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ABSTRACT
The goal of Information Retrieval (IR) systems is to satisfy searchers’
Information Need (IN). Our research focuses on next-generation IR
engines, which can proactively detect, identify, and serve INs with-
out receiving explicit queries. It is essential, therefore, to be able
to detect when INs occur. Previous research has established that
a realisation of INs physically manifests itself with specific brain
activity. With this work we take the next step, showing that moni-
toring brain activity can lead to accurate predictions of a realisation
of IN occurrence. We have conducted experiments whereby twenty-
four participants performed a Q/A Task, while their brain activity
was being monitored using functional Magnetic Resonance Imaging
(fMRI) technology. The questions were selected and developed from
the TREC-8 and TREC 2001 Q/A Tracks. We present two methods
for predicting the realisation of an IN, i.e. Generalised method (GM)
and Personalised method (PM). GM is based on the collective brain
activity of all twenty-four participants in a predetermined set of
brain regions known to be involved in representing a realisation of
INs. PM is unique to each individual and employs a ‘Searchlight’
analysis to locate brain regions informative for distinguishing when
a “specific” user realises an information need. The results of our
study show that both methods were able to predict a realisation
of an IN (statistically) significantly better than chance. Our results
also show that PM (statistically) significantly outperformed GM in
terms of prediction accuracy. These encouraging findings make the
first fundamental step towards proactive IR engines based on brain
signals.
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1 INTRODUCTION
Information need (IN) is an essential concept and plays a core and
fundamental role in the information seeking and retrieval process.
Over the last several decades, much research has been dedicated to
better understand IN to most effectively satisfy it with information
retrieval engines, e.g. [8, 12, 23, 32, 58]. In general, satisfying INs is a
formidable challenge due to the inherent complexity and ambiguity
associated with the IN concept. That is, expressing an IN using a
set of query keywords is an uncertain and noisy process [53], as
keywords can only vaguely approximate the actual IN [51]. The
problem becomes even more pronounced when an IN is ill-defined:
i.e., when the searcher only knows “fringes of a gap in [his/her]
knowledge” [12] making it extremely difficult for the searcher to
identify and describe the IN precisely with keywords [6, 8, 11].
Therefore, it is possible that a given query may not sufficiently de-
fine the characteristics of relevant documents, or even any relevant
information since a searcher cannot form an appropriate initial
state from which to form a query [13].

To close this gap, IR systems have been relying on techniques
such as relevance feedback including explicit [29], implicit [57],
and/or affective feedback [2] to better understand and satisfy users’
information needs. Despite their invaluable contributions, these
techniques lead to systems that are reactive in nature, being en-
gaged in response to an input query issued by a user. Given the
aforementioned problematic nature of users’ queries (in terms of ex-
pressing searchers’ real INs), recently, there is an increased interest
in the research community in developing zero-query (or proactive)
IR systems that aim to not only better understand, but even an-
ticipate users’ INs [9, 49]. These approaches mainly consider the
contextual or behavioural information of users to predict their IN.
While this is intuitively a promising approach, such proactive IR
systems could potentially create an information overload situation
for users, in particular, if users are not experiencing an IN when the
information is presented to them. Therefore, being able to predict
when an IN occurs is of high importance to better satisfying it. With
this work, we make the first positive step in this direction.

Recently Moshfeghi et al. [42] have shown that there are clear,
detectable, physical manifestations (i.e. neural correlates) of INs
in human brains which can be identified in an early stage of an
information seeking and retrieval process and also specific brain
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regions where INs manifest themselves. However, two fundamental
research questions remain unanswered:
• RQ1: “Is it possible to predict a realisation of an IN using brain
signals?”;
• RQ2: “Can we rely on a common set of predefined brain regions
to predict a realisation of an IN or is there a unique set of regions
for every individual?”
An answer to these questions will play a key role in opening

new doors to the design and implementations of novel IR systems,
which will be enabled to better and in particular proactively satisfies
searchers’ IN. To do so, we aim to train a classification model on
brain activity to be able to discriminate between an IN realisation vs
memory retrieval, within an IR process performed by participants
engaged in a Question Answering (Q/A) retrieval task. In particular,
in this paper, we are focusing on the period in which the brain
exhibits complex activity with regards to the process analysing a
question, from the moment of observing the question to the point in
timewhen they either recognise an “Anomalous State of Knowledge”
(ASK) [7, 8], or they have a successful memory retrieval. We then
aim (i) to build a model that predicts a realisation of IN (in its earliest
possible state) from the signals of the brain regions that have been
associated with an IN realisation and (ii) contrast its prediction
accuracy with the accuracy of a prediction model that considers
the signals of the whole brain regions, in a Q/A task. Our positive
results can be the basis for next-generation proactive IR systems
based on brain signals.

The remainder of the paper is organised as follows: Section 2
presents related work and the background. Section 3 discusses
at length the experimental methodology. Section 4 presents and
analyses our results. Finally, Section 5 presents our key conclusions.

