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ABSTRACT
In this work, we propose a new, fast and scalable method for anom-
aly detection in large time-evolving graphs. It may be a static graph
with dynamic node attributes (e.g. time-series), or a graph evolving
in time, such as a temporal network. We define an anomaly as a
localized increase in temporal activity in a cluster of nodes. The
algorithm is unsupervised. It is able to detect and track anoma-
lous activity in a dynamic network despite the noise from multiple
interfering sources.

We use the Hopfield network model of memory to combine the
graph and time information.We show that anomalies can be spotted
with a good precision using a memory network. The presented
approach is scalable and we provide a distributed implementation
of the algorithm.

To demonstrate its efficiency, we apply it to two datasets: En-
ron Email dataset and Wikipedia page views. We show that the
anomalous spikes are triggered by the real-world events that im-
pact the network dynamics. Besides, the structure of the clusters
and the analysis of the time evolution associated with the detected
events reveals interesting facts on how humans interact, exchange
and search for information, opening the door to new quantitative
studies on collective and social behavior on large and dynamic
datasets.
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• Computing methodologies → Anomaly detection; • Infor-
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1 INTRODUCTION
In recent years, the Web has significantly affected the way people
learn, interact in social groups, store and share information. Apart
from being an essential part of modern life, social networks, online
services, and knowledge bases generate a massive amount of logs
containing traces of global online activity on the Web. Most of this
data is related to the standard activity of the users. However, the
larger these logs become, the harder it is to detect deviations from
normal behavior in the network. Localization of these anomalies be-
comes even more difficult because of the continuous expansion and
dynamic nature of these networks. Hence, in recent years, anomaly
detection has become an important field of research focusing on
this problem [8], [33].

In this paper, we present a scalable anomaly detection approach
for spatio-temporal datasets such as user activity logs of web and
social networks. The approach focuses on anomaly detection in
the collective behavior of users in such networks. Our approach
introduces the following novelties that distinguish it from the state-
of-the-art.

1) The method bridges the gap between graph anomaly detec-
tion [1, 2, 33] and spatio-temporal data mining [3]. It uses the
formalism of anomaly detection and extends it to spatio-temporal
event analysis. Here, the spatial component is a graph of inter-
connected entities (e.g. web pages, users or documents), and the
temporal component is the activity logs of these entities. A spatio-
temporal event is a set of nodes that have an abnormal behavior
during a period of time. Importantly, the nodes may not undergo
a change at the same time. There can be a complex interaction
between the nodes during an event when a change in one node can
trigger changes in others. This complex spatio-temporal evolution
is not covered in anomaly detection literature.

2) For each event or anomaly detected using our method, the
model produces a rich set of spatio-temporal indicators rather than
a single label or a probability of being an anomaly. In this sense, it
is closer to the spatio-temporal data mining [3], where the purpose
is to extract the anomalous events and keep as much information
about them as possible for the sake of interpretability. Providing
the description of detected anomalies to domain experts is a pow-
erful feature of our data mining process. Our approach provides
insights on the collective behavior in web and social networks, how
the visitor activity evolves and propagates over the network. We
illustrate that in the Experiment section and reveal new insights
on the collective behavior of Wikipedia visitors.

3) We define the concept of potential anomaly that introduces a
prior on the presence of an anomaly and enhances the scalability
of the method. Indeed, in many anomaly detection applications and
thanks to expert knowledge, the data can be separated into 2 parts;
one part contains potential anomalies, while the other contains
non-anomalous samples. Our concept defines the separation in a
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rigorous manner and allows discarding non-anomalous samples.
This step significantly reduces the amount of data to process. The
concept of potential anomaly is general and can be used for other
methods and applications.

Our approach can be applied to the data that has a structure
depicted in Fig. 1. It consists in an attributed graph where the at-
tributes of the nodes are time-series signals. It leverages the network
structure of the given data to detect dynamic events or anomalies
in collective behavior.

In the experiments, we use two spatio-temporal datasets. First,
we build a network of Wikipedia articles and use visitor activity
of each article, i.e. the number of visits per article per hour, as
a node attribute. The static underlying network is the Wikipedia
hyperlinks network. Two pages are connected if there is at least one
hyperlink reference between them. Second, we transform the Enron
email dataset into a temporal network where nodes correspond to
email addresses of employees and edges reflect an email exchange
between a couple of employees. The temporal activity attributes of
the nodes is the number of emails sent per day by an employee.

In the results of our experiments, we demonstrate that we can ex-
tract anomalous patterns in collective behavior of users in web and
social networks. The anomalies correspond to subgraphs contain-
ing nodes whose behavior deviates from the norm. For the Enron
email dataset, these subgraphs are groups of employees having an
increase in their email exchange during a short period of time cor-
responding to major events in the corporation. For the Wikipedia
data, the subgraphs contain linked pages closely related to an event
that triggered a sudden increase of visits during a short period of
time. These clusters of anomalous nodes can then be used for more
detailed investigation, as shown in Section 5.

