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ABSTRACT

This paper proposes an attributed network growth model. Despite
the knowledge that individuals use limited resources to form con-
nections to similar others, we lack an understanding of how local
and resource-constrained mechanisms explain the emergence of
rich structural properties found in real-world networks. We make
three contributions. First, we propose an interpretable and accurate
model of attributed network growth that jointly explains the emer-
gence of in-degree distribution, local clustering, clustering-degree
relationship and attribute mixing patterns. Second, we make use
of biased random walks to develop a model that forms edges lo-
cally, without recourse to global information. Third, we account for
multiple sociological phenomena—bounded rationality; structural
constraints; triadic closure; attribute homophily; preferential attach-
ment. We explore the parameter space of the proposed Attributed
Network Growth (ARW) to show each model parameter intuitively
modulates network structure. Our experiments show that ARW ac-
curately preserves network structure and attribute mixing patterns
of six real-world networks; it improves upon the performance of
eight well-known models by a significant margin of 2.5–10×.

1 INTRODUCTION

We present a network growth model that explains how distinct
structural properties of attributed networks can emerge from local
edge formation processes. In real-world networks, individuals tend
to form edges despite limited information and partial network ac-
cess. Moreover, phenomena such as triadic closure and homophily
simultaneously influence individuals’ decisions to form connections.
Over time, these decisions cumulatively shape real-world networks
to exhibit rich structural properties: heavy-tailed in-degree distri-
bution, skewed local clustering and homophilic mixing patterns.
However, we lack an understanding of local, resource-constrained
mechanisms that incorporate sociological factors to explain the
emergence of rich structural properties.

Classic models of network growth tend to make unrealistic as-
sumptions about how individuals form edges. Consider a simple
stylized example: the process of finding a set of papers to cite when
writing an article. In preferential attachment [3] or fitness [5, 10, 49]
based models, a node makingm citations would pick papers from
the entire network in proportion to their in-degree or fitness re-
spectively. This process assumes that individuals possess complete
knowledge of in-degree or fitness of every node in the network.
An equivalent formulation—vertex copying [26]—induces prefer-
ential attachment: for every citation, a node would pick a paper
uniformly at random from all papers, and either cite it or copy its
citations. Notice that the copying mechanism assumes individuals
have complete access to the network and forms each edge inde-
pendently. Although these models explain the emergence of power
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Figure 1: Thefigure showshowour proposedmodel of anAttributed

RandomWalk (ARW) accurately preserves local clustering and assor-

tativity; we contrast with a non-attributed growthmodel [20] to un-

derscore the importance of using attributes for network growth.

law degree distributions, they are unrealistic: they require global
knowledge (e.g., preferential attachment requires knowledge of the
global in-degree distribution) or global access (e.g., vertex copying
requires random access to all nodes). Additionally, these models
do not account for the fact that many networks are attributed (e.g.,
a paper is published at a venue; a Facebook user may use gender,
political interests to describe them) and that assortative mixing is
an important network characteristic [38].

Recent papers tackle resource constraints [35, 50, 52] as well as
nodal attributes [12, 17]. However, the former disregard attributes
and the latter do not provide a realistic representation of edge
formation under resource constraints. Furthermore, both sets of
models do not jointly preserve multiple structural properties. De-
veloping an interpretable and accurate model of attributed network
growth that accounts for observed sociological phenomena is non-
trivial. Accurate network growth models are useful for synthesizing
networks as well as to extrapolate existing real-world networks.

We aim to develop a growth model that accounts for resource
constraints and sociological phenomena influencing edge forma-
tion in addition to preserving global network structure. We make
three key contributions. First, we propose a simple and accurate
model of attributed network growth. Second, our model is based
on local processes to form edges, without recourse to global net-
work information. Third, our model unifies multiple sociological
phenomena—bounded rationality; structural constraints; triadic
closure; attribute homophily; preferential attachment—to jointly
model global network structure and attribute mixing patterns.

The proposed model—Attributed Random Walk (ARW)—jointly
explains the emergence of in-degree distribution, local cluster-
ing, clustering-degree relationship and attribute mixing patterns
through a resource constrained mechanism based on random walks
(see Figure 1). In particular, the model relies entirely on local infor-
mation to grow the network, without access to information of all
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nodes. In ARW, incoming nodes select a seed node based on attribute
similarity and initiate a biased random walk: at each step of the
walk, the incoming node either jumps back to its seed or chooses
an outgoing link or incoming link to visit another node; it links
to each visited node with some probability and halts after it has
exhausted its budget to form connections. Our experiments on six
large-scale network datasets indicate that the proposed growth
model outperforms eight state-of-the-art network growth models
by a statistically significant margin of 2.5–10×. Furthermore, we an-
alyze the parameter space of the model to show how each parameter
intuitively controls one or more key structural properties.

The rest of the paper is organized as follows. We begin by defin-
ing the problem statement in Section 2. In Section 3, we outline
six network datasets, describe key structural properties of real-
world networks and discuss insights from sociological studies. Then,
in Section 4, we describe the network growth model. We follow by
presenting experiments in Section 5, analysis of assortative mixing
in Section 6 and discussion in Section 7.

2 PROBLEM STATEMENT

Consider an attributed directed network G = (V ,E,B), where V &
E are sets of nodes & edges and each node has an attribute value
b ∈ B. The goal is to develop a directed network growth model that
preserves structural and attribute based properties observed in G.
The growth model should be normative, accurate and parsimonious:

(1) Normative: The model should account for multiple soci-
ological phenomena that influence how individuals form
edges under constraints of limited global information and
partial network access.