2 RELATEDWORK
2.1 From Reactive to Proactive IR
Awell-known issue in IR research is that INs are inherently complex
and ambiguous in that, typically, users may not know beforehand
exactly what they are looking for, or, in other words, what are
the set of documents/information that would satisfy their need
[12]. Given this, formulating queries (i.e., mapping INs to a set of
keywords) is inherently an imperfect process [7, 8, 12, 22, 51]. The
formulated query is unavoidably therefore not guaranteed to be an
accurate representation of the users’ IN, and thus brings about the
question whether the retrieved documents are relevant [55].

IR systems have addressed this issue using mechanisms based
on relevance feedback. In short, relevance feedback is an iterative
process whereby the system receives cues from users as to the
relevance of presented results so far, improving the relevance of
results presented in the next step in the process. Such cues from
users come in many forms and types. As mentioned in Section 1,
relevance feedback can be categorised as being explicit [29], im-
plicit [57], and/or affective [2]. The most robust method to improve
retrieval effectiveness is explicit feedback [29]. However, it places a
large cognitive burden on users [56]. Implicit feedback avoids this
pitfall. In implicit feedback, relevance is indirectly inferred from the
interactional data without users’ additional input [24]. Researchers,
for example, have tried to infer relevance by understanding how
task [57] dwell time [28] and click-through [24] relate to relevance.

However, this is not a panacea. Kelly and Belkin [27] have shown
that implicit feedback can be unreliable and difficult to interpret,
limiting its usefulness. Affective feedback, on the other hand, [2]
relies on different types of feedback data, such as facial expressions
[5], eye tracking [36], and physiological signals [3, 38] (such as
skin temperature) and uses them as implicit relevance judgements.
Nonetheless, affective feedback on its own is not yet considered
to be very effective. More recently, Arapakis et al. used emotions
in the process of information retrieval [2, 4] and later showed that
emotions can be used for building implicit feedback systems [4],
and to personalise search [2]. Going a step further, the work by
Moshfeghi et al. used, in addition to emotions, [39], physiological
features both for modelling relevance and for predicting task types
[38]. However, these approaches are reactive in nature, being en-
gaged in response to an input query issued by a user. In this work,
we aim to predict a realisation of IN before a user has issued a
query.

Similar research efforts in the community have begun to explore
and stimulate discussion about systems that can proactively antici-
pate and fulfil the information needs of users [10]. In addition to
the works published in [10], additional research in this domain of
proactive IR is emerging. A recent example is the work by Song et
al. [49] where a query-less search and recommendation engine was
proposed. The engine predicts when and what types of tasks users
will issue in the near future by considering the time dimension.
They also considered a personalised approach for predictive IR by
performing model adaptation by learning individual deep learning
models for each user task. However, their proactive model is based
on strong user behaviour repetition in search engine logs and even
stronger repetition on mobile devices. An even more recent exam-
ple is the work by Benetka et al. [9] which addresses the problem
of identifying, ranking, and anticipating a user’s information need,
based on users’ last activity. This work develops a method that
gathers and ranks information needs relevant to an activity using a
limited amount of query suggestions from a search engine. How-
ever, in this study, INs are inferred from users’ check-in records on
a location-based social network.

Our paper blends well with the above research efforts. By pre-
dicting a realisation of IN from brain signals, IR system could be
in stronger position to disambiguate and understand INs, e.g. by
taking into account contextual information/data around the time
an IN was realised. It also could alleviate information overload sce-
nario. That is, a proactive IR system could make a better decision
as to provide any information to users, based on their prediction of
a realisation of IN from their brain signals.

2.2 Advances in Neuroscience & IR
There is growing research literature using modern techniques of
brain imaging to explore the user perspective of IR. The two topics
which have received attention include relevance and information
need (IN), though other research has begun to investigate the effect
of task and specificity of search results [43]. Research into the topic
of relevance has been performed using the brain imaging techniques
of Electroencephalography (EEG), magnetoencephalography (MEG)
and fMRI. Results of Moshfeghi et al. [40] used fMRI to identify
brain regions activated by the process of judging the relevance of an



image. They contrasted brain activity from the viewing of relevant
images to non-relevant images. Brain regions with higher activity
when viewing relevant items included the inferior parietal lobe,
inferior temporal gyrus and superior frontal gyrus. While these
results were interpreted as representing the activity of visuospatial
working memory on relevant items, the prefrontal cortex has also
been shown to be activated in judging the relevance of written
items [44] and thus this region could be involved in aspects of
general task control and decision making.

Another study into relevance was conducted by Eugster et al.
[17] that used EEG to show that the frequency content of the EEG
signal as well as Event Related Potentials (ERPs) can be used effec-
tively as a set of features to decode the relevance of a text. This work
was later extended [16] to show that methods of automatic classifi-
cation applied to single trials could be used to classify individual
words being read as relevant or non-relevant successfully. Likewise,
Kauppi et al. [25] showed using MEG that the frequency content
of the MEG signal, along with eye movement data can be used for
decoding the relevance of images. These results are consistent with
the findings of Allegretti et al. [1] who reported on EEG results
that indicated that within 500 ms EEG signals begin to appear that
differentiate between viewing a relevant and a non-relevant image.
These studies with fMRI, EEG and MEG have used the relative
strength of the different measurement techniques to make great
progress and to indicate where in the brain relevance judgments are
happening and what the time course is of these neural processes
that determine relevance.

