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ABSTRACT
Understanding temporal dynamics has proved to be highly valuable
for accurate recommendation. Sequential recommenders have been
successful in modeling the dynamics of users and items over time.
However, while different model architectures excel at capturing
various temporal ranges or dynamics, distinct application contexts
require adapting to diverse behaviors.

In this paper we examine how to build a model that can make
use of different temporal ranges and dynamics depending on the
request context. We begin with the analysis of an anonymized
Youtube dataset comprising millions of user sequences. We quan-
tify the degree of long-range dependence in these sequences and
demonstrate that both short-term and long-term dependent behav-
ioral patterns co-exist. We then propose a neural Multi-temporal-
range Mixture Model (M3) as a tailored solution to deal with both
short-term and long-term dependencies. Our approach employs
a mixture of models, each with a different temporal range. These
models are combined by a learned gating mechanism capable of
exerting different model combinations given different contextual
information. In empirical evaluations on a public dataset and our
own anonymized YouTube dataset, M3 consistently outperforms
state-of-the-art sequential recommendation methods.
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1 INTRODUCTION
Across the web and mobile applications, recommender systems are
relied upon to surface the right items to users at the right time. Some
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of their success can be attributed to advances in modeling as well
as the ingenuity of applied researchers in adopting and inventing
new techniques to solve this important problem [19, 30, 44, 46].
Fundamentally, recommenders match users in a particular context
with the best personalized items that they will engage with [17, 34].
In order to do this effectively, recommenders need to understand the
users, typically based on their previous actions, and to understand
items, most often based on the users who previously interacted with
them. This presents a fundamental challenge: users’ preferences
and items’ perception are continuously changing over time, and
the recommender system needs to understand these dynamics.

A significant amount of research has recognized forms of this
problem. Sequence information has been generally shown to im-
prove recommender performance [18, 45]. Koren [29] identified
multiple user and item dynamics in the Netflix Prize competition,
and incorporated these dynamics as biases in a collaborative filter-
ing model. [7, 56] demonstrated that Recurrent Neural Networks
(RNNs) could learnmany of these patterns, and likewise [20] demon-
strated that RNNs can learn patterns in individual sessions. Despite
these successes, RNNs are known to have difficulties learning long-
range dependent temporal patterns [4].

We observe and study an open challenge for such sequential
recommender systems: while different applications and contexts
require different temporal ranges and patterns, model architectures
are typically designed to capture a particular temporal dynamic. For
example, when a user comes to the Amazon home page they may be
looking for something new to buy or watch, but on an item specific
page they may be looking for other items that are closely related
to recently browsed items. How can we design a model that works,
simultaneously, across all of these contexts and temporal ranges?

Contributions:Weaddress the issue of providing a singlemodel
adapted to the diversity of contexts and scales of temporal depen-
dencies in sequential recommendations through data analysis and
the design of a Multi-temporal-range Mixture Model, or M3 for
short. We make the following contributions to this problem:

• Data-driven design: We demonstrate that in real world
recommendation tasks there are significant long-range tem-
poral dependencies in user sequence data, and that previous
approaches are limited in their ability to capture those dy-
namics. M3’s design is informed by this quantitative analysis.

• Multi-range Model: We offer a single model, M3, which is
a mixture model consisting of three sub-models (each with
a distinct manually designed architecture) that specialize
in capturing different ranges of temporal dependencies. M3
can learn how to dynamically choose to focus on different
temporal dynamics and ranges depending on the application
context.
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• Empirical Benefits and Interpretability: We show on
both public academic and private data that our approach
provides significantly better recommendations. Further, us-
ing its interpretable design, we analyze how M3 dynami-
cally switches between patterns present at different tem-
poral ranges for different contexts, thus showing the value
in enabling context-specific multi-range modeling. Our pri-
vate dataset consists in anonymized user sequences from
YouTube. To the best of our knowledge this paper is the first
to focus on sequential patterns in such a setting.

2 RELATEDWORK
Before we describe our sequential recommendation problem and
provide the quantitative insights orienting the design of a novel
sequential neural model based on a mixture of models, we briefly
introduce the reader to some key pre-existing related work.

Matrix factorization [30] is among the most popular techniques
used in classic recommender research, in which a similarity score
for each user-item pair is learned by building latent user and item
representations to recover historical user-item interactions. The
predicted similarity score is then used to indicate the relatedness
and find the most relevant items to recommend to a user. Followup
work on introducing auxiliary sources of information beyond user-
item interactions have been proven successful [11], especially for
cold-start problems. Pazzani and Billsus [39] use item content (e.g.,
product image, video’s visual/audio content, etc) to provide a better
item representation.

Neural Recommender Systems. Deep neural networks have
gained tremendous success in the fields of Computer Vision [28, 31]
and Natural Language Processing [2, 36]. In recommender research,
we have witnessed growing interest of using deep neural networks
to model complex contextual interactions between user and items,
which surpass classic factorization-based methods [30, 43]. Auto-
encoders[33, 47, 57] constitute an early example of success for a
framework based on neural networks to better infer un-observed
user/item affinities in a recommendation problem. He et al. [19]
also proved that traditional Collaborative Filtering methods can be
effectively generalized by a deep neural network. Besides,

For the specific problem of sequential recommendation using
neural networks, RNNs [20, 56] have become a common choice.
Othermethods based onConvolutional Neural Networks (CNNs) [51,
59], Attention Models [61] have also been explored. While most
of existing methods developed for sequential recommendations
perform well [18, 20, 45, 49, 51], they still have some limitations
when dealing with long user sequences found in production recom-
mender systems. As we shall discuss in Section 3, such approaches
do not scale well to very long sequences.