The strength of our approach is that it provides a comprehensive
description of detected anomalies. As a result, we are able to per-
form a thorough qualitative evaluation of our results. Although, it
turns into a difficulty when a quantitative evaluation of the method
is needed. It is not as straightforward as computing the accuracy
of a classification. Therefore, we use alternative methods for val-
idating of the results. First, we use Google Trends as a ground
truth indicator of the anomalous activity of the visitors on the Web.
We verify the detected anomalous events using the trending top-
ics extracted from Google Trends. In the second case, the Enron
email dataset contains ground truth, hence we use it to validate the
detected anomalies.

2 RELATEDWORK
Anomaly detection. A recent review of the emerging field of
spatio-temporal data mining highlights the importance of anomaly
detection techniques for the dynamic networks domain [3]. Due
to the complex nature of the data, most existing approaches treat
spatial and temporal components of the data independently [10, 25,
36]. There are several application-specific approaches for anomaly
detection in video streams that use spatial and temporal information
jointly [22, 24]. Lappas et al. [23] presented an approach for bursts
identification in Twitter using spatial and temporal aspects of the
data, although did not use the formalism of anomaly detection.

When dealing with the data from social networks, event detec-
tion is closely related to anomaly detection, therefore there exists a

number of approaches that use spatio-temporal features of these
datasets for collective behavior analysis. The category of Event de-
tection in [33, Type 4] covers the case where all nodes of a subgraph
contribute to the creation of an event at the same time. This is also
the case in [2, Def. 4], where the authors defined it as a problem of
the dynamic-graph anomaly detection. In addition, these reviews
as well as [1], focus on dynamic graphs, where the graph structure
evolves over time, whereas in our case, the structure of the graph
is static.

Our method is developed for static graphs with a dynamic evolu-
tion of node attributes (time-series). Our definition of an anomaly
is more general since we track a heterogeneous spatio-temporal
pattern that can emerge in situations when the anomaly spread
or propagate over the network. It can not be captured by a single
subgraph. Within our framework, an anomaly is described by two
components. First, a graph pattern that involves multiple nodes,
possibly anomalous at different time steps. Second, a temporal pat-
tern, a set of time-series, that reflects the anomaly evolution on
each node. Tracking these types of patterns has a number of ap-
plications [3, 5, 16], although they have not yet been linked to the
field of anomaly detection.
Enron email dataset. Several studies have investigated the Enron
email dataset using different approaches. While many of them fo-
cus on email contents and perform analysis using natural language
processing techniques, others focus on the network structure and
anomaly detection. In [9], the authors explore the email commu-
nication network of the corporation. Wang et al. [35] adopt an
anomaly detection framework to spot remarkable events. We com-
pare our results to this latter reference to validate the accuracy of
our detection.
Wikipedia dataset. There is a large number of studies on mining
the visitor or editor activity on Wikipedia that are aimed at getting
better insights on collective behavior and social interactions [34],
[14], [20]. However, due to a large amount of data, the aforemen-
tioned studies are restricted to particular topics of interest and
subsets of selected Wikipedia articles. For instance, only traumatic
events such as attacks and bombings have been investigated in [12],
[11] based on theWikipedia edit activity data. AnalyzingWikipedia
daily page views, Kanhabua et al. [20] investigated 5500 events from
11 categories such as aviation accidents, earthquakes, hurricanes,
or terrorist attacks. Wikipedia hourly visits on the pages of celebri-
ties were used to investigate the fame levels of tennis players [39].
These studies point out the high interest in this dataset and the
increasing need for more systematic detection methods.

Mongiovi et al. [31, 32] provided the first investigation from an
anomaly detection point of view, where the Wikipedia page counts
data are combined with the graph of hyperlinks. However, they
apply their method to a pre-selected subset of Wikipedia.

Due to the introduced concept of potential anomaly and the dis-
tributed implementation, our method can handle the full Wikipedia
network and long-term visitor activity records.

3 METHOD
Anomaly detection in dynamic networks generally contains two
stages [33]. The first stage is usually responsible for feature extrac-
tion from the domain-specific data. The second stage applies the
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Figure 1: Spatio-temporal data structure combining a graph
topology and time-series. a) Graph topology. Edges high-
lighted in red depict the spatial component of an anomalous
spatio-temporal pattern. b) Time-series signals residing on
the vertices of the graph. Signals associated to nodes B, C
and D are correlated: an anomalous process is propagating
from node D to B through C. This is an abstract illustration
of a dynamic anomaly detected by our method.

anomaly detection algorithm to the extracted features and reports
the detected anomalies.

