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Abstract

Predicting pregnancy has been a fundamental problem in women’s health for more than 50 years. 

Previous datasets have been collected via carefully curated medical studies, but the recent growth 

of women’s health tracking mobile apps offers potential for reaching a much broader population. 

However, the feasibility of predicting pregnancy from mobile health tracking data is unclear. Here 

we develop four models – a logistic regression model, and 3 LSTM models – to predict a woman’s 

probability of becoming pregnant using data from a women’s health tracking app, Clue by 

BioWink GmbH. Evaluating our models on a dataset of 79 million logs from 65,276 women with 

ground truth pregnancy test data, we show that our predicted pregnancy probabilities meaningfully 

stratify women: women in the top 10% of predicted probabilities have a 89% chance of becoming 

pregnant over 6 menstrual cycles, as compared to a 27% chance for women in the bottom 10%. We 

develop a technique for extracting interpretable time trends from our deep learning models, and 

show these trends are consistent with previous fertility research. Our findings illustrate the 

potential that women’s health tracking data offers for predicting pregnancy on a broader 

population; we conclude by discussing the steps needed to fulfill this potential.
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1 INTRODUCTION

Predicting pregnancy is a fundamental problem in women’s health [11, 13, 27, 41]. 

Modeling the probability of pregnancy, and identifying behaviors which affect it, allows for 

more efficient family planning. Identifying people with a very low chance of becoming 

pregnant is important for targeting and treating infertility, which can be a devastating 

experience [18]. Because of the importance of predicting and facilitating pregnancy, the 

fertility services market is predicted to grow to $21 billion by 2020 [38].

Attempts to predict pregnancy go back decades, often using Bayesian methods [11, 13, 27, 

41] to capture the complex dynamics which govern fertility. Many factors influence fertility, 

including age [12] and medical conditions [24, 30]. Fertility fluctuates over the course of the 

menstrual cycle (which averages 28-29 days in length, although this varies across women 

[8]), peaking during the “fertile window”, around 14 days before the end of the cycle. For 

women with a regular cycle of 28-29 days, the fertile window occurs approximately midway 

through the cycle [3, 50]. Because the timing of the fertile window varies, and intercourse 

during the fertile window is much more likely to result in pregnancy, fertility prediction 

methods often focus on detecting and predicting the fertile window, using ovulation tests and 

measurements of cervical mucus and basal body temperature [5, 16].

Previous studies of fertility have relied on carefully curated data from medical studies [3, 11, 

13, 27, 39-41, 43]: for example, participants are generally asked to regularly monitor critical 

features like basal body temperature and menstrual cycle starts and to take pregnancy tests 

after each menstrual cycle. Many people are unwilling or unable to engage in such careful 

monitoring, limiting the applicability of these methods to the general population.

In the last few years, the growing use of health tracking mobile apps offers a new potential 

data source for predicting pregnancy in broader populations. Health tracking apps have been 

recognized as delivering a “data bounty” [19] for healthcare [32, 49]. Within women’s 

health specifically, health tracking apps are used by millions of women worldwide [7, 15, 

37], and have already been used to study sexually transmitted infections [2], menstrual cycle 

fluctuations [35, 47], and menstrual cycle lengths [21]. These apps allow users to create 

profiles which include age and birth control information and keep daily logs of symptoms 

relevant to pregnancy, including basal body temperature, period starts, and ovulation tests. 

Crucially, they also allow women to log positive and negative pregnancy tests, providing a 

ground truth source of pregnancy data. Pregnancy data collected by women’s health mobile 

apps differs from that collected in medical studies in three ways:

1. Larger datasets. The dataset we consider in this paper contains tens of millions 

of observations from tens of thousands of women, orders of magnitude more than 

previous datasets [14]. Complex models developed for these smaller datasets, 

which often rely on computationally intensive techniques like MCMC sampling, 
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will not scale to datasets from mobile health tracking apps, necessitating new 

methods.

