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ABSTRACT
Data-driven websites are mostly accessed through search interfaces.
Such sites follow a common publishing pattern that, surprisingly,
has not been fully exploited for unsupervised data extraction yet:
the result of a search is presented as a paginated list of result records.
Each result record contains the main attributes about one single
object, and links to a page dedicated to the details of that object.

We present red, an automatic approach and a prototype system
for extracting data records from sites following this publishing
pattern. red leverages the inherent redundancy between result
records and corresponding detail pages to design an effective, yet
fully-unsupervised and domain-independent method. It is able to
extract from result pages all the attributes of the objects that appear
both in the result records and in the corresponding detail pages.

With respect to previous unsupervised methods, our method
does not require any a priori domain-dependent knowledge (e.g,
an ontology), can achieve a significantly higher accuracy while
automatically selecting only object attributes, a task which is out
of the scope of traditional fully unsupervised approaches. With
respect to previous supervised or semi-supervisedmethods, red can
reach similar accuracy in many domains (e.g., job postings) without
requiring supervision for each domain, let alone each website.
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1 INTRODUCTION AND OVERVIEW
Data-driven websites across many application domains (e.g., real
estate agencies, e-commerce) follow a common publishing pattern
to provide access to the underlying data: A search interface to
query specific types of objects (e.g., products, properties) yields the
relevant objects as a list of result records, often paginated into result
pages. Every result record contains key attributes about one single
object, so that the user can get a first impression of the result before
deciding to dig further into detailed information. Each result record
includes a link to a detail page, containing more attributes [24].

To the best of our knowledge, no existing data extraction system
has targeted the inherent data intra-site redundancy underlying
this popular publishing pattern. Rather, most existing unsupervised
approaches [2, 8, 9, 29, 30, 34, 35] can be applied either over a
collection of result pages, or over a collection of detail pages. Other
approaches rely on the same publishing pattern, but focus only
on segmenting the result pages [28], or rely on the much weaker
signals arising from the aligning of the labels of the fields on the
search form directly against the labels of the data on the detail
pages [37]; finally, there are several approaches that focus on the
problem of finding redundancy [3, 38] among several sites, but the
problem quickly trespasses on that of integrating data coming from
autonomous sources [3, 5, 6, 23, 38], a problem that is well known
not to have a simple solution [14].

This paper proposes red, the first data extraction method that
leverages this intra-site redundancy to extract data records from
result pages. Given a set of result pages and the corresponding set
of detail pages from a website, red infers a collection of extraction
rules (or simply rules). Each one is capable of extracting the values
for a certain attribute, e.g., the price of a product, from all the
records of a result page. These rules can be applied to every result
page of the same website to extract all the relevant data.

We show that exploiting this publishing pattern on a site pro-
vides a low-hanging fruit opportunity for significantly improving
the precision of fully unsupervised data extraction. Existing un-
supervised approaches struggle to distinguish relevant data (i.e.,
object attributes) from noise. Moreover, they are based on a fragile
trade-off between the expressiveness of formalism used for de-
scribing the extraction rules and the efficiency of the learning task.
Conversely, intra-site redundancy distinguishes relevant data that
appears both on result records and on detail pages from noise that
only appears on either without any supervision, and allows to filter
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out noisy candidate extraction rules even when using an expressive
formalism to specify them.

Key idea: Exploit the inherent intra-site redundancy between result
records and their corresponding detail pages to fully automatically
distinguish between slots in the template structure that correspond
to actual object attributes.

Figure 1 shows a (simplified) instance of a real estate website
that serves as running example. It consists of a result page con-
taining six records along with their corresponding detail pages.
The result records and detail pages publish attributes such as Price,
Location, number of Beds, and Type of properties. Colored annota-
tions highlight overlapping values for attributes appearing within
the records in the result page and the corresponding detail pages.
For this example, red is capable of generating rules extracting the
correct values of all attributes for all result records. Figure 2a shows
the values extracted by the extraction rules when applied to the
example result page in input.

red generates these rules in three, sequential steps: (1) During
the extraction rules generation step, red generates two sets of rules,
namely the sets of result rules and detail rules: Figure 2b and Fig-
ure 2c show the values extracted by some of the generated rules
(shown in Figure 5a and Figure 5b) on the result page and on the
detail pages, respectively, for our running example (where ri (di ) is
the i-th result (detail) rule generated). red’s extraction rules gen-
eration algorithm (Section 3) selects the rules from a fragment of
XPath [13] expressions that, as empirically verified over many real
websites, includes correct extraction rules.

The main challenge in this step is generating a complete set of
rules efficiently: at least one correct detail rule and one correct
result rule is needed for every attribute. It turns out that the com-
pleteness of the rules generation algorithm can be achieved only
at expense of using a rather expressive family of extraction rules,
which means generating many candidate rules, most of which are
actually selecting noise.

(2) In the second step, redundancy seeking, red aims to identify
pairs of result/detail rules that are considered redundant, as they
extract the same values for every object. In this quest for redun-
dancy, red is faced with various challenges. First, in addition to
neat redundancy between correct rules, there is inevitably a lot of
noisy redundancy: Some values may occur multiple times across
the records (typical if the search is narrow, e.g., only properties in
London, or because attributes have a narrow domain, e.g., Beds).
Moreover, some values may be repeated several times within the
same record or detail page (the third detail page contains a second
occurrence of ‘Studio’, dotted-blue underlined in Figure 1).

To complicate matters, certain attributes may be optional i.e.,
not report a value for some result record, such as the Price attribute
which is missing for the third and sixth properties of our running
example. Both rules r0 and d0 select Price values: d0 is applied to
each of the detail pages separately, and can therefore extract the
price value if occurring on the page, or it can just report that the
value is missing (indicated by nil). Conversely, r0 is applied once
on the whole result page (and not on the individual records): it
can only extract the price values found on the page, irrespective
of which record they belong to. Therefore, taken alone, r0 is not

able to distinguish which records contain a value, and which do
not (in our example the third and last record). That leaves r0 and
d0 mis-“aligned” and without further consideration they would not
be considered redundant. This problem has been already tackled
by known complex and error prone segmentation techniques for
splitting a result page into records [19, 28, 29]. Rather, red devises
an innovative soft-segmentation technique (Section 4.1) which,
again, leverages the underlying intra-site redundancy: In particular,
red exploits the presence of navigational links (named detail links)
that point from each result record to the corresponding detail page.
In Figure 1, for each record, one occurrence of the detail link is
highlighted (by the departing orange solid arrow). All these detail
link occurrences are captured by an extraction rule l , named link
rule, whose generation is facilitated by the knowledge of urls of the
detail pages given in input to red.

(3) In its final step, named noise removal, red addresses the issue
of finding and discarding pairs of rules that exhibit some limited
redundancy, but not sufficient to likely be correct extraction rules.
red addresses this challenge by implementing a noise cleaning
process (Section 5) that aims at separating the redundancy result-
ing from the result/detail publishing pattern, from that arising by
accident.

