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ABSTRACT

We study the problem of estimating the total volume of queries of a
specific domain, which were submitted to the Google search engine
in a given time period. Our statistical model assumes a Zipf’s law
distribution of the population in the reference domain, and a non-
uniform or noisy sampling of queries. Parameters of the distribution
are estimated using nonlinear least square regression. Estimations
with errors are then derived for the total number of queries and
for the total number of searches (volume). We apply the method
on the recipes and cooking domain, where a sample of queries is
collected by crawling popular Italian websites specialized on this
domain. The relative volumes of queries in the sample are computed
using Google Trends, and transformed to absolute frequencies after
estimating a scaling factor. Our model estimates that the volume
of ITtalian recipes and cooking queries submitted to Google in 2017
and with at least 10 monthly searches consists of 7.2B searches.
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1 INTRODUCTION

The problem of computing the total number of searches (volume)
of queries belonging to a specific domain is extremely relevant and,
at the same time, challenging. From a business perspective, the
total volume V of queries quantifies the potential market of search
engine advertising in the domain. An even more interesting quantity
is the total volume V;, of queries searched at least v times. V,
quantifies the potential market of queries worth to bid on. Related
to the above, the total number of queries N in the domain, or of
queries Ny, searched at least v times, are also gold nuggets. However,
the stream of queries submitted to a search engine is so massive
that it is impractical to keep frequency counts of every possible
query, particularly of those in the long tail of the distribution.
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Figure 1: Empirical rank-volume distribution (scaled Google
Trends estimates). Best view in color.

Here we study the problem of estimating the total volume of
queries submitted to the Google search engine for a specific domain
in a given time period. While our method is in principle general, in
this paper we apply it to data in the domain of recipes and cooking.
Such a domain consists of queries with the name of the recipe
of a dish, excluding drinks. The advantage over other domains is
that it is relatively easy to collect sample recipes and to validate
whether a given text is a recipe or not. In particular, we crawled
popular websites of Italian recipes and cooking, collecting a sample
of more than 120K queries. We then resorted to Search Engine
Optimization (SEO) tools, and in particular to Google Trends!, for
obtaining estimates of the volume of each query in the sample for
the whole year 2017.

The motivation for the model adopted in this paper comes from
the evidence of Figure 1, which shows the empirical rank-volume
distribution obtained using estimates of Google Trends. Actually,
Google Trends provides relative volumes, not absolute frequencies,
thus to find absolute volumes we need to estimate an appropriate
scaling factor. This is done by correlating relative volume with
ground truth continuous data. We rely on query impression sum-
maries provided by the Google Search Console of a top-ranked
website. Indeed Figure 1 reports absolute volumes obtained by
rescaling relative ones. The most difficult task in our problem is
to estimate the volume of the queries in the population which do
not belong to the empirical sample. For this reason we do a precise
statistical assumption on the rank-volume distribution of the whole
population of queries (i.e. observed and unobserved). Our statistical
model assumes a Zipf’s law distribution of the population, as sug-
gested by the empirical distribution of Figure 1 and previous related
work [16]. In order to cope with computational issues, SEO tools
may adopt sampling strategies and/or approximated counting tech-
niques, e.g., count-min sketch summaries [6, 8], that favor volume

!https://trends.google.com


https://doi.org/10.1145/3308558.3313535
https://doi.org/10.1145/3308558.3313535
https://trends.google.com

estimation of popular queries against the ones in the long tail of the
distribution. This yields the visible drop in volume in the tail of the
empirical distribution of Figure 1, with only 18.5K queries being
assigned a non-zero volume estimate by Google Trends. We are able
to model this behavior by assuming that empirical sampling from
the population is not uniform, but it depends on the true rank of a
query (non-uniform sampling). Moreover, in order to account for
approximations in the SEO tool data, we additionally assume that
the estimates are noisy, and discuss two specific sampling schemes
(noisy and sketchy sampling). Parameters of the Zipf distribution
are estimated using Nonlinear Least Square (NLS) regression. Sim-
ulations show such estimators perform better than an alternative
approach based on Power law parameter estimation. We derive
then estimators of total volumes V and V,,, and total number of
queries N and Ny, including closed formula for statistical errors of
such estimators.
In summary, this paper makes the following contributions:

o we formalize the problem of estimating the total volume of
queries submitted to a search engine, propose a statistical
model which is consistent with empirical data, and infer
parameters of the statistical model that perform well under
simulated conditions;

o we design a procedure for estimating relative volumes of a
set of queries that overcomes the rounding error introduced
by Google Trends, and devise a statistical model for scaling
relative volumes to absolute ones starting from ground truth
SEO data;

e we apply the approach to the domain of recipes and cooking
for queries in Italian, and produce estimations for the volume
Vu of queries searched at least v times in 2017.

This paper is organized as follows. First, we report on related
work in Section 2. Next, Section 3 states the main problem by
modelling the rank-volume distribution of queries as Zipf’s law.
Section 4 first discusses the impact of non-uniform sampling from
a Zipf’s law, which is consistent with empirical data. Then, esti-
mators of the parameters of the Zipf’s law are introduced, and
adopted for estimating the number and total volume of queries in
the population. Section 5 describes the approximation introduced by
computing relative volumes from Google Trends data, and presents
a statistical model for scaling relative volumes to absolute ones. Sec-
tion 6 describes the available empirical data obtained by collecting
Google Trends relative volumes, and applies the scaling method
of Section 5 and the estimators of Section 4 to the empirical data.
Conclusions summarize the contribution of the paper.

