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ABSTRACT
In modern recommender systems, both users and items are associ-
ated with rich side information, which can help understand users
and items. Such information is typically heterogeneous and can
be roughly categorized into flat and hierarchical side information.
While side information has been proved to be valuable, the majority
of existing systems have exploited either only flat side information
or only hierarchical side information due to the challenges brought
by the heterogeneity. In this paper, we investigate the problem of
exploiting heterogeneous side information for recommendations.
Specifically, we propose a novel framework jointly captures flat and
hierarchical side information with mathematical coherence. We
demonstrate the effectiveness of the proposed framework via exten-
sive experiments on various real-world datasets. Empirical results
show that our approach is able to lead a significant performance
gain over the state-of-the-art methods.
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1 INTRODUCTION
Recommender systems can mitigate the information overload prob-
lem by providing online users with the most relevant informa-
tion [23, 25, 27]. A successful recommender system often requires
accurate understanding of user preferences. Collaborative filtering,
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Figure 1: An illustration of flat and hierarchical side information.

which models the interactions between users and items, is one of
the most popular techniques to achieve this goal [9, 11, 25]. Tra-
ditional collaborative filtering based recommender systems have
been proven to be suffered from the data sparsity and cold-start
problems [1, 27]. On the other hand, in addition to interactions,
users and items are often associated with side information, which
has become increasingly available in real-world recommender sys-
tems [5, 21]. Such side information provides independent sources
for recommendations, which can mitigate the data sparsity and cold
start problems and have great potentials to boost the performance.
As a consequence, a large body of research has been developed
to exploit side information for recommendations [15, 23, 31, 32].
Side information is typically heterogeneous, which can be roughly
categorized into flat and hierarchical side information [31]. Flat and
hierarchical side information are referred to attributes associated
with users and items presenting no hierarchical and hierarchical
structures, respectively [31]. Take books for example, side informa-
tion of one book can include the publish year, the book authors, the
written language, and the genres it belongs to. Attributes such as
year, author and language, presenting no hierarchical structures, are
flat. The genres, however, contain subtypeOf relationship and can
be organized in a hierarchical structure. Figure 1 gives a concrete
example, which shows six attributes of the book Animal Farm with
colored background. The flat information includes George Orwell,
1945 and English and are listed in the left part of figure. Litera-
ture&Fiction, Historical Fiction, and Political are the genres Animal
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Farm belongs to according to Amazon Web Store. As shown in the
figure, these genres are organized into a hierarchical structure as
genre→subgenre→detailed-genre such that Animal Farm firstly
belongs to the genre Literature&Fiction, under which there are sub-
genres such as Historical Fiction and Genre Fiction. In this sub-genre
level, Animal Farm belongs to Historical Fiction. It further falls into a
more detailed-category Political. Likewise, users are also associated
with both flat information such as age, gender, education level and
hierarchical information such as communities they belong to and
the places of their birth.

There are numerous works incorporating flat or hierarchical side
information for recommendations [5, 15, 21, 23, 31, 32]. Most of
these systems have been designed to exploit either only flat side
information or only hierarchical side information. The major reason
is that flat and structured side information are intrinsically different
and it is challenging to jointly exploit them. One trivial solution is to
flatten the hierarchy and treat it as flat information. However, such
solution ignores the unique properties of hierarchical information,
which have been proven beneficial by previous works [15, 19, 31].
In fact, both flat and hierarchical side information can provide
valuable information for understanding user preferences and item
characteristics. For instance, female are generally more interested
in high heel shoes than male and items belonging to the same
detailed-genre are likely to be more similar than those in the same
sub-genre. Thus, it is desired to design frameworks incorporating
the two types of side information simultaneously.

In this paper, we investigate the problem of exploiting both flat
and hierarchical side information for recommendations. We pro-
pose a novel framework, which aims to address two challenges: (1)
how to jointly capture heterogeneous side information and (2) how
to mathematically use them for recommendations. The main con-
tributions of our work can be summarized as follows:

• We provide a principled approach to simultaneously capture
both flat and hierarchical information mathematically.

• We introduce a unified recommendation framework HIRE,
which canmodelHeterogeneous side Information forREcommendation
coherently.