Finally, red outputs all the result extraction rules left after the
previous steps alongwith the special link rule, as shown in Figure 2a
for the running example. It is worth noting that, while in this
paper we are focusing on data extraction from result page records,
red is perfectly capable of inferring valid extraction rules also for
attributes published on the detail pages. Aside of space reasons, we
focus on result rules as executing only such rules at a large scale is
much cheaper: Once the rules have been generated, no more detail
pages have to be crawled, and that is a significant saving, as there
are many more detail pages than result pages.
The paper is organized around the main contributions of red:
• The first formal description of the typical result/detail pub-
lishing pattern and the definition of the Finding Result At-
tributes Problem (Section 2);
• A highly accurate, domain independent, and fully unsuper-
vised data extraction method that leverages the redundancy
implied by the publishing pattern on real-life websites. It is
presented in three steps: a rules generation algorithm to effi-
ciently generate complete sets of extraction rules (Section 3);
a technique to measure the redundancy of rules (Section 4),
even in the presence of optional attributes (Section 4.1); and
finally, a technique to separate and validate regular, attribute
redundancy from noisy, accidental redundancy (Section 5);
• A proof-of-concept showing the feasibility of the approach,
and the experimental evaluation (Section 6) showing that
red can attain highly accurate results scoring at rule level
an F -measure Fr > 91%, and even better results at value
level with Fv > 96%. We demonstrate its advantages against
state-of-the-art large scale data extraction systems.

The following related problems have been already tackled in
literature and are beyond the scope of the present paper: finding
deep Web sources [36, 39, 40, 43]; filling the search fields with
meaningful values to collect result pages [1, 4, 17, 25, 31–33, 42];
crawling paginated search result pages [21].
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Figure 1: The result/detail publishing pattern.
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Figure 1: The result/detail publishing pattern.

rb0
(Price)

r2
(Type)

r6
(Location)

r9
(Beds)

l
(Link)

1.5k House W2U 0DF London 3 l1
1.5k Flat W3U 1AF London 4 l2
nil Studio W3U 0AF London 2 l3
2.05k House E15 2CD Oxford 3 l4
1.2k Ensuite E15 2XD Oxford 1 l5
nil Single Room E18 2XD Oxford 2 l6

(a) red’s Output on the Running Example: An-
notated rules to extract correct result records.

r0 : ⟨1.5k, 1.5k, 2.05k, 1.2k⟩
r1 : ⟨1.5k, Flat, Studio, House, Ensuite, at⟩
r2 : ⟨House, Flat, Studio, House, Ensuite, Single Room⟩
r3 : ⟨Featured!, 1.5k, 2.05k, 1.2k⟩
r4 : ⟨1.5k, 1.5k, 2.05k, 1.2k⟩
r5 : ⟨at, W3U 1AF Lon..., W3U 0AF Lon..., E15 2CD Ox..., E15 2XD Ox...⟩
r6 : ⟨W2U 0DF Lon..., W3U 1AF Lon..., ...,..., E15 2XD Ox..., E18 2XD Ox...⟩
r7 : ⟨at, W3U 1AF Lon..., W3U 0AF Lon..., E15 2CD Ox..., E15 2XD Ox...⟩
r8 : ⟨W2U 0DF Lon..., W3U 1AF Lon..., E15 2CD Ox..., E15 2XD Ox...⟩
r9 : ⟨3, 4, 2, 3, 1, 2⟩

(b) Values extracted by result rules.

d0 : ⟨1,500, 1,500, nil , 2,050, 1,200, nil ⟩
d1 : ⟨House, Flat, Studio, House, Ensuite, Single Room⟩
d2 : ⟨Featured!, Property, !Hot!, Property, Property, Property⟩
d3 : ⟨pounds, pounds, A 2 bedroom studio..., pounds, pounds, A single...⟩
d4 : ⟨W2U 0DF Lon..., W3U 1AF, W3U 0AF, E15 2CD Ox..., E15 2XD, E18...⟩
d5 : ⟨W2U 0DF Lon..., W3U 1AF, nil , E15 2CD Ox..., E15 2XD, nil ⟩
d6 : ⟨A 3 bedroom house..., A 4 bedroom flat..., A 2 bedroom studio..., · · · ⟩
d7 : ⟨nil , London, London, nil , Oxford, Oxford⟩

(c) Values extracted by detail rules.

Figure 2: Running example.

2 PROBLEM DESCRIPTION
The result/detail publishing pattern depicted in Figure 1 assumes

that a website publishes data coming from an underlying abstract
relation with attributes A containing all the available information
about a set of objects O. In our example, the abstract relation con-
tains one tuple for every published property, each with attributes
such as the property’s Price, Address, number of Beds, and Type.

Result pages and detail pages are generated by various scripts that
retrieve data from the abstract relation, embed them into an HTML
template, and publish them as web pages. This process performs
a sequence of transformations: An initial selection (σ , to recycle
a symbol from relational algebra) produces the set of objects to
publish in each result page as encoded into HTML source code by
the result page script λ . Every result page contains a set of result
records, each produced by applying the result record script λr to
one published object. The corresponding detail page is the result of
applying the detail script λd on the very same object, and is linked
from the corresponding result record.

According to themodel depicted in Figure 1, even if the detail and
result record scripts work on the same set of objects, they may end
up publishing different sets of attributes. The detail pages include
all the attributes of the abstract relation, whereas the result pages
publish only a subset of these attributes selected by a projection
operation π .

We now introduce the problem of recovering the values of the
attributes published on the result pages. An extraction rule either lo-
cates one or several string values from a single page, or it produces

a distinct special value nil to denote the absence of a value. For
our purposes, extraction rules are specified by using XPath expres-
sions [13] belonging to a simple but carefully designed fragment
(as detailed in Section 3).

We distinguish two types of extraction rules, named detail and
result rules after the type of pages they are meant to work on.

We call detail rule any extraction rule that when applied on a
detail page, produces at most one value or nil . We use d to denote a
detail extraction rule, and we use d(p) to denote the value it extracts
from detail page p. Precisely, d(p) is either the XPath string-value
obtained by applying the rule d on detail page p, or it is nil if the
XPath expression returns an empty node-set [13].

A detail rule for an attribute A is said to be correct if it extracts
its values from every detail page in the input and extracts nil for
those pages that do not contain a value for A. We call noisy (or
incorrect) a rule that is not correct: noisy rules mix values of several
attributes or they extract part of the underlying HTML template.
We distinguish the special case of a partially-correct rule for an
attribute A, i.e., a rule extracting only correct values of attribute A
except for some pages, on which it wrongly extracts nil . The value
extracted by a detail rule is naturally associated with the object
corresponding to the detail page it is applied to.

Similarly, we call result rule any extraction rule meant to work on
result pages and we denote it by r . A result rule applied on a result
page p produces zero, one, or several values denoted r (p). Precisely,
r returns the string-value for each node in the node-set returned by
evaluating its XPath expression on the result page p [13].
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retrieve data from the abstract relation, embed them into an HTML
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publish in each result page as encoded into HTML source code by
the result page script λ . Every result page contains a set of result
records, each produced by applying the result record script λr to
one published object. The corresponding detail page is the result of
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According to themodel depicted in Figure 1, even if the detail and
result record scripts work on the same set of objects, they may end
up publishing different sets of attributes. The detail pages include
all the attributes of the abstract relation, whereas the result pages
publish only a subset of these attributes selected by a projection
operation π .

We now introduce the problem of recovering the values of the
attributes published on the result pages. An extraction rule either lo-
cates one or several string values from a single page, or it produces

a distinct special value nil to denote the absence of a value. For
our purposes, extraction rules are specified by using XPath expres-
sions [13] belonging to a simple but carefully designed fragment
(as detailed in Section 3).

We distinguish two types of extraction rules, named detail and
result rules after the type of pages they are meant to work on.

We call detail rule any extraction rule that when applied on a
detail page, produces at most one value or nil . We use d to denote a
detail extraction rule, and we used (p) to denote the value it extracts
from detail page p. Precisely, d (p) is either the XPath string-value
obtained by applying the rule d on detail page p, or it is nil if the
XPath expression returns an empty node-set [13].