We build our method upon this scheme in the following way.
Firstly, we add to the Stage 1 a filtering step that keeps only po-
tentially anomalous signals. It allows reducing the amount of data
that is processed in Stage 2 by discarding obviously non-anomalous
cases. Secondly, in Stage 2, our model contains a learning step that
enhances the interpretability of the detected anomalies. It provides
a complete and detailed spatio-temporal description of the detected
anomaly, rather than the classification anomalous/non-anomalous
commonly seen in anomaly detection. This description is a group
of interconnected nodes (spatial information), where every node
has a time-series attribute (temporal information) that indicates the
time when the anomaly occurred.

The learning step is inspired by the model of a memory neural
network, the Hopfield network with the Hebbian learning rule. In
our model, we adapt the learning rule to fit our spatio-temporal
data structure in the following way. An edge weight is reinforced
when two neighbors are active together during the same time slice.
This particular network design shares similarities with the Hotspot
anomaly detection for graph streams [38], however, the authors
use it for feature engineering (Stage 1 of the processing), while
in our approach this update is a part of Stage 2, the learning and
classification stage.

TheHopfield network approach learns amemory network, where
the nodes correspond to the ones of the initial graph. During the
learning process, edges between the nodes will be either strength-
ened or removed depending on the temporal behavior of each node.
As a result of learning, nodes with similar behavior are connected
by strong links and clustered together in the memory network.
These clusters contain groups of nodes with common abnormal
behavior.
Stage 1: Feature extraction and filtering. This stage highlights
anomalies and extracts features from the raw data. We introduce
a notion of potential anomaly and we filter out the nodes that are
not potentially anomalous. Let V be the set of vertices of graph G

and xi [t] ∈ R be the value associated to vertex vi ∈ V at the time
t ∈ [0,T − 1]. The time-series have a length of T samples.

Definition 3.1 (Single vertex potential anomaly). Given a score
function fi : R→ R for each vertexvi and a threshold value c0 ≥ 0,
a vertex vi ∈ V is said to have a potential anomaly at time t when
its time series value is such that | fi (xi [t])| > c0.

Note that the potential anomaly is local on the graph, i.e. it de-
pends only on the time-series attribute of a considered vertex. If
the score function is such that fi = f − f̂ (vi ), for some function
f and f̂ (vi ) a summary statistics of the scores f (vi [t]), our defini-
tion corresponds to the definition of the anomaly in [33]. A basic
example of a potential anomaly is the time-series values exceeding
a fixed threshold c0. In that case, fi is the identity.

In this work, potential anomalies have to satisfy the following
requirement. A potentially anomalous node must have a sufficient
number of bursts in their time-series attribute. Unless this require-
ment holds, we discard the node. To define a burst of activity we
compute the mean µi and the standard deviation σi of xi over
time. We normalize the time-series by defining the score function
f bi (xi [t]) = (xi [t] − µi )/σi . We select values that are above cb0 , the
activity rate parameter (cb0 = 5 for Wikipedia, cb0 = 3 for Enron).
The burstiness bi of a signal xi of a node i is

bi =
T−1∑
t=0

ki [t], ki [t] =

{
1, if | f bi (xi [t])| > cb0 ,

0, otherwise.
(1)

The minimal number of bursts (potential anomalies) per vertex in
Wikipedia is bi = 5 while in the email dataset it is bi = 2.

The general definition of the potential anomaly allows for other
score functions, such as a moving average or ARMA filter prior to
the thresholding, a short time Fourier transform or a wavelet trans-
form. This depends on the dataset and should be chosen carefully
to make a compromise between efficiency and scalability.

Applying fi to the time-series gives us 1) features reflecting
an anomaly and 2) an initial indication of anomalous behavior. In
practice, removing nodes with no potential anomaly reduces the
amount of data by an order of magnitude without losing relevant
information that is required for the anomaly detection.
Stage 2: Hopfield network learning. The presented anomaly
detection approach is aimed at detecting groups of vertices that
have a similar, abnormal behavior. The learning stage is intended
to make this coherent behavior apparent in the memory network.

Our approach is based on the Hopfield model of artificial mem-
ory [18]. It is an unsupervised learning method. To implement
it, we use a synaptic-plasticity-inspired computational model, the
Hebbian learning rule [17]. The main idea of this model of brain
memory is that a co-activation of two neurons results in the re-
inforcement of a connection (synapse) between them. Although,
contrary to the original learning rule, in our model, we do not take
causality of activations into account.

In our case, the Hopfield network has N nodes. These nodes
correspond to the ones given in the dataset, after the reduction per-
formed at Stage 1 (only the nodes containing potential anomalies).