• We conduct extensive experiments with various real-world
datasets to validate the effectiveness of the proposed frame-
work and understand the importance of flat and hierarchical
side information for recommendations.

2 METHODOLOGY
In this section, we present the proposed recommendation frame-
work that coherently captures flat and hierarchical information of
both users and items. Specifically, we firstly introduce the nota-
tions that will be used in the rest of the paper and then describe a
basic model which forms the basis of the framework. After that, we
go into details of the framework components that model the flat
and heterogeneous information, respectively, combining of which
leads to an optimization problem. Finally, we propose an efficient
algorithm to solve it.

Throughout this paper, regular letters are used to denote scalers.
The vectors and matrices are represented by bold lower-case letters
such as h and bold upper-case letters such as W, respectively. In
addition, for an arbitrary matrix W, we use W(i, :) and W(:, j) to

denote the ith row and jth column of it, respectively; and the
(i, j)th entry of W is represented as W(i, j). The transpose and
Frobenius norm of W is denoted as WT and ∥W∥2

F , respectively.
Moreover, let U = {u1,u2, · · · ,un } to be the set of n users and
V = {v1,v2, · · · ,vm } be the set of m items. We assume there
exists a user-item rating matrix R ∈ Rn×m and if a userui has rated
item vj , R(i, j) > 0 denotes the rating score, otherwise, R(i, j) = 0.
In addition, let X ∈ Rdx×n and Y ∈ Rdy×m be the matrices that
contain flat side information of users and items with dx and dy
associated attributes, respectively. Next, we will describe a basic
recommendation model, based on which we will build the whole
framework.

2.1 The Basic Model
Weighted matrix factorization is an effective approach used in col-
laborative filtering based recommender systems to obtain users’ and
items’ representations that contain information regarding users’
preference and items’ characteristics. Specifically, it decomposes
the rating matrix and models the users and items in the same low-
dimensional latent space. Mathematically, weighted matrix factor-
ization solves the following optimization problem:

min
U,V

∥M ⊙ (R − UV)∥2
F + λ(∥U∥

2
F + ∥V∥2

F )︸                                           ︷︷                                           ︸
f (U,V)

where ⊙ is the Hadamard operation denoting element-wise multi-
plication.M ∈ Rn×m is the indication matrix such thatM(i, j) = 1 if
R(i, j) > 0, otherwise, M(i, j) = 0. The obtained matrices U ∈ Rn×d
and V ∈ Rd×m are the corresponding representations of users and
items in the latent space. Thus, the rating score given by ui to vj is
approximated by the dot item of their latent representations, that
are U(i, :) and V(:, j), respectively. λ is used to control the weight of
regularization terms that are adopted to avoid overfitting. One of
the most important strength of matrix factorization based model
is that it allows to incorporate other information in addition to
the ratings [11]. Next, we will base on the basic weighted matrix
factorization model to build our framework.

2.2 Capturing The Flat Information
The side information of items or users are intrinsically hetero-
geneous, which can be flat and heterogeneous. For example, in
Figure 1, a book can have both flat attributes such as author, year,
and hierarchical attributes such as genres it belongs to. The differ-
ence between different types of side information requires special
treatment for each individual. In this subsection, we describe the
model component that aims to capture the flat side information. To
simplify, we first focus on capturing side information of users and
then generalize it to that of items.

In weighted matrix factorization, users’ latent representation
matrix U contains their preference indicated by the rating scores
they give to items. The side information, however, provides another
independent source from which users’ preference could be inferred.
For example, it is very likely that a programmer is more interested
in a mechanical keyboard than a dancer, which suggests that users’
occupation could provide an important indicator whether an item
should be recommended or not. In addition, both hidden represen-
tation U(i, :) and side information X(:, i) describe the same user ui .



Hence, in the same latent space, U(i, :) and X(:, i) should be similar.
With this intuition, we extend the basic weight matrix factorization
model to capture the flat side information contained inX as follows:

min
U,V

f (U,V) + γ ∥SuUT − X∥2
F

where Su ∈ Rdx×d is the projection matrix that projects users’
hidden representations U into the same latent space as X. The
Frobenius norm indicates the distance between the representations
of users from two perspectives, which are forced to be close. In
this way, the learned users representations U also capture flat side
information contained in X.