Mixture of Models. Despite being simpler and more elegant,
monolithic models are in general less effective than mixtures of
models to take advantage of different model capacities and architec-
tural biases. Gehring et al. [15] used an RNN in combination with
an attention model for neural machine translation which provided a
substantial performance gain. Pinheiro and Collobert [40] proposed
to combine a CNN with an RNN for scene labeling. In the field of
sequential recommendation, an earlier work on mixing of a Latent
Factor Model (LFM) and a Factorized Markov Chain (FMC) has been
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Figure 1: Trace of covariance (i.e. centered inner product
similarity) of item embeddings between the last item in user
sequence and the item located L steps before (100K samples).

shown to offer superior performance than each individual one [45].
A similar trend was observed in [18, 60]. While sharing similar
spirit to these aforementioned methods, we designed our mixture
of models with the goal to model varying ranges of dependence in
long user sequences found in real production systems. Unlike model
ensembles [13, 62, 63] that learn individual models separately prior
to ensembling them, a mixture of models learns individual models
as well as combination logic simultaneously.

3 QUANTIFYING LONG RANGE TEMPORAL
DEPENDENCIES IN USER SEQUENCES

We first present some findings on our anonymized proprietary
dataset which uncover properties of behavioral patterns as ob-
served in extremely-long user-item interaction sequences. We then
pinpoint some limitations of existing methods which motivate us
to design a better adapted solution.

Sequential Recommendation Problem: We consider a se-
quential recommendation problem [18, 20, 45, 49, 51] defined as
follows: assume we have a set of users u ∈ U, a set of items v ∈ V ,
and for each user we have access to a sequence of user historical
events Eu = (eu1 , e

u
2 , · · · ) ordered by time. Each euτ records the item

consumed at time τ as well as context information of the interaction.
Given the historical interactions, our goal is to recommend to each
user a subset of items in order to maximize a performance metric
such as user satisfaction.

3.1 Hidden Values in Long User Sequences
We now describe how we developed a better understanding of long
user sequences in our proprietary dataset through quantitative data
exploration. To quantify how past events can influence a user’s
current behavior in our internal dataset, i.e. measure the range of
temporal dependency within a sequence of events, one can examine
the covariance matrix of two events L-step apart [5, 41], where step
denotes the relative order of events within sequence. In particular,
we look at the trace of the covariance matrix as a measurement of
dependency:

DepL = tr
(
Cov

(
QeN ,QeN−L

) )
where eN is the item in last event in a logged user/item interaction
sequence and eN−L is the item corresponding to the interaction that



occurred L time steps before the last event. We focus on the trace
of the covariance matrix as it equals the sum of the eigenvalues of
the covariance matrix and its rate of decay is therefore informative
of the rate of decay of these eigenvalues as a whole.

We utilize the embeddings Q that have been learned by a pre-
existing model—in our case an RNN-based sequential recommender
which we describe later as one of M3’s sub-models. DepL here
measures the similarity between the current event and the event L
steps back from it. To estimate DepL for a particular value of L we
employ a classic empirical averaging across user sequences in our
dataset. From Figure 1, we can extract multiple findings:

• The dependency between two events decreases as the time
separating their consumption grows. This suggests that re-
cent events bear most of the influence of past user behavior
on a user’s future behavior.

• The dependency slowly approaches zero even as the tem-
poral distance becomes very large (i.e. L > 100). The clear
hyperbolic-decay of the level of temporal dependencies in-
dicates the presence of long-range-dependent patterns ex-
isting in user sequences [41]. In other words, a user’s past
interactions, though far from the current time step, still cu-
mulatively influence their current behavior significantly.

These findings suggest that users do have long-term preferences
and better capturing such long-range-dependent pattern could help
predicting their future interests. In further work, we plan to use off-
policy correction methods such as [8, 16] to remove presentation
bias when estimating correlations.

3.2 Limitations of Existing Sequential Models
The previous section has demonstrated the informational value of
long-range temporal patterns in user sequences. Unfortunately, it is
still generally challenging for existing sequential predictive models
to fully utilize information located far into the past.

Most prior models have difficulties when learning to account for
sequential patterns involving long-range dependence. Existing se-
quential recommenders with factorized Markov chain methods [18]
or CNNs [51] arguably provide reliable sequential recommendation
strategies. Unfortunately they are all limited by a short window of
significant temporal dependence when leveraging sequential data
to make a recommendation prediction. RNNs [7, 20, 24] and their
variants [12, 42] are widely used in sequential recommendation.
RNN-based models, though effective for short user sequences (e.g.
short event sequences within a session), are challenged by long-
range dependent patterns in long user sequences. Because of the
way they iterate over sequential items [36] and their use of satu-
rating non-linear functions such as tanh to propagate information
through time, RNNs tend to have difficulties leveraging the infor-
mation contained in states located far into the past due to gradient
propagation issues [4, 38]. Even recent architectures designed to
facilitate gradient propagation such as Gated Recurrent Unit [10]
and Long-short Term Memory [21, 50] have also been shown to
suffer from the same problem of not being able to provably account
for long-range dependent patterns in sequences [4].

A second challenge in sequential recommendations is learning user
latent factors Pu explicitly from data, which has been observed to
create many difficulties [9, 18, 45, 51]. In the corresponding works,

users’ long-term preferences have been modeled through learning a
set of latent factors Pu for each user. However, learning Pu explicitly
is difficult in large-scale production systems. As the number of users
is usually several magnitudes higher than the number of items,
building such a large user vocabulary and storing the latent factors
in a persistent manner is challenging. Also, the long-tail users (a.k.a
cold users) and visitor users (i.e. users who are not logged in) could
have much worse recommendations than engaged users [6].