Expanding upon work on relevance, research by Moshfeghi et
al. [42] used fMRI to examine the neural processes involved in
how IN emerges. In this study, they compared two tasks where
participants read a question and were provided with responses that
included the possibility of answering the question or asking for
additional information (acknowledging an information need). In the
first task, participants went on to the next trial regardless of their
response, but in the second task they went on to an information
retrieval dialogue if they stated an information need. Brain imaging
results revealed the posterior cingulate as a region common to both
tasks. However the posterior cingulate can be divided into different
regions, and activity in different regions was found for the two
tasks that reflect the role of the posterior cingulate in switching
between internal (e.g. memory) and external (e.g. sensory) sources
of information.

How the neural correlates of IN fit into the larger context of a
search was explored by Moshfeghi and Pollick [41] who investi-
gated search as a process of transitions between neural states. To
achieve this, they defined the time periods corresponding to five
different aspects of search (realisation of Information Need, Query
Formulation, Query Submission, Relevance Judgment and Satis-
faction Judgment) and the brain activity was contrasted between
these different periods. Results showed how the cognitive demands
of the different search periods involved various large-scale brain
networks including perception, cognition and executive control
that reflected task demands. For example, the transition between
IN and Query Formulation revealed extensive changes consistent
with what would be expected from the dynamic restructuring of
neural resources to attempt to answer the query. Motivated by these
results, this paper indicates that the period of IN involves complex

patterns of brain activity and by application of more sensitive data
analyses, reliable fine patterns of brain activity that are consistent
with being in a state of IN can be revealed.

3 EXPERIMENTAL METHODOLOGY
To investigate our research questions mentioned in Section 1, an
information need scenario was created where participants were
asked a multiple-choice question, and if they did not know the
answer, they engaged in a search process. Before describing the
experimental methodology in detail, we would like to point out
several practical constraints on the design and analysis of fMRI
experiments that are critical to consider [15, 40]. Firstly, the fMRI
scanning environment is restrictive in that a participant is placed
in the central bore of the scanner and must lay supine with their
head kept still. Moreover, only limited response/interactive devices
can be placed in this scanning environment without causing signal
or safety issues. This constraint led to the use of multiple choice
questions for a task since it was possible to provide a response
using an MRI-compatible button box. Another constraint is that
although fMRI provides a spatial resolution of brain activity to
within a few millimetres, it does not have a fine temporal resolution.
This is because the time taken to achieve one measurement of the
entire brain takes approximately 2 seconds. This relatively slow
rate of data acquisition is compounded by the fact that the Blood
Oxygenation Level Dependent (BOLD) signal measured is related
to the underlying neural signal in a complex way that introduces
further delays [19]. As a consequence of these temporal factors, it
was necessary to time the events happening in the experiment at a
rate that was compatible with our fMRI measurements. To achieve
a suitable design for our questions about IN we were guided by
the methods used by Moshfeghi et al. [42] who explored the neural
correlates of IN. These methods themselves had been adapted from
research into problem-solving [59] that examined neural correlates
of insight by comparing brain activity when a multiple choice
response showed insight, to brain activity when a multiple choice
response did not show insight. A final practical constraint is that
running fMRI experiments are costly at £500 per hour which would
limit the number of our participants.

3.1 Participants
Participants consisted of twenty-four healthy individuals with 11
males and 13 females. The participants were under the age of 44,
with the largest group between the ages of 18-23 (54.1%) followed
by a group between the ages of 30-35 (20.8%). The handedness
survey indicated that 79.1% were right-handed, 12.5% were left-
handed, and 8.33% were mixed-handed. Participants tended to have
a postgraduate degree (20.8%), bachelors (33.33%) or other qual-
ifications (45.8%). They were primarily students (54.1%), though
there were a number of individuals who were self-employed (20.8%),
not employed (4.16%) or employed by a company or organisation
(20.8%). Participants were primarily native speakers (79.1%) or had
an advanced level of English (20.8%). They all had experience in
searching, with an average of 11.66 years (SD of 3.58) experience.



3.2 Design
We used a within-subject design for this study. The independent
variable was the realisation of information need, with two levels: an
information need was realised (IN), and no information need was
realised (no-IN), which was controlled by responding to questions
viewed on the screen. The set of questions were designed so that
averaged across all participants there would be an equal number of
responses expressing an answer and expressing a need for search.
The dependent variable was brain activity revealed by the BOLD
signal. From this BOLD signal, we estimate the accuracy of different
prediction methods of a realisation of an IN.