However, in practice,X is usually very sparse. For example, while
a user profile could include various types of information, making
X high-dimensional, many users may only provide a part of the
profile, which renders X very sparse. To address this issue, we
adopt autoencoders, which provide a way to obtain robust feature
representations in an unsupervised manner [3] and have been suc-
cessfully applied in various tasks such as speech enhancement [16],
natural language generation [13] and face alignment [33]. In this
work, we choose to incorporate marginalized denoising autoen-
coders (MDA) into the proposed model, as it is much more com-
putationally efficient than others [4] and we leave incorporating
other autoencoders as one future direction.

MDA firstly takes the side information X = [x1, x2, · · · , xn ] as
input and corrupts the features to obtain noising version x̃i for
each user ui . The corruption process can be done in different ways.
In this paper, we follow the practice in [4] and corrupt features by
randomly setting each feature to be 0 with the probability p ≥ 0. In
contrast to traditional stacked denoising autoencoders that have the
two-level encoder and decoder structures, in MDA, only one single
mapping Wu : Rdx → Rdx is used to reconstruct the original
features and the reconstruction loss is defined as follows:

L(Wu ) = 1
2n

n∑
i=1

∥xi −Wu x̃i ∥2 (1)

The random corruption of the features may lead to the solution
Wu of high variance. In order to avoid this, k-times corruption is
performed and the overall reconstruction loss becomes:

L(Wu ) = 1
2nk

k∑
j=1

n∑
i=1

∥xi −Wu x̃i, j ∥2 (2)

where x̃i, j denotes the corrupted version of feature xi at the jth -
time. Written in matrix form, the above loss function can be ex-
pressed as:

L(Wu ) = 1
2nk

∥X̄ −Wu X̃∥2
F (3)

where X̄ = [X,X, · · · ,X] ∈ Rdx×nk and X̃ = [X̃1, X̃2, · · · , X̃k ] ∈
Rdx×nk with X̃j denoting the jth corrupted version of the original
features X. The solution of the minimization of the loss function
defined in Eq (3) can be written in a closed form:Wu = KJ−1, where
K = X̄X̃T and J = X̃X̃T . Ideally, we would like to make infinitely
corrupted versions ofX to obtain the most stable mappingWu . This
can be achieved by letting k → ∞ and computing the expectations
of K and J [4].

With the obtained mapping layerWu , robust features of users
can be easily constructed from original feature matrix X by WuX.

v1 v2

v3 v4v1 v2

v3 v4

v3v4v1v2

Layer 1

Layer 2

Layer 3

Figure 2: An illustrative example of hierarchical structure.

Hence, the framework that captures the flat side information of
users with robust feature mapping becomes:

min
U,V,Su ,Wu

f (U,V) + γ (∥SuUT −WuX∥2
F + ∥X̄ −Wu X̃∥2

F ) (4)

Similarly, the flat information of items can also be captured as
follows:

min
U,V,Sv ,Wv

f (U,V) + θ (∥SvV −WvY∥2
F + ∥Ȳ −Wv Ỹ∥2

F ) (5)

where Sv ∈ Rdy×d is the project matrix that projects V into the
same space as Y,Wv ∈ Rdy×dy is the mapping layer that obtains
robust features from Y, Ȳ = [Y,Y, · · · ,Y] ∈ Rdy×mk and Ỹ =
[Ỹ1, Ỹ2, · · · , Ỹk ] ∈ Rdy×mk with Ỹj representing the jth corrupted
version of Y.