3.3 Limitations of Single Monolithic Models
Figure 1 clearly indicates that although the influence of past user
events on future interactions follows a significant decaying trend,
significant predictive power can still be carried by events located
arbitrarily far in the past. Very recent events (i.e. 1 ≤ L ≤ 10) have
large magnitude similarities with the current user behavior and
this similarity depends strongly on the sequential order of related
events. As the distance L grows larger, the informative power of
previously consumed items on future user behavior is affected by
more uncertainty (e.g. variance) and is less sensitive to relative
sequential position. That is, the events from 100 steps ago and from
110 steps ago may have a generally similar influence on future user
decisions regardless of their relative temporal location. Therefore,
for the kind of sequential signals we intend to leverage, in which
different scales of temporal dependencies co-exist, it may be better to no
longer consider a single model. While simple monolithic models such
as Deep Neural Network (DNN) with pooling and dropout [11, 55]
are provably robust to noise, they are unfortunately not sensitive
to sequential order (without substantial modifications). On the
other hand, RNNs [7, 20] provide cutting-edge sequential modeling
capabilities but they are heavily sensitive to noise in sequential
patterns. Therefore, it is natural to choose a mixture of diverse
models which would then complement each other to provide better
overall predictive power.

4 MULTI-TEMPORAL-RANGE MIXTURE
MODEL FOR LONG USER SEQUENCES

Motivated by our earlier analyses, we now introduce a novel method
aimed at addressing the shortcoming of pre-existing approaches
for long user/item interaction sequences: Multi-temporal-range
Mixture Model (M3) and its two variants (M3R/M3C). For simplic-
ity, we omit the superscripts related to users (i.e. euτ will now be
denoted eτ ) and use a single user sequence to describe the neural
architecture we introduce.

4.1 Overview
Figure 2 gives a general schematic depiction of M3. We will now
introduce each part of the model separately in a bottom-up man-
ner, starting from the inputs and progressively abstracting their
representation which finally determines the model’s output. When
predicting the behavior of a user in the next event eτ+1 of their
logged sequence, we employ item embeddings and context fea-
tures (optional) from past events as inputs:

xτ = [Qτ ⊕ c inτ ], (1)

where ⊕ denotes the concatenation operator. To map the raw con-
text features and item embeddings to the same high-dimensional
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Figure 2: An overview of the proposed M3 model.

space for future use, a feed-forward layer F in is used:

Z in
τ = {zini }i=1· · ·τ where zinτ = F in(xτ ) (2)

here zinτ ∈ R1×din represents the input processed at step τ and
Z in
τ ∈ Rτ×din stands for the collection of all processed inputs before

step τ (included). Either the identity function or a ReLU [37] can
be used to instantiate the feed-forward layer F in.

In the previous section, we assessed the limitations of using a
single model on long user sequence. To circumvent the issues we
highlighted, we employ in M3 three different sequence models (en-
coders) in conjunction, namely MT , MS and ML , on top of the
processed input Z in

τ . We will later explain their individual architec-
tures in details. The general insight is that we want each of these
sub-models to focus on different ranges of temporal dependencies
in user sequences to provide a better representation (i.e., embed-
ding) of the sequence. We want the sub-models to be architecturally
diverse and address each other’s shortcomings. Hence

SETτ = MT (Z in
τ ), SESτ = MS (Z in

τ ), SELτ = ML(Z in
τ ), (3)

which yields three different representations, one produced by each
of the three sequence encoders. The three different sub-model en-
coders are expected to produce outputs—denoted by denc—of iden-
tical dimension. By construction, each sequential encoder produces
its own abstract representation of a given user’s logged sequence,
providing diverse latent semantics for the same input data.

Our approach builds upon the success ofMixture-of-Experts (MOE)
model [23]. One key difference is that our ‘experts’ are constructed
to work with different ranges of temporal dependencies, instead
of letting the cohort of ‘experts’ specialize by learning from data.
As shown in [48], heavy regularization is needed to learn different
experts sharing the same architecture in order to induce special-
ization and prevent starvation when learning (only one expert
performs well because it is the only one to learn which creates a
self-reinforcing loop when learning with back-propagation).

Informed by the insights underlying the architecture of MOE
models, we aggregate all sequence encoders’ results by weighted-
concatenate or weighted-sum, with weights Gτ computed by a
small gating network. In fact, we concatenate the outputs with

SEτ = (GT
τ × SETτ ) ⊕ (GS

τ × SESτ ) ⊕ (GL
τ × SELτ ), (4)

where Gτ ∈ R3 corresponds to the outputs of our gating network.
We can also aggregate outputs with a weighted-sum:

SEτ = (GT
τ × SETτ ) + (GS

τ × SESτ ) + (GL
τ × SELτ ). (5)

Note that there is no theoretical guarantee whether concatenation
is better than summation or not. The choice of aggregation, as well
as the choice of activation functions, is determined by observing
a given model’s performance from a validation set extracted from
different datasets. Such a procedure is usual in machine learning
and will help practitioners determine which variant of the model
we propose is best suited to their particular application.

Because of its MOE-like structure, our model can adapt to differ-
ent recommendation scenarios and provide insightful interpretabil-
ity (as we shall see in Section 5). In many recommendation applica-
tions, some features annotate each event and represent the context
in which the recommendation query is produced. Such features
are for instance indicative of the page or device on which a user
is being served a recommendation. After obtaining a sequence en-
coding at step τ (i.e. SEτ ), we fuse it with the annotation’s context
features (optional) and project them to the same latent space with
another hidden feed-forward layer Fout:

zoutτ = Fout([SEτ ⊕ coutτ ]) (6)

where cout is a vector encoding contextual information to use after
the sequence has been encoded. Here the zoutτ ∈ R1×dout is what we
name user representation, it is computed based on the user’s history
as it has been gathered in logs. Finally, a user similarity score rv is
predicted for each item via an inner-product (which can be changed
to another similarity scoring function):

rv = zoutτ ·Q ′
v (7)

where Q ′
v is a vector representing the item. For a given user, item

similarity scores are then normalized by a softmax layer which
yields a recommendation distribution over the item vocabulary.
After training M3, the recommendations for a user at step τ are
served by sorting the similarity scores rv obtained for all v ∈ V
and retrieving the items associated with the highest scores.