3.3 Task
The entire experimental procedure is explained in the following
section, and here we explain the task performed by participants in
an experimental trial while being scanned. Participants first were
presented with a question for 4 seconds, then for 4 seconds, four
possible responses were provided while the question remained on
the screen. Participants were not able to make a response until
after the 4 seconds of observing the possible responses. The reason
for this was so that brain activity related to the motor response of
pressing the button would not be contained in the target pattern of
brain activity, which only included these first 8 seconds. After the
8 seconds, participants were able to respond. Of the four possible
responses, one was always the correct answer, and one of them
was always “need to search”. If participants chose that they needed
to search then, this trial was labelled as a “IN”, and otherwise, the
trial was labelled as “no-IN”. The position of the four alternatives
was randomised for each trial and the response provided by press-
ing one of the four buttons available on the button box that each
participant had in their right hand. The time to respond was left
free so that participants were not under time pressure to respond.
The order of the questions was randomised for each participant.
If the answer “need to search” was provided then they entered an
additional stage where they formulated a search query (and sub-
mitted it verbally into a noise-cancelling microphone), received a
document and evaluated this document. In the present study, we
do not investigate brain activity during the search and document
evaluation periods. Instead, we focus only on the brain activity
in response to the presentation of the question and the possible
responses.

3.4 Question Answering Dataset
To perform the task scenario mentioned in Section 3.3, we created
a Question Answering dataset1. To develop this standard set of
questions, we used previous runs of TREC Q/A Track, in particular,
we carefully selected a set of 80 questions from the TREC-8 and
TREC-2001 Question Answering Tracks - Main Task2. We chose
these two Tracks since they were the first and last tracks where the
questions presented there were (i) independent from one another,
in contrast to other Tracks that share a relationship, and (ii) they
also provided the correct answer to the questions.

1The Question Answering dataset is available upon request.
2For more information, please visit http://trec.nist.gov/data/qa/t8_qadata.html and
http://trec.nist.gov/data/qa/2001_qadata/main_task.html

We then manually examined all the questions presented in these
two tracks and selected a subset of questions that (i) was not longer
than one line, and (ii) the correct answer to the question was not
longer than five words. This constraint is due to the limitation of
presenting the questions and options to the participants in an fMRI
setting. An additional constraint was that there were at least two
relevant and non-relevant answers in their QRel. We then removed
the questions that were ambiguous or were time dependent, e.g.
“Who is the president of Stanford University?” (TREC-8, Topic 51),
making the answers provided in the Track not appropriate. The
answers of all these questions were then checked by current search
engines to make sure that the answers are still valid and correct.
We also created two wrong answers for each question that were
in the domain of the question. For example, for question “What is
supernova?” (TREC- 2001, Topic 1067) the correct answer is “An
exploding star” and we created two other wrong answers i.e. “A
newborn star” and “A dead star”. We also made sure that the ques-
tions covered a wide range of topics, e.g. history, politics, science,
etc. this was done to reduce any bias that might occur from an
emphasis of a particular type of question.

Over this set of questions, two annotators separately judged the
difficulty of the questions (i.e. hard or easy) and then selected a
subset of questions where both annotators agreed upon their diffi-
culties. For our task, 40 questions were randomly selected where
20 were easy, and 20 were hard questions. Since the fMRI data
acquisition for these 40 questions was divided into two runs, ad-
ditional care was made to further divide the questions across the
runs so that they both had 10 easy and 10 hard questions covering
a variety of topics. The goal of this procedure was to control the
set of questions such that on average there was an equal chance of
experiencing ASK [7, 8] and knowing the answer.

Another extra step was to prepare the documents that were
shown to the subjects once they engaged in a search process. This
took the form of simulating a snippet answer that is returned by a
current search engine such as Google when a question is submitted.
For this purpose, we selected two relevant and two non-relevant
documents from QRel. The length of the answers provided in TREC-
8 and TREC 2001 were incompatible. To keep the size of the results
consistent, for those answers that were too short, we found the
original source file and selected sentences around the answer so
that all snippets had the same length. The average length of the
answers shown to the participants for the first and second run were
39.47 words (SD of 3.33) and 39.65 words (SD of 3.285) respectively.
This was done to reduce any potential confounding effect of snippet
size on the brain activity results.

3.5 Procedure
This section outlines the flow of the study, from beginning to end.
Ethical permission for the study was obtained from the Ethics Com-
mittee of the College of Science and Engineering, University of
Glasgow. Participants were recruited from the participant database
at the Centre for Cognitive Neuroimaging, University of Glasgow.
Participants were instructed that the experiment would take approx-
imately one hour in total and would include performing tasks while
being scanned, as well as a 10 minute period where the anatomi-
cal data were obtained, and they need only stay still. They were
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informed that they could leave at any point in time during the
experiment and would still receive payment (the payment rate was
£6/hr). They were then asked to sign a consent form. Before partic-
ipating, participants underwent a safety check to guarantee that
they did not possess any metal items inside or outside of their body,
or any other contraindications for scanning, such as certain tattoo
inks. They were then provided with clothes (similar to a training
suit) to wear for the duration of the experiment as a precaution to
avoid interference with the fMRI signal from any metal objects in
their clothes.