2.3 Incorporating The Hierarchical
Information

Unlike flat information, features in hierarchical information are
structured. For example, as shown in Figure 1, the genres of books
can be organized into a hierarchical structure. It is very likely that
books belong to the detailed genres are more similar than those in
sub-genres. Thus, it should be desirable to recommend the book that
is in the same detailed-genre with the one that has received high
rating score from the user. As hierarchical information is intrinsi-
cally different with flat information, the approach introduced in the
previous subsection is not suitable. Hence, in this subsection, we in-
troduce how to incorporate hierarchical information by extending
the basic matrix factorization model. Without the loss of generality,
we firstly introduce the approach to incorporate hierarchical side
information of items, which can be naturally applied to that of users.
Typically, we can use a tree to represent a hierarchical structure.
In a tree, each parent node can have different numbers of child
nodes, which can also be the parents of the nodes in the next layer.
Recall the example given by Figure 1, which shows the hierarchical
structure of genres of a book. The genre Literature & Fiction is the
parent node of several child nodes, such as GenreFiction, Historical
Fiction, etc. The child node HistoricalFiction is also the parent of
other nodes such as Political. The leaf nodes are those who have
no child such as Political. From this example, it is easily observed
that the hierarchical structure can naturally be characterized by
the parent-child relation. With this intuition, next we introduce
how to incorporate the structure information from parent-child
perspective.

The item characteristic matrix V ∈ Rd×m shows the latent repre-
sentations of items in a d-dimensional latent space. To incorporate
the hierarchical structure, we can further decompose V into two



matrices V1 ∈ Rm1×m and V2′ ∈ Rd×m1 such that V ≈ V2′V1, as-
suming there arem1 nodes (or sub-categories) in the second layer.
Hence, V1 indicates the parent-child relation between them1 cate-
gories in the second layer andm items in the first layer. Moreover,
V2′ gives the latent representations of them1 categories. In this way,
the latent representation of vj can be expressed by the jth item’s
parent categories and their latent representations as V2′V1(:, j). If
the structured information has more than two layers, we can fur-
ther decompose V2′ such that V2′ ≈ V3′V2, where V2 ∈ Rm2×m1

denotes the parent-child relation between categories in the third
and second layers, respectively. Similarly, V3′ ∈ Rd×m3 denotes the
representations ofm2 categories in the third layer. With this, jth
item’s representation can be expressed by V3′V2V1(:, j).

The above process can be repeated q-1 times to capture hierar-
chical structure of q layers as follows:

V ≈ Vq · · ·V3V2V1 (6)

where Vi ∈ Rmi×mi−1 (1 ≤ i < q), Vq ∈ Rd×mq−1 andm0 =m.
The parent-child relations indicated by Eq. (6) are implicit and

they should be in conformity with explicit ones suggested by hier-
archical side information. To achieve this, next we extend Eq. (6)
to incorporate the structures in the side information. Let Tk ∈
Rmk−1×mk indicate the parent-child relation between categories in
layer k and layer k + 1 of the hierarchical structure of side informa-
tion. Specifically, Tk (i, j) = 1 denotes that the ith category in layer
k is the child of jth category in layer k+1. Figure 2 gives an example,
where T2 ∈ R2×1 and T2(1, 1) = 1,T2(2, 1) = 1. Thus, the hierar-
chical structure can be defined by the set T = {T1,T2, · · · ,Tq },
assuming there are q layers. Intuitively, the presentation of a parent
category should be aggregated from those of all the child categories
it contains. Thus, a natural way to capture the parent-child relations
in T is to make parent representations denoted as Vq · · ·Vi to be
close to the aggregation of their children’s representations denoted
as Vq · · ·Vi−1.

In this work, we choose the mean function to be the aggregation
function due to its computational efficiency and leave exploring
other choices as one future work. Thus, the structure indicated by
the item side information can be captured as follows:

min
q∑
i=2

∥Vq · · ·Vi − Vq · · ·Vi−1Qi−1∥2
F︸                                         ︷︷                                         ︸

f v (Vi ,Qi−1)

whereQk is the normalized version ofTk andQk (i, j) = Tk (i, j)∑mk−1
i=1 Tk (i, j)

.

In a similar way, we can also incorporate hierarchical information
of users as:

min
p∑
i=2

∥Ui · · ·Up − Pi−1Ui−1 · · ·Up ∥2
F︸                                         ︷︷                                         ︸

f u (Ui ,Pi−1)

where Ui ∈ Rni−1×ni and Pk (i, j) = Ck (i, j)∑nk−1
i=1 Ck (i, j)

is the normalized

version of Ck ∈ Rnk−1×nk , which indicates the parent-child rela-
tionship in hierarchical side information of users. p is number of
layers of the hierarchy and 1 ≤ i < p.