The learning process is as follows. We use the initial structure
of the given network. For two initially connected nodes i and j of
the Hopfield network, at time t , we update the weight of an edge
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ei j between them according to the similarity measure Sim{i, j, t}.
Note that we only perform this step for the nodes that are initially
connected and do not compare every possible pair of nodes. This is
crucial for the tractability of the method in cases when we deal with
large networks. For each time step t , the edge weightwi j between
i and j is updated as follows:

∆wi j =

{
+Sim{i, j}, if Sim{i, j} > λ,

−αSim{i, j}, otherwise,
(2)

where λ ≥ 0 is the sparsity parameter. Similarly to firing neurons,
nodes expressing similar behavior have their connection weight
increased. When α > 0, the weight decreases allowing older events
to be forgotten in order to keep only the latest anomalies. In our
experiments, we set α = 0, as we want to keep all the anomalies. We
also fix λ = 0.5. The value of λ influences the sparsity of the final
network. Increasing λ reduces the number of edges in the resulting
memory network. One should increase the value of λ, when looking
for the most outstanding anomalies and decrease it, when a higher
sensitivity is required.

Before describing the similarity function, let us introduce the
activity function yi at a node vi :

yi [t] = xi [t] × ki [t]. (3)

Note that the activity function can also be defined from the features
calculated at Stage 1, yi [t] = fi (xi [t]) × ki [t]. In the present work,
we use the definition (3).

Different similarity measures can be defined. A first example is
the following:

Sim{i, j, t} = yi [t]yj [t]. (4)

When yi and yj are normalized, this measure gives the Pearson
correlation between the nodes (if λ = 0 and α = 1). The L2 distance
with a Gaussian kernel Sim{i, j, t} = exp(−|yi [t] −yj [t]|

2) can also
be a good candidate. Another measure, restricted to the interval
[0, 1] and that worked well in our applications, is defined as follows:
Sim{i, j, t} = 0 if yi [t] = yj [t] = 0 and otherwise,

Sim{i, j, t} =
min(yi [t],yj [t])
max(yi [t],yj [t])

∈ [0, 1]. (5)

Recalling process. Starting from an initial partial memory pattern
P0 ∈ RN×T , the recall of a learned pattern is done by the following
iterative computation:

Pj+1 = hθ (WPj ), (6)

whereW ∈ RN×N is the weight matrix of the Hopfield network.
The function hθ : RN×T → RN×T is a nonlinear thresholding
function (step function giving values {−1, 1}) that binarize the
vector entries. The value θ is the threshold (same for all entries).
In our case, we build a network per month soW is associated to a
particular month. For each j ≥ 0, Pj is a matrix of binarized time-
series where each row is associated to a node of the network and
each column corresponds to a time step of the month considered.
We stop the iteration when the iterative process has converged
to a stable solution (∥Pj+1 − Pj ∥ ≤ ε , where ε is small, the norm
is the Frobenius norm). The initial pattern P0 is a binary matrix,
where the rows have all values set to −1 (inactivity) except the ones

associated to the partial memory pattern obtained from the time-
series using the expression of ki defined in Eq. (1). The computation
of the iterative process is efficient as the matrices are sparse and in
practice, it converges after a reasonable number of steps.
Graph visualization and community detection. Since the con-
nections between nodes with similar activity are reinforced dur-
ing the learning process, after we prune low-weight edges, each
Hopfield network transforms into a modular graph structure with
strongly connected clusters of nodes having a similar activity. These
groups can be either isolated connected components or communi-
ties within the largest connected component. The analysis of the
Hopfield networks and their communities provides a good way
to spot, analyze, and interpret the anomalies in the dynamics as
we will see in the next section. To find communities, we use the
Louvain method [7] and to represent the graph in 2D space for
visualization, we use a force-directed layout [19]. Additional and
more interactive visualizations are available online [28].
Storingmemories of detected anomalies. The number of anom-
alies that can be memorized by a single network is limited [26].
Indeed, without the forgetting parameter α , the clusters of nodes
will accumulate inside the graph, eventually overlapping and form-
ing larger clusters of unrelated anomalies. To avoid this but still
keep track of older events, we create snapshots of memories by
slicing the time-series into time-windows of the finite duration.
The time-window size depends on the application. For example, in
the analysis of Wikipedia data, we use time-windows of one-month
length.
Complexity. The computations are tractable because 1) they are
local on the graph, i.e. weight updates depend on a node and its one-
hop neighbors, 2) weight updates are iterative, and 3) a weight up-
date occurs only between initially connected nodes and not among
all possible combinations of nodes. These three facts allow us to
build a distributed model to speed up computations. For this pur-
pose, we use a graph-parallel Pregel-like abstraction, implemented
in the GraphX framework [15], [37].

Stage 1 has complexity O(NT ) where N is the number of nodes
andT the number of time steps. Stage 2 has a complexity of O(ET ),
where E is the number of edges. The recall process involves a
multiplication by a sparse matrix with 2E non-zero entries, hence
the complexity isO(ET ). It is important to point out that the number
of nodes and edges in the computations are not necessarily the
numbers found in the dataset: Stage 1 may discard a large number of
inactive nodes (containing no potential anomaly), Stage 2 sparsifies
the time series as Eq. (3) may set to zero a large number of values.