Next, to provide training before entering the scanner, partici-
pants were given an example task and a corresponding set of exam-
ple questions to familiarise themselves with the procedure. Once
they had successfully completed their training task, participants en-
tered the fMRI machine, and the experimenter adjusted the settings
of the machine to maximise their comfort and vision. While being
scanned, each participant participated in two separate runs of our
task, with each run comprised of 20 questions. A short rest break
given between the two runs was chosen to give the participants
a break to relax during the scanning and to prevent fatigue. After
the functional runs were complete, the anatomical data of each
participant were obtained.

After completion of scanning, participants were asked to fill
out an exit questionnaire. The purpose of this questionnaire was to
obtain demographic and background information about the partici-
pants. This included familiarity with related fMRI and user studies
as well as questions addressed at understanding the participants’
subjective experience about how they found the experiment. They
also filled out the Edinburgh handedness questionnaire [45], which
provides the evaluation of whether the participant was right-, left-
or mixed-handed. Handedness information was obtained since lat-
eralisation of brain function is influenced by handedness, and we
wished to ensure that our sample of participants approximated the
general population.

3.6 Apparatus
Visual presentation of the questions, answers and search results to
participants was obtained using Presentation® software3 to control
projection on a LCD projector that projected onto a translucent
screen, which was visible to participants in an angled mirror while
they lay in the bore of the MRI scanner.

3.7 fMRI Data Acquisition and Preprocessing
A 3T Tim Trio Siemens MRI scanner, including a 32-channel head
coil, was used to obtain all brain imaging data. This scanner is lo-
cated on-site at the Centre for Cognitive Neuroimaging, University
of Glasgow. Functional data included two T2*-weighted runs of
our task with parameters: TR 2000ms; TE 30ms; 32 Slices; 3mm3

voxel; FOV of 210, imaging matrix of 70 × 70. An anatomical scan
was performed at the end of the scanning session that comprised a
high-resolution T1-weighted anatomical scan using a 3D magneti-
sation prepared rapid acquisition gradient echo (ADNI- MPRAGE)
T1-weighted sequence (192 slices; 1mm3 voxel; Sagittal Slice; TR =
1900ms; TE = 2.52; 256 × 256 image resolution).

3Presentation® software (Neurobehavioral systems, Inc.), http://www.neurobs.com.

The fMRI data were preprocessed using Brain Voyager QX. A
standard pipeline of pre-processing of the data was performed
for each participant [20]. This involved slice scan time correction
using trilinear interpolation based on information about the TR and
the order of slice scanning. Three-dimensional motion correction
was performed to detect and correct for small head movements by
spatial alignment of all the volumes of a participant to their first
volume by rigid body transformations. Also, linear trends in the
data were removed, and high pass filtering with a cutoff of 0.0025
Hz performed to reduce artefact from low frequency physiological
noise. The functional data were then coregistered with the anatomic
data and spatially normalised into the common Talairach space [50].
Finally, the functional data of each individual underwent spatial
smoothing using a Gaussian kernel of 6mm.

3.8 Pilot Studies
Before commencing the main study, we performed a pilot study
with two participants to verify the procedure worked appropriately.
The results of the pilot study verified the accurate logging of both
behavioural and brain imaging data and generally confirmed the
effectiveness of our procedure. However, it also revealed some
aspects that could be improved, and we changed the procedure
accordingly.

3.9 Multi-voxel Pattern Analysis (MVPA)
The technique of Multi-voxel Pattern Analysis (MVPA) is increas-
ingly used to analyse fMRI data, aiming to identify patterns from
brain activity and enabling sensitive identification of the informa-
tion encoded by brain activity. Most early fMRI studies investigating
perception and cognition employed a General Linear Model (GLM)
and aimed to localise brain regions by employing a univariate analy-
sis at every voxel to contrast the magnitude of the brain response to
different stimuli conditions. In contrast, MVPA employs a multivari-
ate analysis that can examine the spatial encoding of information
in a set of voxels. Increased performance over the univariate GLM
approach is obtained since brain activity related to a mental process
can be distributed across multiple brain areas [33], and MVPA is
sensitive to these differences.

3.10 IN Prediction Methods using MVPA
For prediction of IN realisation, we have a binomial classification
problem where the classes are “+1” (IN) and “-1” (no-IN). Therefore,
we used ROI4-SVM, an implementation of SVM for MVPA in Brain
Voyager QX5 to discriminate between the two classes explained
above. We trained our models using a linear kernel which outper-
formed other SVM kernels (e.g. polynomial and RBF) based on our
analysis, not presented due to the space limits.6 Using the settings
described above, we devised two prediction methods, a Generalised
and a Personalised.