(2) Accurate: The model should preserve key structural and at-
tribute based properties: degree distribution, local clustering,
degree-clustering relationship and attribute mixing patterns.

(3) Parsimonious: The model should be able to generate net-
works with tunable structural properties, while having few
parameters.

Next, we present empirical analysis on real-world datasets to
motivate our attributed random walk model.

3 EMPIRICAL ANALYSIS

We begin by describing six large-scale network datasets that we use
in our analysis and experiments. Then, we describe global network
properties, insights from empirical studies in the Social Science and

common assumptions in network modeling. Finally, we discuss the
role of structural proximity in edge formation.

3.1 Datasets

We consider six citation networks of different scales (size, time)
from diverse sources: research articles, utility patents and judicial
cases. Table 1 lists their summary statistics and global network
properties. Three of the six datasets are attributed networks; that
is, each node has a categorical attribute value.

We focus on citation networks for two reasons. First, since nodes
in citation networks form all outgoing edges to existing nodes at
the time of joining the network, these datasets provide a clean basis
to study edge formation in attributed networks. Second, the node-
level, temporal information in datasets that span long time periods
(e.g. USSC) enables us to study structural properties at different time
stages via network snapshots. Next, we study the structural and
attribute properties of these networks.

3.2 Global Network Properties

Compact statistical descriptors of global network properties [36]
such as degree distribution, local clustering, and attribute assorta-
tivity quantify the extent to which local edge formation phenomena
shape global network structure.

Degree distribution:Real-world networks tend to exhibit heavy
tailed degree distributions in which a small but significant fraction
of the nodes turn into high-degree hubs. We observe that Log-
normal fits, with parameters listed in Table 1, well describe the
in-degree distributions, consistent with Broido and Clauset’s [9]
observation that scale-free, real-world networks are rare.

Local Clustering: Real-world networks exhibit high local clus-
tering (LCC), as shown in Table 1. Local clustering can arise from
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Figure 2: Local clustering in real-world networks have common

characteristics: skewed local clustering distribution (left subplot)

and a negatively correlated relationship between in-degree and av-

erage local clustering (right subplot).

Network Description |V | |E | T A, |A| LN (µ,σ ) DPL α Avg. LCC AA r

USSC [14] U.S. Supreme Court cases 30,288 216,738 1754-2002 - (1.19, 1.18) 2.32 0.12 -
HEP-PH [15] ArXiv Physics manuscripts 34,546 421,533 1992-2002 - (1.32, 1.41) 1.67 0.12 -
Semantic [2] Academic Search Engine 7,706,506 59,079,055 1991-2016 - (1.78, 0.96) 1.58 0.06 -
ACL [42] NLP papers 18,665 115,311 1965-2016 venue, 50 (1.93, 1.38) 1.43 0.07 0.07
APS [1] Physics journals 577,046 6,967,873 1893-2015 journal, 13 (1.62, 1.20) 1.26 0.11 0.44
Patents [29] U.S. NBER patents 3,923,922 16,522,438 1975-1999 category, 6 (1.10, 1.01) 1.94 0.04 0.72

Table 1: Summary statistics & global properties of six network datasets: |V | nodes join the networks and form edges |E | over time period

T . In attributed networks, each node has a categorical attribute value that belongs to set A of size |A |. The networks exhibit lognormal (LN)
in-degree distribution with mean µ and standard deviation σ , high average local clustering (LCC) & attribute assortativity (AA) coefficient and

densify over time with power law (DPL) exponent α .
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Figure 3: Attributed networks ACL, APS and Patents exhibit ho-

mophily w.r.t attributes Venue (r = 0.07), Journal (r = 0.44) and
Category (r = 0.72) respectively.
triadic closure [37, 44], where nodes with common neighbor(s) have
an increased likelihood of forming a connection. The coefficient
of node i equals the probability with which two randomly chosen
neighbors of the node i are connected. In directed networks, the
neighborhood of a node i can refer to the nodes that link to i , nodes
that i links to or both. We define the neighborhood to be the set of
all nodes that link to node i . In Figure 2, we show that (a) average
local clustering is not a representative statistic of the skewed lo-
cal clustering distributions and (b) real-world networks exhibit a
negative correlation between in-degree and clustering. That is, low
in-degree nodes have small, tightly knit neighborhoods and high
in-degree nodes tend have large, star-shaped neighborhoods.

Homophily:Attributed networks tend to exhibit homophily [32],
the phenomenon where similar nodes are more likely to be con-
nected than dissimilar nodes. The assortativity coefficient [38]
r ∈ [−1, 1], quantifies the level of homophily in an attributed net-
work. Intuitively, assortativity compares the observed fraction of
edges between nodes with the same attribute value to the expected
fraction of edges between nodes with same attribute value if the
edges were rewired randomly. In Figure 3, we show that attributed
networks ACL, APS and Patents exhibit varying level of homophily
with assortativity coefficient ranging from 0.07 to 0.72.

Increasing Out-degree over Time: The out-degree of nodes
that join real-world networks tends to increase as functions of net-
work size and time. This phenomenon densifies networks and can
shrink effective diameter over time. Densification tends to exhibit
a power law relationship [29] between the number of edges e(t)
and nodes n(t) at time t : e(t) ∝ n(t)α . Table 1 lists the densification
power law (DPL) exponent α of the network datasets.