A detail rule for an attribute A is said to be correct if it extracts
its values from every detail page in the input and extracts nil for
those pages that do not contain a value for A. We call noisy (or
incorrect) a rule that is not correct: noisy rules mix values of several
attributes or they extract part of the underlying HTML template.
We distinguish the special case of a partially-correct rule for an
attribute A, i.e., a rule extracting only correct values of attribute A
except for some pages, on which it wrongly extracts nil . The value
extracted by a detail rule is naturally associated with the object
corresponding to the detail page it is applied to.

Similarly, we call result rule any extraction rule meant to work on
result pages and we denote it by r . A result rule applied on a result
page p produces zero, one, or several values denoted r (p). Precisely,
r returns the string-value for each node in the node-set returned by
evaluating its XPath expression on the result page p [13].
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Result rules, differently from detail rules, cannot produce nil
values at all, even in the case that they return an empty node-
set. Indeed, without knowing the exact boundaries of every result
record, the values extracted by a result rule cannot be trivially
associated to the record/object they belong to on the result page
(Section 4.1 describes a solution to this problem).

Therefore, the notion of correctness of a result rule for an attribute
A differs from the notion of correctness of a detail rule, even if they
are associated with the same attribute: a result rule is correct if it
produces exactly the ordered set of non-nil values of attribute A as
they occur in the source of that page. By partially-correct result rule
for an attribute A we mean a result rule extracting a strict subset of
the correct values of A.

The problem that we aim to solve can be formulated as follows:

Problem (Finding Result Attributes). Given a set of result
pages Pr and the set of corresponding detail pages Pd over the same
objects, find the correct values (includingnil values) for every attribute
A of the abstract relation published in the result pages.

red tries to solve this problem by producing a result rule rA per
every attribute A in the result pages, together with an additional
result rule, named link rule and denoted by l , extracting exactly one
occurrence of the link leading to the corresponding detail page per
result record: an output result rule rA associated with an optional
attribute A is suitably annotated either raA or rbA to specify how the
values extracted by rA should be padded with missing nil values,
i.e., respectively after or before occurrences of the detail links.

3 EXTRACTION RULES GENERATION
We introduce an extraction rules generation algorithm working
on both result and detail pages. It is a single-parameter algorithm
designed to output rules from an XPath fragment whose expressive-
ness can be easily and effectively tuned by setting the parameter.
Its goals are two-fold: on one hand, it aims at being complete, i.e.,
it has to generate at least a correct rule for every attribute; on the
other hand, it should not generate too many noisy rules, because
their presence makes the Finding Result Attributes problem harder.

The rules generation algorithm includes twomain steps: template
analysis, and extraction rules enumeration.

3.1 Template Analysis
The template analysis aims at identifying those nodes in the DOM
tree [26] of the input pages that are template nodes (e.g., the <li>

node, and the textual label: ‘Price:’ in Figure 3a).1
red’s template analysis algorithm is inspired by ExAlg [2], suit-

ably adapted to the result/detail publishing pattern. Our analysis
just aims at deciding, for every node in the pages, whether it should
be considered as part of the template or not; conversely, ExAlg
also solves the complex problem of finding a full description of the
HTML template.

The analysis on a set of input pages P builds on the notion
of occurrence-vector, i.e., a vector f of |P | integers indexed by the
pages in P , so that f (p) reports howmany occurrences of equivalent
nodes are present in the DOM tree of page p. Two nodes are said
to be equivalent if and only if two conditions hold: (i ) they are
1Text nodes are split in several contiguous siblings nodes by tokenizing at word level.

either text nodes with the same value, or they both are element
nodes associated with the same element name and attribute names,
(ii ) their respective parent nodes are equivalent (or they both are
the root nodes). Equivalent nodes with the same occurrence-vector
are then grouped into the same equivalence class.

As observed in [2], by considering a sufficiently large number
of pages, the nodes that occur in large and frequently occurring
classes are the scaffold of the underlying template. An inherent and
significant limitation of this kind of statistical analysis is that the
inferred equivalence classes become easily noisy as their support
(total number of occurrences) or size (total number of nodes) de-
creases. Indeed, ExAlg’s template inference process described is
extremely brittle to the presence of noisy equivalence classes and
cannot deal with singleton collections of input pages.

As in the original proposal, we use thresholds on the minimum
size and on the minimum support to prevent the algorithm from
generating too many noisy classes.2 However, it is worth noticing
that in our setting the template analysis is just an optimization
aiming at reducing the number of generated extraction rules and
that we have empirically observed that a single result page, usually
containing up to tens of records, is already enough for the specific
goals of our analysis.

The classes whose occurrence-vector exactly reports the number
of objects published per page are called the root equivalence classes:
their nodes occur exactly once in every detail page and as many
times as the number of result records in every result page (an
information available as part of red’s input).We classify as template
nodes those occurring in the root equivalence classes or in any
other equivalence class that appears less frequently than the root
equivalent class in every page.3

Example 3.1. The root equivalence classes for the running exam-
ple are ϵr0 and ϵd0 reported in Figure 4; the resulting template nodes
are depicted with gray background in Figure 3. Notice that all their
nodes are template nodes. ϵd2 , ϵ

d
3 , ϵ

d
4 , ϵ

d
5 are discarded because their

support is too small and indeed they are noisy classes listing values
that occur more than once by chance. ϵr3 is discarded because it
occurs more frequently than the root equivalence class ϵr0 . Also
nodes in ϵr1 , ϵ

r
2 are correctly classified as template nodes. Notice

that nodes in ϵr4 and ϵr5 are erroneously classified as template nodes.

The wrong classification of a value as template node will not
prevent the generation of correct rules for the corresponding at-
tribute as long as other occurrences of the values of that attribute
are correctly classified as target values.

3.2 Extraction Rules Enumeration
The rules generation algorithm builds on the output of the template
analysis to enumerate result (respectively, detail) extraction rules
associated with tree-paths starting from a uniquely identifiable
template node within the result records (resp., detail page), named
pivot, and reaching a non-template target value node.

2We consider only equivalence classes whose support is at least 20% of the input
objects, but never fewer than 2, and only classes including at least 3 nodes.
3These classes are those associated with the main data structure of the two types of
pages, i.e., the list of records of the result pages and the flat record of the detail pages,
or those optional attributes nested within them.
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class nodes occ. vector
ϵ r0 {LI, I, at, A[@class = ”detail”], Beds} [6]
ϵ r1 {HTML, UL, H2, Search, results :, . . . } [1]
ϵ r2 {SPAN[@class = ”price”], STRONG, pounds} [4]
ϵ r3 {STRONG} [12]
ϵ r4 {House, A, 1.5k, W3U, E15, 2XD} [2]
ϵ r5 {Oxford, London} [3]

ϵd0 {Property, type :, Location :, ... } [1, 1, 1, 1, 1, 1]
ϵd1 {DIV[@class = ”price”], SPAN, STRONG,

Listing, Price :, pounds} [1, 1, 0, 1, 1, 0]
ϵd2 {House} [1, 0, 0, 1, 0, 0]
ϵd3 {1, 500} [1, 1, 0, 0, 0, 0]
ϵd4 {London} [1, 1, 1, 0, 0, 0]
ϵd5 {Oxford} [0, 0, 0, 1, 1, 1]

Figure 4: Running example: template analysis.

We use as candidate pivot every template node that is either a
text, or an element with ‘id’ or ‘class’ attribute; every non-template
text node is considered as a candidate target value. We then enumer-
ate all the possible tree-paths leading from any pivot node to any
target node by hopping over the tree along with a set of predefined
XPath step expressions. Namely, we consider expressions capable
of moving to the parent element node, to one of the children (either
text or element), to the next/previous sibling element.