4ROI refers to a region of interest which is a subset of brain voxels that are considered
as a region to serve a particular purpose.
5http://www.BrainVoyager.com
6It has been shown that the linear kernel is a special case of RBF [26] where the linear
kernel with a penalty parameter C has the same performance as the RBF kernel with
some parameters (C, γ ) [54]. But when the number of features is very large, which is
the case for brain signals, RBF kernel is known to be not suitable and the linear kernel
is the one that should be used [54].
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Generalised Method (GM): The Generalised method follows
the hypothesis that there is a common ROI for all participants
that represents an IN realisation. We created this ROI by including
spheres of radius 5mm centred around each of the Talairach coor-
dinates of peak activation reported by [42] in their GLM analyses
contrasting IN versus no-IN. All reported regions were selected
regardless of whether they showed greater activity for IN or no-IN
for comprehensiveness.

PersonalisedMethod (PM): In contrast, the Personalisedmeth-
od follows the hypothesis that there is a unique ROI for each individ-
ual that represents an IN realisation as revealed by the Searchlight
analysis [30, 31]. The Searchlight analysis uses MVPA and addresses
the issue that the entire collection of brain voxels forms a high di-
mensional space. To reduce dimensionality and establish a reduced
set of feature voxels it works by moving a small predefined volume
(three voxels in our case) throughout the entire brain and creates
a map based on the prediction accuracy obtained at the centre of
the volume. From this map, it is possible to find all voxels with
performance above a criterion value to define a personalised ROI
that can then be used to test the prediction accuracy.

Baseline (BL): Our baseline represents an untrained model
where all its predictions are based on a random choice, i.e. where
its accuracy is set to 50%.

4 RESULTS
4.1 Task Perception
In this section, we investigate participants’ evaluation of the task
they had performed in terms of the judged difficulty of the task,
the familiarity of the participant with the task and the degree to
which they found their performance of the task to be stressful,
clear, successful, and satisfactory. Namely, participants were given
the following questions “The tasks we asked you to perform were
[easy/stressful/familiar/clear/Satisfactory] (answer: 1: “Strongly Dis-
agree”, 2: “Disagree”, 3: “Neutral”, 4: “Agree”, 5: “Strongly Agree”)”.
Descriptive statistics of these responses are shown by box plots in
Figure 1, which show five key statistics: the minimum, first, second
(median), third, and maximum quartiles.7. These results indicate
that participants found the tasks difficult (not easy) and stressful,
familiar, clear, successful, and satisfactory.

4.2 Log Analysis
The fMRI analysis relied upon a participant’s response to the ques-
tion to code whether a trial was IN or No-IN. This raised the con-
sideration that for analysis of the brain data to have the maximum
power it is important to have approximately an equal response rate
for IN and No-IN responses. Thus, it was important to examine the
average response rates for whether the number of IN and no-IN
responses were approximately balanced. The average number of IN
responses was 17.5 (SD of 5.91), and the average number of No-IN
responses was 22.5 (SD of 5.91). A paired t-test revealed a marginal
difference between the type of responses (p-value = 0.05).
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Figure 1: Box plot of the task perception based on the in-
formation gathered from the questionnaires of twenty-four
participants. The red diamond represents the mean value.

4.3 Comparison of Brain Regions Associated
with GM and PM

Before examining the performance of the MVPA approach in clas-
sification accuracy of discriminating between IN and no-IN states,
it is instructive to examine the brain areas used by the two ap-
proaches. The GM technique restricted the analysis to the same
feature set of voxels for all participants while the PM used a unique
feature set of voxels for each individual as revealed by the Search-
light procedure. Given the bespoke nature of PM, where a unique
feature set of voxels was derived for each participant, comparison
of the regions used in PM to those used in GM is not straightfor-
ward. To address this issue, we created a probability map of the
individual PM results that allowed us to visualise how many of
the twenty-four participants had the same voxel present from the
Searchlight procedure. To achieve this, we first defined 70% as a
common threshold of prediction performance for the Searchlight
procedure in discriminating IN versus no-IN.

This probability map included 87.9% of all voxels in the brain
volume if we examined the probability that a voxel would be found
in any one of the participants. Since this map contains almost all
voxels in the brain volume, we aimed to identify a more specific
subset of voxels by increasing the criterion in the probability map
to 0.35, corresponding approximately to a voxel being found in 8 of
the 24 participants. This resulted in a map with 0.6% of all voxels
in the brain volume. This map is shown in Figure 2, along with the
regions used for the GM analysis. Details of the voxels identified
in our probability map are provided in Table 1. As can be seen, the
probability map revealed ten areas that are distributed across the
brain, in many cases bilaterally, and concentrated mostly in frontal
and occipital regions.

Additionally, except for the inferior frontal gyrus, there is little
overlap between the GM regions and the PM regions. An essential
point here is that the current results used a Multi-Voxel Pattern
Analysis (MVPA) while the previous experiment used a General
Linear Model (GLM) analysis. MVPA uses the pattern of activation
of a group of voxels to classify brain activity and is sensitive to
the spatial pattern of information encoded in brain activity. How-
ever, GLM analysis focuses on brain activity that occurs per each
7Further information can be found in [37].
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[42] PM and GM regions are shown in orange and green respectively.