To summarize, citation networks tend to be homophilic networks
that undergo accelerated network growth and exhibit regularities
in structural properties: heavy tailed in-degree distribution, skewed
local clustering distribution, negatively correlated degree-clustering
relationship, and varying attribute mixing patterns.

3.3 Insights from Sociological Studies

Sociological studies on network formation seek to explain how
individuals form edges in real-world networks.

Interplay ofTriadicClosure andHomophily: Empirical stud-
ies [6, 25] that analyze the interplay between triadic closure and
homophily indicate that both structural proximity and homophily
are statistically significant factors that simultaneously influence
edge formation. Homophilic preferences [32] induce edges between
similar nodes, whereas structural factors such as network distance
limit edge formation to proximate nodes (e.g. friend of a friend).

Bounded Rationality: Extensive work [16, 30, 46] on decision
making shows that individuals are boundedly rational actors; con-
straints such as limited information, cognitive capacity and time

impact decision making. This suggests that resource-constrained
individuals that join networks are likely to employ simple rules to
form edges using limited information and partial network access.

Current preferential attachment and fitness-based models [3, 13,
47] make two assumptions that are at variance with these findings.
First, by assuming that successive edge formations are independent,
these models disregard the effect of triadic closure and structural
proximity. Second, as discussed in section 1, these models require
complete network access or knowledge of node-level properties.

Insights from sociological studies indicate that edge formation
in real-world networks comprises biases towards nodes that are
similar, well-connected or structurally proximate. Coupled with em-
pirical analyses, it also motivates the need to model how resource-
constrained edge formation processes collectively shape global
network properties of large-scale networks over time.

3.4 Proximity-biased Edge Formation

We investigate the effect of structural proximity on edge formation
in real-world networks. Prior work [25] shows that the probability
of edge formation in social networks decreases as a function of net-
work distance. Indeed, triadic closure explains how individuals form
additional edges to proximate nodes (e.g. friend of friend) over time.
However, we lack a concrete understanding of the extent to which
structural proximity influences edge formation in bibliographic
networks, wherein incoming nodes form all edges at the time of
joining the network. In Figure 4, we show how high structural
proximity among incoming (shown in blue) node’s (shown in red)
connections in the Hep-PH dataset hints at edge formation processes
biased towards proximate nodes in the same local neighborhood.
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Figure 4: Proximity-biased edge formation. The diagram and prox-

imity distributions collectively indicate how edge formation in real-

world networks are biased towards structurally proximate nodes in

the same locality.

We rely on network snapshots and node arrival sequence to
estimate a statistic based on path length that measures structural
proximity between nodes’ connections. Consider an incoming node
u that forms edges to nodes in N (u). To measure the proximity
between node u’s connections, we compute the average pairwise
shortest path distance between the connections in the network
snapshot immediately preceding node u’s arrival.

The right subplot in Figure 4 compares the proximity statistic
distribution of the Hep-PH dataset to two null models: uniform
and configuration. In the uniform model, incoming nodes form
connections to existing nodes uniformly at random, whereas the
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configuration model randomly rewire all edges in Hep-PH while pre-
serving the out-degree and in-degree distributions. We first observe
that the connections of incoming nodes in the uniform null model
are structurally distant from each other on average. Although the
presence of hubs in the configuration model considerably decreases
the distance between nodes’ connections, it does not explain why
the majority of connections in Hep-PH are either connected directly
or via an intermediate node. The disparity between the observed
and null distributions suggests that structural proximity between
connections is intrinsic to edge formation in real-world networks.

To summarize, empirical analyses and insights from the Social
Sciences motivate the need to model how resource-constrained
edge formation processes collectively shape well-defined global
network properties of large-scale networks over time.

4 ATTRIBUTED RANDOMWALK MODEL

We propose an Attributed Random Walk (ARW) model to explain
the emergence of key structural properties of real-world networks
through entirely local edge formation mechanisms.

Consider a stylized example of how a researcher might go about
finding relevant papers to cite. First, the researcher broadly identi-
fies one or more relevant papers, possibly with the help of external
information (e.g. Google Scholar). These initial set of papers act as
seed nodes. Then, acting under time and information constraints,
she will examine papers cited by the seed and papers that cite the
seed. Thus, she navigates a chain of backward and forward refer-
ences to identify similar, relevant papers. Next, through careful
analysis, she will cite a subset of these papers. Similarly, users in
online social networks might form new friendships by navigating
their social circle (e.g., friends of friends) to find similar others.

ARW grows a directed network as new nodes join the network.
The mechanism is motivated by the stylized example: an incoming
node selects a seed node and initiates a random walk to explore the
network by navigating through neighborhoods of existing nodes.
It halts the random walk after connecting to a few visited nodes.

In this section, we describe the edge formation mechanisms
underlying ARW, explain how ARW unifies multiple sociological phe-
nomena, discuss model interpretability and summarize methods
required to fit ARW to network data.

4.1 Model Description

The Attributed Random Walk (ARW) model grows a directed network
{Ĝt }Tt=1 inT time steps. More formally, at every discrete time step t ,
a new nodeu, with attribute value B(u), joins the network Ĝt . After
joining the network, node u formsm(t) edges to existing nodes.

The edge formation mechanism consists of two components:
Select-Seed and Random-Walk. As shown in Figure 5, an incom-
ing node u with attribute value B(u) that joins the network at time
t first selects a seed node using Select-Seed.