A couple of additional constraints on the tree-paths are enforced
in order to reduce the number of enumerated tree-paths and dis-
card those associated with incorrect rules. First, the path length is
bounded by a threshold δ . Second, the analysis considers only a
small subset of the input pages which is assumed unbiased.4

Each tree-path is translated into an executable extraction rule
by appending several XPath step sub-expressions, eventually.

The first XPath step has to match the pivot, and takes one of
the following forms depending on its node type: //e[contains(.,"v")]
for a textual pivot v having e as parent node; //e[@id="v"] (resp.,
//e[@class="v"]), for an element pivot e having an id (resp., class)
attribute valued v ; just //e for any other element pivot.

Then it follows a sequence of XPath step expressions each after
one of the hops composing the tree-path from the pivot to the target
value: parent, child, following-sibling (abbreviated fs in Figure 5a),

4We use at most 3 detail pages and 1 result page.

r0 : //span[contains(.,"pounds")]/../*[1]/text()[1]
r1 : //li/*[2]/*[1]/text()[1]
r2 : //i/ps::*[1]/*[1]/text()[1]
r3 : //span[@class="price"]/../*[1]/*[1]/text()[1]
r4 : //span[@class="price"]/*[1]/text()[1]
r5 : //li/*[4]/text()[1]
r6 : //i[contains(.,"at")]/fs::*[1]/text()[1]
r7 : //i[contains(.,"at")]/*[4]/text()[1]
r8 : //span[@class="price"]/fs::*[3]/text()[1]
r9 : //strong[contains(., "Beds")]/ps::text()[1]
l : //a[@class="detail"]

(a) Result candidate rules.

d0 : //span[contains(.,"Price:")]/../*[2]/text()[1]
d1 : //span[contains(.,"type:")]/../text()[1]
d2 : //h2/text()[1]
d3 : //span[contains(.,"Location:")]/../fs::*[1]/text()[1]
d4 : //span[contains(.,"Location:")]/fs::*[1]/text()[1]
d5 : //span[contains(.,"Price:")]/../ps::*[1]/text()[1]
d6 : //i/text()[1]
d7 : //span[contains(.,"Location:")]/fs::*[2]/text()[1]

(b) Detail candidate rules.

Figure 5: Running example: extraction rules.

and preceding-sibling (ps); each step (except those on the parent
axis) is also followed by an XPath positional predicate, e.g., ‘[4]’,
and by a node-test: The last step uses text() to target textual values,
where all the other steps use ‘*’ to select element nodes.

Example 3.2. Consider rule r6 shown in Figure 5a: it is based on
the 3 steps tree-path ‘at { i { strong { W2U 0DF London’ from
the pivot node ‘at’ to the Location value. The XPath expression
is obtained by combining: the expression selecting the pivot node
(//i[contains(.,‘at’)]); the expression fs::*[1] to move to the next
sibling element; and the final expression text()[1] to reach the target
text value. A few tree-paths generating the result rules are shown
directly in Figure 3 by means of colored dashed lines annotated
with the rule and connecting the pivot to the target value across all
the nodes in the path.

red groups the generated rules by extracted values. Within a
group producing the same values, only the rule associated with
the shortest tree-path is retained, ties are broken by selecting the
rule generated earlier. In the running example, r7 is removed as
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We use as candidate pivot every template node that is either a
text, or an element with ‘id’ or ‘class’ attribute; every non-template
text node is considered as a candidate target value. We then enumer-
ate all the possible tree-paths leading from any pivot node to any
target node by hopping over the tree along with a set of predefined
XPath step expressions. Namely, we consider expressions capable
of moving to the parent element node, to one of the children (either
text or element), to the next/previous sibling element.

A couple of additional constraints on the tree-paths are enforced
in order to reduce the number of enumerated tree-paths and dis-
card those associated with incorrect rules. First, the path length is
bounded by a threshold δ . Second, the analysis considers only a
small subset of the input pages which is assumed unbiased.4

Each tree-path is translated into an executable extraction rule
by appending several XPath step sub-expressions, eventually.

The first XPath step has to match the pivot, and takes one of
the following forms depending on its node type: //e[contains(.,"v")]
for a textual pivot v having e as parent node; //e[@id="v"] (resp.,
//e[@class="v"]), for an element pivot e having an id (resp., class)
attribute valued v ; just //e for any other element pivot.

Then it follows a sequence of XPath step expressions each after
one of the hops composing the tree-path from the pivot to the target
value: parent, child, following-sibling (abbreviated fs in Figure 5a),

4We use at most 3 detail pages and 1 result page.

r0 : //span[contains(.,"pounds")]/../*[1]/text()[1]
r1 : //li/*[2]/*[1]/text()[1]
r2 : //i/ps::*[1]/*[1]/text()[1]
r3 : //span[@class="price"]/../*[1]/*[1]/text()[1]
r4 : //span[@class="price"]/*[1]/text()[1]
r5 : //li/*[4]/text()[1]
r6 : //i[contains(.,"at")]/fs::*[1]/text()[1]
r7 : //i[contains(.,"at")]/*[4]/text()[1]
r8 : //span[@class="price"]/fs::*[3]/text()[1]
r9 : //strong[contains(., "Beds")]/ps::text()[1]
l : //a[@class="detail"]

(a) Result candidate rules.

d0 : //span[contains(.,"Price:")]/../*[2]/text()[1]
d1 : //span[contains(.,"type:")]/../text()[1]
d2 : //h2/text()[1]
d3 : //span[contains(.,"Location:")]/../fs::*[1]/text()[1]
d4 : //span[contains(.,"Location:")]/fs::*[1]/text()[1]
d5 : //span[contains(.,"Price:")]/../ps::*[1]/text()[1]
d6 : //i/text()[1]
d7 : //span[contains(.,"Location:")]/fs::*[2]/text()[1]

(b) Detail candidate rules.

Figure 5: Running example: extraction rules.

and preceding-sibling (ps); each step (except those on the parent
axis) is also followed by an XPath positional predicate, e.g., ‘[4]’,
and by a node-test: The last step uses text() to target textual values,
where all the other steps use ‘*’ to select element nodes.

Example 3.2. Consider rule r6 shown in Figure 5a: it is based on
the 3 steps tree-path ‘at { i { strong { W2U 0DF London’ from
the pivot node ‘at’ to the Location value. The XPath expression
is obtained by combining: the expression selecting the pivot node
(//i[contains(.,‘at’)]); the expression fs::*[1] to move to the next
sibling element; and the final expression text()[1] to reach the target
text value. A few tree-paths generating the result rules are shown
directly in Figure 3 by means of colored dashed lines annotated
with the rule and connecting the pivot to the target value across all
the nodes in the path.

red groups the generated rules by extracted values. Within a
group producing the same values, only the rule associated with
the shortest tree-path is retained, ties are broken by selecting the
rule generated earlier. In the running example, r7 is removed as
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We use as candidate pivot every template node that is either a
text, or an element with ‘id’ or ‘class’ attribute; every non-template

text node is considered as a candidate target value. We then enumer-
ate all the possible tree-paths leading from any pivot node to any
target node by hopping over the tree along with a set of predefined
XPath step expressions. Namely, we consider expressions capable
of moving to the parent element node, to one of the children (either
text or element), to the next/previous sibling element.