2.4 The Proposed Framework HIRE
Previous subsections introduce the model components that aim
to capture both flat and hierarchical side information. Combining
them, the framework HIRE is to solve the following optimization
problem:

min
U1, · · · ,Up,Su ,Wu

V1, · · · ,Vq,Sv ,Wv

f (U,V) + α f u (Ui , Pi−1) + β f v (Vi ,Qi−1) (7)

+ γ (∥SuUT −WuX∥2
F + ∥X̄ −Wu X̃∥2

F )
+ θ (∥SvV −WvY∥2

F + ∥Ȳ −Wv Ỹ∥2
F )

where U = U1U2 · · ·Up and V = Vq · · ·V2V1. γ and θ control the
contribution of flat information, α and β decides the contribution
of hierarchical information. Hence, the proposed framework si-
multaneously models both flat and hierarchical side information
with mathematical coherence. Following the tradition [11], we will
use the gradient descent method to optimize the formulation of
the proposed framework. Next we will use Ui as one example to
illustrate how to get the gradient of parameters due to the page
limitation. Before calculating the gradient, we define Ai , Hi , Di ,
Gk
i and Bki that can be used to simplify the expressions:

Ai =

{
U1U2 . . .Ui−1, if i , 1
I, if i = 1

Hi =

{
Ui+1 . . .UpVq . . .V1, if i , p
Vq . . .V1, if i = p

Di =

{
Ui+1Ui+2 . . .Up , if i , p
I, if i = p

Gk
i =

{
Uk+1 · · ·Ui−1, if k , i − 1
I, if k = i − 1

Bki = PkUkGk
i

where 1 ≤ i ≤ p and 1 ≤ k < i − 1. By dropping irrelevant terms in
Eq. (7), remaining terms related to Ui are as follows:
L(Ui ) = ∥M ⊙ (R − AiUiHi )∥2

F + λ∥U
i ∥2
F + α ∥(I − PiUi )Di ∥2

F

+ α
i−1∑
k=1

∥(Gk
i − Bki )U

iDi ∥2
F + γ ∥S

u (AiUiDi )T −WuX∥2
F

Now, we can obtain the gradient of Ui as:
∂L(Ui )
∂Ui

= AiT [M ⊙ (AiUiHi − R)]HiT + λUi (8)

+ α
i−1∑
k=1

(Gk
i − Bki )

T (Gk
i − Bki )U

iDiDiT

+ αPiT (PiUiDi − Di )DiT + γAiT (AiUiDiSuT − XTWu )SuDiT

2.4.1 Time Complexity Analysis. The most expensive operations in
the optimization process are updating Ui and Vi , which in each iter-
ation will cost O

(
nn1ni−1+(2nini+1+mm1)d+n2

i−1(ni +
∑i−1
k=1 nk )

)
and O

(
mm1mi−1 + (2mimi+1 + nn1)d +m2

i−1(mi +
∑i−1
k=1mk )

)
, re-

spectively. Thus, assumeN iterations are needed in total, the overall
time complexity of the optimization process is O

( ∑p
i
(
nn1ni−1 +



(2nini+1+mm1)d+n2
i−1(ni+

∑i−1
k=1 nk )

)
+
∑q
i
(
mm1mi−1+(2mimi+1+

nn1)d +m2
i−1(mi +

∑i−1
k=1mk )

) )
.

3 EXPERIMENTS
In this section, we firstly introduce the experimental settings. Then,
we compare the proposed framework HIRE with representative
baselines to answer the first question. Finally, we analyze each
model component, which gives answer to the section question.
To encourage the reproducible results, we make our code pub-
licly available at: https://github.com/tal-ai/Recommender-Systems-
with-Heterogeneous-Side-Information.

3.1 Experimental Settings
We evaluate the proposed framework on three benchmark datasets
MovieLens (100K), MovieLens (1M), and BookCrossing and all of
them are publicly available [8, 34].