4 DATASETS
Wikipedia dataset. We use the dataset described in [6]. This
dataset is based on twoWikipedia SQL dumps: English language ar-
ticles and user visit counts per page per hour. The original datasets
are publicly available on the Wikimedia website [13].

The Wikipedia network of pages is first constructed using the
data from article dumps that contain information about the ref-
erences (edges) between the pages (nodes)1. Time-series are then
1Note that Wikipedia is continuously updating. Some links that existed at the moment
we made the dump may have been removed from current versions of the pages.
To check consistency with past versions, one can use the dedicated search tool at
http://wikipedia.ramselehof.de/wikiblame.php.

http://wikipedia.ramselehof.de/wikiblame.php
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Figure 2: Anomaly detection in Enron email network. Red
areas highlight the month periods previously reported as
anomalies (ground truth supported by the realworld events).
Blue lines reflect the normalized (scale 0-100) overall activ-
ity level in the network computed by the proposed algo-
rithm. We can see that the algorithm detects anomalies in
all reported cases.

associated to each node (Fig. 1), corresponding to the visits his-
tory from 02:00, 23 September 2014 to 23:00, 30 April 2015. The
time-series have a length of T = 5278 hours.

Enron dataset.We use Enron email dataset2. It contains 614586
emails sent over the period from 6 January 1998 until 4 February
2004. We remove the periods of low activity and keep the emails
from 1 January 1999 until 31 July 2002 which is 1448 days of email
records in total. We remove inactive email addresses that sent less
than three emails over that period. In total, the Enron email network
contains 6 600 nodes and 50 897 edges.

5 EXPERIMENTS AND RESULTS
In this section, we present our results of the anomaly detection
experiments. We apply the proposed algorithm to the two datasets.
The results obtained from the Enron one serve mainly to validate
the method so we do not describe the analysis of the data. We
dedicate more space to the detailed inspection of the Wikipedia
dataset, which is a larger and more informative dataset allowing
us to demonstrate the scalability of our method and to provide the
detailed interpretation of the results.
Enron email dataset. In order to apply our anomaly detection
algorithm to this dataset, we represent the data as a time-series
graph data structure, which is depicted in Fig. 1. The static graph
is the network of email communications: the nodes are email ad-
dresses and they are connected if they have exchanged at least
one email over the 5 years. It is an undirected, unweighted graph.
Time-series associated to the nodes are captured from the email
activity; each temporal value is the number of emails sent from the
associated address during one day. Here, the connection between
email addresses is reinforced if a similar amount of emails have
been sent by both of them over the same hour. Note that the graph
and time-series design could have been more complex with directed
edges or time-series associated to the edges. However, in order to

2https://www.kaggle.com/wcukierski/enron-email-dataset

stay as general as possible, we decided to strictly follow the steps
described in Sec. 3.

In this case, an anomaly is a sudden increase in email commu-
nications among a group of employees of the corporation. After
learning a Hopfield network for every month, we investigate their
structure. We select four months where the results can be compared
to the literature. The authors of [35] observe four anomalous peri-
ods and relate them to the specific news reports involving Enron.
We use these events as a ground truth. These are the months of
December 1999, April, May and August 2001. For each month, we
select the largest connected component of the learned graph. We
sum up the activity of its nodes to get a single time-series represen-
tative of the group activity. We show this normalized activity on
Figure 2. We define an anomaly to be a spike of overall activity in
a cluster of email addresses that we detect after learning. All the
four curves have a larger activity during the chosen month than in
the rest of the time span. For April and May 2001, it is more than
twice the maximal activity for the rest of the months, showing the
evidence of an anomaly. December 1999 and August 2001 increases
in activity have a longer trace after the main anomaly has been
detected but still, the high activity does not spread for more than
one year. Concerning the monthly components of active nodes for
the 4 chosen months, it involves 29, 25, 126, 28 nodes respectively
for December 1999, April, May and August 2001. Almost all of them
correspond to addresses of Enron employees. Except for the May
event, the activity involves less than 30 persons. In May, it involves
100 employees out of the 158, showing an event that impacted the
whole company.

The application of our method to the Enron dataset allows de-
tecting all the anomalies presented in the state-of-the-art literature.
It reveals the days of the peak activities, the duration of the events,
and the persons involved, which makes more detailed investigation
possible in the future. Besides, our approach can detect periodic
or recurrent anomalies due to associative nature of the Hopfield
network. This feature will be demonstrated in the following experi-
ments on the Wikipedia data.
Wikipedia dataset.We conduct more detailed experiments on the
Wikipedia web network and use Google Trends data as a ground
truth to verify the accuracy of our findings. An anomaly, in this case,
is a sudden increase in visitor activity in a small, local part of the
web network. We start by analyzing the initial graph of Wikipedia
web pages connected with hyperlinks. In this experiment, the time-
series attributes of the nodes correspond to the viewership statistics
of the associated web pages, described in Section 4.

