source domain
to the target domain [70]. However, their tasks are very different
from the regression task studied in this paper. These models were
not able to capture efficiently the time series structure in our data.

Finally, the topic of disease modelling, and in particular of ILI,
from online user-generated content has been extensively studied in
the literature. The vast majority of methods proposed supervised
solutions, using social media or search engine data together with
disease rates from an established health authority [15, 21, 32, 33,
35, 38, 50, 52, 53, 67]. A few unsupervised methods have also been
attempted, but they showcased moderate accuracy in terms of cor-
relation [31, 51]. Our approach is able to provide accurate estimates
without using any ground truth in the target locations.

6 CONCLUSIONS
Prior work on estimating disease rates from online user-generated
content relies heavily on supervised learning models. Such mod-
els require ground truth data which is usually provided by public
health organizations. Syndromic surveillance data, however, is ei-
ther sparse or absent from locations with a poor healthcare infras-
tructure. This is somewhat ironic as it is often stated that web-based
approaches hold considerable promise for regions that lack an es-
tablished health surveillance system. This paper proposes a transfer
learning framework as a potential solution to this problem. We
leverage semantic and temporal relationships to map a supervised
model from a source to a target location. We show that we can
obtain a satisfactory performance (r > .92 on average) that does
not deviate much from a fully supervised model (≤ 21.6% increase
in RMSE), without using any ground truth from the target domain.

There is a number of avenues for future work. It is highly desir-
able to perform a study where the target country is from a low or
middle income region. However, such a study is complicated, since
the lack of ground truth data does not allow the performance to
be quantified. Nevertheless, a qualitative study that demonstrated
ILI estimates that followed an expected seasonal pattern would
be of value. Our experiments on regions with ground truth data
allowed us to investigate parameters k and γ , i.e. the choice for the
one-to-k mapping and the relative weight assigned to the semantic
and temporal similarities. Our analysis indicated that a one-to-one
(k = 1) mapping performed best on average, and that the optimal
γ differed per target country. Although we attempted to justify
both outcomes, further experiments on other regions are needed to
understand the effect of these parameters better.
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