2. Broader populations. While previous fertility studies have predominantly 

focused on filtered, mostly healthy or proven fertile populations that volunteer 

for research within a single country, health tracking apps can be used by anyone 

with a smartphone, and are used by women all over the world.

3. Missing data. Critical features like basal body temperature (BBT) and 

pregnancy tests are less reliably recorded in mobile health tracking datasets than 

in medical studies, making missing data a pressing concern.

Mobile tracking datasets thus present new challenges but also new opportunities for 

predicting pregnancy in a much broader population. To this end, a number of companies 

have announced initiatives to predict pregnancy or fertility using mobile tracking data [1, 28, 

33, 42]. To date, however, it is unclear whether their fertility prediction algorithms are 

reliable, because they are proprietary (so they cannot be compared to or independently 

assessed) and their efficacy has been disputed [26, 31, 46].

This work.

Here we present what is to our knowledge the first study of pregnancy prediction using fully 

described methods applied to large-scale women’s health tracking app data. Using a dataset 

from a women’s health tracking app which includes ground truth data on pregnancy tests, 

we develop and assess four pregnancy prediction models — an interpretable logistic 

regression model, and three LSTM models — which integrate traditional fertility modeling 

methods and modern time series prediction methods. We first show that our models 

meaningfully stratify women by their probability of becoming pregnant: women in the top 

10% of predicted probabilities have a 89% chance of becoming pregnant over 6 menstrual 

cycles, while women in the bottom 10% have only a 27% chance. We further provide an 

intuitive technique for extracting interpretable time trends from our LSTM models, 

overcoming a common failing of deep learning models, and show that these time trends are 

consistent with previous fertility research. Finally, we discuss the steps that should be taken 

to maximize the efficacy of pregnancy prediction from women’s health tracking data.

2 PROBLEM SETUP

Our task is predicting, on the basis of the health tracking data a woman logs during a single 

menstrual cycle, whether she will log a positive pregnancy test at the end of that cycle. We 

first describe our dataset and then describe our task in more detail.

2.1 Dataset

We use data from the Clue women’s health tracking app [17]. The app has been rated the 

most accurate menstrual cycle tracking app by gynecologists [29] and previously used in 

studies which show that it reliably replicates known women’s health findings [2, 21, 35]. All 

data is de-identified and analysis was determined to be exempt from review by the Stanford 

Institutional Review Board.
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Features.—Our dataset consists of two types of features:

• User features. Users can record age and birth control method (e.g., “None”, 

“Condoms”, “IUD”, or various types of birth control pill). We encode age using 

a two-element vector: a binary element which indicates whether age data is 

missing, and a continuous element which is the value of age if it is present, and 0 

otherwise. We encode birth control using a vector with indicator variables for 

each type of birth control; the vector is all zeros if birth control data is missing.

• Daily feature logs. Each row in this dataset consists of one log of one feature for 

one user on one date. Users can log 110 binary features, including positive/

negative pregnancy tests (which we use to define ground truth, and do not 

include in the inputs to our model), period bleeding, mood and behavior features 

(eg, happy mood or exercise:running), and taking daily birth control. Users can 

also log 3 continuous features: basal body temperature (BBT), resting heart rate, 

and body weight. We list all daily features in Table 1.

Data filtering.—To ensure that users are regularly using the app, we filter for users who 

enter at least 300 daily feature logs. We apply basic quality control filters to the three 

continuous features to remove unreliable values (for example, BBT > 110°F). To minimize 

the chance that users are already pregnant, we filter out all cycles after a user has logged a 

positive pregnancy test.

Defining menstrual cycle starts.—Because fertility fluctuates over the course of the 

menstrual cycle, defining menstrual cycle starts – when the period begins – is necessary to 

predict pregnancy. We define a cycle start as a start of bleeding after the user has not 

recorded any bleeding for at least 7 days. So, for example, if the user records bleeding on 

May 1, 2, and 29, the cycle starts would be May 1 and May 29. A user’s cycle day is the 

number of days since their most recent cycle start, with 0 denoting the day of cycle start.