Select-Seed accounts for homophilic preferences of incoming
nodes using parameters psame and pdiff to tune attribute preferences.
In Figure 5, node u selects a seed node and initiates a random walk
using Random-Walk to formm(t) links:

(1) With probability psame/psame+pdiff, randomly select a seed
node from existing nodes that have the same attribute
value, B(u).
(2) Otherwise, with probability pdiff/psame+pdiff, randomly
select a seed node from existing nodes that do not have
the same attribute value, B(u).

Select-Seed

The Random-Walk mechanism consists of four parameters:
attribute-based parameters psame & pdiff model edge formation de-
cisions and the jump parameter pjump & out-link parameter pout
characterize random walk traversals:

(1) At each step of the walk, new node u visits node vi .
• If B(u) = B(vi ), u links to vi with probability psame
• Otherwise, u links to vi with probability pdiff

(2) Then, with probability pjump, u jumps back to seed su .
(3) Otherwise, with probability 1 − pjump, u continues to
walk. It picks an outgoing edge with prob. pout or an in-
coming edge with prob. 1 − pout to visit a neighbor of vi .
(4) Steps 1-3 are repeated until u links to m(t) nodes.

Random-Walk

When attribute data is absent, ARW simplifies further. A single
link parameter plink replaces both attribute parameters psame & pdiff.
Select-Seed reduces to uniform seed selection and in Random-
Walk, the probability of linking to visited nodes equals plink.

Note that ARW has two exogenous parameters: the out-degree
m(t) and attribute B(u) of incoming nodes. The attribute distribu-
tion varies with time as new attribute values (e.g., journals) crop
up, necessitating an exogenous parameter. The parameterm(t) is
the mean-field value of out-degree m at time t in the observed net-
work. While it is straightforward to modelm(t) endogenously by
incorporating a densification power-law DPL exponent, exogenous
factors (e.g., venue, topic) may influence node out-degree.

Next, we explain how each parameter is necessary to conform
to normative behavior of individuals in evolving networks.

4.2 ARW and Normative Behavior

The Attributed Random Walk model unifies multiple sociological
phenomena into its edge formation mechanisms.
Phenomenon 1. (Limited Resources) Individuals are boundedly ra-
tional [16, 30, 46] actors that form edges under constraints of limited
information and partial network access.

As shown in Figure 5, Random-Walk only requires information
only about the 1-hop neighborhood of a few visited nodes, thereby
accounting for the constraints of limited information and partial
network access.
Phenomenon 2. (Structural Constraints) Network distance act as a
constraint that limits long-range connections. [25]

We incorporate structural constraints using pjump, the probability
with which a new node jumps back to its seed node after every step
of the random walk. This implies that the probability with which
the new node is at most k steps from its seed node is (1 − pjump)k ;

4
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as a result, pjump controls the extent to which nodes’ random walks
explore the network to form edges.
Phenomenon 3. (Triadic Closure) Nodes with common neighbors
have an increased likelihood of forming a connection. [44]

When attribute data is absent, ARW controls the effect of triadic
closure on link formation using plink because with probability pro-
portional to p2

link, a new node u closes a triad through its random
traversal by linking to both, a visited node and its neighbor,
Phenomenon 4. (Attribute Homophily) Nodes that have similar
attributes are more likely to form a connection. [32]

The attribute parameters psame and pdiff modulate attribute assor-
tativity. When psame > pdiff, nodes are more likely to connect if they
share the same attribute value, thereby resulting in a homophilic
network over time. Similarly, psame < pdiff and psame = pdiff make
edge formation heterophilic and attribute agnostic respectively.
Phenomenon 5. (Preferential Attachment) Nodes tend to link to
high degree nodes that have more visibility. [3]

ARW controls preferential attachment by adding structural bias
to the random walk traversal using outlink parameter pout, instead
of relying on the global degree distribution. Random walks that
traverse outgoing edges only (i.e., pout = 1) eventually visit old
nodes that tend to have high in-degree. Similarly, random walks
that traverse incoming edges only (i.e.,pout = 0) visit recently joined
nodes that tend to have low indegree. As a result, we use pout to
adjust bias towards node degree.

To summarize: ARW incorporates five well-known sociological
phenomena—limited resources; structural constraints; triadic clo-
sure; attribute homophily; preferential attachment—into a single
edge formation mechanism based on random walks.

4.3 Model Interpretability

ARW parameters intuitively shape key structural properties: in-degree
distribution, local clustering, path length and attribute assortativity.

In order to understand how global network properties vary as
functions of ARW parameters, we explore the parameter space of the
model. As described in Subsection 4.1, ARW uses two parameteriza-
tions to model networks with or without attribute data. We analyze
network structure and attribute assortativity using (plink,pjump,pout)
and (psame,pdiff,pjump,pout) respectively.

Figure 6 illustrates how in-degree and local clustering depend
on pout and plink. Increasing pout steers random walks towards older
nodes that tend to have higher in-degree. Over time, as more nodes
join the network, initial differences in degree amplify, resulting in

heavy-tailed distributions. In Figure 6, we observe that increasing
pout from 0.2 to 0.8 shifts probability mass from average degree
nodes (B) to hubs (C) and low degree nodes (A). As a result, pout
controls the extent to which hubs skew the in-degree distribution.
Similarly, local clustering increases as a function of plink because
plink implicitly controls the rate at which new nodes close triads by
linking to adjacent nodes in their random walks.