4.2 Three Different Range Encoders
Item Co-occurrence as a Tiny-range Encoder The Tiny-range
encoderMT only focuses on the user’s last event eτ , ignoring all
previous events. In other words, given the processed inputs from
past eventsZ in

τ , this encoder will only consider zinτ . As in factorizing
Markov chain (FMC) models [45],MT makes predictions based on
item range-1 co-occurrence within observed sequences. For exam-
ple, if most of users buy iPhone cases after purchasing an iPhone,
thenMT should learn this item-to-item co-occurrence pattern. As
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shown in Figure 3a, we computeMT ’s output as:

MT (Z in
τ ) = ϕ(zinτ ), where ϕ(x) =

{
xW (T ) + b(T ), if din , denc,
x , otherwise.

(8)
That is, when the dimensionality of processed input and encoder
output are the same, the tiny-range encoder performs a role of
residual for the other encoders in mixture. If din , denc , it is
possible to down-sample (if din > denc) or up-sample (if din < denc)
from zinτ by learned parametersW (T ) ∈ Rdin×denc and b(T ) ∈ Rdenc .

In summary, the tiny-range encoderMT can only focus on the
last event by construction, meaning it has a temporal range of 1 by
design. If we only use the output of MT to make predictions, we
obtain recommendations results based on item co-occurrence.

RNN/CNN as Short-range Encoder As discussed in Section 3,
the recent behavior of a user has substantial predictive power on
current and future interactions. Therefore, to leverage the corre-
sponding signals entailed in observations, we consider instantiating
a short-range sequence encoder that puts more emphasis on recent
past events. Given the processed input from past events Z in

τ , this
encoder, represented as MS , focuses by design on a recent subset
of logged events. Based on our quantitative data exploration, we
believe it is suitable forMS to be highly sensitive to sequence order.
For instance, we expect this encoder to capture the purchasing
pattern iPhone → iPhone case→ iPhone charger if it appears fre-
quently in user sequences. As a result, we believe the Recurrent
Neural Network (RNN [36]) and the Temporal Convolutional Net-
work ([3, 53, 59]) are fitting potential architectural choices. Such
neural architectures have shown superb performances when mod-
eling high-order causalities. Beyond accuracy, these two encoders
are also order sensitive, unlike early sequence modeling method (i.e.
Bag-of-Word [27]). As a result we develop two interchangeable vari-
ants of M3: M3R and M3C using an RNN and a CNN respectively.

To further describe each of these options, let us introduce our
RNN encoderMS

RNN. As shown in Figure 3b we obtain the output
ofMS

RNN by first computing the hidden state of RNN at step τ :

hτ = RNN(zinτ ,hτ−1), (9)
where RNN(·) is a recurrent cell that updates the hidden state at
each step based on the previous hidden state hτ−1 ∈ R1×din and
the current RNN input zinτ . Several choices such as Gated Recurrent

Unit (GRU) [10] or Long Short Term Memory (LSTM) [21] can be
used. The output is then computed as follows:

MS
RNN(Z

in
τ ) = hτW (R), whereW (R) ∈ Rdin×denc (10)

whereW (R) maps the hidden state to the encoder output space.
We design our CNN encoderMS

CNN as a Temporal Convolutional
Networks which has provided state-of-art sequential modeling
performance [3, 15, 53]. As shown in Figure 3c, this encoder consists
of several stacked layers. Each layer computes

h
(1)
τ = Conv(Z in

τ ), . . . ,h(k )τ = Conv(h(k−1)τ ), (11)

where k indicates the layer number. The Conv(·) is a 1-D convo-
lutional operator (combined with non-linear activations, see [3]
for more details), which contains denc convolutional filters and
operates on the convolutional inputs. With K layers in our CNN
encoder, the final output will be:

MS
CNN(Z

in
τ ) = h(K )

τ . (12)

As highly valuable signals exist in the short-range part of user
sequence, we propose two types of encoders to capture them. Our
model can be instantiated in its first variant, M3R, if we use RNN
encoder or M3C if a CNN is employed. Here M3C and M3R are
totally interchangeable with each other and they show compara-
ble results in our experiments (see Section 5.2.1). We believe such
flexibility will help practitioners adapt their model to the hardware
they intend to use, i.e. typically using GPU for faster CNN training
or CPU for which RNNs are better suited. In terms of temporal
range, the CNN only considers a limited finite window of inputs
when producing any output. The RNN, although it does not have a
finite receptive field, is hampered by difficulties when learning to
leverage events located further back into the past (to leverage an
event located L observations ago the RNN needs L − 1 steps). Re-
gardless of the choice of a CNN or an RNN, our short-range encoder
MS has a temporal range greater than 1, although it is challenging
for this sub-model to capture signals too far away from current step.
This second encoder is specifically designed to capture sequence
patterns that concern recent events.

Attention Model as Long-range Encoder The choice of an
attention model is also influenced by our preliminary quantitative
analysis. As discussed in Section 3, as the temporal distance grows



Table 1: A summary of relationships and differences between sequence encoders inM3

Base model Temporal range Model size Sensitive to order Robustness
MT Item Co-occurrence 1 small (or 0) very high no
MS

RNN Recurrent Neural Nets unknown large high no
MS

CNN Temporal Convolution Nets limited large high no
ML Attention Model unlimited small (or 0) no high

larger, the uncertainties affecting the influence of item consump-
tion on future events get larger as well. Moreover, as opposed to
the recent part of a given user’s interaction sequence, relative po-
sition does not matter as much when it comes to capturing the
influence of temporally distant events. As we take these properties
into account, we choose to employ Attention Model [2, 54] as our
long-range sequence encoder. Usually, an attention model consists
of three parts: attention queries, attention keys and attention values.
One can simply regard an attention model as weighted-sum over
attention values with weights resulting from the interaction be-
tween attention queries and attention keys. In our setting, we use
(1) the last event’s processed input zinτ as attention queries, (2) all
past events’ processed inputs Z in

τ as keys and values and (3) scaled
dot-product [54] as the similarity metric in the attention softmax.
For instance, if a user last purchased a pair of shoes, the attention
mechanism will focus on footwear related previous purchases.