To learn the global anomalies that occurred in the long-term
dynamics of the Wikipedia web network, we build the Hopfield
network of the 7-month period. After the learning, only 275 498
edges have strictly positive weights (4.2% of the initial graph). We
remove the disconnected nodes and preserve only the largest con-
nected component of the graph. The number of remaining nodes is
35 839 (31% of the initial number).

The analysis of the static underlying graphs shows that both
(the initial and learned) Wikipedia graphs have statistically hetero-
geneous connectivity (Fig. 3). However, the initial Wikipedia graph
is dominated by large hubs that attract most of the connections to
numerous low-degree neighbors. These hubs correspond to general
topics in the Wikipedia network. They often link broad topics such
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Figure 3: Left. Weighted degree distribution in log-log scale
for theWikipedia graph and Hopfield network learned over
the entire 7 months time span. Linearity in log-log scale cor-
responds to power-law behavior P(k) ∼ k−γ . The learned
graph preserves a similar scale-free behavior, but is less con-
nected and has fewer hubs than the initial graph. Right.
Community size distribution of the initial Wikipedia graph
of hyperlinks (blue) and the learned Hopfield network (red).
The total number of communities: 32 for the initial graph,
172 for the learned one.

as, for instance, the “United States” page, with a large number of
hyperlinks pointing to it from highly diverse subjects. If we look at
the viewership statistics, the activity of the visitors in these large
clusters is uniform and does not expose any anomalies over time.
We aim at extracting smaller communities that correspond to lo-
calized anomalies in the dynamics of the network. This is why we
need the learned graph.

The visualizations of the initial and learned graphs using a
force layout algorithm show striking differences (Fig. 4). The initial
Wikipedia graph is dense and cluttered with a significant number
of unused references, while the learned graph reveals smaller and
more separated communities. This is also confirmed by the numeri-
cal measures such as the community size and degree distributions of
the graphs (Fig. 3, right). The number of communities and their size
change after learning. Initially, the small number of large commu-
nities dominate the graph (blue), while after the learning (red) we
see a five times increase in the number of communities. Moreover,
as a result of the learning, the size of the communities decreases by
one order of magnitude. The modularity of the learned graph is 25%
higher, strengthening the evidence of the creation of associative
structures. These measures indicate that as a result of learning, we
obtain a graph structure with small strongly connected clusters that
correspond to a summary of anomalies in the network dynamics.
We provide detailed examples of such anomalies in the following
experiments.

The analysis of each community of nodes in the learned graph
gives a glimpse of the events that occurred during the 7-month
period and caused the anomalous behavior of visitors during that
period of time. Each cluster is a group of pages related to a common
topic such as a championship, a tournament, an awards ceremony, a
world-level contest, an attack, an incident, or popular festive events
such as Halloween or Christmas.

Before going deeper into the clusters analysis and the corre-
sponding anomalies in the network dynamics, we investigate the

(a) Initial (b) Learned

Figure 4: Wikipedia graph of hyperlinks (left) and learned
Hopfield network (right). Colors correspond to the detected
communities. The learned graph is much more modular
than the initial one, with a larger number of smaller com-
munities. The layout is force-directed.

evolution of the graph structure over time with an emblematic
example.
Monthly networks. As stated in Sec. 3, we split the dataset into
one-month periods. These periods are longer than the duration of
an average event attracting the attention of Wikipedia users, that
usually lasts no longer than two weeks. This means that we are
going to detect multiple anomalies at once. Monthly graphs are
smaller, compared to the 7-months graph, and contain 10 000 nodes
on average. However, the properties and distributions of monthly
graphs are similar to the 7-months one, described above.

To give an example of a detected event and the associated anoma-
lous behavior of the Wikipedia users, we discuss the cluster of the
USA National Football League championship, spotted in and ex-
tracted from the Hopfield network during several months between
2014 and 2015 (Fig. 5).

NFL is one of the most popular sports leagues in the USA and it
triggers a lot of interest to the related articles on Wikipedia. Due
to the high number of visits on this topic we were able to localize a
cluster related to the NFL on each of the monthly graphs. Figure 5
shows the detailed information about the NFL clusters. The top part
of the figure contains the learned graphs for each month, where
the NFL cluster is highlighted in red.

The final game of the 2014 season, Super Bowl XLIX, had been
played on February 1, 2015. This explains the continuous expansion
of the cluster until February where its size reaches the maximum.
The activity collapses right after this event and the cluster disap-
pears.

For the sake of figure interpretability, we extracted 30 NFL team
pages from the original cluster (485 pages) to show the details of
the evolution in time as a table on Fig. 5. This fraction of the nodes
reflects overall dynamics in the entire cluster. Each row describes
the hourly activity of a page, while the columns split the plot into
months. The sum of visits for the selected pages is plotted as a red
line in the bottom.