A couple of additional constraints on the tree-paths are enforced
in order to reduce the number of enumerated tree-paths and dis-
card those associated with incorrect rules. First, the path length is
bounded by a threshold δ . Second, the analysis considers only a
small subset of the input pages which is assumed unbiased.4

Each tree-path is translated into an executable extraction rule
by appending several XPath step sub-expressions, eventually.

The first XPath step has to match the pivot, and takes one of
the following forms depending on its node type: //e[contains(.,"v")]
for a textual pivot v having e as parent node; //e[@id="v"] (resp.,
//e[@class="v"]), for an element pivot e having an id (resp., class)
attribute valued v ; just //e for any other element pivot.

Then it follows a sequence of XPath step expressions each after
one of the hops composing the tree-path from the pivot to the target
value: parent, child, following-sibling (abbreviated fs in Figure 5a),
and preceding-sibling (ps); each step (except those on the parent
axis) is also followed by an XPath positional predicate, e.g., ‘[4]’,
and by a node-test: The last step uses text() to target textual values,
where all the other steps use ‘*’ to select element nodes.

Example 3.2. Consider rule r6 shown in Figure 5a: it is based on
the 3 steps tree-path ‘at { i { strong { W2U 0DF London’ from
the pivot node ‘at’ to the Location value. The XPath expression
is obtained by combining: the expression selecting the pivot node
(//i[contains(.,‘at’)]); the expression fs::*[1] to move to the next
sibling element; and the final expression text()[1] to reach the target
text value. A few tree-paths generating the result rules are shown
directly in Figure 3 by means of colored dashed lines annotated
with the rule and connecting the pivot to the target value across all
the nodes in the path.

red groups the generated rules by extracted values. Within a
group producing the same values, only the rule associated with
the shortest tree-path is retained, ties are broken by selecting the
rule generated earlier. In the running example, r7 is removed as
it extracts the same values as r5. The rationale to prefer shorter
paths is that template nodes far away from the target values are
4We use at most 3 detail pages and 1 result page.
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progressively less likely to generate rules that work reliably across
all records and pages. More sophisticated criteria, such as those
considering the robustness of the extraction rule [11, 22] could be
adopted, but this is beyond the scope of the present paper.

4 REDUNDANCY SEEKING
red analyzes the redundancy between all pairs of generated result
and detail rules for identifying the likely correct rules. From an
abstract point of view, a pair of result/detail rules can be considered
redundant when the two rules end up extracting values associated
with the same attribute of the abstract relation for every object.

Concretely, given one of such pairs composed of one result rule
and one detail rule, a pairwise comparison of the extracted values
is not trivial as they might extract a different number of values due
to the presence of optional attributes. It is necessary to find out the
correct alignment of the rules, i.e., where nil should be inserted to
indicate a missing value within the list of values extracted by the
result rule. We introduce a novel soft segmentation technique to find
the alignment between result rules and detail rules, thus avoiding
the tricky problem of finding the exact boundaries of every result
record [20, 28]; then, we describe a score function for measuring
the redundancy of a pair composed by one aligned result rule and
one detail rule.

4.1 Soft Segmentation
The presence of optional attributes in the result pages can lead to
the generation of rules that extract fewer values than the number
of records. Soft segmentation is red’s technique for finding the
correct alignment of the extracted values (w.r.t. the result records).

A prerequisite of the soft segmentation technique is the avail-
ability of exactly one detail link per each result record, i.e., that
pointing to the corresponding detail page. red leverages the knowl-
edge of the detail pages, whose urls are assumed given as part of
the input, to locate the detail link occurrences within the result
records. As all occurrences must be associated with same “slot” of
the underlying template, we have to disambiguate all the cases in
which several copies of a detail link occur within the same result
record, or optional detail links are present (e.g., for example in the
first and third featured result records in Figure 1).

We apply the rules generation algorithm described in Section 3
by taking any of the link occurrences as target and generate a set
of link rules. Only the rules extracting same number of links as the
number of result records are considered, and in presence of several
candidates, only the rule generated earliest is saved as link rule.

The soft segmentation technique finds out the correct alignment
of the values extracted by a result rule w.r.t. detail the link occur-
rences during a traversal of the DOM tree. If a result rule is correct
and extracts exactly the same number of values as the number of
result records, the extracted values perfectly interleave with the de-
tail link occurrences, i.e., either the values always occur before the
links or they always occur after them. Conversely, in presence of
result rules extracting fewer values, a correct alignment is needed.

Example 4.1. The link rule l of our running example is shown
in Figure 5a. Let li denote the detail link node to the i-th detail
page. Consider the correct rule r9 extracting 6 values, in Figure 2b.
It turns out that during an in-order traversal of the DOM tree in

Figure 3a, detail links and extracted values interleave perfectly and
occur as follows: ⟨l1 , 3, l2 , 4, l3 , 2, l4 , 3, l5 , 1, l6 , 2⟩. Instead, detail links and
values extracted by r8 do not: ⟨l1 , W2U 0DF. . . , l2 , W3U 1AF. . . , l3 , l4 , E15 2CD. . . ,

l5 , E15 2XD. . . , l6⟩.

For dealing with these cases, nil values should be injected to
reestablish the pattern that either every link precedes a value or
vice-versa. At most two interleaving sequences of the values, called
alignments, of a result rule, are possible: Given the result rule r , we
use ra (resp., rb ) to denote the alignment of the rule in which all
nodes extracted by r are considered occuring after (resp., before)
the corresponding detail link in every result record.

Example 4.2. Let sa8 and sbb denote two sequences of exactly 12
elements (6 values plus 6 detail links) corresponding the alignment
of rule r8 w.r.t. detail links extracted by l in Figure 5a. Either every
value occurs before a link:
sb8 = ⟨nil , l1 , W2U..., l2 , W3U..., l3 , nil , l4 , E15 ..., l5 , E15..., l6⟩; or after a link:
sa8 = ⟨l1 , W2U..., l2 , W3U..., l3 , nil , l4 , E15..., l5 , E15..., l6 , nil ⟩.
We annotate r8 to specify the relative position of the extracted val-
ues w.r.t. detail links so that the nil values can be properly inserted.
Let pr denote the result page of the running example:
rb8 (pr ) = ⟨nil , W2U 0DF..., W3U 1AF..., nil , E15 2CD..., E15 2XD...⟩

ra8 (pr ) = ⟨W2U 0DF..., W3U 1AF..., nil , E15 2CD..., E15 2XD..., nil ⟩.

red tries to enforce an admissible alignment to every produced
result rule. Those rules that cannot be aligned are discarded.

Example 4.3. Consider the sequence of values extracted by r1
and detail links in our running example:
⟨1.5k, l1 , Flat, l2 , Studio, l3 , House, l4 , Ensuite, l5 , l6 , at⟩.
The presence of two consecutive links (l5 and l6) prevent values
and links from interleaving perfectly. Thereby r1 is removed.

Table 1 shows the alignments for all the result rules in Figure 5a
w.r.t. link rule l for our running example.