Encoding continuous features.—We encode continuous features (eg, weight) using a 

two-element vector: a binary element which indicates whether data is present or missing, 

and a continuous element which is the value for the feature if present, and 0 otherwise. For 

each cycle and each user, we subtract off the mean for each continuous feature (since the 

change in features like BBT is most indicative of cycle phase and therefore fertility [6]). We 

include each user’s average value of the three continuous features as a user-specific feature.

2.2 Prediction task

Our task is predicting from the first 24 days of a user’s cycle whether she will become 

pregnant in that cycle. We choose the 24-day interval because most women are very unlikely 

to become pregnant past this interval [50]. Our prediction task is binary, and each example is 

one cycle for one woman. We define positive examples as cycles in which the woman logs a 

positive pregnancy test after day 24 of the cycle and before day 24 of the next cycle (Figure 

1); we define negative examples as cycles with a negative pregnancy test and no positive 

pregnancy test. Thus, our dataset consists only of cycles followed by positive or negative 

pregnancy tests 1. Importantly, predicting whether a test will be positive or negative is a 
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difficult and useful prediction task, because it occurs in settings where the woman herself is 

sufficiently uncertain about whether she is pregnant that she believes taking a test is 

worthwhile. Our dataset consists of 16,580 positive cycles, 88,685 negative cycles, 65,276 

women, and 79,423,281 symptom logs. The proportion of cycles which are positive in our 

dataset (16%) is consistent with previous work [10]. We use data from 90% of users for 

training/validation and report results on a test set of the remaining 10% of users. We train on 

a dataset balanced for positive and negative examples by down-sampling each training batch 

(a standard technique for training on unbalanced data [23]). Following standard practice, we 

report all results on the unbalanced test dataset.

3 PREVIOUS WORK

Our predictive models rely on ideas both from the fertility modeling literature and from the 

deep learning time series prediction literature. We now summarize work in both areas.

3.1 Fertility modeling

We briefly summarize three main approaches in the extensive fertility modeling literature; 

[14] provides a lengthier review.

1. Time-to-pregnancy (TTP) models [20, 36,44,48] assume each individual 

menstrual cycle results in pregnancy with some probability μ which can vary 

across couples and over time. These models are useful for capturing the high 

level covariates which influence μ (eg, age) but they do not capture detailed daily 

dynamics within a single cycle (eg, sex during the fertile window is more likely 

to result in pregnancy). Therefore, they are less useful for modeling the health-

tracking datasets we consider, whose strength is their detailed daily information.

2. Barrett-Marshall and Schwartz (BMS) models [3,11,13, 39, 43, 45] allow for 

more detailed modeling of daily activity within each cycle. They assume each act 

of sex contributes independently to the probability a cycle results in pregnancy. 

The probability that someone becomes pregnant in a cycle is thus

1 − ∏
d

(1 − f d)
Sd,

where d is the cycle day, fd is the probability of getting pregnant by having sex 

only on day d, and Sd is a binary variable indicating whether sex occurred on day 

d. The term inside the product is the probability that day d does not result in 

pregnancy; it is 1 if Sd is 0, indicating that no sex occurred, and 1 – fd if Sd is 1. 

Schwartz [43] extends this model by assuming that the overall probability of 

pregnancy also depends on a couple-specific parameter which captures, for 

1We define positive and negative examples in this way to mitigate missing data concerns. The alternative (i.e. assuming that any cycle 
without a positive pregnancy test is a negative example) is problematic for two reasons. First, some users may not bother to log 
positive tests, so the negative label is a false negative. Second, some users may not bother to log birth control, concealing the fact that 
they have very little chance of getting pregnant—consistent with this, we find that the fraction of positive examples using this method, 
even for users who log no birth control, is far lower than the previous literature would imply.
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example, the fact that some couples are infertile irrespective of sexual activity 

patterns. However, this additional parameter creates model identifiability 

problems.