We use contour plots to visualize how (pdiff,psame) and (plink,pjump)
alter attribute assortativity and average path length. As shown in
the left subplot of Figure 7, psame − pdiff tunes the extent to which
attributes influence edge formation. Increasing psame−pdiff increases
attribute assortativity by amplifying nodes’ propensity to link to
similar nodes, which subsequently increases the fraction of edges
between similar nodes. More importantly, when psame−pdiff remains
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constant, increasing (psame,pdiff) raises local clustering without al-
tering attribute assortativity. In the right subplot, we observe that
increasing pout while decreasing pjump shortens the average path
length. This is because low values of pjump do not restrict incom-
ing nodes to the local neighborhood of their seed nodes, thereby
allowing incoming nodes to visit and form edges to nodes that are
structurally distant. Additionally, increasing pout results in greater
number of hubs, which in turn act as intermediate nodes to connect
nodes via short path lengths.

Thus, ARW unifies multiple sociological phenomena at the local
level as well as intuitively controls key global network properties.

4.4 Model Fitting

We now briefly describe methods to estimate model parameters,
initialize Ĝ , densify Ĝ over time and sample nodes’ attribute values.

Parameter Estimation. We use grid search to estimate the four pa-
rameters using evaluation metrics and selection criterion described
in Subsection 5.1.

Initialization. ARW is sensitive to a large number of weakly con-
nected components (WCCs) in initial network Ĝ0 because incoming
nodes only form edges to nodes in the same WCC. To ensure that
Ĝ0 is weakly connected, we perform an undirected breadth-first
search on the observed, to-be-fitted network G that starts from the
oldest node and halts after visiting 0.1% of the nodes. The initial
network Ĝ0 is the small WCC induced from the set of visited nodes.

Node Out-degree. Node out-degree increases non-linearly over
time in real-world networks. We coarsely mirror the growth rate of
observed network G as follows. Each incoming node u that joins Ĝ
at time t corresponds to some node that joins the observed network
G in year y(t); the number of edges m(t) that u forms is equal to
the average out-degree of nodes that join G in year y(t).

Sampling Attribute Values. The distribution over nodal attribute
values Pg(B) tends to change over time. The change in the attribute
distribution over time is an exogenous factor and varies for every
network. Therefore, we sample the attribute value B(u) of node
u, that joins Ĝ at time t , from Pg(B | year = y(t)), the observed
attribute distribution conditioned on the year of arrival of node u.

To summarize, ARW intuitively describes how individuals form
edges under resource constraints. ARW uses four parameters —psame,
pdiff, pjump, pout— to incorporate individuals’ biases towards similar,
proximate and high degree nodes. Next, we discuss our experi-
ments on the performance of ARW in accurately preserving multiple
structural and attribute properties of real networks.

5 MODELING NETWORK STRUCTURE

In this section, we evaluate ARW’s performance in preserving real-
world network structure relative to well-known growth models.

5.1 Setup

In this subsection, we introduce eight representative growth models
and describe evaluation metrics used to fit models to the datasets.

State-of-the-art Growth Models. We compare ARW to eight state-
of-the-art growth models representative of the key edge formation
mechanisms: preferential attachment, fitness, triangle closing and
random walks. Two of the eight models account for attribute ho-
mophily and preserve attribute mixing patterns, as listed below:

(1) Dorogovtsev-Mendes-Samukhin model [13] (DMS) is a pref-
erential attachment model that generates directed scale-free graphs.
In this model, the probability of linking to a node is proportional
to the sum of its in-degree and “initial attractiveness.”
(2) Relay Linking model [47] (RL) comprises preferential attach-
ment models for directed networks that use relay linking to model
node popularity over time. We use the iterated preferential relay-
cite (IPRC) variant, which best fits real-world network properties.
(3) Kim-Altmann model [23] (KA) is a fitness-based model that
defines fitness as the product of degree and attribute similarity. It
generates attributed networks with assortative mixing and power
law degree distribution. To generate directed networks, we modify
KA to form directed edges to nodes in proportion to their in-degree.
(4)Holme-Kimmodel [20] (HK) is a preferential attachment model
that generates scale-free, clustered, undirected networks using a
triangle-closing mechanism. To generate directed networks, we
modify HK to form directed edges to nodes in proportion to their in-
degree and close triangles in their undirected 1-hop neighborhood.
(5) Social Attribute Network model [17] (SAN) generates scale-
free, clustered, attributed networks via attribute-augmented prefer-
ential attachment and triangle closing processes. We modify SAN to
create directed edges and thereby produce directed networks.
(6) Herera-Zufiria model [43] (SK) is a random walk model that
generates scale-free, undirected networks with tunable average
clustering. In order to generate directed networks, we allow the
random walk mechanism in SK to traverse edges in any direction.
(7) Saramaki-Kaski [19] (HZ) is a random walk model that gen-
erates scale-free networks with tunable average local clustering.
To generate directed networks, we modify HZ to allow its random
walk mechanism to traverse edges in any direction.
(8) Forest Fire model [29] (FF) is a recursive random walk model
that can generate directed networks with shrinking diameter over
time, heavy-tailed degree distributions and high clustering.

Ensuring Fair Comparison. To ensure fair comparison, we modify
existing models in three ways. First, for DMS, SAN, KA do not have an
explicitly defined initial graph, so we use initialization method used
for ARW, described in subsection 4.4. Second, we extend models that
use constant node outdegree m by increasing outdegree over time
m(t) using the method described in subsection 4.4. In the absence of
model-specific parameter estimation methods, we use grid search
to estimate the parameters of every network model, including ARW,
using evaluation metrics and selection criterion described below.