2 RELATED WORK

Pareto distributions and Zipf’s laws are ubiquitous in empirical
data of many fields [5, 14], and in information retrieval in particular
[16]. Several works [2, 3, 10, 16] have observed that the probability
that a query is searched v times in a query log is approximately
Power law distributed, namely P(V = v) « 1/0%. This implies (see
e.g., [1,4]) that the the probability that a query is ranked i-th follows
a Zipf’s law P(R = i) « 1/i# for p = 1/(a — 1). This information
on query frequencies/ranks has been used to optimize caching and
distribution strategies in search engines and peer-to-peer systems.
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There is a huge literature on the estimation of parameters of
Power law distributions and Zipf’s law. Popular methods [16]
have relied on: graphical methods, straight-line approximation,
maximum-likelihood estimation. The estimated tail exponent, even
in simulated data, significantly depends on the adopted method
[12]. A major breakthrough was the method proposed in [5], which
consists in a maximum-likelihood estimation, with a cutoff for the
fitting region determined with a Kolmogorov-Smirnov test. This
method is implemented in the powerLaw package [11] of R, which
we used extensively in our analyses.

A related stream of literature considers the unseen species prob-
lem. As originally stated, the problem asks how many biological
species are present in a region, given that in an observation cam-
paign a certain number of species with their relative frequency have
been observed. In our case, the problem is that we have (noisy) esti-
mates of the frequency of a certain number of queries, and we want
to estimate the number of unobserved queries and their frequency.
Despite there are several estimators for the unseen species problem
(for example, the Good-Toulmin estimator and its extensions [15]),
the problem tackled here is different in an important aspect. In the
unseen species problem, it is often assumed that in the sample used
to build the estimator, the observed frequencies are proportional
to the true frequencies in the population. In other words, there
is no bias in the construction of the sample. In our approach, the
elements of the sample are chosen ex-ante and not necessarily the
probability of being in the sample is proportional to true frequency.

Google Trends has been widely used for correlating search trends
with offline indicators of economic activity, business performance,
disease spreading, brand value and awareness, box-office revenue
and audience, stock market variability, etc. [17] presents a brief
review of the literature. To the best of our knowledge, all works
make use of relative volumes only. Their conclusions are stated in
relative terms, such as increase/decrease of a searched topic. Here,
we first attempt at determining absolute volumes of sample queries,
and at inferring how they aggregate over all queries in a domain.

In general, there is little documentation on how SEO tools collect
query logs for providing estimates of search frequencies. Google
Trends and Google AdWords can rely on Google search engine logs.
Similarly for services provided by other search engines. Indepen-
dent SEO tools (Searchvolume.io, Ubersuggest, Semrush, Keyword-
keg, etc.) rely on a more limited user base. [17] compares Google
Trends and Baidu Index (restricted to searches from China only),
and finds that their estimates are highly correlated. An advantage
of Baidu Index over Google Trends is that it provides absolute
estimates, not relative ones. For reference domains restricted to
searches from China, by using Baidu Index instead of Google Trends,
one would save the task of scaling relative to absolute volumes de-
scribed in Section 5.

3 PROBLEM STATEMENT

Let us assume the population of queries in the reference domain is
composed by N queries, and that the rank-volume distribution of
such population follows a Zipf’s law. Formally, the volume V; of
the i-th most popular query g;, for i € [1, N], is:

c

Vi = 5 (1)



The parameters ¢ and f§ are called the intercept and the coefficient
respectively. The total volume over the population is thus:

N
V=), 5= ellp) = L(BN + 1) @)

i=1

where {(x) and {'(x, y) are the Riemann zeta and Hurwitz functions,
respectively. If N, ¢, and f are known one can easily determine
V. As discussed in the introduction, however, there are several
reasons that make this impossible in practice. The problem that we
investigate in this paper consists of estimating V starting from an
empirical sample of volumes vy, .. ., v,, for n < N sample queries.
Without any loss of generality, we assume that the observations
are ranked, namely v; > v > ... > vp.

The problem can be decomposed in two parts: (1) since true
absolute volumes V; are not observable, even for the subset of
n queries, we propose a method for estimating them; (2) having
a possibly noisy estimation v; for V; in a possibly non-uniform
sample subset, we consider the problem of estimating the total query
volume V, including also the volume of the unobserved queries.
Problem (2) is tackled first in the next section, while problem (1) is
discussed in Section 5.

4 MODELLING AND ESTIMATION
4.1 Sampling from a Zipf

Starting from the assumption that the volume of the query popu-
lation follows a Zipf distribution (see Eq. 1), we observe that the
empirical distribution in Figure 1 shows a drop of volume in its tail.
We intend here to investigate on this. We will consider the effects of
different sampling methods from a Zipf’s law, and check whether
the conclusions are consistent with our empirical data.