So that all encoders have the same output dimensionality, we
need to transform1 our processed input first as follows:

Z̃ in
τ = Z in

τ W
(A), (13)

whereW (A) ∈ Rdin×denc is a learned matrix of parameters. Then for
each position i ∈ [1,τ ], we obtain its raw attention weights, with
respect to the processed input z̃ini , as follows:

ωτ ,i =
z̃inτ · z̃ini√

denc
, (14)

whereωτ ,i is the rawweight at position i . Similarly, we compute the
raw attention weightsωτ ∈ R1×τ for all positionsωτ = {ωi }i=1..τ
and normalize them with a softmax(·) function. Finally, we acquire
the output of our long-range encoder as follows:

ML(Z in
τ ) = softmax(ωτ )Z in

τ . (15)

Our long-range encoder borrows several advantages from the
attention model. First, it is not limited by a certain finite temporal
range. That is, it has an unlimited temporal range and can ‘attend’
to anywhere in user’s sequence with O(1) steps. Second,because it
computes its outputs as a weighted sum of inputs, the attention-
based encoder is not as sensitive to sequential order as an RNN
or a CNN as each event from the past has an equal chance of
influencing the prediction. Third, the attention model is robust to
noisy inputs due to its normalized attention weights and weighted-
sum aggregation.

Gating Network Borrowing the idea from from Mixture-of-
Experts model [23, 35], we build a gating network to aggregate our
encoders’ results. The gate is also helpful to better understand our
1It is unnecessary if din is same as denc .

model (see Section 5). To produce a simpler gating network, we use
a feed-forward layer Fд on the gating network’s inputs:

Gτ = [GT
τ ,G

S
τ ,G

L
τ ] = sigmoid(Fд(Gin

τ )), (16)

where Gin
τ is the input we feed into our gating network. We will

discuss how the model performs overall with different choices of
gate inputs in Section 5.4. The resulting Gτ ∈ R3 contains the
gate value modulating each encoder. More importantly, an element-
wise sigmoid function is applied to the gate values which allows
encoders to ‘corporate’ with each other [4]. Note that a few previous
works [26, 35, 48] also normalize the gate values, but we found this
choice led to the degeneracy of our mixture model as it would learn
to only useMS which in turn hampers model performance.

SummaryM3 is able to address limitations of pre-existing mod-
els as shown in Table 1: (1) M3 has a mixture of three encoders with
different temporal ranges which can capture sequential patterns
located anywhere in user sequences. (2) Instead of learning a set
of latent factor Pu for each user, M3 represents the long-term user
preferences by using a long-range sequence encoder that provides
a representation of the entire history of a user. Furthermore, M3 is
efficient in both model size and computational cost. In particular M3
does not introduce any extra parameters under certain settings (i.e.
din = denc), and the computation ofMT andML are very efficient
when using specialized hardware such as a GPU. With its simple
gate design, M3 also provides good interpretability and adaptability.

• Effectiveness. Given our analysis on user sequences, we
assume M3 to be effective. As compared to past works, M3
is capable to capture signals from the whole sequence, it
also satisfies the properties we found in different parts of
sequence. Moreover, our three encoders constitute a diverse
set of sequential encoder and, if well-trained, can model user
sequence in a multi-scale manner, which is a key to success
in past literature [53, 58].

• Efficiency. In terms of model size, M3 is efficient. As com-
pared to existing works which use short-range encoder only,
though uses two other encoders, our M3 model doesn’t in-
troduce any extra parameters (if din = denc). In terms of
computational efficiency, our M3 is good as well, as both
MT and ML are nothing other than matrix multiplication,
which is cheap when computed with optimized hardwares
like Graphics Processing Unit (GPU).

• Interpretability.Model’s interpretability is critical for diag-
nosing purpose. As we shall see later, with the gate network,
we are able to visualize our network transparently by ob-
serving the gate values.



• Adaptability.One issue in production recommender system
is modeling users for different recommendation scenarios,
as people may behave very differently. Two typical scenar-
ios are HomePage recommendation and product DetailPage
recommendation. However, as we shall introduce in later
section, M3 is able to adapt to these scenarios if we use the
scenario information as our gate input.

5 EXPERIMENTAL STUDIES
In this section, we study the two variants of M3 against several base-
line state-of-the-art methods on both a publicly available dataset
and our large-scale Youtube dataset.

DatasetsWe use MovieLens 20M2, which is a publicly available
dataset, along with a large-scale anonymized dataset from YouTube
to which we have access because we are employees of Google
working on improving YouTube as a platform. The dataset is private,
anonymized and accessible only internally by few employees whose
work is directly related to Youtube.

5.1 Experiments on MovieLens Dataset
As in previous works [18, 51], we process the MovieLens data by
first converting numeric ratings to 1 values, turning them into
implicit logged item consumption feedback. We remove the items
with less than 20 ratings. Such items, because of how little user
feedback is available for them, represent another research challenge
— cold start — which is outside the scope of the present paper.

To focus on long user sequences, we filtered out users who had
a sequence length of less than δmin = 20 item consumed, while we
didn’t filter items specifically. The maximum sequence length in
the dataset being 7450, we follow the method proposed in [18, 51]
and employ a sliding window of length δwin = 300 to generate
similarly long sequences of user/item interactions in which we aim
to capture long range dependent patterns. Some statistics can be
found in the first row of Table 3.