Table 1: Aligned result rules after soft segmentation.

rb0 : ⟨1.5k, 1.5k, nil , 2.05k, 1.2k, nil ⟩
r2: ⟨House, Flat, Studio, House, Ensuite, Single Room⟩
rb3 : ⟨Featured!, 1.5k, nil , 2.05k, 1.2k, nil ⟩
ra5 : ⟨at, W3U 1AF..., W3U 0AF..., E15 2CD..., E15 2XD..., nil ⟩

rb5 : ⟨nil , at, W3U 1AF..., W3U 0AF..., E15 2CD..., E15 2XD...⟩

r6: ⟨W2U 0DF...,W3U 1AF...,W3U 0AF...,E15 2CD...,E15 2XD...,E18 2XD...⟩

rb8 : ⟨nil , W2U 0DF..., W3U 1AF..., nil , E15 2CD..., E15 2XD...⟩

ra8 : ⟨W2U 0DF..., W3U 1AF..., nil , E15 2CD..., E15 2XD..., nil ⟩

r9: ⟨3, 4, 2, 3, 1, 2⟩

The soft segmentation algorithm takes as input a result rule r , the
link rule l and a set of result pages. It visits every page by ordering
links and values into a sequence of occurrences and checks whether
it is possible to inject nil values into the sequence to make values
(including nil) and links to interleave perfectly. If so, it outputs at
most two admissible alignments of the result rules, namely ra and
rb (we simply write r where the alignments coincide).
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4.2 Redundancy Score
Given a pair (r∗,d ) composed of one aligned result rule (with ∗ ∈
{a,b}) and one detail rule, and a set of objects O, the redundancy
score of the pair is defined as the average pairwise score between
their values:

red(r∗,d ) =
∑
o∈O

score(r∗ (o),d (o))
|O|

where d (o) and r∗ (o) denote the string extracted for object o by d
and r∗, respectively. We then define the following redundancy score
as a distance function over pairs of values:

score(v1,v2) =



0 , if v1 substring of v2 or vice versa
JS ′(v1,v2) , otherwise

where JS ′(v1,v2) is a Jensen-Shannon string distance modified
for handling nil . If bothv1 andv2 are nil , it returns 0. If either is nil ,
but not the other, it returns 1. In all other cases, it’s a standard string
distance. We noticed that the change of formats for the values of an
attribute within the same site are very rare in real sites as they also
tend to confuse the end user, i.e., the Price attribute is displayed
as 1.5k on a the result record whereas it is presented as 1,500 on
the corresponding detail page of the running example in Figure 1.
Hence, we observed only negligibly different results by adopting
any other popular string distance function [7]. In practice, dealing
with the substring cases is more important than the choice of the
string distance function.

Example 4.4. Table 2 reports all the pairs scoring less than 0.4
ordered by their redundancy score for our running example. Each
pair is composed of an aligned result rule from Table 1, and a detail
rule from Figure 5b. The column “Attributes” reports whether the
rules of the pair are correct, noisy, partially correct, or mis-aligned.

Table 2: Pairs of rules scoring less than 0.4.

pair π red(π ) Attributes

(r2,d1) 0 Type correct
(r6,d4) 0 Location correct
(r2,d6) 0 Type vs Description

(rb8 ,d7) 0 mis-alig. Location vs partial City
(ra8 ,d5) 0 partial Location vs partial Location

(r9,d6) 0 Beds vs Description
(ra5 ,d4) 0.333 noisy Location vs Location
(rb0 ,d0) 0.397 Price correct

5 NOISE REMOVAL
red uses the redundancy score to filter pairs of rules that are some-
what, but not sufficiently, redundant. Given a redundancy score
threshold ρ, we consider as not redundant all the pairs of rules hav-
ing a redundancy score greater than ρ. Unfortunately, many of the
remaining pairs can still contain noisy rules: On one hand, there
could be an incorrect alignment of the values, due to the presence of
too many similar values in result records, e.g., (rb8 ,d7) in Table 2; on
the other hand, even noisy rules happen to be incidentally similar

sometimes, e.g., (ra8 ,d5) and (ra5 ,d4). This is especially true when
the range of the possible values of the compared attributes is rather
limited; for example (the number of) Rooms, Beds, and Baths in
the real estate domain are all small positive integers. Generally
speaking, the correct result rules cannot be trivially separated from
the incorrect ones with any fixed value of the threshold.

red processes the redundant pairs by ascending redundancy
score to remove the noisy pairs. First, the result rule validation ana-
lyzes whether a result rule has been correctly aligned and therefore
properly fits in the HTML template of the result pages. Then, the
noise redundancy removal leverages the redundancy scores to select
for each attribute only the best pairs of rules, i.e., those having the
lowest redundancy score.

5.1 Result Rules Validation
The result rules validation technique is based on the availability
of some correctly aligned result rules as output of the previous
processing steps. Beside the link rule, which is assumed to be correct,
several other result rules might have only one alignment after the
soft segmentation process, for example rb0 and r2 in Figure 1. red
leverages these already aligned and therefore inherently validated
rules to validate other result rules.

A result rule r is validated against an already correctly-aligned
rule д that is assumed correct. We can thereby infer two possible
traversal sequences of their nodes corresponding to two positional
alignments, and namely: sb – extracted nodes of r are before those
of д; and sa – extracted nodes of r are after those of д. Then, as
described in Section 4.1, we get the real traversal sequence s by
traversing the DOM tree. If s does not matches any of sb and sa , r is
not a valid result rule. We thereby remove r and all the redundant
pairs containing r .

Example 5.1. For validating rb8 based on r9, red considers two
possible alignments of the values extracted by rb8 w.r.t. r9:
⟨3, 4, W2U 0DF..., 2, W3U 1AF..., 3, 1, E15 2CD..., 2, E15 2XD...⟩

⟨3, W2U 0DF..., 4, W3U 1AF..., 2, 3, E15 2CD..., 1, E15 2XD..., 2⟩ .
Neither of these matches the actual sequence in which these values
occur on the page: ⟨W2U 0DF..., 3, W3U 1AF..., 4, 2, E15 2CD..., 3, E15 2XD..., 1, 2⟩.
Therefore, ra8 fails to validate w.r.t. r9 and is dropped.

5.2 Removing Redundant Noise
Once all the result rules have been validated, the surviving pairs
include correct pairs together with partially correct and noisy re-
dundant pairs that are incidentally similar.

The key assumption to remove the noisy pairs in the first cate-
gory is that correct pairs have a better redundancy score than pairs
containing noisy rules. The assumption is exploited in the first step
of the algorithm removeRedNoise shown in Listing 1 (lines 2-9)
and dealing with already validated result rules.

The second step of the algorithm (lines 10-17) prefers pairs of
rules extracting fewer nil values: at this stage, all the noisy pairs
have already been removed so that we can directly remove the
result rules extracting a larger number of nils. Notice that with the
exception of the initial ordering (line 11 vs line 3), the two steps are
performed by two almost identical loops (lines 2-9 vs lines 10-17).
However, they cannot be merged because the latter loop expects as
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Listing 1: removeRedNoise
Input: A set of redundant pairs Π = {(r, d ) : red (r, d ) < ϵ }.
Output: A set of correct rule pairs.

1 begin
2 Π′ ← ∅ ;
3 order pairs in Π by increasing redundancy score;

/* Remove pairs with overlapping result DOM nodes */
4 foreach (r, d ) ∈ Π do
5 remove (r, d ) from Π ;
6 foreach (r ′, d ′) ∈ Π do
7 if DOMoverlap(r, r ′) then
8 remove (r ′, d ′) from Π ;

9 add (r, d ) to Π′ ; /* saves only the best pair. */

/* Prefer pairs whose detail rule extracts less nil s. */
10 Π′′ ← ∅ ;
11 order Π’ by decreasing n. of nil in the detail rules;
12 foreach (r, d ) ∈ Π′ do
13 remove (r, d ) from Π′ ;
14 foreach (r ′, d ′) ∈ Π′ do
15 if DOMoverlap(r, r ′) then
16 remove (r ′, d ′) from Π′ ;

17 add (r, d ) to Π′′ ;
18 return Π′′;

input a list of pairs from which the noisy rules have been already
removed, as produced by the first loop.

After the two processing steps, the surving pairs are the output
result rules that red classifies as correct.