Clearly, uniform sampling from a Zipf’s law cannot explain the
drop of volume in the tail of the empirical distribution. In fact,
queries in an empirical sample are rarely chosen uniformly. The
approach followed in our reference domain, for instance, relies
on collecting recipe names from specialized websites. These typi-
cally conduct a keyword research effort in targeting high-volume
keywords. As a consequence, our empirical data suffers from an
unavoidable selection bias in favor of high-volume queries. A simi-
lar bias against very low volume queries is introduced by SEO tools
(e.g., Google Trends) used to obtain volume estimates of queries
in a sample. In summary, our empirical data is likely to be a non-
uniform sampling of the query population. We assume here that
sampling depends on the true rank, and call this non-uniform sam-
pling. Formally, we assume that the i-th query g; is sampled with a
probability p(i). We want to check whether the observed rank plot
obtained by a sample of the population is different from a Zipf’s law.
To this end, we consider a geometric sampling p(i) o« p(1 — p)i~1,
i.e,, the sampling probability decays exponentially with the rank.
For example, if p = 0.01, the probability that the query with the
largest volume in the population is observed is p, then the sec-
ond, third, fourth, etc. query in terms of volume will be observed
(i.e. sampled) with probability 0.99p, 0.99%p, 0.993p, etc. Figure 2
shows a numerical simulation with the following parameters? of

2The choice of B, in particular, has been driven by the empirical distribution of Figure 1.
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Figure 2: Simulation of sampling from a Zipf’s law.

the population:

N=10% c¢=10°, f=0.7745. )

Samples consist of n = 1000 queries, and p = 0.001 is set for the
geometric sampling. The black line is the whole population, the
blue line is obtained with geometric sampling while the grey line
is obtained with uniform sampling. The non-uniform sampling is
consistent with the tail of the empirical distribution in Figure 1.
As a second aspect worth to be considered, we have mentioned
that SEO tools typically provide approximated values of the true
volume of queries, due to their sampling strategy and computational
heuristics in frequency counting. Another source of approximation
will be discussed in Section 5.1. Therefore, our empirical data is
drawn from noisy values X;’s of the true V;’s. We assume that:

Xi =Viei

where €; are independent noise with common distribution charac-
terized by the same mean y and variance Uiz. Clearly, the presence of
noise scrambles the frequencies, thus the most frequent according
to X is not necessarily the most frequent according to V. Figure 2
includes also a noisy and non-uniform sample (red line) generated
assuming €; normally distributed, but truncated to 0 to avoid nega-
tive V;’s. Parameters are set as follows: p = 1, i.e., noise is unbiased,
and crl.z =0.01/9, i.e., 99.7% of noise is in the range +30 = +10% of
the true value. Noisy and non-uniform sampling (hereafter noisy
sampling) produces an empirical distribution very close to the one
of non-uniform sampling and that is also consistent with our em-
pirical data.

A yet another way to model computationally approximated
counting, as provided by count-min sketches [6, 8], is to set:

Xi = Vi +yic

where y; is uniformly distributed in the range [0, y]. In such case,
the noise overestimates V; up to a fraction y of the top volume V; =
¢/1# = c. For low volumes, the noise may considerably increase
the observed value. However, for a sufficiently low y, the non-
uniform sampling alleviates from this problem, since low volumes
are sampled with low probability. We set y = 0.001 in simulations.
The empirical distribution generated lies in between the ones of
non-uniform and noisy sampling. For readability reasons, it is not
shown in Figure 2. We call such model the sketchy and non-uniform
sampling, hereafter sketchy sampling.
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Figure 4: Simulations on estimation of f: error bars (mean + stdev).

4.2 Estimating f and ¢

We consider now the estimation of the coefficient § and intercept
c in Eq. 1 by exploring two alternative methods for each of them.
Regarding the coefficient, we observe that f3 is the same coefficient
of the p.d.f. of the continuous Zipf’s law:

1

P

Thus, we can use the well-known method of Clauset, Shalizi and
Newman [5] (hereafter, the CSN method) for estimating the § pa-
rameter in Eq. 1. Strictly speaking, [5] is a maximum-likelihood
estimator & of the @ exponent of the Power law of volume distribu-
tion, P(V = v) o< 1/v%, from the high-volume tail of empirical data
Umax < ... < v1.Since in many empirical data the Power law tail is
observed only for a range of values, [5] uses a Kolmogorv-Smirnov
like test to determine vpx Which is the optimal value after which
the distribution is Power law tailed. Using the well-known relation
B = 1/(a — 1) between exponents of Power law and continuous
Zipf’s law (see [1, 4]), we obtain the estimate ﬁ =1/(@ — 1) of the
coefficient of the rank-volume distribution for top ranks 1 to max.
The theoretical advantage of this method is that it automatically
selects the rank max from which to regress the coefficient.