We do not use contextual annotations for the MovieLens data.
Evaluation protocolWe split the dataset into training and test

set by randomly choosing 80% of users for training and the remain-
ing 20% for validation (10%) and testing (10%). As with the training
data, a sliding window is used on the validation and test sets to
generate sequences. We measure the mean average precision (mAP)
as an indicator for models’ performances [6, 52]. We only focus on
the top positions of our predictions, so we choose to use mAP@n
with n ∈ {5, 10, 20}. There is only one target per instance here
and therefore the mAP@n is expected to increase with n which is
consistent with [4] but differs from [51].

Details on model architecturesWe keep architectural param-
eters consistent across all experiments on MovieLens. In particular,
we use identical representation dimensions: din = denc = dout = 32.
Such a choice decreases the number of free parameters as the sub-
modelsMT andML will not have learned parameters. A GRU cell
is employed for the RNN while 2 stacked temporal convolution lay-
ers [3] of width 5 are used in the CNN. A ReLU activation function is
employed in the feed-forward layers F in and Fout. Item embeddings
of dimension 64 are learned with different weights on the input
side (i.e., Q in Eq. 1) and output side (i.e., Q ′ in Eq. 7). Although
2https://grouplens.org/datasets/movielens/20m/

previous work [18] has constrained such embeddings to be identical
on the input and output side of the model, we found that increasing
the number of degrees of freedom led to better results.

Baselines We compare our two variants, i.e., M3R and M3C,
with the following baselines:

• FMC: The Factorizing model for the first-order Markov
chain (FMC) [45] is a simple but strong baseline in sequential
recommendation task [7, 49, 51]. As discussed in Section 1,
we do not want to use explicit user representations. There-
fore, we do not compare the personalized version of this
model (FPMC).

• DeepBoW: The Deep Bag-of-word model represent user by
averaging item embeddings from all past events. The model
then makes predictions through a feed-forward layer. In our
experiments, we use a single hidden layer with size of 32
and ReLU as activation function.

• GRU4Rec: Originally presented in [20], this method uses a
GRU RNN over user sequences and is a state-of-the-art model
for sequential recommendation with anonymized data.

• Caser: The Convolutional Sequence Embeddings model [51]
applying horizontal and vertical convolutional filters over
the embedding matrix and achieves state-of-the-art sequen-
tial recommendation performance. We try {2, 4, 8} vertical
filters and {16, 32, 64} horizontal filters of size (3, 5, 7). In
order to focus on the sequential encoding task, we discard
the user embedding and only use the sequence embedding
of this model to make predictions.

In the models above, due to the large number of items in input
and output dictionaries, the learned embeddings comprise most
of the free parameters. Therefore, having set the embedding di-
mension to 64 in all the baselines as well as in M3R and M3C, we
consider models with similar numbers of learned parameters. The
other hyperparameters mentioned above are tuned by looking at
the mAP@20 on validation set. The training time of M3R/M3C is
comparable with others and can be further improved with tech-
niques like model compression [52], quantization [22], etc.

5.1.1 Overall Performances. We report each model’s performance
in Table 2. Each metric is averaged across all user sequences in test
set. The best performer is highlighted in bold face. The results show
that both M3C and M3R outperform other baselines by a large mar-
gin. Among the baselines, GRU4Rec achieves the best performance
and DeepBoW worst one, suggesting the sequence order plays a
very important predictive role. FMC performs surprisingly well,
suggesting we could get considerable results with a simple model
only taking the last event into account. The poor results of Caser
may be caused by its design which relies on vertical filters of fixed
size. Caser performs better in the next subsection which considers
sequences whose lengths vary less within the training data.

5.1.2 Investigating the influence of sequence length through variants
of MovieLens. The previous results have shown strong performance
gains achieved by the models we intruced: M3C and M3R. We now
investigate the origin of such improvements. The design of these
models was inspired by an attempt to capture sequential patterns
with different characteristic temporal extents. To check whether



mAP@5 mAP@10 mAP@20
FMC 0.0256 0.0291 0.0317

DeepBoW 0.0065 0.0079 0.0093
GRU4Rec 0.0256 0.0304 0.0343
Caser 0.0225 0.0269 0.0304
M3C 0.0295 0.0342 0.0379
M3R 0.0315 0.0367 0.0421
Improv. +23.4% +20.7% +22.7%

Table 2: Performance comparison on MovieLens 20M. M3C
and M3R outperform the baselines significantly.

the models we introduced achieve this aim we construct multiple
variants of MovieLens with different sequence lengths.

We vary the sequence length by having amaximum cutoff thresh-
old δmax which complements the minimal sequence length thresh-
old δmin. A sequence with more than δmax only has its latest δmax
observations remained. We vary the values of δmin, δmax and the
sequence generation window size. Table 3 summarizes the proper-
ties of the four variants of the MovieLens dataset we construct. It
is noteworthy that such settings make Caser perform better as the
sequence length is more consistent within each dataset variant.

GRU4Rec andCaser outperform the other baselines in the present
setting and therefore we only report their performance. Figure 4
shows the improvements of M3C and M3R over the best baselines
on four MovieLens variants. The improvement of each model is
computed by its mAP@20 against the best baseline. In most cases,
M3C and M3R can outperform the highest performing baseline.
Specifically, on ML20M-S and ML20M-M, Caser performs similarly
to GRU4Rec while both M3C andM3R have good performance. This
is probably due to the contribution of the tiny-range encoder.

5.2 Anonymized YouTube dataset
For the YouTube dataset, we filtered out users whose logged se-
quence length was less than 150 (δmin = 150) and keep each user’s
last 300 events (δmax = 300) in their item consumption sequence. In
the following experiments, we exploit contextual annotations such
as user device (e.g., from web browser or mobile App), time-based
features (e.g., dwelling time), etc. User sequences are all anonymized
and precautions have been taken to guarantee that users cannot be
re-identified. In particular, only public videos with enough views
have been retained.

