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ABSTRACT

Combining simple elements from the literature, we de�ne a lin-
ear model that is geared toward sparse data, in particular implicit
feedback data for recommender systems. We show that its train-
ing objective has a closed-form solution, and discuss the resulting
conceptual insights. Surprisingly, this simple model achieves bet-
ter ranking accuracy than various state-of-the-art collaborative-
�ltering approaches, including deep non-linear models, on most of
the publicly available data-sets used in our experiments.
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1 INTRODUCTION

Many recent improvements in collaborative �ltering can be a�rib-
uted to deep learning approaches, e.g, [5, 7–9, 13, 21, 25, 26]. Unlike
in areas like computer vision, however, it was found that a small
number of hidden layers achieved the best recommendation accu-
racy. In this paper, we take this to the extreme, and de�ne a linear
model without a hidden layer (see Figure 1). �e (binary) input
vector indicates which items a user has interacted with, and the
model’s objective (in its output layer) is to predict the best items
to recommend to the user. �is is done by reproducing the input
as its output, as is typical for autoencoders.1 We hence named it
Embarrassingly Shallow AutoEncoder (in Reverse order: easer).

�is paper is organized as follows: we de�ne easer in the next
section, using simple elements from the literature. In Section 3.1, we
derive the closed-form solution of its convex training objective. �is
has several implications: (1) it reveals that the neighborhood-based
approaches used in collaborative �ltering are based on conceptu-
ally incorrect item-item similarity-matrices, while easer may be
considered a principled neighborhood model, see Sections 3.2 and
4.3; (2) the code for training easer is comprised of only a few lines,
see Section 3.3 and Algorithm 1; (3) if the model �ts into memory,
the wall-clock time for training easer can be several orders of mag-
nitude less than for training a Slim [16] model (see Section 3.4),
which is the most similar model to easer. Apart from that, we sur-
prisingly found that easer achieved competitive ranking accuracy,
and even outperformed various deep, non-linear, or probabilistic
models as well as neighborhood-based approaches on most of the
publicly available data-sets used in our experiments (see Section 5).

∗�is paper is published in the proceedings of ’�e Web Conference’ (WWW) 2019,
under the Creative Commons A�ribution 4.0 International (CC-BY 4.0) license.
1Note, however, that the proposed model does not follow the typical architecture of
autoencoders, being comprised of an encoder and a decoder: one may introduce an
implicit hidden layer, however, by a (full-rank) decomposition of the learned weight-
matrix of this model.

Figure 1: �e self-similarity of each item is constrained to

zero between the input and output layers.

2 MODEL DEFINITION

Like in many recommender papers that use implicit feedback data,
we assume that the data are given in terms of a sparse (typically
binary2) matrix X ∈ R |U |×|I | , regarding the sets of usersU and
items I, where | · | denotes the size of a set. A positive value
(typically 1) in X indicates that the user interacted with an item,
while a value of 0 indicates that no interaction has been observed.

�e parameters of the easer model are given by the item-item
weight-matrix B ∈ R |I |×|I | . Note that this is also similar to neigh-
borhood-based approaches, see Section 4.3. In this weight matrix,
self-similarity of an item in the input-layer with itself in the output
layer is forbidden as to force the model to generalize when repro-
ducing the input as its output (see Figure 1): hence the diagonal
of the weight-matrix is constrained to zero, diag(B) = 0. �is con-
straint is crucial, and is discussed in detail in the remainder of this
paper. �is constraint was �rst introduced in the Slim model [16].

�e predicted score Su, j for an item j ∈ I given a user u ∈ U is
de�ned by the dot product

Suj = Xu, · · B ·, j , (1)
where Xu, · refers to row u, and B ·, j to column j.

3 MODEL TRAINING

We use the following convex objective for learning the weights B:
min
B

| |X − XB | |2F + λ · | |B | |
2
F (2)

s.t. diag(B) = 0 (3)
Several comments are in order:

• We choose the square loss (| | · | |F denotes the Frobenius
norm) between the dataX and the predicted scores S = XB
over other loss functions because it allows for a closed-form
solution (see next section). Training with other loss func-
tions, however, might result in improved ranking-accuracy:
in [13], it was observed that the multinomial likelihood
resulted in be�er ranking-accuracy than training with the
logistic likelihood (log loss) or the Gaussian likelihood
(square loss). Directly optimizing a (surrogate) ranking

2Non-binary matrices may also be used.
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loss might result in further accuracy gains–however, at
possibly increased computational costs.