Table 1: Details of probability map of PM results, including their anatomic label, location, Brodmann Area (BA), effect size
and volume.

Talairach Coordinates Peak Probability Number of voxels
Brain Area Hemisphere X Y Z BA value mm3

Precentral Gyrus Right 60 -7 31 6 47.6% 230
Inferior Frontal Gyrus Right 57 5 16 44 52.4% 1253
Fusiform Gyrus Right 36 -73 -8 19 57.1% 558
Middle Frontal Gyrus Right 24 35 -11 11 52.4% 756
Lingual Gyrus Right 18 -88 -2 17 47.6% 130
Medial Frontal Gyrus Left -9 53 7 10 47.6% 203
Medial Frontal Gyrus Left -3 63 7 10 47.6% 230
Middle Occipital Gyrus Left -36 -79 -8 18 57.1% 1839
Precentral Gyrus Left -51 -6 40 6 52.4% 3444
Inferior Frontal Gyrus Left -45 29 10 46 57.1% 1127



voxel and is sensitive to differences in mean activation [14, 21, 52].
Therefore, MVPA and GLM analysis are different in nature, and
it is not entirely expected that they would yield identical results.
Since MVPA considers multiple voxels at the same time, it can lead
to the identification of additional regions that collectively have a
discriminative power but not individually (which is the case for
GLM). Thus, the areas reported by Moshfeghi et al. [42] but not
found in our PM results would be those with significant differences
in mean activation and not necessarily where the spatial pattern of
activation could be decoded. However, one region was highlighted
in both studies, i.e. the left inferior frontal gyrus region, which
indicates that this region both changes its mean activation and its
spatial distribution of activity with IN. Future research can examine
this property more closely.

With this in mind, we now describe the voxels presented in Ta-
ble 1. The ten areas presented in Table 1 are commonly related to
the domains of text/semantic processing (precentral gyrus, right
inferior frontal gyrus), vision (middle occipital gyrus, lingual gyrus,
fusiform gyrus), complex cognition (medial frontal gyrus), execu-
tive function (left inferior frontal gyrus) and reward (middle frontal
gyrus). The finding of areas involved in complex cognition suggests
that a realisation of an IN involves high-level cognition [23]. For ex-
ample, the medial frontal cortex (Brodmann Area 10) is at the most
anterior section of the frontal cortex. Models of branching control
of cognition suggest this area serves at the top of a processing hier-
archy to assemble information across different processing strands.
Similarly, the executive function includes processes such as work-
ing memory and keeping track of task rules. Thus the region of left
inferior frontal gyrus, known as the dorsolateral prefrontal cortex,
suggests that there is a difference in executive function depending
upon whether there is an IN or no-IN. However, an unexpected
finding is that a realisation of an IN need appears to be encoded in
visual and textual processing areas. While these areas are consis-
tent with performing the required tasks of reading questions and
answers, It is not clear why it should encode a realisation of an
IN. We would like to investigate this in the future. In summary, it
would seem that these ten regions are distributed across the brain
and involve both (i) high-level cognition, which could represent
the concept of IN per se, and (ii) low level perceptual and textual
processing where the decoding results from differences in the depth
of processing IN vs no-IN items.

4.4 Prediction Accuracy of IN Realisation
Table 2 shows the classification performance averaged over the
twenty-four participants of the study for both the GM condition
when a common feature set of voxels was used across all partici-
pants and for the PM condition when a unique feature set of voxels
was obtained for each participant. The table reports the accuracy
of the model (i.e. the fraction of items in the test set for which the
models’ predictions were correct) using 10-fold cross-validation.
We also performed a paired Wilcoxon test between the predictions
obtained for each model to check the significance of the difference
with its baseline. We use (**) and (††) to denote the fact that a model
trained on a set of features had results different from that of “BL”
and “GM” with the confidence level (p < 0.01) respectively.

Table 2: This table shows the prediction accuracy of our
methods (presented as columns). The percentage of im-
provement over the baseline is presented in the parenthesis.
The best performing model is highlighted in bold.

Method BL GM PM
Accuracy 50% 67.54%** 79.68%** ††

The key findings arising from our study are that brain activity
could be used to predict whether participants were realising an IN
(addressing RQ1). If the brain activity of a set of common regions
to all participants was used (i.e. GM) then performance was (sta-
tistically) significantly above chance. In addition, the prediction
accuracy (statistically) significantly improved over both chance
and GM when the brain activity of a set of unique regions to each
participant was used (i.e. PM) (addressing RQ2). Our findings are
encouraging and indicate that it is possible to build proactive IR
systems in which the IN realisation can be detected from brain
signals.