Neural recommender systems attempt at foreseeing the interest
of users under extreme constraints of latency and scale. We define
the task as predicting the next item the user will consume given a
recorded history of items already consumed. Such a problem setting
is indeed common in collaborative filtering [34, 46] recommenda-
tions. We present here results obtained on a dataset where only
about 2 million items are present that correspond to most popular
items. While the user history can span over months, only watches
from the last 7 days are used for labels in training and watches in
the last 2 days are used for testing. The train/test split is 90/10%.
The test set does not overlap with the train set and corresponds to
the last temporal slice of the dataset. In all, we have more than 200

million training sequences and more than 1 million test sequences,
and with overall average sequence length approximately being 200.

The neural network predicts, for a sample of negatives, the prob-
ability that they are chosen and classically a negative sampling loss
is employed in order to leverage observations belonging to a very
large vocabulary [25]. The loss being minimized is∑

l ∈Labels
wl × CrossEntropy(SampledSoftmax(ξ (t + 1)))

where the SampledSoftmax [25] uses 20000 randomly sampled neg-
atives andwl is the weight of each label.

Evaluation metrics To test the models’ performances, we mea-
sure the mean average precision (mAP) as in [7, 51]. We only fo-
cus on the top positions of our predictions, so we choose to use
mAP@n with n ∈ {5, 10, 20}. The mAP is computed with the en-
tire dictionary of candidate items as opposed to the training loss
which samples negatives. There is only one target per instance here
and therefore the mAP@n is expected to increase with n which is
consistent with [4] but differs from [51].

Baselines In order to make fair comparisons with all previous
baselines, we used their contextual counterparts if they are pro-
posed or compared in literature.

• Context-FMC: The Context-FMC condition the last event’s
embedding on last event’s context features by concatenating
them and having a feed-forward layer over them.

• DeepYouTube: Proposed by [11], the DeepYoutube model
is a state-of-the-art neural model for recommendation. It
concatenates: (1) item embedding from users’ last event, (2)
item embeddings averaged by all past events and (3) con-
text features. The model then makes predictions through a
feedforward layer composed of several ReLU layers.

• Context-GRU: We used the contextual version of GRU pro-
posed in [49]. Among the three conditioning paradigms on
context, we used the concatenation as it gives us better per-
formances.

All models are implemented by TensorFlow [1] and by Adagrad [14]
over a parameter server [32] with many workers.

Model details In the following experiments, we keep the di-
mensions of processed input din and encoder outputs denc identical
for all experiments conducted on the same dataset. Once more, we
also want to share some of our architectural parameters so that
they are consistent across the two datasets. Again, by doing this,
we make the parametrization of our models more parsimonious,
because the sub-models MT and ML will be parameter-free. For
the RNN cell, we use a GRU on both datasets for its effectiveness
as well as efficiency. For the CNN version, we stacked 3 layers of
temporal convolution [3], with no dilation and width of 5. For the
feed-forward layers F in and Fout, we used ReLU as their activation
functions, whereas they contains different number of sub-layers.
For item embeddings on the input side (i.e., Q in Eq. 1) and on
the output side (i.e., Q ′ in Eq. 7), we learn them separately which
improves all results.

5.2.1 Overall Results. We report each model’s performance on
the private dataset in Table 4. The best performer is highlighted
in bold face. As can be seen from this table, on our anonymized
YouTube dataset, the Context-FMC performs worse followed by



Min. Length Max. Length Window Size Avg. Length #Sequences #Items
ML20M 20 ∞ 300 144.1 138.4K 13.1K
ML20M-S 20 50 20 42.8 138.4K 13.1K
ML20M-M 50 150 50 113.6 85.2K 13.1K
ML20M-L 150 300 150 250.7 35.8K 12.9K
ML20M-XL 300 ∞ 300 605.5 16.3K 12.5K

Table 3: Statistics of the variants of the MovieLens dataset.
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Figure 4: Uplifts with respect to the best baselines on four MovieLens variants. The improvement percentage of each model
is computed by its relative mAP@20 gain against the best baseline. For all variants, M3R significantly outperforms the two
baselines we consider according to a one-tail paired t-test at level 0.01, while M3C outperforms the other two significantly only
onML20M-M. Note that the standard error of all uplifts gets higher as we use a MovieLens variant with longer sequences. The
standard error reaches 2.3% on ML20M-XL.

Table 4: Performance comparison on the anonymized
YouTube dataset. M3C and M3R outperform the baselines
significantly.

mAP@5 mAP@10 mAP@20
Context-FMC 0.1103 0.119 0.1240
DeepYouTube 0.1295 0.1399 0.1455
Context-GRU 0.1319 0.1438 0.1503

M3C 0.1469 0.1591 0.1654
M3R 0.1541 01670 0.1743
Improv. +16.8% +16.1% +16.0%

DeepYoutube while Context-GRU performs best among all base-
lines. The DeepYouTube and Context-GRU perform better than
Context-FMC possibly because they have longer temporal range,
which again shows that the temporal range matters significantly in
long user sequences. One can therefore improve the performance
of a sequential recommender if the model is able to leverage dis-
tant (long-range dependent) informantion in user sequences.

On both datasets, we observed our proposed two model variants
M3R and M3C significantly outperform all other baselines. Within
these two variants, the M3R preforms marginally better than the
M3C, and it improves upon the best baselines by a large margin
(more than 20% on MovieLens data and 16.0% on YouTube data).

Table 5: mAP@20 vs. different components of M3R on both
datasets, where T,S,L stands forMT ,MS andML respectively.