• We use L2-norm regularization of the weights B to be
learned. �e training objective hence has a single hyper-
parameter λ, to be optimized on a validation set.

• �e constraint of a zero diagonal, diag(B) = 0, is crucial as
to avoid the trivial solution B = I (self-similarity of items),
where I is the identity matrix. It was introduced in Slim
[16].

3.1 Closed-Form Solution

In this section, we show that the constrained convex optimization
problem for learning the weight matrix B in Eqs. 2 and 3 can be
solved in closed form.

We start by including the equality constraint in Eq. 3 into the
objective function in Eq. 2 by forming the Lagrangian

L = | |X − XB | |2F + λ · | |B | |
2
F + 2 · γ

> · diag(B),
where γ = (γ1, ...,γ |I |)> is the vector of Lagrangian multipliers. Its
values will be chosen in Eq. 6 such that the constraint in Eq. 3 is
ful�lled.

�e constrained optimization problem in Eqs. 2 and 3 is solved
by minimizing this Lagrangian. As a necessary condition, we hence
set its derivative to zero, which yields the estimate B̂ of the weight
matrix a�er re-arranging terms:

B̂ = (X>X + λI )−1 · (X>X − diagMat(γ )),
where diagMat(·) denotes the diagonal matrix and I the identity
matrix. De�ning (for su�ciently large λ)

P̂ , (X>X + λI )−1, (4)
this can be substituted into the previous equation:

B̂ = (X>X + λI )−1 · (X>X − diagMat(γ ))
= P̂ · (P̂−1 − λI − diagMat(γ ))
= I − P̂ · (λI + diagMat(γ ))
= I − P̂ · diagMat(γ̃ ) (5)

where we de�ned the vector γ̃ , λ®1 + γ in the last line, with ®1
denoting a vector of ones. �e values of the Lagrangian multipliers
γ , and hence γ̃ , are determined by the constraint diag(B̂) = 0. It
follows from Eq. 5:

0 = diag(B̂) = ®1 − diag(P̂) � γ̃ (6)
where � denotes the elementwise product, and hence:

γ̃ = ®1 � diag(P̂),
where � denotes the elementwise division (which is well-de�ned
given that P̂ is invertible). Substituting this into Eq. 5 immediately
results in the closed-form solution:

B̂ = I − P̂ · diagMat
(
®1 � diag(P̂)

)
. (7)

In other words, the learned weights are given by:

B̂i, j =


0 if i = j

− P̂i j
P̂j j

otherwise. (8)

�is solution obviously obeys the constraint of a zero diagonal. �e
o�-diagonal elements are determined by the matrix P̂ (see Eq. 4),

where the jth column is divided by its diagonal element P̂j j . Note
that B̂ is an asymmetric matrix in general, while P̂ is symmetric
(see Eq. 4).

Eqs. 4 and 8 show that the su�cient statistics for estimating B is
given by the data Gram-matrix G , X>X , which is an item-item
matrix. �is is a consequence of using the square loss in Eq. 2, and
is helpful for estimating B from sparse dataX : ifX is a sparse binary
matrix, thenG = X>X is a co-occurrence matrix. �e uncertainty
of a co-occurrence countGi j is (approximately) determined by the
standard deviation of the Poisson distribution, which is

√
Gi j . As

long as the co-occurrence counts Gi j are ’su�ciently large’, G and
hence B can be estimated with small error. An interesting fact is
that the entries of G = X>X can be increased by two di�erent
mechanisms: (1) a denser X (due to users with increased activity),
or (2) an increased number of users in X . �e la�er is particularly
useful, as an increased sparsity of X can be compensated by an
increased number of users. In other words, the problem that there
possibly is only a small amount of data available for each user (i.e.,
data sparsity), does not a�ect the uncertainty in estimating B if the
number of users in the data matrix X is su�ciently large.

3.2 Interpretation

In this section, we outline that the closed-form solution in Eq. 8 does
not come as a complete surprise. To this end, let us consider the
following special case throughout this section: let the training data
X be an i.i.d. sample of |U| data points regarding a vector of |I |
random variables x ∼ N(0, Σ) that follows a Gaussian distribution
with zero mean and covariance matrix Σ ∈ R |I |×|I | .

�en the estimate of the covariance matrix is Σ̂ = X>X/|U|. If
we further drop the L2-norm regularization in Eq. 4 and assume
invertibility, then P̂ = Σ̂−1 is the estimate of the so-called precision
(or concentration) matrix. Estimating the precision matrix from
given data is a main objective in the area of graphical models (e.g.,
see [11]).