The dynamics of the detected cluster reflects the real timeline of
the NFL championship. The spiking nature of the overall activity
corresponds to weekends when most of the games were played.
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Figure 5: Evolution of the National Football League 2014-2015 championship cluster and visits on its articles. We show 30 NFL
teams from themain cluster. Top: the 7 monthly learned graphs in gray, with the NFL cluster highlighted in red. Themonth is
displayed on the bottom of the figure. Middle table: visitors activity per hour on the NFL teams’ Wikipedia pages in greyscale
(the more visits, the darker). Bottom: the red and blue curves are the total number of visits in the articles of the clusters over
time (normalized) and the Google Trends curve for the keyword "Super Bowl", respectively.

Closer to the end of the championship, the peaks become stronger,
following the increasing interest of fans. We see the highest splash
of the activity on 1 February, when the final game was played.

We want to emphasize that this cluster, as well as all the others,
was obtained in a completely unsupervised manner. The football
teams pages were automatically connected together in a cluster
having “Super Bowl” as a common topic. Moreover, the cluster
is not formed by one Wikipedia page and its direct neighbors, it
involves many pages with distances of several hops in the graph.

The NFL championship case is an example of a periodic (yearly)
event. The interest increases over the months until the expected
final event, which causes an anomaly in the network dynamics.
Accidents and incidents are the events of a different nature as they
appear suddenly, without prior activity. The proposed learning
method allows detecting this kind of events and the related anom-
alies as well. We provide examples of three accidents to demonstrate
the ability of our method to detect anomalous behavior in the net-
work in case of an unexpected event.

We pick three core events among 172 detected and discuss them
to show the details of our anomaly detection approach. Figure 6
shows the extracted clusters from the learned graph (top) and the
overall timeline of the clusters’ activity (bottom). We evaluate the

accuracy of the anomaly detection using Google Trends history
records.

Charlie Hebdo shooting. 7 January 2015. This terrorist attack is
an example of an unexpected event. The cluster emerged over a
period of 72 hours, following the attack. All pages in the cluster
are related to the core event. Strikingly, a look at the title of the
pages is sufficient to get a precise summary of what the event is
about. There is a sharp peak of activity on the first day of the attack,
slowly decaying over the following week.

Germanwings flight 9525 crash. 24 March 2015. This cluster not
only involves pages describing the crash or providing more infor-
mation about it, but also the pages of similar events that happened
in the past. It includes, for example, a page enumerating airlane
crashes and the page of a previous crash that happened in December
2014, the Indonesia AirAsia Flight 8501 crash. As a result, the time
activity of the event is connected to the one of the Flight 8501 crash,
that is why we can see an increase in visits in December. This is
an example where our approach captures two relevant events and
groups them together in one cluster allowing to detect a secondary
anomaly that is only implicitly related to the main one.

Ferguson unrest. Second wave. November 24, 2014 – December 2,
2014. This is an example of an event that has the official beginning
and end dates. A sharp increase in the activity at the beginning of
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(a) Germanwings 9525 crash (b) Ferguson unrest (c) Charlie Hebdo attack

Figure 6: Graphs and activity timelines of the 3 events that triggered anomalies in the network dynamics. Top: Clusters of
pages grouped after learning in the Hopfield network. Bottom: A normalized sum of all visits of the articles of each cluster
over time (in red). The Google Trends curve for the keywords "Germanwings 9525 crash" (a), "Ferguson unrest" (b) and "Charlie
Hebdo attack" (c) is displayed in blue.

protests highlights the main event. This moment triggers the core
cluster emergence. We also see that the cluster becomes active once
again at the end of the unrest allowing to record the two related
anomalies in the visitor activity.

Finally, in Table 1, we summarize our exploration of the clusters
of the learned graphs by providing a list of handpicked page titles
inside each cluster that refer to previous events and related subjects.
The connected events occurred outside of the 7-months period
we analyze. This illustrates the associative property of our the
anomalies we detect. Firstly, pages are grouped by events with
the help of visitors activity. Secondly, the events themselves are
connected together by this activity. An anomaly is characterized
by a group of connected concepts and these groups are in turn
connected together through concepts they share. This featuremakes
it easy to interpret the cause of the detected anomaly.
Google Trends Evaluation. For each of the events presented be-
fore, we have compared the total number of visits in the clusters
with Google Trends curves reflecting anomalous search activity
of internet users. There is a striking correspondence between the
detected anomalies and Google Trends, as we can see in Fig. 5
and 6. In all 4 examples, the anomalous activity and Google Trends
curves reach their maximum at the same time and have a very
similar shape. The differences that appear during the months prior
to the Super Bowl date are explained by the fact that our "Super
Bowl" cluster contains articles about Football teams and other top-
ics related to the Super Bowl. Due to the associative nature of the
detected anomalies, this example has a higher accuracy of detection
than Google Trends.