The second estimator of f is to use standard Nonlinear Least
Square (NLS) regression of the volume V; from the rank i. This
means that the parameters c and f are those minimizing the sum of

2
squares: 2%1 (V,- - 1%) , where M is the maximal rank considered

in the regression. Since the empirical data follows such distribution

3NLS regression requires to specify initial values for 3 and c to start with. We compute
them using ordinary (linear) least squares (OLS) of the log, i.e. minimizing )’ (log V; —
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for the top ranks, we regress only the top M = max rank-volume
data, where max is the rank returned by the CSN method. NLS has
two advantages over CSN. First, intercept ¢ and coefficient j are
estimated together in the same procedure. Second, the regression
directly estimates 3, while in the CSN method f is estimated with a
formula involving the estimator of a. Finally, the second estimator
of the intercept that we consider here is the maximum observed
value, namely v;. We call it the max-estimator of c. This is motivated
by observing that V; = ¢/ 1% =g namely the intercept c is the
volume of the top ranked query in the population.

Let us now investigate how these estimators are affected by
the non-uniform, noisy, and sketchy sampling from a Zipf’s law.
Numerical simulations with parameters as in (3), are repeated at the
variation of the sample size n for 1000 times and results averaged.

Figure 3 shows that both the max-estimator and the NLS regres-
sion converge to the true value of the intercept c. For noisy data,
however, there is some error, which is proportional to the noise
level (set to £10%). Variability is slightly lower for NLS regression.
Larger error bars can be observed for small values of n. They are
due to the chances of not having the highest volume of the pop-
ulation included in the sample. This chance is controlled by the
p = 0.001 parameter in the geometric sampling. Smaller values lead
to larger standard deviation, and, symmetrically, larger values to
smaller standard deviation. Thus, in practical settings, the selection
of the sample queries must carefully consider the issue of including
the most popular queries in the empirical sample. This has been

log ¢ — B log i)?. This method cannot be used as an alternative to NLS since it gives too
much importance to deviations of low rank queries with respect to high rank queries.
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Figure 5: Simulations on estimation of the population size N: error bars (mean + stdev).

one of our main concerns in collecting queries in the recipe and
cooking domain.

Figure 4 shows some differences in the estimation of . Regarding
the CSN method, the estimated values for non-uniform and noisy
samplings are slighly lower than the true . Underestimation in the
sketchy sampling case is, instead, considerable. Regarding the NLS
regression, it is unbiased for non-uniform and noisy sampling. For
sketchy sampling, f is slightly underestimated. Estimations rapidly
converge for increasing n’s, except for noisy sampling in the case
of NLS, and for sketchy sampling in the case of CSN.

Finally, all estimations are weakly dependent on n: starting for
samples of 0.4% of the population, they become stable.

4.3 Estimating N

In the following, we will focus on a simple but effective estimator of
the size N of the query population. We assume to know Vj, namely
the smallest volume of a query in the population. This assumption
is realistic for absolute frequencies, since Vy =~ 1. From Eq. 1, for
i = N, we have N = (c/Vy)'/#. This motivates the following

estimator:
1
. ¢ \B
N=|— 4
(VN) &

where ¢ is an estimator of ¢ and f is an estimator of f. Eq. 4 can be
extended to an estimator of the number of queries whose volume
is greater or equal than a given value v as:

Ny, = (¢/v)"/P 5)

Numerical simulations with parameters as in (3) are shown in
Figure 5 for: (1) ﬁ obtained by the CSN method and ¢ obtained by
the max-estimator; and (2) ﬁ and ¢ obtained by NLS regression. The
first method is biased, showing a slight overestimation for non-
uniform and noisy sampling and a large overestimation for sketchy
sampling (not shown because exceeding the y-axis limits). The
second method converges to the true value of N for non-uniform
and noisy sampling (on average), and it slightly overestimates it for
sketchy sampling. These findings are intuitive. They follow from
Eq. 4, by observing that, if ¢ is unbiased (as shown in Figure 3), then
the estimator N has a bias proportional to the power of 1/ ﬁ We
know from Figure 4 that [§ underestimates  for the CSN method
or for the sketchy sampling. The only advantage of first method
over the second one, is a smaller variability of the estimates in the
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case of noisy sampling. Again, this is a direct consequence of the
smaller variability of § estimates (see Figure 4).

4.4 Estimating V

Building on the estimators and simulations conducted so far, the
proposed procedure for estimating the total volume V' is composed
of the following steps:

e estimate f and c, as described in Section 4.2;

o use the estimated B and ¢ as inputs for estimating N as shown
in Section 4.3;

o the estimator of V is obtained from Eq. 2 as follows:

V=B - (BN +1)]

Notice that by Eq. 4, the estimator V can be stated using only f

and ¢:
1

T YRY
v =ete(h -6 )+ ©
N
These estimators can be generalized to estimators of the total vol-
umes of queries with minimum volume v by replacing Vj by v:

Vo = eE(B) - L(B. /)P + 1)) )
Let us continue the previous numerical simulations. With the set-
tings in (3), it turns out V' = 9, 609, 224. First consider using the NLS
regression method in the first step of the procedure. Figure 6 shows
that V converges to V for non-uniform and noisy sampling, and
overestimates it for sketchy sampling. For noisy sampling, there
is some variability, which is in the order of the noise introduced
during sampling (+10%). The overestimation in the case of sketchy
sampling follows from the overestimation of N (see Figure 5).