Evaluation Metrics. We evaluate the network model fit by com-
paring four structural properties ofG & Ĝ: degree distribution, local
clustering distribution, degree-clustering relationship and attribute
assortativity. We use Kolmogorov-Smirnov (KS) statistic to compare
in-degree & local clustering distributions. We compare the degree-
clustering relationship in G and Ĝ using Weighted Relative Error
(WRE), which aggregates the relative error between the average lo-
cal clustering c(k) and ĉ(k) of nodes with in-degree k in G and Ĝ
respectively; The relative error between c(k) and ĉ(k) is weighted
in proportion to the number of nodes with in-degree k in G.

Jointly preserving multiple structural properties is a multi-objective
optimization problem; model parameters that accurately preserve
the degree distribution (i.e. low KS statistic) may not preserve the
clustering distribution. Therefore, for each model, the selection
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Figure 8: Modeling network structure. We assess the extent to which network models fit key structural properties of six real-world networks.

Tables 5A, 5B and 5C measure the accuracy of eight models in fitting the in-degree distribution, local clustering distribution, in-degree &

clustering relationship respectively and global attribute assortativity. Existing models tend to underperform because they either disregard

the effect of factors such as triadic closure and/or homophily or are unable to generate networks with varying structural properties. Our

model, ARW, jointly preserves all three properties accurately and often performs considerably better than existing models: the cells are shaded

gray or dark gray if the proposed model ARW performs better at significance level α = 0.01 ( ) or α = 0.001 ( ) respectively.

criterion for the grid search parameter estimation method chooses
the model parameters that minimizes the ℓ2-norm of the aforemen-
tioned evaluation metrics. Since the metrics have different scales,
we normalize the metrics before computing the ℓ2-norm to prevent
unwanted bias towards any particular metric. We note that the
parameter sensitivity of the Forest Fire (FF) model necessitates a
manually guided grid search method.

5.2 Results

Now, we evaluate the performance of ARW relative to eight well-
known existing models on the datasets introduced in Subsection 3.1.
Figure 8 tabulates the evaluation metrics for every pair of model and
dataset. These metrics measure the accuracy with which the fitted
models preserve key global network properties: degree distribution,
local clustering distribution, and indegree-clustering relationship.

To evaluate the performance of these models, we first fit each
model to all network datasets G in Subsection 3.1. Thereafter, we
compare the structural properties of network dataset G and net-
work Ĝ generated by the fitted model using evaluation metrics
in Subsection 5.1. We average out fluctuations in Ĝ over 100 runs.

We use one-sided permutation tests [18] to evaluate the rela-
tive performance of ARW. If ARW performs better than a model on
a dataset with significance level α = 0.01 or α = 0.001, the cor-
responding cells in Figure 8 are shaded gray ( ) or dark gray
( ) respectively. We also group models that have similar edge
formation mechanisms by color-coding the corresponding rows
in Figure 8. We use green ticks in Figure 8 to annotate models that
preserve assortativity up to two decimal places.

Figure 8 shows that existing models fail to jointly preserve
multiple structural properties in an accurate manner. This is because
existing models either disregard important mechanisms such as
triadic closure and homophily or are not flexible enough to generate
networks with varying structural properties.

Preferential attachment models: DMS, RL and KA preserve in-
degree distributions but disregard clustering. DMS outperforms other

models in accurately modeling degree distribution (Figure 8A) be-
cause its “initial attractiveness” parameter can be tuned to adjust
preference towards low degree nodes. Unlike KA, however, DMS
cannot preserve global assortativity. However, by assuming that
successive edge formations are independent, both models disregard
triadic closure and local clustering. (Figure 8B & Figure 8C).

Triangle Closing Models: HK and SAN are preferential attach-
ment models that use triangle closing mechanisms to generate
scale-free networks with high average local clustering. While tri-
angle closing leads to considerable improvement over DMS and KA
in modeling local clustering, HK and SAN are not flexible enough to
preserve local clustering in all datasets (see Figure 8B & Figure 8C).

Existing random walk models: FF, SK, and HZ cannot accu-
rately preserve structural properties of real-world network datasets.
The recursive approach in FF considerably overestimates local clus-
tering. because nodes perform a probabilistic breadth-first search
and link to all visited/burned nodes. SK and HZ can control local
clustering to some extent, as nodes perform a single random walk
and link to each visited node with tunable probability µ. However,
both models lack control over the in-degree distribution. Further-
more, existing random walk models disregard attribute homophily
and do not account for attribute mixing patterns.

Attributed Random Walk model: Figure 8 clearly indicates
the effectiveness of ARW in jointly preserving multiple global net-
work properties. ARW can generate networks with tunable in-degree
distribution by adjusting nodes’ bias towards high degree nodes
using pout. As a result, ARW accurately preserves in-degree distribu-
tions (Figure 8A), often significantly better than all models except
DMS. Similarly, ARW matches the local clustering distribution (Fig-
ure 8B) and in-degree & clustering relationship (Figure 8C) with
high accuracy usingpjump andplink. Similarly, ARW preserves attribute
assortativity using the attribute parameters psame and pdiff. Barring
one to two datasets, ARW preserves all three properties significantly
better (α < 0.001) than existing random walk models.
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Figure 9: Performance of ARW in accurately preserving key global structural properties of the APS network dataset relative to state-of-the-

art, representative network models. Existing models such as DMS and HK cannot preserve high local clustering. Moreover, the triangle closing

mechanism in SAN incurs high Weighted Relative Error (WRE) because it cannot explain why low in-degree nodes have high local clustering.