It is well known [4, 11] that the (univariate) conditional distri-
bution of the random variable x j given the vector of all the other
variables, denoted by x−j , (xk )k ∈I\{j } , is a Gaussian distribution
with variance var(x j |x−j ) = 1/Pj, j and mean

µ j |−j , E[x j |x−j ] = −x−j · P−j, j/Pj, j
= x−j · B−j, j
= x · B., j

where the dot in the �rst line denotes the dot-product between
the (row) vector x−j and the jth column of the precision matrix
P = Σ−1, omi�ing the jth element. �e second line follows from
Eq. 8, and the last line from Bj j = 0. Note that this is identical to
the prediction rule of the easer model in Eq. 1. �is shows that
easer makes a principled point-prediction that user u will like item
j conditional on the fact that the user’s past interactions with all
items are given by Xu, . = x .

A more well-known fact (e.g., see [15]) is that the absence of an
edge between the random variables xi and x j in a Markov network
corresponds to the conditional independence of the random variables
xi and x j given the vector of all the other variables (xk )k ∈I\{i, j } ,
which is also equivalent to a zero entry in the precisionmatrix. Note
that this is di�erent from a zero entry in the covariance matrix Σ,
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which signi�es marginal independence of xi and x j . �is shows
that the precision matrix is the conceptually correct similarity-
matrix to be used, rather than the covariance matrix, which (or
some rescaled variant thereof) is typically used in state-of-the-art
neighborhood-based approaches (see Section 4.3).

Learning the graph structure in Markov networks corresponds to
learning a sparse precisionmatrix from data. Approaches developed
in that �eld (e.g., see [19] and references therein) might be useful
for improved learning of a sparse matrix B̂. �is is beyond the scope
of this paper.

While the interpretation we outlined in this section is limited to
the special case of normally distributed variables with zero mean,
note that the derivation of Eq. 8 does not require that each column
of the data matrix X has zero mean. In other words, in easer any
de�nition of the Gram matrix G , X>X may be used, e.g., G may
be the co-occurrence matrix (if X is a binary matrix), proportional
to the covariance matrix (if X is pre-processed to have zero mean
in each column), or the correlation matrix (if each column of X is
pre-processed to have zero mean and unit variance). A�er training
easer on these transformed matrices X and then transforming the
predicted scores back to the original space (as de�ned by the binary
matrix X ), we found in our experiments that the di�erences in the
obtained ranking accuracies were of the order of the standard error,
and we hence do not separately report these results in Section 5.

3.3 Algorithm

�e Python code of the resulting learning algorithm is given in
Algorithm 1. Note that the training of easer requires only the item-
item matrix G = X>X as input, instead of the user-item matrix X ,
and hence is particularly e�cient if the size of G (i.e., |I | × |I|)
is smaller than the number of user-item-interactions in X . In this
case, the expensive computation of G = X>X can be done on a
big-data pre-processing system, prior to the actual model training.

3.4 Computational Cost

�e computational complexity of Algorithm 1 is determined by the
matrix inversion of the data Gram-matrix G , X>X ∈ R |I |×|I | ,
which isO(|I|3)when using a basic approach, and aboutO(|I|2.376)
when using the Coppersmith-Winograd algorithm. Note that this
is independent of the number of users as well as the number of
user-item-interactions, asG can be computed in the pre-processing
step.

�is computational complexity is orders of magnitude lower
than the cost of training a Slim model and its variants [12, 16, 20]:
those approaches take advantage of the fact that the optimization
problem regarding |I | items can be decomposed into |I | indepen-
dent (and hence embarrassingly parallel) optimization problems
involving |I | − 1 items each, due to the identity | |X − XB | |2F =∑
j ∈I |X ., j − XB., j |22 . If each of the |I | independent problems is

solved based on an item-item matrix, the total computational cost
is hence O(|I|(|I| − 1)2.376). Note that the computational cost of
solving those |I | problems is larger by almost a factor of |I | than
training easer, which requires only a single regression problem to
be solved. In practice, however, Slim and its variants are trained
on the user-item-interactions in X , which may incur additional

Algorithm 1: Training in Python 2 using numpy
Input: data Gram-matrix G := X>X ∈ R |I |×|I | ,

L2-norm regularization-parameter λ ∈ R+.
Output: weight-matrix B with zero diagonal (see Eq. 8).
diaдIndices = numpy.diag indices(G.shape[0])
G[diaдIndices] += λ
P = numpy.linalg.inv(G)
B = P / (-numpy.diag(P ))
B[diaдIndices] = 0

computational cost. �is explains the vastly reduced training-times
of easer observed in our experiments in Section 5.