Consider now the case of using in the first step of the procedure
the CNS method coupled with the max-estimator. The total vol-
ume is slightly overestimated for non-uniform sampling and for
noisy sampling. In the latter case, there is some variability, which
appears lower than for the CSN method. This can be tracked back
to lower variability in the estimation of j3 (see Figure 4). For sketchy
sampling, the overestimation is very large: it is out of the bounds
of the plot in Figure 6. Again, this can be traced back to a larger
underestimation of f compared to the CSN method.

The impact of biased ﬁ on the estimated total volume V can
be readily explained when ¢ = ¢ — which holds in simulations,
as shown in Figure 3. In Figure 7 we plot Eq. 6 as a function of
V, under the assumption that Viy is known. The left plot shows
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Figure 7: Estimated volume (Eq. 6) as a function of ﬁ, assum-
ing ¢ = c. Simulation parameters: N = 10°, ¢ = 10, § in title.

simulations for the parameters in (3) used so far. The right plot uses
the same N and c, but a 8 greater than 1. In both cases, the bias of
V is inversely proportional to bias of . Note the log scale in the
y-axis, which comes from the fact that § appears as exponent in
Eq. 6. For p’s lower than 1, error (or variability) of the estimator
ﬁ has a greater impact on error (or variability) of V than for B’s
greater than 1.

In all three sampling models, the performances become stable
from n = 4,000 on, which is 0.4% of the population. Let us now
focus on small sample sizes, for which instead there is a large
standard deviation over the experimental runs. Fix n = 2,000, and
consider NLS regression and uniform sampling. The estimated Vis
approximately V + 3.9 x 10%, i.e., the standard deviation is 4 times
the (unbiased) average. What is the source of such variability?
Figure 8 shows the scatter plot of empirical volume vs estimated
total volume over the 1,000 experimental runs. Runs where the
generated sample has a low total empirical volume exhibit most
of the variability (notice that the y-axis is in logscale). If the total
empirical volume is sufficiently large, even small samples converge
to the true volume. This reinforces our previous conclusion that,
in practical settings, the selection of sample queries must carefully
include popular ones, especially for small size samples.

As a summary of the simulations, we therefore recommend using
the NLS regression method for estimating ¢ and f3, and, using Egs. 6—-
7, for estimating V and V,,.
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4.5 Errors on the estimates

We now compute the error on the estimated N obtained from Eq. 4.
Using the propagation of errors under the assumption that the
errors on f§ and c are independent, the error on N is:

AN = (%?Ac)z + (%Aﬁ)Z

To have a more conservative estimate of AN, taking into account
correlations between errors, one can replace the previous formula
with the sum of the absolute values:

+

AN = ‘—Ac ®)

ON
a_/?Aﬂ

The partial derivatives in the previous expressions are:

A 1 A
ON _ ( ¢ )E 1 N
aé pe  pe

A 1 A
ON ( ¢ )E 1 ¢ N ¢
— =—|—|" =log— = log —
B VN ﬁZ VN ﬁZ VN
From these values and the knowledge of Ac and Af (obtained from
the NLS regression), it is possible to compute AN.

The computation of the error on the total volume is a bit more
involved. Consider V as a function of ¢ and f (see Eq. 6). To find
the error on V we compute its derivatives with respect to ¢ and f.
We find:

oV (V

e = N{(ﬁ+1N+1)
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where ¢’(x) is the derivative* of the Riemann Zeta function and
4 1.0 (s, a) is the partial derivative of the Hurwitz function with
respect to s. In summary, the error on the total volume is:

N 2 ~ 2
oV oV

or, more conservatively:

v

o

AV = Ac +
g | ¢

Ap ©)

5 GOOGLE TRENDS: DATA COLLECTION
AND SCALING

Google Trends has several advantages over other SEO tools. First,
the volumes provided are computed from the Google search engine
query logs, and not from unspecified sources which may have
unknown forms of bias. Second, data can be aggregated for arbitrary
ranges of time and user agent languages. Most of the other tools,
instead, provide monthly averages at the time of request, making it
impossible to extend an experiment incrementally to new queries.
Third, estimates by Google Trends are ratio-scaled, while other SEO
tools provide binned values, i.e., ranges of volumes.

On the negative side, the volume provided by Google Trends is
relative, not absolute. We then fix one specific query to the con-
ventional volume of 1, and collect estimates of the volume of any
other query in comparison to the specific query. Next, we scale
the relative volumes to absolute volumes. In the rest of this sec-
tion, we discuss some approximation introduced by relative volume
calculation, and the scaling from relative to absolute volumes.

5.1 Relative volume calculation

A source of approximation in the calculation of the volume from
Google Trends raw data is introduced by the computation of the
ratio between the volume of a query ¢ and the volume of the pre-
fixed query f. In fact, Google Trends provides v%,. . ., v}z relative

52
q
values for each week in our reference time period (the whole year

2017). The largest value among U}’S or v(i]’s is conventionally set

to 100, and all the others are integers from 0 to 100 set on the basis
of their fraction w.r.t. the largest value (hence, the name relative
volume). In the following, we assume v} = 100 (similar reasonings

volumes for f, and vl ..., 022 relative volumes for q, namely two

apply when vcll = 100). We aim at defining an estimator for the
ratio: 5 _—
i 1
~ Z?il v ~ 232, 100 - Vq/Vf
Toy52 i y52 i 71
2 V; 72,100 - Vf’/Vf

where V’s and ti’s are the true absolute volumes of f and q in the

f . .
i-th week of the year, and 100- V(;/Vf1 ’sand 100- V}/VJ} ’s are the true

relative (percentage) volumes of g and f respectively. Intuitively, r
is the ratio of the total volume of q over the total volume of f. Recall