ARW outperforms existing network models in jointly preserving all three structural properties, in addition to attribute mixing patterns.

To summarize, ARW unifies five sociological phenomena into a
single mechanism to jointly preserve real-world network structure.

6 MODELING LOCAL MIXING PATTERNS

The global assortativity coefficient quantifies the average propen-
sity of links between similar nodes. However, global assortativity
is not a representative summary statistic of heterogeneous mixing
patterns observed in large-scale networks [40]. Furthermore, it does
not quantify anomalous mixing patterns and fails to measure how
mixing varies across a network.

We use local assortativity [40] to measure varying mixing pat-
terns in an attributed network G = (V ,E,B) with attribute values
B = {b1...bk }. Unlike global assortativity that counts all edges
between similar nodes, local assortativity of node i , rlocal(i), cap-
tures attribute mixing patterns in the neighborhood of node i us-
ing a proximity-biased weight distribution wi . The distribution wi
reweighs edges between similar nodes based on proximity to node
i . As Peel et al. [40] indicate, there are multiple ways to define node
i’s weight distribution wi other than the prescribed personalized
pagerank weight distribution, which is prohibitively expensive to
compute for all nodes in large graphs. We define wi as a uniform
distribution over N2(i), the two-hop local neighborhood of node
i , to allow for a highly efficient local assortativity calculation. In-
tuitively, rlocal(i) compares the observed fraction of edges between
similar nodes in the local neighborhood of node i to the expected
fraction if the edges are randomly rewired.
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Figure 10: ARW outperforms existing network models in jointly pre-

serving key structural properties—in-degree distribution, local clus-

tering distribution and degree-clustering relationship— by a signif-

icant margin of 2.5x-10x.
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Figure 11: Local assortativity distributions of attributed networks

ACL, APS and Patents reveal anomalous, skewed and heterophilic lo-

cal mixing patterns. ARW accurately preserves local assortativity, but

does not account for anomalous mixing patterns.

As shown in Figure 11, local assortativity distributions of ACL,
APS and Patents reveal anomalous, skewed and heterophilic local
mixing patterns that are not inferred via global assortativity. Our
model ARW can preserve diverse local assortativity distributions
with high accuracy even though nodes share the same attribute
parameters psame and pdiff. This is because, in addition to sampling
attributes conditioned on time, ARW incorporates multiple sources
of stochasticity through its edge formation mechanism. As a result,
incoming nodes with fixed homophilic preferences can position
themselves in neighborhoods with variable local assortativity by
(a) selecting a seed node in a region with too few (or too many)
similar nodes or (b) exhausting all its links before visiting similar
(or dissimilar) nodes. We note that ARW is not expressive enough
to model anomalous mixing patterns; richer mechanisms such as
sampling psame or pdiff from a mixture of Bernoullis are necessary
to account for anomalous mixing patterns.

7 DISCUSSION

In this section, we discuss weaknesses of triangle closing mecha-
nisms, the effect of out-degree on network diameter and limitations
& potential modifications of our model ARW.

7.1 Dissecting the Triangle Closing Mechanism

A set of network models (e.g., SAN [17] & HK [20]) use triangle
closing mechanisms to generate networks with varying average
local clustering. However, our experimental results in Subsection 5.2
show that models that rely on triangle closing cannot explain local
clustering distribution or bivariate degree-clustering relationship
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accurately. To understand why, we examine the degree-clustering
relationship in the APS network in Figure 12.

Figure 12 reveals that models based on triangle closing mecha-
nisms, SAN and HK, considerably underestimate the local clustering
of nodes that have low in-degree. This is because incoming nodes
in SAN and HK tend to close triangles in the neighborhood of high
in-degree nodes to which they connect via preferential attachment.
Local clustering plateaus as in-degree decreases because triangle
closing along with preferential attachment fail to form connections
in neighborhoods of low in-degree nodes. In contrast, ARW accu-
rately models the degree-clustering relationship because incoming
nodes initiate random walks and close triangles in neighborhoods
of low in-degree seed nodes chosen via Select-Seed.

7.2 Effect of Out-degree on Network Diameter

Extensive analyses [21, 29, 31] on evolving real-world networks
reveal two key temporal properties: network densification and
diameter shrinkage over time. Growth models can be adjusted to
densify networks over time by allowing node out-degree to increase
super-linearly as a function of network size. However, we lack a
concrete understanding of existing edge formation mechanisms’
inability to preserve diameter shrinkage. Through our analysis, we
observe that the out-degree sequence of incoming nodes in network
models has a significant impact on effective diameter over time.

Figure 13 illustrates the effective diameter of network models
fitted to Hep-PH as a function of node out-degree sequence and
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sistently underestimates effective diameter of the Hep-PH network.

time. By increasing the out-degreem(t) over time using the method
described in subsection 4.4, network models representative of key
edge formation mechanisms—ARW, FF, DMS & SAN—generate net-
works that exhibit diameter shrinkage. In particular, FF 1 and ARW
mirror the observed rate at which the effective diameter shrinks
over time. However, when the out-degree m̄ = n−1 ∑

im(i) of in-
coming nodes is constant, fitted networks, including Forest Fire
(FF), cannot preserve shrinking diameter; the effective diameter of
the fitted models remain consistently lower than that of Hep-PH.

Increasing out-degree over time can effectively incorporate diam-
eter shrinkage in all representative network models. This phenom-
enon is best understood through the simple Uniform null model,
in which incoming nodes form edges to existing nodes chosen
uniformly at random. In the Uniform model, nodes with higher
out-degree have a greater probability of linking to existing nodes
that are structurally distant from each other. Consequently, over
time, incoming nodes with higher out-degree are more likely to
bridge distant regions of the network, reduce path length between
existing nodes and subsequently shrink effective diameter.