In practice, thewall-clock time depends crucially on the fact if the
number of items |I | is su�ciently small such that the weight matrix
�ts into memory, so that the matrix inversion can be computed in
memory. �is was the case in our experiments in Section 5.

4 RELATEDWORK

easer can be viewed as an autoencoder, as a modi�ed version of
Slim, and a neighborhood-based approach. We discuss each of the
three related approaches in the following.

4.1 Deep Learning and Autoencoders

While the area of collaborative �ltering has long been dominated
by matrix factorization approaches, recent years have witnessed a
surge in deep learning approaches [5, 7–9, 13, 21, 25, 26], spurred
by their great successes in other �elds. Autoencoders provide the
model architecture that �ts exactly the (plain-vanilla) collaborative
�ltering problem. While various network architectures have been
explored, it was found that deep models with a large number of
hidden layers typically do not obtain a notable improvement in
ranking accuracy in collaborative �ltering, compared to ’deep’ mod-
els with only one, two or three hidden layers, e.g., [7, 13, 21, 26],
which is in stark contrast to other areas, like computer vision. A
combination of deep and shallow elements in a single model was
proposed in [5].

In contrast, easer has no hidden layer. Instead, the self-similarity
of each item in the input and output layer is constrained to zero,
see also Figure 1. As a consequence, the model is forced to learn
the similarity of an item in the output layer in terms of the other
items in the input layer. �e surprisingly good empirical results
of easer in Section 5 suggest that this constraint might be more
e�ective than using hidden layers with limited capacity as to force
the model to generalize well to unseen data.

4.2 Slim and Variants

While the Slim model [16] has shown competitive empirical re-
sults in numerous papers, it is computationally expensive to train,
e.g., see [13, 16] and Section 3.4. �is has sparked follow-up work
proposing various modi�cations. In [12], both constraints on the
weight matrix (non-negativity and zero diagonal) were dropped,
resulting in a regression problem with an elastic-net regularization.
While competitive ranking results were obtained in [12], in the
experiments in [13] it was found that its performance was consider-
ably below par. �e square loss in Slim was replaced by the logistic
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loss in [20], which entailed that both constraints on the weight
matrix could be dropped, as argued by the authors. Moreover, the
L1-norm regularizationwas dropped, and a user-user weight-matrix
was learned instead of an item-item matrix.

All these approaches take advantage of the fact that the optimiza-
tion problem decomposes into independent and embarrassingly
parallel problems. As discussed in the previous section, however,
this is several orders of magnitudes more costly than training easer
if the weight matrix �ts into memory.

Most importantly, while those modi�cations of Slim dropped
the constraint of a zero diagonal in the weight matrix, it is retained
in easer. In fact, we found it to be the most crucial property for
achieving improved ranking accuracy (see Section 5). As we showed
in Section 3.1, this constraint can be easily included into the training
objective via the method of Lagrangian multipliers, allowing for a
closed-form solution.

Compared to Slim [16], we dropped the constraint of non-negative
weights, which we found to greatly improve ranking accuracy in
our experiments (see Table 1 and Figure 2). Moreover, we did not
use L1-norm regularization for computational e�ciency. We also
did not �nd sparsity to noticeably improve ranking accuracy (see
Section 5). �e learned weight matrix B̂ of easer is dense.

Also note that extensions to Slim like cSLIM [17], can be turned
into an analogous extension of easer.

4.3 Neighborhood-based Approaches

Numerous neighborhood-based approaches have been proposed
in the literature (e.g., see [23, 24] and references therein). While
model-based approaches were found to achieve be�er ranking ac-
curacy on some data sets, neighborhood-based approaches domi-
nated on others, e.g., the Million Song Data Competition on Kaggle
[1, 14]. Essentially, the co-occurrence matrix (or some modi�ed
variant) is typically used as item-item or user-user similarity matrix
in neighborhood-based methods. �ese approaches are usually
heuristics, as the similarity matrix is not learned by optimizing
an objective function (loss function or likelihood). More impor-
tantly, the closed-form solution derived in Eqs. 4 and 8 reveals
that the inverse of the data Gram matrix is the conceptually correct
similarity matrix,3 see Section 3.2 for more details. �is is in con-
trast to the typical neighborhood-based approaches, which use the
data Gram-matrix without inversion. �e use of the conceptually
correct, inverse matrix in easer may explain the improvement ob-
served in Table 2 compared to the heuristics used by state-of-the-art
neighborhood approaches.