3. Extended Time-to-Pregnancy (ETTP) models [9,40] provide an approximation 

to the BMS model by assuming that only sex on the most fertile day contributes 

to the probability of pregnancy, and sex on other days has no effect. As this 

model is only a pragmatic approximation to the true generative process, we 

instead develop a computationally efficient implementation of the BMS model.

All three of the above models were developed for datasets orders of magnitude smaller than 

the one we consider. Consequently, they perform parameter inference by estimating the 

posterior distribution, often using computationally intensive techniques like MCMC, and 

will not scale to our dataset. Therefore, in this work, we extend the BMS model using a 

scalable deep-learning-based model. Our extension scales to health-tracking datasets 

because it relies on more efficient backpropagation-based optimization.

3.2 Deep learning for time series prediction

Long Short Term Memory (LSTM) neural networks [22] have been successfully used to 

model medical time series data [4, 25, 34]. They maintain a hidden state at each timestep 

which can be used for prediction, and are a natural choice for prediction on time series with 

discrete timesteps (in our case, days of the menstrual cycle). Because they rely on more 

scalable backpropagation methods, they also scale to large health-tracking datasets.

4 MODELS

We develop four models. We select model hyperparameters – learning rate, hidden size, 

number of layers, batch size, dropout rate, and regularization strength – using grid search. 

Our models are publicly available at https://github.com/AndyYSWoo/pregnancy-prediction.

1. Logistic regression. As an interpretable baseline, we use logistic regression with 

coefficients for each feature and each cycle day (for example, having unprotected 

sex on cycle day 14), and coefficients for each user-specific feature. Our feature 

vector for each example consists of 2,771 features.

2. LSTM. We use an LSTM network with 24 timesteps (one for each cycle day). 

For each time-step, we feed as input the observed features for that cycle day 

(binary features plus continuous features, encoded as described in Section 2.1) 

along with the cycle averages for continuous features. The final hidden state of 

the LSTM is concatenated with the user-specific features and fed into a fully 

connected layer to produce the prediction.

3. LSTM + BMS fertility model. We develop an LSTM-based extension of the 

BMS model. As described in Section 3.1, the BMS model assumes each act of 

sex contributes independently to the probability a cycle results in pregnancy. 

Thus, we model a user’s probability of becoming pregnant in a cycle as
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Pr(pregnant) = 1 − ∏
d

∏
t

1 − rt ⋅ f d
sdt

where d is cycle day, t the type of sex (protected, unprotected, withdrawal, or 

none2), sdt indicates if sex of type t was logged on day d, fd ∈ (0,1) is the 

contribution of sex on cycle day d towards pregnancy, and rt ∈ (0,1) is a learned 

parameter capturing the risk of a kind of sex (eg, runprotected > rprotected). The 

term inside the product is the probability that an act of sex of type t on cycle day 

d does not result in pregnancy. We model fd as a function of the daily features xd 

using an LSTM, as illustrated in Figure 2.

4. LSTM + user embeddings. Using only the user’s current cycle does not account 

for their full history: eg, a user who has frequently logged unprotected sex for a 

long time but has not yet become pregnant may be less fertile. To incorporate 

information prior to the current cycle, we use a “user history LSTM” to encode 

the 180 days of user history prior to the user’s current cycle, then use this 

LSTM’s final state as a user embedding vector which we concatenate onto the 

other features and feed into a second LSTM as before. We jointly train both 

LSTMs. Figure 3 illustrates the model architecture.