Example 5.2. Consider again two pairs involving d4 in Exam-
ple 4.4, i.e., (r6,d4) and (r5,d4). The first step of removeRedNoise
(lines 2-9) removes the latter pair, i.e., the pair with the worst re-
dundancy score, since r5 and r6 extract overlapping nodes and only
one of them is assumed to be correct.

Both pairs (r6,d4) and (ra8 ,d5) are 0-scored and r6 and r
a
8 are two

overlapping result rules: at most one of them can be correct. Both
pairs reach the second loop (lines 10-17). The (ra8 ,d5) pair is then
removed because it contains the largest number of nil elements.

Table 3: Pair of rules after red’s noise removal step.

pair π red(π ) note
(r2,d1) 0 Type
(r6,d4) 0 Location
(r2,d6) 0 Type vs Description
(r9,d6) 0 Beds
(rb0 ,d0) 0.36 Price

Example 5.3. Table 3 reports (ordered by the redundancy score)
the pairs after all the steps of the noise removal process. The pairs
(r2,d1) and (r2,d6) are both 0-scored and the correct rule r2 for Type
is included in the output for its redundancy with the Description,
an attribute on the detail pages that often “includes” the Type as
a substring. So red output on the running example is the set of
aligned result rules rb0 , r2, r6 and r9 together with the link rule l .

6 EVALUATION
We inspect red’s characteristics and performance through a series
of experiments on real-world websites. We first evaluate red on a

dataset derived from the one used in diadem [18], a state-of-the-
art ontology-based data extraction system. We then apply red to
another dataset comprised of websites from a variety of application
domains, a challenging setting for ontology-based data extraction
systems that require some supervision on the level of the application
domain. We show that, in contrast, red can attain consistently high
precision and recall over many domains.

As for the comparison with other fully unsupervised approaches
beside diadem, we also considered depta [41], another unsuper-
vised system that, to the best of our knowledge, deals with the most
similar setting to ours: unsupervised extraction from result pages,
even a single result page.

6.1 Evaluation method
Datasets: We evaluate red on two datasets, named dia_ds and
red_ds, including 130 websites in total. dia_ds consists of 100, still
reachable websites from the original diadem’s dataset, half in the
real_estate, half in the used_cars domain. We use diadem to
generate wrappers on these sites and collect the detail pages for
the dataset, as needed by red.

red_ds consists of 30 sites from 10 domains, obtained by ran-
domly picking 3 sites from the Alexa Top 100 Global Sites. We ex-
clude sites where the detail pages are not hosted on the site itself
but rather refer to other sites (typically metasearch portals), as these
cases do not fit red’s assumption that detail pages share a common
template. Each test-case is related to a single website and it consists
of one result page and the corresponding set of detail pages. All
the records listed in the result pages are obtained by following the
default sorting criteria from the website. Both datasets can be found
on https://github.com/redwww/experiments.

Optional Attributes: To validate the need for dealing with op-
tional attributes in result pages, we observed that in our datasets
there is a considerable number of sites that contain optional at-
tributes. In detail, 17% of sites in dia_ds (i.e., 20 sites) and 36% of
those in red_ds (i.e., 13 sites) contain optional attributes. This well
illustrates the importance of approaches, such as the soft segmen-
tation technique, dealing with optional attributes in result pages.

Metrics: For each attribute of the result pages in our datasets, we
manually crafted the correct XPath expression to extract correct
data as golden standard, based on which we computed the number
of true positives (tp), false negatives (f n), false positives (f p), preci-
sion P = tp/(tp + f p), recall R = tp/(tp + f n), and the F1−measure,
as F = (2 · P · R)/(P + R).

These metrics have been computed both at (macro or) rule level
and at (micro) level of extracted values. At rule-level, we consider
a rule correct only if it extracts a set of values perfectly matching
with that extracted by the golden rule, without any missing value:
any rule extracting just a few noisy values or missing a single value,
is considered the same as if it were completely wrong. We also
calculate all the metrics at value-level by comparing the number of
correct/noisy extracted values. In Table 4 and in Table 5 we report
the main results for the two considered datasets: P , R, F stand for
the precision, recall and F -measure, reported both at rule-level (e.g.,
Fr ) and at value-level (e.g., Fv ).
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Table 4: red vs diadem Performance.

System diadem red red
Target Attributes Ontology Ontology All

real_estate

Pr 0.94 0.91 0.92
Rr 0.90 0.90 0.91
Fr 0.92 0.91 0.91
Pv 0.98 0.98 0.98
Rv 0.92 0.94 0.93
Fv 0.95 0.96 0.96

used_cars

Pr 0.97 0.96 0.97
Rr 0.96 0.96 0.96
Fr 0.96 0.96 0.97
Pv 0.97 0.96 0.97
Rv 0.94 0.98 0.97
Fv 0.95 0.97 0.97

6.2 Comparison with DIADEM
For a fair comparson between red and diadem, we limit the target
attributes to those in the ontology used by diadem, but also report
red’s performance on all available attributes.

Table 4 presents P/R/F results of red and diadem systems over
the dataset dia_ds, both at the rule-level and at the value-level.
Generally, red and diadem perform roughly at the same high pre-
cision, recall, and F -measure. Considering that red uses no domain
ontology or other prior knowledge about the domain, that is quite
remarkable. Moreover, red can extract all the redundant attributes
published in the result pages (as shown in the all column), not
just the ones covered by the diadem ontology, achieving similar
results. Overall, red identifies 33% more attributes (about 800 at-
tribute extraction rules) than diadem (about 600). The same close
performance can be observed at site-level: red extracts all attributes
correctly in 73% of the websites, compared to 76% for diadem.

6.2.1 Failures & Limitations. The most frequent errors for red and
diadem systems can be grouped in two main categories.

Noise: diadem leverages its ontology to automatically anno-
tate target pages. Wrong extracted values from diadem system are
mainly due to misleading annotations. In our experiments, there
are 5 sites where it suffers of this problem, e.g., top-lettings.co.uk.
diadem extracts the template nodes Available: always occurring
before the attribute AvailableDate and it wrongly takes it as a value
of the attribute PropertyStatus. In contrast, red’s most common
type of noise are partially correct rules, that extract only a fraction
of the correct values.

Missing rules: Where diadem mostly misses attributes due
to a lack of overlap with the background ontology, red mostly
misses attributes where the sites do not conform to its assumptions
and specifically that result attributes also occur on the detail page
and that attributes have a large enough domain to show some
variability between result records. On site davidtompkins.co.uk
the Description values in the result pages do not occur in detail
pages. On cotswoldlettings.co.uk the Status of the properties is an
optional attribute that can only take the value SOLD when present.
red wrongly considers all these values as part of the template.

6.3 Multi-domain evaluation
We further evaluate red on red_ds, a dataset covering 10 domains
(Coffee, Concerts, Florist, Jewerlry, Job Search, Threatres, Books,

Camera, Lighting, Sigars) with 3 randomly selected sites for each
application domain. For space reasons, in Table 5 we just report
the results for one example domain Cigars,5 the quality metrics
averaged over all the sites computed both at rule and value level,
and other aggregated results; namely: total number of records (n)
contained in the result page, total number of correct (tp), missing
(f n) and incorrect (f p) values/rules produced.

Overall, red attained a high performance at both rule-level (0.93
of F -measure) and value-level (0.96 of F -measure). At the value-
level the precision is remarkable high (0.99).