MovieLens 20M YouTube Dataset
M3R-T 0.0269 0.1406
M3R-S 0.0363 0.1673
M3R-L 0.0266 0.1359
M3R-TS 0.0412 0.1700
M3R-TL 0.0293 0.1485
M3R-SL 0.0403 0.1702
M3R-TSL 0.0421 0.1743

5.3 Ablation Study of Mixture of Models
To demonstrate how each encoder contributes to the overall perfor-
mance, we now present an ablation test on our M3R model (results
from M3C are similar) on our proprietary data. We use T, S, L to
denoteMT ,MS andML respectively. The results are described in
Table 5. When we only enable single encoder for M3R, the best
performer is M3R-T on MovieLens data and M3R-S on the YouTube
data. This result is consistent with the results in Section 5.2.1. With
more encoders involved in M3R the model performs better. In par-
ticular, when all encoders are incorporated, our M3R-TSL performs
best on both datasets, indicating all three encoders matter for per-
formance.
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Figure 5: Average gate values of M3R in different scenarios.
The model learns to use different combination of encoders
in different recommendation scenarios.

5.4 Role of Gating Network
We now begin to study our gating network in order to answer
the following questions: (1) Is the gating network beneficial to the
overall model performance? (2) How do different gating network
inputs influence the model performance? and (3) How can the
gating network make our model more adaptable and interpretable?

Fixed gates versus learned gates: First of all, we examine the
impact of our gating network by comparing it with a set of fixed
gate values. More precisely, we fixed the gate values to be all equal
to 1.0 during the model training: Gτ = 1, here 1 ∈ R3 is a vector.
The first row of Table 6 shows the result of this fixed-gate model.
We found that the fixed models are weaker than the best performing
version of M3R (i.e., mAP@20 of 0.1743) and M3C (i.e., mAP@20 of
0.1654). This reveals that the gating network consistently improves
M3-based models’ performances.

Influence of different gate inputs: In this paragraph we in-
vestigate the potential choices of inputs for the gating network,
and how they result in different performance scores. In the ex-
isting Mixture-of-Experts (MOE) literature, the input for the gat-
ing network Gin

τ can be categorized into Contextual-switch and
Bottom-switch. The Contextual-switch, used in [4], uses context
information as gate input:

Gin
τ = [c inτ ⊕ coutτ ], (17)

where c inτ and coutτ are context features from input and output side.
Intuitively, this suggests how context may influence the choices of
different encoders. If no context information is available, we can
still use the output of a shared layer operating before the MOE
layer [35, 48] as gate input, i.e., Bottom-switch:

Gin
τ = zinτ . (18)

The shared layer contains high-level semantic knowledge from the
last event, which can also enable gate switching.

On the MovieLens data, we used Bottom-switched gate for all
the results above because of the absence of contextual annotations.
On the YouTube dataset, the last two rows from Table 6 provide the
comparison results between Contextual-switched gate and Bottom-
switched gate. We observe that context information is more useful
to the gates than a shared layer. In other words, the decision of
whether to focus more on recent part (i.e. large gate values forMT

andMS ) or on the distant part (i.e. large values forML) from user
sequence is easier to make based on contextual annotations.

Table 6: mAP@20 vs. different types of gating network on
the two datasets for M3R. ‘Fixed’ indicates we fix gate val-
ues to 1.0, ‘Contextual-switch’ means that we use context
features c in and cout as gate input and ‘Bottom-switch’ cor-
responds to the use of zinτ as gate input.

MovieLens YouTube
Fixed 0.0413 0.1715
Bottom-switch 0.0421 0.1734
Contextual-switch / 0.1743

5.5 Discussion on model architecture
The model architecture we design is based on quantitative findings
and has two primary goals: capturing co-existing short-range and
long-range behavioral patterns as well as serving recommendations
given in different contexts with a single model.

We know for recommender systems in most applications (e.g.
e-commerce like Amazon, streaming services like Netflix) that rec-
ommendations commonly occur in at least two different contexts:
either a HomePage or a DetailPage. The Homepage is the page
shown when users open the website or open the mobile App, while
DetailPage is the page shown when users click on a certain item.
User behaviors are different depending on which of these two pages
they are browsing. Users are more likely to be satisfied by a recom-
mendation related to recent events, especially the last event, when
they are on a DetailPage. A straightforward solution to deal with
these changing dynamics is to train two different models.

We now demonstrate that with the multi-temporal-range en-
coders architecture and gating mechanism in M3, we can have a
single adaptive end-to-end model that provides good performance
in a multi-faceted recommendation problem. To that end we ana-
lyze the behavior of our gating network and show the adaptability
of the model as we gain a better understanding of its behavior.

What we observe in Figure 5 is that when contextual informa-
tion is available to infer the recommendation scenario, the gating
network can effectively automatically decide how to combine the
results from different encoders in a dynamic manner to further im-
prove performance. Figure 5 shows how gate values of M3R change
w.r.t. across different recommendation scenarios. It is clear that
M3R puts more emphasis onMS when users are on the HomePage,
while it encourages all three encoders involved when users are on
DetailPage. This result shows that the gating network uses different
combinations of encoders for different recommendation scenarios.

As a result, we can argue that our architectural design choices
do meet the expectations we set in our preliminary analysis. It is
noteworthy that the gating mechanism we added on top of the
three sub-models is helpful to improve predictive performance
and ease model diagnosis. We have indeed been able to analyze
recommendation patterns seamlessly.

6 CONCLUSION
M3 is an effective solution to provide better recommendations based
on long user sequences. M3 is a neural model that avoids most of
the limitations faced by pre-existing approaches and is well adapted



to cases in which short term and long term temporal dependen-
cies coexist. Other than effectiveness, this approach also provides
several advantages such as the absence of a need extra parameters
and interpretability. Our experiments on large public dataset as
well as a large-scale production dataset suggest that M3 outper-
forms the state-of-the-art methods by a large margin for sequential
recommendation with long user sequences. One shortcoming of
the architecture we propose is that all sub-models are computed
at serving time. As a next step, we plan to train a sparse context
dependent gating network to address this shortcoming.
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