5 RESULTS

5.1 Predictive performance

Metrics.—We evaluate model performance using AUC. Importantly, becoming pregnant is 

inherently a somewhat random process: it is impossible to guarantee a woman will become 

pregnant in a particular cycle. Consequently, achieving a very high AUC on our task is 

unlikely to be feasible, and we would not expect AUC to be very high. Nonetheless, we 

report AUC because it is a standard metric. As a second metric, we compare the probability 

ppreg that a user will log a positive pregnancy test after a cycle for the users in the top 10% 

of predicted pregnancy probabilities and users in the bottom 10% of predicted probabilities. 

(Note that ppreg is the true, not the predicted, probability of a positive pregnancy test.) 

However, the goal of fertility counseling is not to guarantee a woman will get pregnant in a 

particular cycle, but rather that over some reasonable time period (eg, 6 cycles) she has a 

good chance of becoming pregnant if she continues her current pattern of behavior. Thus, we 

also compute the 6-cycle probability of becoming pregnant, assuming that each cycle 

contributes independently to the probability of pregnancy and that woman continues her 

current pattern of behavior. For example, if a woman’s single-cycle ppreg is 0.2, her six-cycle 

ppreg is 1 – (1 – 0.2)6.

Results.—The LSTM with user embeddings has the highest AUC (0.67) (Table 2). This 

model is able to meaningfully stratify users by their probability of getting pregnant: for 

example, the top 10% of users have an 89% chance of pregnancy over 6 cycles, whereas the 

2We allow the model to learn a non-zero probability of getting pregnant even if no sex is logged to account for missing data, where 
users neglect to log sex but still get pregnant; this significantly improves the BMS model’s predictive accuracy.
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bottom 10% have only a 27% chance. While the other three models have somewhat lower 

AUCs, all four models usefully stratify users by pregnancy probability. The BMS model 

slightly worsens LSTM performance, possibly because of the more restrictive assumptions 

of its probability model – that is, that the overall probability of not getting pregnant in a 

cycle is the product of the probabilities of not getting pregnant on each cycle day. This 

demonstrates that traditional fertility models may not yield optimal predictive performance 

on mobile health datasets.

5.2 Interpretability

We next assess whether our models learn interpretable time trends which are consistent with 

prior fertility research. Because sexual activity is the feature most fundamentally associated 

with pregnancy, we examine time trends for the three types of sex logged in Clue data: 

unprotected, protected, and withdrawal sex.

Interpreting the logistic regression model.—Extracting time trends from the logistic 

regression model is straightforward, because the model is specifically developed to be 

interpretable. To understand how a feature contributes to the probability of pregnancy, we 

simply plot the coefficients for logging the feature on each day (Figure 4, left). The daily 

feature which is most strongly associated with positive pregnancy tests (averaging weights 

across all cycle days) is unprotected sex; the feature which is most strongly associated with 

negative pregnancy tests is protected sex.

Interpreting the LSTM models.—Interpreting deep learning models is much less 

straightforward, since they are high-dimensional and nonlinear and their coefficients do not 

have clear meanings. We use the following technique to quantify how logging binary feature 

b on day d influences the model’s inferred probability of pregnancy:

1. For each example in our test set, we set binary feature b to 1 on day d, and 

compute the modeled probability of pregnancy for the example, Pr(preg∣xbd = 1).

2. For each example in our test set, we set binary feature b to 0 on day d, and 

compute the modeled probability of pregnancy for the example, Pr(preg∣xbd = 0).

3. We compute Pr(preg∣xbd = 1)–Pr(preg∣xbd = 0), averaging across examples. This 

corresponds to the average difference in modeled probabilities when the user 

does and does not log feature b on day d.

Figure 4 (right) shows results for the LSTM model with the best predictive performance 

(LSTM + user embeddings); results for the other two LSTM models are qualitatively similar. 

Like the logistic regression model, the LSTM model learns that unprotected sex (blue) is 

more positively associated with positive tests than protected sex (green) or withdrawal sex 

(orange). Unprotected sex during the middle of the cycle shows the strongest positive 

association.