• MovieLens (100K) and MovieLens (1M) are collected from
a movie review website1 where users can give movie rat-
ing scores on a scale from 1-5. MovieLens (100k) contains
100,000 ratings from 1000 users on 1700 movies and Movie-
Lens (1M) contains 1 million ratings from 6000 users on 4000
movies. For movies, we use genres as hierarchical informa-
tion; for users, we use age and gender as flat information
and occupation as the hierarchical information.

• BookCrossing is a book rating dataset collected from Book-
Crossing2 community and the rating score is from 1 to 10.
After basic data cleaning, we get 17028 ratings from 1009
users on 1816 books. For books, we use publish year and
author as flat information and publisher as hierarchical in-
formation; for users, we use age and location as the flat and
hierarchical information, respectively.

For each dataset, we split it into training and test sets such that
training set contains x% of the data and test contains 1 − x%. We
vary x as {40, 60, 80}. We choose the commonly used Root Mean
Square Error (RMSE) as the measurement metrics of the recom-
mendation performance and lower value of RMSE indicates better
performance. In fact, a small improvement in RMSE means a signif-
icant improvement of recommender systems [10].

3.2 Recommendation Performance
Comparison

In this subsection, we evaluate the recommendation performance of
proposed framework by comparing it with following representative
baselines:

• SVD [6]: It is a matrix factorization technique that factorizes
a user-item rating matrix to obtain latent representations
of customers and products via singular-value decomposi-
tion (SVD). In this method, only rating information is used;

• NMF [7]: Non-negative matrix factorization (NMF) is one
of the most popular algorithms used in recommender sys-
tems. Unlike SVD, it adds non-negative constraints to the
latent representations. This method also only uses rating
information;

1https://movielens.org/
2http://www.bookcrossing.com/

• I-CF [25]: This is a item-based collaborative filtering ap-
proach that recommends items to users based on the simi-
larity computed from the rating matrix;

• NeuMF [9]: NeuMF replaces inner product by combining
GMF and MLP neural architectures with sharing embedding
layer and is able to significantly improves recommendation
performance. In this method, only rating information is used.

• mSDA-CF [14]: This method integrates matrix factoriza-
tion and deep feature learning and achieves state-of-the-art
performance. It uses both rating and flat side information
and ignores hierarchical one.

• HSR [31]: HSR is a state-of-the-art algorithm which is able
to capture both rating and structured side information. How-
ever, flat information is ignored in this method.

Note that the parameters of all methods are selected through
five-fold cross validation and the details of parameter selection of
the proposed framework are discussed in the later subsections. we
repeat each experiment five times and report the average perfor-
mance in Table 1. The following observations can be made from
the table:

• NeuMF is likely to outperform other traditional CF methods,
which suggests the power of deep learning in recommenda-
tions. Currently our basic model is based on matrix factor-
ization and it has great potential to choose NeuMF as the
basic model to further improve the performance.

• Systems incorporating side information tend to obtain bet-
ter performance compared to their corresponding systems
without side information. This observation supports the im-
portance of side information.

• The proposed framework HIRE achieves the best perfor-
mance in most of the cases. We contribute the superior per-
formance to its ability to capture both flat and structured
side information. More details regarding the contribution of
each component will be discussed in following subsection.

With the above observation, we are able to draw a conclusion to an-
swer the first question: the proposed framework that incorporates
heterogeneous side information significantly improves the recom-
mendation performance over the state-of-the-art methods. In the
next subsection, we will give a detailed analysis of the contribution
from flat and hierarchical side information, respectively.

3.3 Component Analysis
In this subsection, we systematically examine the effect of key
components by constructing following model variants:

• HIRE-FU: it eliminates the contribution of flat side informa-
tion of users by setting γ = 0 in Eq. (7).

• HIRE-FV: it eliminates the contribution of flat side informa-
tion of items by setting θ = 0 in Eq. (7).

• HIRE-SU: it eliminates the contribution of hierarchical side
information of users by setting α = 0 in Eq. (7).

• HIRE-SV: it eliminates the contribution of hierarchical side
information of items by setting β = 0 in Eq. (7).