Among 8 noisy rules in the output produced by red, only 3
of them are entirely incorrect while all the other noisy rules are
partially correct rules. On ncfjobs site, red seems to perform badly
as there are 4 noisy rules, out of which 3 are partially correct rules
for Description, and 1 for JobTitle. All these noisy rules survived
the noise-removal step because red rules generation algorithm was
not complete, i.e., it could not find correct rules for these attributes.

6.3.1 Comparison with other unsupervised approaches. For compar-
ison with state-of-the-art unsupervised data extraction systems, we
ran depta [41] on the dataset red_ds. This system is also capable of
extracting records from result pages and does not require multiple
sample pages. Although the algorithm was proposed in 2006, we
compared with a runnable version re-implemented in 2012.6 Since
it blindly outputs multiple tables without telling the user which
one contains the target data, we manually picked a single table
containing the published records and evaluated precision, recall
and F -measure at the column-level, to get scores comparable with
red’s rule-level scores. This yields a negligible advantage for depta
as it is usually fairly easy to pick out the dominant table.

We evaluate depta’s record identification step over 14 out of
30 sites considered on which the prototype was able to produce
a correctly-aligned table. Among these 14 sites, depta achieves a
respectable precision of 0.70 and recall of 0.93.

6.4 Robustness to parameter setting
red depends on two key parameters: δ is the max allowed pivot-
to-value distance used during the generation of the rules; ρ is the
minimum threshold on the score to consider a pair of result/detail
rules as not redundant during the search for correct pairs of rules.

Figure 6a plots the performance of red on the red_ds dataset
over several δ values (with fixed ρ = 0.3). While the precision
is only slightly affected, the recall is significantly related to the
maximum pivot-to-value distance. The larger the number of gener-
ated rules, the higher is the probability of generating correct rules.
Unfortunately, it turns out that by generating too many rules, red
may end up introducing so many noisy rules that the probability
of a noisy rule to be erroneously considered correct is increased,
causing a loss in precision. In our experiments, δ = 6 proved to be
the sweet spot.

The other key parameter is the maximum redundancy score, ρ.
A pair of result/detail rules is considered not redundant if its redun-
dancy score is above ρ. It significantly affects the noise removal step
whose task becomes harder and harder as noisy pairs are injected
in the red’s processing pipeline. As shown in Figure 6b (with fixed
5A complete table can be found at https://github.com/redwww/experiments
6http://seagatesoft.blogspot.it/2012/05/structured-data-extractor.html
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Table 5: Results of red on red_ds.

Domain Sit e n t pr f nr f pr Pr Rr Fr t pv f nv f pv Pv Rv Fv

Cigars
famous-smoke 60 8 1 1 0.88 0.88 0.88 439 15 20 0.95 0.97 0.96
cigars-of-cuba 9 9 0 1 0.90 1 0.95 71 0 6 0.92 1 0.96
vipcigars 18 3 0 0 1 1 1 54 0 0 1 1 1

10 domains 30 sites 724 145 11 8 0.94 0.92 0.93 3365 248 28 0.99 0.93 0.96

(a) Max pivot-value distance δ (b) Max redundancy score ρ

Figure 6: Performance by varying the two key parameters.

δ = 6) the precision starts with maximum values, and then it grad-
ually decreases as ρ becomes larger and larger. The noise removal
process can still manage to remove most of the noises when ρ is at
0.4 but for larger values of the parameter there is a loss of preci-
sion, as the greater number of noisy pairs makes that process less
effective. Conversely, too small values for ρ, meaning a too strict
criteria for considering a pair of rules as redundant, makes red
wrongly remove some correct but not perfectly redundant pairs, as
is evidenced by the recall loss of the plot in Figure 6b at ρ < 0.3.

For red experimental evaluation, we measured red performance
by using the best empirically known values for the two parameters
δ and ρ, i.e., ρ = 0.3 and δ = 6.

Efficiency: By considering the number of input pages as a constant,
red efficiency can be conveniently analyzed in term of the initial
number of rules generated. On red_ds dataset, it generates an
average number of 1259.17 result rules and 4912.10 detail rules,
which reduce to 205.50 and 289.03 distinct vectors, respectively,
after duplicates removal step; only 88.87 candidate pairs have a
redundancy score smaller than ρ. red achieves an average running
time of 72.6 secs on a 64-bit Ubuntu system with an 8-core Intel i7
CPU at 3.40GHz, processing most sites in less than 30 seconds. red
running time is spent mostly on executing the generated extraction
rules, a step that could be easily parallelised.

7 RELATEDWORK
Web data extraction approaches and tools has been proposed both
from research community and from industry [15, 16]. Due to the
space limitation, we compare red with the most related work and
systems such as depta [41], and diadem [18], which tackle with a
similar problem as ours.

depta executes two steps on a single result page, (i ) identifying
data records, and (ii ) aligning values belonging to the same attribute.
The first step, which is an enhancement of the mdr algorithm [29],
works on a tag tree based on the visual containment relations of
different HTML elements. It exploits the similarity of tag strings

of nodes (and their descendant nodes) to find the data records. A
further partial tree alignment method based on tree-edit distance
is applied for the second step. depta has two major drawbacks:
First, it is highly sensitive even to small exceptions in the structure
of the template (e.g., the record of some featured products may
be presented differently from others) and optional nodes (e.g., the
discount) in the repeated patterns. Second, due to the lack of any
cues for identifying target values, it cannot easily separate target
values from template nodes and other noises in the input pages.

One of the state-of-the-art system for domain-specific data ex-
traction from result pages is diadem. We limit our discussion to
its component most related to red, i.e., that extracting data from
result pages. diadem adopts automatic annotators to improve the
data identification process, and requires the writing of a domain-
dependent ontology which has to be designed and maintained by
an expert. We exploit the intra-site highly precise redundancy to
make red more accurately target the relevant data without using
any domain dependent feature.

Unsupervised approaches like RoadRunner [8], ExAlg [2], Fi-
VaTech [27], trinity [35], and ViDE [30] all are based on the
observation that pages providing homogeneous data are generated
by using regular HTML templates, so they end up being mostly
similar. It turns out that by analyzing the differences among a bunch
of pages sharing a common template, it is then possible to reverse-
engineer a model of that template, for example by means of regular
expressions [2, 9]. However, in practice all these systems are not
used for large scale extraction tasks because their performances
are highly dependent on how well the input pages satisfy the un-
derlying assumptions, to the point that the output quality level is
unpredictable at scale [10]. In contrast, red does not infer a precise
description of the template, and it does not rely on it to find the
data as all these latter systems, including ExAlg, do.

The work in [11, 12, 22] addresses the problem of XPath rules
generation problem, but starts from a different input, i.e., a set
of example nodes most of which are likely correct target nodes.
These are usually provided by automatic annotators which are not
available for every domain.

The approaches in [5, 23] and in [3] exploit content and/or
schema redundancy and focus on template-based sites as red does.
However, they solve a completely different set of problems by adopt-
ing techniques based on the availability of data about the same
objects across several autonomous sites. In other words, they focus
on inter-site redundancy rather than on intra-site redundancy. It
is therefore crucially important to align the different formats (e.g.,
Height expressed in inches on a site vs the same attribute expressed
in centimeters on another site), a problem that we show is negligi-
ble intra-site. Also, since both approaches work directly on detail
pages, they do not address record segmentation problems at all.
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In [28] it is tackled the problem of segmenting result pages into
records by exploiting links to detail pages exactly as red. However,
differently from red, the authors do not consider at all the problem
of extracting data from the result records once segmented; rather
they describe two different approaches for tackling the segmenta-
tion problem: one formulates the task as a constraint satisfaction
problem (CSP) and the other uses a probabilistic inference setting.
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