5 DISCUSSION AND CONCLUSION
The main goal of Information Retrieval (IR) systems is to satisfy
searchers’ Information Needs (IN). However, satisfying INs is a
formidable challenge, due to the inherent complexity and ambiguity
associated with the IN concept. As a result of this, searchers’ queries
(i.e. searchers’ representation of their IN) may not sufficiently define
the characteristics of relevant documents or even any relevant
information [13]. Recently, there is an increased interest in the
research community in developing zero-query (or proactive) IR
systems aiming to not only better understand, but even anticipate
users’ INs [9, 49]. However, current approaches mainly consider the
contextual or behavioural information of users to predict their IN.
While this is intuitively a promising approach, it could potentially
create an information overload situation for users, in particular, if
users are not experiencing an IN when the information is presented
to them. It is essential, therefore, to be able to detect when INs
occur.

In this paper, we investigated the possibility of predicting a reali-
sation of an IN from brain signals. Previous research has established
that INs physically manifest themselves with specific brain activity.
With this work we take the next step, showing that monitoring
brain activity can lead to accurate predictions of IN occurrence. We
have conducted a “within-subjects” design experiment where we
measured the brain activity of twenty-four participants while they
performed a Question Answering (Q/A) Task. The independent
variable was the realisation of an information need, with two levels:
an information need was realised (IN), and no information need was
realised (no-IN), and the dependent variable was the BOLD signal.
From the TREC-8 and TREC 2001 Q/A Tracks, a set of questions
was carefully designed so that we obtained an equal number of
responses for expressing an answer to the question and expressing
a need to search for more information to answer the question. We
then test two methods for predicting a realisation of an information
need. A Generalised method (GM) that uses a predefined set of



brain regions for all participants as well as a Personalised method
(PM) that uses a unique set of brain regions for each participant.

Given that PM provided a unique ROI for each individual, we
then investigated the probability that the ROIs obtained for each
individual were overlapping, presented as a probability map. When
we used a criterion that a voxel can enter the map if at least one par-
ticipant obtained this voxel, 87.9% of all voxels in the brain volume
were included in the map. This is consistent with previous studies
suggesting that representational and memory systems are widely
distributed in the brain [48]. When we increased the criterion to
0.35 to examine highly overlapping regions, 0.6% of all voxels in
the brain volume were included in the map, revealing ten regions.
An analysis of these ten regions suggested that these regions are
distributed across the brain and involve both (i) high-level cogni-
tion, which could represent the concept of IN per se, and (ii) low
level perceptual and textual processing where the decoding results
from differences in the depth of processing IN vs no-IN items. Such
a finding is consistent with theoretical views that information pro-
cessing in the brain involves extensive feedforward and feedback
between brain regions [18].

Our findings show that brain activity could be used to predict
whether participants were in a state of information need (address-
ing RQ1). The prediction accuracy depended upon the choice of
brain regions used to learn the model. If the brain activity of a
set of common regions to all participants was used (i.e. GM) then
performance was (statistically) significantly above chance. Also, the
prediction accuracy (statistically) significantly improved over both
chance and GM when the brain activity of a set of unique regions
to each participant was used (i.e. PM) (addressing RQ2). This result
shows the benefit of PM for the prediction of a realisation of IN
from brain activity.

The model proposed by Moshfeghi et al. [42] postulated that
activation in the dorsal posterior cingulate cortex (PCC) repre-
sented a switch to broad attention directed to the external world
[35] and this was an important neural correlate of a realisation
of an IN. The current results advance our understanding of this
model. Firstly, functional connectivity exists between the PCC to
the inferior frontal gyrus (dorsolateral prefrontal cortex) [34], and
anatomical connectivity exists between the PCC and the medial
frontal cortex [46, 47]. Thus, the encoding of a realisation of an IN
in these highly cognitive regions can be regulated by activity in the
PCC. In addition, the current finding that visual and textual regions
encode a realisation of an IN are consistent with the modulatory
activity of the PCC in exerting top-down influences on perception
through the regulation of extended brain networks.

In conclusion, the results of our experiment not only show
that we can predict a realisation of an IN from brain activity but
also substantially advance our understanding of the neural mech-
anisms involved in such a phenomenon. The encouraging results
obtained from GM and especially PM in predicting a realisation
of an IN provides an essential and fundamental step towards the
next-generation of proactive IR systems based on brain signals.
These results point to the beneficial use of fMRI to examine activity
within the entire brain with high spatial resolution to reveal areas
involved in a realisation of an IN. Given that this paper is the first
attempt to predict a realisation of an IN from brain signals, such a

high spatial resolution was crucial to investigate our hypotheses
thoroughly.

Our findings also inform what other neuroimaging techniques
might be effective for further study of a realisation of an IN. This
is because brain imaging technologies have varied effectiveness in
revealing activity at different depth levels in the brain. For example,
the left dorsolateral prefrontal cortex, revealed in the present study,
is a brain region that is relatively superficial and thus amenable to
study with a variety of other brain imaging technologies. In future
work, we want to continue to advance our understanding of brain
activity for a realisation of an IN across other IR scenarios. Further,
we would like to translate our current findings to mobile brain
imaging technologies, such as EEG or functional Near-Infrared
Spectroscopy (fNIRS) and possibly build proactive search engines
that use brain activity for realising the occurrence of an IN.
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