47 (x) is available in R, while £ 9 (s, @) must be computed numerically or with
other tools, e.g., Mathematica.
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that v}’s and vfl’s are integer numbers. We further assume they

round down® the true relative volume, namely vé = 1100 - V(; / V}}J

and U} = 1100 - Vfi/VflJ. Bounds for the ratio r above are then:

52 i 52 i
Li=1 % <r< 2+ i % (10)
52 1 — = 52 1
51+ 375, vp Zizlvf
An estimator for r is the central value between the bounds:

52 i 52 i
. 1 52+ 272 vg 2i=1 Vg

T3 52 i 51 52 i

it Y + 252 Vf

Figure 9 (left panel) shows a numerical simulation consisting of
10,000 repetitions. For each repetition, true relative volumes for
52 weeks are generated for 100 - VJﬁ/Vfl’s and 100 - Vq’/Vfl’s. Then,

they are rounded down to obtain v%.’s and v;’s respectively. Finally,

the estimator 7 is compared to the true value r. As a parameter of
the simulations, while 100 - V]i / Vfl’s are uniformly generated in

[0,100] (hence, the assumption v} = 100 is satisfied), the values
100 - V(; / Vfl’s are randomly generated in [0, 100] with total sum
equal to a fraction of Z?ﬁl 100 - V}/Vl, namely so that r is set to

a desired value. In particular, Figure 9 (left panel) shows lines for
r = 0.8 (black line), r = 0.2 (blue line), and r = 0.05 (red line). For
non-small r’s, the estimator 7 is very close® to the true r on average.
Variance is small for larger r’s. For small values of r, however, the
estimator has a positive bias and very large variance. Intuitively,
the weight of rounding in the bounds for r in Eq. 10 becomes
considerable. Such weight can be kept low if the volumes of ¢ and
f are close to each other. For such a reason, our implementation
computing the relative volume of a candidate query q consists of
first comparing q with the pre-fixed query f. If their estimated
ratio 7 is lower (resp., higher) than a given threshold, then another
query f’ with lower (resp., higher) relative volume is chosen such
that the estimated ratio is within an expected range. The search
for f’ follows a binary search pattern among all queries whose
relative volume has been already estimated. If no f’ satisfies the
condition, the estimation for g is suspended, until some other query
f’ will subsequently be estimated that meets the constraint. Finally,
the volume of g relative to f is calculated as the product of the
volume of g relative to f” multiplied by the volume of f’ relative
to f. Figure 9 (right panel) shows the benefits of this two-steps
procedure against the single step comparing g to f. Here, r = 0.01
and f” is chosen with relative volume of 0.2, which is 20 times the
one of g. In our actual implementation, we are even more strict. We
look for an f” such that the ratio of g relative to f’ is is between
4/5=0.8 and 5/4 = 1.25.

5.2 From relative to absolute volume

We tackle now the problem of transforming the relative volumes
computed using Google Trends into absolute frequencies. Basically,

SRounding to the closest integer is another option, which seems not consistent with
the results of Google Trends. E.g., in any week series there is only one estimate of 100.
Other estimated values are strictly lower.

OStrictly speaking, a t-test at 95% confidence level rejects the hypothesis that the mean
of 7/r is equal to 1. The values are however very close for the whole region of explored
parameters.
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Figure 9: Simulation on estimation 7 of relative volume r of Google Trends. Left: at variation of r. Right: single step vs two

steps procedure for r = 0.01.

we rely on correlating with absolute volumes provided by an exter-
nal “ground truth" source. For instance, many SEO tools provide
absolute estimations. Commercial tools are supposed to be more
reliable than free tools, yet their fees are expensive for a large sam-
ple of queries. Moreover, in most cases such tools provide binned
absolute estimations. This complicates the statistical correlation
model. We consider in this sub-section the case of SEO tools with
continuous absolute estimations.

As before we consider a sample of n queries, and for the i-th
query q;, let V; be its true absolute volume. We cannot observe V;,
but we have two related quantities: (1) Google Trends provides a
rescaled estimate X; = V;/g, but g is not known; (2) another SEO
tool provides an absolute estimate of the volume of V;, which we
call Y;. Our objective is to estimate g and therefore the absolute
volume V;. The problem is complicated by two facts: measurements
computed from Google Trends are actually estimations of relative
volumes (see previous subsection); and, values provided by the
other SEO tool are noisy estimates of the true volume. A sensible
model taking into account the two sources of noise is:

Xi=— Yi = Vini

where &; are independent and positive error terms due to relative
volume estimation’ and are characterized by a mean value E[¢;] =
& ~ 1 and variance Var[&;] = z?. Similarly 7; are independent and
positive random variables with mean 1 (i.e., we assume that the
other SEO tool is not biased) and variance slz. Note that we are not
excluding the possibility that the variance of &; and/or n; depends
on the rank and/or on the volume of a query — since volume of
popular queries is easier to estimate. Finally, we will assume that &;
and 7; are mutually independent for any i and j. Combining the two
expressions we obtain a relation between observable quantities:

Yi = gXi&ini (11)
Let us consider different estimators of the constant g. In the case
of continuous data we compare three of them:

(1) The ratio based estimator defined as:
n

, 1 Y
== = 12
g H;Xi (12)

"With the terminology of Section 5.1, g“l_l is the rounding error, whose density is
shown in Figure 9.
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It is easy to show that it has the property:

Elgi] = g Varlgi] = L Zn: (252 + 22 + 257)

This estimator has a bias given by £, which can be assumed
very small as shown in the previous subsection. Moreover
when the sample size n — co it is Var[§;] — 0, i.e. the error
on the estimator asymptotically vanishes.