As discussed previously, the periodic spikes in the visitor activity
take place during the weekends when football matches are played.
We observe the same phenomenon in the case of the Germanwings

crash, where we observe a small peak of activity in December. This
peak is the result of the prior activity on the pages related to an-
other airplane crash that happened in December 2014. Again, this
demonstrates the richness of the obtained clusters: they describe a
group of events that caused an anomaly in visitor activity, as con-
firmed by Google Trends but represent more than a single keyword
since the detected anomaly is a result of multiple real-world events.
Recalling memories. In this last experiment, our goal is to test
the hypothesis that the proposed method, as a memory, allows
recalling or recovering events from partial information. We emulate
recall processes using the Hopfield network approach, described in
Section 3. We show that the learned graph structure can recover a
full event (cluster of pages and its activations) from an incomplete
input.

We create incomplete patterns for the Hopfield network by se-
lecting randomly a few pages contained in a chosen cluster. We
built the input matrix P0 setting to (−1) (inactive state) all the time-
series except for the few pages selected. We then apply iteratively
Eq. (6).

We present only one example of the recall, to demonstrate the
recall ability of the network but also to illustrate its complexity,
on Fig. 7. From the cluster associated to the Charlie Hebdo Attack
and we choose a subset of the list of articles, here 80%. We apply
the learned graph for the month of January when the memory was
detected. After the recall, we can remark two important facts. First,
if we focus on the short time span when the event occurs (within
the red vertical lines), most of the cluster is recovered. Second, the
model forgets a part of the activity, plotted in light red, outside of
the event bounds. This missing part is made of pages that are active
outside of the time of the event, giving the evidence that they are
not directly related (or weakly related) to the event.
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Table 1: Examples of Wikipedia article titles contained in the clusters associated to the events presented.

Charlie Hebdo attack Germanwings 9525 crash Ferguson unrest

Porte de Vincennes hostage crisis Inex-Adria Aviopromet Flight 1308 Shooting of Tamir Rice
Al-Qaeda Pacific Southwest Airlines Flight 1771 Shooting of Amadou Diallo
Islamic terrorism SilkAir Flight 185 Sean Bell Shooting Incident
Hezbollah Suicide by pilot Shooting of Oscar Grant
2005 London bombings Aviation safety 1992 Los Angeles riots
Anders Behring Breivik Air France Flight 296 O.J. Simpson murder case
Jihadism Air France Flight 447 Shooting of Trayvon Martin
2015 Baga massacre Airbus Attack on Reginald Denny
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Figure 7: Recall of an event from a partial pattern (Charlie Hebdo attack). The red vertical lines define the start of the event
and its most active part, ending 72 hours from the start. Left: full activity over time of the pages in the cluster. Middle: pattern
with 20% of nodes set inactive (top lines). Right: the result of the recall using the Hopfield network model. In light red are
shown the difference with the original pattern (the forgotten activity).

The results of this experiments show that ourmethod can be used
to recover the signals related to the detected anomalies given a noisy
or incomplete input. For instance, this feature can be helpful in cases
when the data required for anomaly interpretation is destroyed by
some intruders that are interested in hiding traces after an attack
on the network.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a new unsupervised graph algorithm
that allows detecting anomalies in large datasets with dynamic
activity records. We showed that this approach allows analyzing
the root causes of detected anomalies. Beyond the presentation of
the method, we also provided new insights on collective behavior
of Wikipedia users.

This approach is promising. We noted experimentally a high
robustness of the method to the tuning of the parameters. We also
plan to go deeper into the analysis of the recalling process.

This work opens new avenues for dynamic graph-structured
data analysis. For example, the proposed approach could be used
in a framework for automated event detection, monitoring, and
recording. However, to cover these use cases, the method should
be able to process streams of data as they are recorded. An online
version of the method is not straightforward and will be the object
of future work.

The artificial memory model used in the method suggests an
interesting connection between the detection of anomalies and the
functioning of the memory. This insight is more apparent in the
experiments related to Wikipedia. Events and abnormal activity

in the data trigger the recording process of the collective associa-
tive memory. The Hopfield network trained on Wikipedia articles
transforms into a set of interconnected concepts or topics that have
interested people at some point in the past. It resembles an artificial
collective memory. This is fascinating and deserves further research
in this direction related to social sciences.

7 TOOLS, IMPLEMENTATION, CODE AND
ONLINE VISUALIZATIONS

All learned Wikipedia graphs (overall September-April, monthly ac-
tivity, and localized events) are available online [28] to foster further
exploration and analysis. For graph visualization we used the open
source software package Gephi [4] and layout ForceAtlas2 [19]. We
used Apache Spark GraphX [37], [15] for graph learning implemen-
tation and graph analysis. The presented results can be reproduced
using the code, written in Scala and Python [27], [29]. Both datasets
are available on Zenodo [21], [30].
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