Consistency with prior research.—These modeled time trends are consistent with 

previous fertility research, which finds that unprotected sex during the “fertile window” [50] 

is most likely to result in pregnancy. The modeled increase in pregnancy probability due to 
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unprotected sex on a single day is fairly small (<2% for the LSTM model); a plausible 

explanation for this is that many users are taking birth control. The negative weights for 

protected and withdrawal sex are of interest because they indicate that the associations 

learned by the model do not necessarily have causal interpretations. Obviously, having 

protected sex never reduces the chance of pregnancy in a causal sense; rather, it indicates 

that the woman is trying to avoid becoming pregnant. Overall, this analysis demonstrates 

that we can extract interpretable, biologically plausible time trends for sexual activity, the 

feature most fundamentally associated with pregnancy, for both the simple logistic 

regression model and the predictively superior LSTM models.

6 DISCUSSION

We develop four models for pregnancy prediction, combining ideas from both classical 

fertility modeling and modern deep learning techniques, and assess them using women’s 

health tracking mobile data. We show we can stratify women by their probability of 

becoming pregnant and learn interpretable time trends consistent with prior fertility research. 

We develop a simple, intuitive technique to extract time trends from our LSTM models 

which is more broadly applicable to other time series datasets.

Based on our study, we recommend two steps to enable women’s health tracking apps to 

reach their full potential for pregnancy prediction. First, companies should fully describe the 

algorithms used for pregnancy prediction; this will facilitate constructive criticism and 

increase confidence in the algorithms. Second, incentivize users to provide more complete 

data. In the Clue dataset, most users do not log pregnancy tests or predictively useful 

features like BBT; encouraging users to provide this data will improve predictions.

These two improvements can facilitate prediction tasks which build on the one described 

here. For example, early identification of people who are very unlikely to become pregnant 

can allow faster referrals to infertility treatment. Modeling the behaviors which causally 
contribute to pregnancy can be used to recommend behavior: for example, having sex during 

a person-specific fertile window. Progress on these prediction tasks will improve well-being 

for the millions of people pursuing pregnancy.
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Figure 1: 
Prediction task. The model makes predictions using logs from the first 24 days of a cycle 

(green interval), and the cycle is labeled using pregnancy tests taken after day 24 of the cycle 

and before day 24 of the next cycle (red interval). The vast majority of pregnancy tests in our 

dataset are taken near when the user’s cycle is supposed to start, consistent with proper use 

of pregnancy tests, so any positive pregnancy tests likely result from activity during the 

green interval, which will be included in the feature vector.
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Figure 2: 
LSTM + BMS fertility model: we feed the daily features x (blue) into an LSTM model to 

obtain the hidden state h (red). fd is then a function of the hidden state h parameterized by a 

neural network. The probability of becoming pregnant in a cycle is the function shown at 

bottom.
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Figure 3: 
LSTM + user embedding: we use the history features, xh, in the previous H = 180 days for 

the user and feed them into the “user history LSTM” (shown at left). The final hidden state 

becomes the user embedding vector e, which is then concatenated with the daily features 

from the current cycle and fed into the pregnancy prediction LSTM (right).
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Figure 4: 
Model-learned time trends are interpretable for both the simple logistic regression model 

(left plot) and the best-performing LSTM + user embedding model (right plot). The 

horizontal axis is the cycle day. The vertical axis in the left plot is the logistic regression 

weight for logging a feature on that cycle day. The vertical axis in the right plot is how much 

logging a feature on a cycle day affects the LSTM-inferred probability of pregnancy. In both 

plots, positive y-values indicate associations with positive pregnancy tests, and negative y-

values indicate associations with negative pregnancy tests. Both models learn that protected 

sex (green line) is negatively associated with pregnancy, while unprotected sex (blue line) is 

positively associated, particularly during the fertile window, and withdrawal sex (orange 

line) is intermediate.
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