(2) The estimator from the linear regression over the logarithms
of the values:

logY; =a+blogX; +¢; (13)

and then setting g, = e®.
(3) The estimator from the regression:

logX; = A+ BlogV; +¢; (19)

given by g3 = e~ 4/B

In the numerical simulations below we will assume that 7;
follows a lognormal distribution, which is positive and has rel-
atively large fluctuations. Given the parameters p and o charac-
terizing the lognormal distribution, it is E[5;] = exp(u + 02/2)
and Var[n;] = (e"z — 1)(E[5:])?. In order to have E[n;] = 1, it
must be 4 = —%/2. Moreover we assume for simplicity that £ = 1
and Var[§;] = 0, i.e. we neglect the approximation error in the
calculation of relative volume from Google Trends data. As data
generating process, we consider a Zipf’s law distribution of the
volumes V;’s, with parameters as in (3), and a non-uniform random
sampling from it. Also, we consider two noise levels: ¢ = 0.03,
which leads to a standard deviation of 5; equal to s =~ 0.03; and
o = 0.3, which leads to s =~ 0.31. Then, we fix g = 2.75 and estimate
it using the above three estimator for 10,000 runs. Figure 10 shows
the densities of the estimated g with the three methods. The ratio
based estimator of Eq. 12 performs much better than the ones based
on regression and this advantage is larger when the noise term has
large variance.

6 EMPIRICAL ANALYSIS

We generated a sample of 120K queries by crawling popular Ital-
ian websites about recipes and cooking. The list of websites was
compiled with the help of web marketing experts and by looking at
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Figure 10: Density estimation of the estimated parameter g.

Top plot: small noise. Bottom plot: large noise.

the rankings of SEO tools®. We then submitted the 120K queries to
a few SEO tools to collect the estimated volume of each query for
the reference year 2017 and for Italian user agents. Considering a
whole year prevents seasonal bias in data. Query crawling, cleaning,
and collection of Google Trends volumes took about 2 months. The
process required manual inspection of crawled queries, with a few
iterations to correct bugs, to support new hypotheses, etc. Even
though the collection of Google Trends data was automated in a
script®, there is a daily bound on the number of invocations to the
Google Trends service, which makes such a step time-consuming.

6.1 Google Trends with absolute volumes

We obtained non-zero estimates by Google Trends for about 18.5K
queries out of the 120K in the sample. The resulting rank-volume
distribution is shown in Figure 1. The remaining queries belong
to the long tail, for which Google Trends returns a relative (hence,
absolute) estimated volume of zero.

The estimators of the scaling factor g discussed in Section 5.2
require that the absolute estimates provided by an external ground
truth are not biased. This assumption cannot be verified in general,
e.g., SEO tools do not disclose sufficient information due to IPR
restrictions. Since the bias of such tools is unknown, the choice of
which one to use for estimating g relies only on the trustworthiness
on one specific tool over the others.

Google Search Console!? (GSC) is a tool that provides to website
owners (a.k.a., publishers) summary statistics about the number
of impressions and the ranking of the website in Search Engine
Result Pages (SERPs). We considered a specific website for which

8E.g., https://serpstat.com
9We used PyTrends APIs (https://github.com/GeneralMills/pytrends).
Ohttps://www.google.com/webmasters
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v /12 N, AN, Vo AV,

12 11 269,214,520 =+ 18,507,467 | 14,169.58 M + 827.70 M

120 10 | 13,770,732 + 815,062 | 7,171.15M =+ 35396 M
1,200 100 704,394 + 33,959 | 3,591.35M =+ 14583 M
12,000 1,000 36,031 + 1,444 | 1,760.23 M  +56.86 M
120,000 10,000 1,843 + 56 823.63M +2030M
600,000 50,000 231 +5 457.12 M +9.06 M

Table 1: Estimated N, and V,, for queries with at least v
searches in 2017. v/12 is the monthly average of v.

we had access to its GSC statistics. The website ranked about first
in 2017 for 41 queries belonging to our sample. For such queries, the
absolute volume is then equivalent to the number of impressions
reported by GSC. In summary, we have ground truth volumes (or
very close to it) for such set of queries. Using the estimator of
Eq. 12, we found §; = 6,466.6, that is the pre-fixed query with
relative volume 1 was searched 6, 466.6 times in the whole 2017
year, i.e., an average of 538.9 times per month. Figure 1 shows the
rank-volume distribution where relative volume X; has been scaled
to Vi =Xi - g1.