To summarize, our analysis indicates how increasing out-degree
over time enables existing models that rely on different edge for-
mation processes to account for diameter shrinkage.

7.3 ARW Limitations

We discuss three limitations of ARW. First, we consider only bibli-
ographic network datasets in which nodes form all edges at the
time of joining. This allows us to analyze edge formation in the
absence of confounding edge processes such as edge deletion and
edge creation between existing nodes. We plan to extend ARW to
handle social networks, where individuals can form edges at any
time. One potential way is to incorporate random walks that pause
and resume intermittently, thus allowing for older nodes to connect
with more recent arrivals. Second, the out-degree m(t) of incom-
ing nodes in ARW rely on the observed out-degree sequence, which
might be unavailable in datasets without fine-grained temporal
data. In this case, ARW can be adapted to rely on the prescribed
range of densification exponent αDPL [29] in real-world networks.
Since e(t) = m(t)n(t), the power law relationship e(t) ∝ n(t)αDPL

between number of edges e(t) and nodes n(t) at time t implies that
out-degreem(t) must be proportional to n(t)αDPL−1. Third, ARW fo-
cuses on modeling networks in which nodes have a single attribute.
The difficulty in incorporating multiple attributes into the edge
formation mechanism rests on how we measure attribute similarity.
If two nodes are similar only when all their attribute values are
identical, we can simply create a new categorical attribute that
encodes all multiple attribute combinations and then directly ap-
ply ARW. Additional analysis is necessary to identify definitions
of attribute similarity that best describe how multiple attributes
influence individuals’ edge formation processes.

8 RELATEDWORK

Network growth models seek to explain a subset of structural prop-
erties observed in real networks. Note that, unlike growth models,
statistical models of network replication [28, 41] do not model how

1FF inherently increases out-degree over time because incoming nodes “burn” through
the network for duration in proportion to the network size.
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networks grow over time and are not relevant to our work. Below,
we discuss relevant and recent work on modeling network growth.

Preferential Attachment & Fitness: In preferential attach-
ment and fitness-based models [4, 5, 10, 33], a new node u links to
an existing node v with probability proportional to the attachment
function f (kv ), a function of either degree kv or fitness ϕv of node
v . For instance, linear preferential attachment functions [3, 13, 26]
lead to power law degree distributions and small diameter [8] and
attachment functions of degree & node age [49] can preserve re-
alistic temporal dynamics. Extensions of preferential attachment
[35, 50, 52] that incorporate resource constraints disregard network
properties other than power law degree distribution and small di-
ameter. Additional mechanisms are necessary to explain network
properties such as clustering and attribute mixing patterns.

Triangle Closing: A set of models [20, 24, 27] incorporate tri-
adic closure using triangle closing mechanisms, which increase
average local clustering by forming edges between nodes with
one or more common neighbors. However, as explained in Sub-
section 7.1, models based on preferential attachment and triangle
closing do not preserve the local clustering of low degree nodes.

Attributed network models: These models [12, 17, 22, 53] ac-
count for the effect of attribute homophily on edge formation and
preserve mixing patterns. Existing models can be broadly catego-
rized as (a) fitness-based model that define fitness as a function of
attribute similarity and (b) microscopic models of network evolu-
tion that require complete temporal information about edge arrivals
& deletion. Our experiment results in Subsection 5.2 show that well-
known attributed network models SAN and KA preserve assortative
mixing patterns, degree distribution to some extent, but not local
clustering and degree-clustering correlation.

Random walk models: First introduced by Vazquez [48], ran-
dom walk models are inherently local. Models [7] in which new
nodes only link to terminal nodes of short random walks generate
networks with power law degree distributions [11] and small diam-
eter [34] but do not preserve clustering. Models such as SK [43] and
HZ [19], in which new nodes probabilistically link to each visited
nodes incorporate triadic closure but are not flexible enough to
preserve skewed local clustering of real-world networks, as shown
in Subsection 5.2. We also observe that recursive random walk
models such as FF [29] preserve temporal properties such as shrink-
ing diameter but considerably overestimate local clustering and
degree-clustering relationship of real-world networks. Furthermore,
existing random walk models disregard the effect of homophily and
do not model attribute mixing patterns.

To summarize, existing models do not explain how resource
constrained and local processes jointly preserve multiple global
network properties of attributed networks.

9 CONCLUSION

In this paper, we proposed a simple, interpretable model of attrib-
uted network growth. ARW grows a directed network in the follow-
ing manner: an incoming node selects a seed node based on attribute
similarity, initiates a biased random walk to explore the network by
navigating through neighborhoods of existing nodes, and halts the
random walk after connecting to a few visited nodes. To the best
of our knowledge, ARW is the first model that unifies multiple soci-
ological phenomena—bounded rationality; structural constraints;

triadic closure; attribute homophily; preferential attachment—into a
single local process to model global network structure and attribute
mixing patterns. We explored the parameter space of the model
to show how each parameter intuitively controls one or more key
structural properties. Our experiments on six large-scale citation
networks showed that ARW outperforms relevant and recent existing
models by a statistically significant factor of 2.5–10×. We plan to
extend the ARW model in two directions: modeling undirected, social
networks, and analyzing the effect of attribute homophily on the
formation of temporal motifs [39]
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