The recommendation performance onMovieLens (100K) is shown
in Figure 3. Since we observe similar results on other datasets, we
only show that onMovieLens (100K) dataset to save space. From the

https://github.com/tal-ai/Recommender-Systems-with-Heterogeneous-Side-Information
https://github.com/tal-ai/Recommender-Systems-with-Heterogeneous-Side-Information


Table 1: Recommendation performance comparison. All prediction differences between HIRE and other methods are statistically significant.

Methods MovieLens (100K) MovieLens (1M) BookCrossing
40% 60% 80% 40% 60% 80% 40% 60% 80%

SVD 1.0152 0.9704 0.9491 0.9161 0.9087 0.8947 4.7746 2.8866 2.0899
NMF 1.0352 0.9955 0.9715 0.9446 0.9293 0.9227 2.9381 2.7832 2.6055
I-CF 1.0601 1.0485 1.0343 1.0229 1.0065 0.9975 2.0216 1.9989 2.2250

NeuMF 1.0928 1.0877 1.0849 0.9872 0.9834 0.9825 2.0191 1.8708 1.8586
mSDA-CF 1.0968 1.0891 1.0792 1.0498 1.0482 1.0466 3.0015 2.1992 1.8692

HSR 0.9879 0.9647 0.9376 0.9074 0.8906 0.8742 4.8821 4.1072 3.6137
HIRE 0.9703 0.9398 0.9243 0.8957 0.8778 0.8607 2.3364 1.9193 1.8432
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Figure 3: Performance analysis of HIREwith different components.

Figure 3, we can easily observe that HIRE obtains the least RMSE
error among all its variants in all cases. This suggests that recom-
mendation performance degrades when ignoring any type of side
information. Thus, it is important to incorporate heterogeneous
side information in recommender systems.

3.4 Parameter Analysis
In this subsection, we further analyze the sensitivity of the four key
parameters γ , θ , α and β that control the contributions of flat side
information of users, flat side information of items, hierarchical
side information of users, and hierarchical information of items,
respectively. In detail, for each of the four parameters, we conduct
experiment with the proposed framework by varying the value of
it while fixing the others. The performance is shown in Figure 4.
Similarly, only performance on MovieLens (100K) is reported due
to the space limitation. From both figures, we clearly see that the
performance tends to first increase and then decrease, which further
supports the importance of side information in recommendations.

4 RELATEDWORK
In this section, we give a brief overview of the related recommender
systems. A large body of research has been devoted to develop-
ing algorithms to improve the performance of recommender sys-
tems, which play a crucial role in the increasingly digitalized so-
ciety. Among them, collaborative filtering based approaches have
achieved great success. Roughly, collaborative filtering can be cate-
gorized into two type: (1) memory-based approaches [18, 22, 25, 30],
which aim at exploring neighborhood information of users or items
for recommendation; and (2) model-based methods [7, 11, 17],
which try to model the underlying mechanism that governs user
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Figure 4: Parameter analysis with α , β , γ and θ

rating process. Generally, model-based methods show superior per-
formance than the content-based ones. In particular, Matrix Factor-
ization (MF) based collaborative filtering have gained great popular-
ity due to their high performance and efficiency [11, 12, 20, 24, 26].
Despite of its success, collaborative filtering approaches are known
to suffer from data sparsity issues, as the number of items or users
is typically very large but the number of ratings is relatively small.
One popular way to address this issue is to incorporate the increas-
ingly available side information in the model [2, 5, 15, 28, 29, 31].
The majority of studies exploit either only flat side information [2,
5], or only hierarchical side information [15, 31] due to the chal-
lenges brought by the inherent difference between these two types
of information. However, our work addresses these challenges and
is able to incorporate the two types of information simultaneously.

5 CONCLUSION
In this paper, we investigate the problem of exploiting heteroge-
neous side information for recommendations. Specifically, we pro-
pose a novel recommendation framework HIRE that is able to cap-
ture both flat and hierarchical side information with mathematical
coherence. Extensive experiments on three benchmark datasets ver-
ify the effectiveness of the framework and demonstrate the impact
of both flat and hierarchical side information on recommendation
performance.
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