A drawback of using GSC is the low number of ground truth
queries, only 41. As a second option, we consider the well-recognized
SemRush!! tool. We were able to collect volume estimates for 1,688
queries in our sample, using the paid service version of the tool.
The resulting estimated scaling factor §; = 6, 114 is very close to
the one obtained from GSC data.

6.2 Estimation of total query volume

Let us now apply the estimation model designed in Section 4 to the
empirical data of Google Trends volumes scaled using GSC data. As
shown by the red line fit in Figure 1 (left panel), the NLS regression
estimates!? are

B =0.7745085 &= e!7->18% = 40, 584, 860.
Their statistical errors are moderately low:
Af =0.002490065 Ac = 199, 263.

We can now use Eq. 4 for estimating the number N, of queries
having a volume of at least v, using Eq. 8 for calculating the sta-
tistical error ANy, Similarly, Eq. 7 can be used for estimating the
total volume V,, of queries having a volume of at least v, and Eq. 9
for calculating its statistical error AV,,. Table 1 reports the esti-
mates for a few values of v. As a means of comparison, the total
empirical volume of the 18.5K queries in our sample amounts at
1,057M searches. Such a large number is consistent with the fact
that the sample is not uniform, but highly ranked queries are more
likely to be in the sample. Moreover, it also gives confidence that
the sample is sufficiently large (as per empirical volume) to cor-
rectly estimate the true volume. According to the simulations of
Section 4, the values Nv and (VU may overestimate the true N,
and V,, respectively, if some sketchy approximation is introduced
in the query volume data by Google Trends (or by any other SEO
tools we might haved used in place of it). In case of noisy data,

Uhttps://www.semrush.com
12The figure also shows the rank max = 1725 determined with the CSN method. The
NLS fit is considered for the top max queries.
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instead, under or overestimation may occur. The amount of such
errors depend on the unknown amount of approximation or noise
in the Google Trends data. Moreover, it is worth to stress that the
reported statistical errors do not take into account such noise, but
only the error of the parameter estimation procedures (assuming
noiseless data).

7 CONCLUSIONS

We studied the problem of estimating the total search volume of
queries belonging to a specific domain. By doing the sensible as-
sumption that the unobserved rank distribution of absolute volumes
follows a Zipf’s law, our method can be decomposed in two parts.
First, by comparing Google Trends data with results from SEO tools,
we convert the relative volumes obtained from Google Trends for
a subset of queries into absolute volumes. Second, we use the esti-
mated absolute volumes of the subset of queries to infer the total
volume of the queries of the domain. In doing this, we carefully took
into account different sources of error (round-off by Google Trends
and observational noise). We were also able to find the total num-
ber and the total volume of the queries in the domain which have
been searched at least v times in a given time period. A large set of
numerical simulations have supported the validity of our methods.
Finally, we presented an empirical application to the estimation of
the volume of the domain recipes and cooking, providing also error
bars for the estimates. This kind of information is extremely useful
in web marketing research and advertising.

The first critical issue for extending our analysis to other domains
consists of checking the hypothesis that the population of queries
in the domain is Zipfian. As shown in Figure 1, empirical data on the
domain of recipes and cooking appears to be Zipfian. This motivated
our assumption that the reference population, namely the queries
searched in a reference domain, follows a Zipf’s law. Ref. [9] points
out that the granularity and extent of a reference population should
exhibit a “coherence” property. This is particularly relevant, since
splitting or merging two Zipfian sets does not necessarily yield
another Zipfian set, hence the actual definition of what is and what
is not in a domain is essential in meeting our assumption. The
domain considered in this paper has well-defined boundaries that
make it reasonably coherent.

The second critical issue is the construction of the sample set of
queries. As shown by the numerical simulations, the capability of
inferring the total volume significantly depends on the ability of
selecting in the investigated sample queries which have likely high
rank in the population (this is related to the parameter p in the non-
uniform sampling). This set can be constructed either by resorting
to domain’s experts or, as we did in this paper, by crawling a set of
specialized websites. Finding estimators which are (more) robust
to the choice of the sample of queries is certainly an interesting
potential extension of our approach to the case when it is costly or
unfeasible to construct controlled samples.

The third critical issue is concerned with understanding which
type of noise is likely to be present in empirical data provided by
Google Trends or other SEO tools. In this paper, we considered
three possible scenarios: uniform sampling alone, or together with
normally distributed noise (noisy sampling), or together with count-
min sketch like approximation (sketchy sampling). Other scenarios
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can be conceived, e.g., noise due to data anonymization [7, 13].
Further work is necessary to test which scenario fits better for a
given SEO tool.

Finally, the fourth critical issue in our approach is which SEO tool
to use for collecting volume of queries in the empirical sample. We
relied on Google Trends, which provides relative volumes, and had
to resort to GSC or other SEO tools as ground truth for determining
a scaling factor. An alternative is to use SEO tools directly for
collecting empirical absolute volumes. There are limitations of such
tools which motivated our choice of using Google Trends - see
beginning of Section 5. One of the issues is that they provide binned
data. This means that the estimators of ¢ and f might have to be
reconsidered, e.g., by resorting to extensions of the CSN method to
binned data [18].
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