5 EXPERIMENTS

In this section, the proposed easer model is empirically compared
to several state-of-the-art approaches, based on two papers that pro-
vided publicly available code for reproducibility of results [13, 24].
Both papers together cover linear, non-linear, deep and probabilistic
models, as well as neighborhood-based approaches.

3In fact, inverse matrices are used in many areas, for instance, the inverse covariance
matrix in the Gaussian density function or in the Mahalanobis distance.

5.1 Experimental Set-up

We will only summarize the experimental set-ups used in these
papers, and refer the reader to these papers for details.

Summary of Set-up in [13]: �is paper considers the following
models:

• Sparse Linear Method (Slim) [16]. Besides the original
model, also a computationally faster approximation (which
drops the constraints on the weights) [12] was considered,
but its results were not found to be on par with the other
models in the experiments in [13].

• Weighted Matrix Factorization (wmf) [10, 18], a linear
model with a latent representation of users and items.

• Collaborative Denoising Autoencoder (cdae) [25], a non-
linear model with one hidden layer.

• denoising autoencoder (Mult-dae) and variational autoen-
coder (Mult-vae pr) [13], both trained using the multi-
nomial likelihood, which was found to outperform the
Gaussian and logistic likelihoods. Best results were ob-
tained in [13] for the Mult-vae pr and Mult-dae models
that were rather shallow ’deep models’, namely with a
200-dimensional latent representation, as well as a 600-
dimensional hidden layer in both the encoder and decoder.
Both models are non-linear, and Mult-vae pr is also prob-
abilistic.

�ree data sets were used in the experiments in [13], and were pre-
processed and �ltered for items and users with a certain activity
level, resulting in the following data-set sizes, see [13] for details:4

• MovieLens 20 Million (ML-20M) data [6]: 136,677 users
and 20,108 movies with about 10 million interactions,

• Net�ix Prize (Net�ix) data [2]: 463,435 users and 17,769
movies with about 57 million interactions,

• Million Song Data (MSD) [3]: 571,355 users and 41,140
songs with about 34 million interactions.

�e evaluation in [13] was conducted in terms of strong general-
ization, i.e., the training, validation and test sets are disjoint in
terms of users. �is is in contrast to weak generalization, where
the training and test sets are disjoint in terms of the user-item
interaction-pairs, but not in terms of users. Concerning evaluation
in terms of ranking metrics, Recall@k for k ∈ {20, 50} as well as
Normalized Discounted Cumulative Gain, NDCG@100 were used
in [13].

Summary of Set-up in [24]: �eir paper focuses on neighbor-
hood-based approaches, and the authors publicly shared code5
regarding the experiments in their table 2 in [24], albeit only for the
data-split where the training data was comprised of (at most) 30% of
each user’s interactions (and the remainder was assigned to the test
data), which restricted our experimental comparison to this single
split in Table 2. �ey used the MovieLens 10 Million (ML-10M) data
[6], which was binarized in [24] and is comprised of 69,878 users
and 10,677 movies with 10 million interactions. �eir evaluation
was done in terms of weak generalization, and NDCG@10 was used
as ranking metric for evaluation in [24].

4�e code regarding ML-20M in [13] is publicly available at
https://github.com/dawenl/vae cf. �e authors kindly provided the code
for the other two data sets upon request.
5http://www.cs.toronto.edu/∼mvolkovs/SVD CF.zip
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Figure 2: Histogram of the weights learned on Netflix data.

5.2 Results

Despite the simplicity of easer, we observed that easer obtained
considerably be�er ranking accuracy than any of the competing
models on most of the data sets. �is remarkable empirical result
is discussed in detail in the following.

Comparison to Slim: Table 1 shows that easer achieved no-
tably increased accuracy compared to Slim on all the data sets.
�is suggests that dropping the L1-norm regularization as well as
the non-negativity constraint on the learned weights is bene�cial.
Our analysis indicates that the la�er is especially important: as
illustrated in Figure 2 on the Net�ix data (the histograms for ML-
20M and MSD data look almost identical up to re-scaling, and are
omi�ed), the learned weights in easer are distributed around 0.
Interestingly, it turns out that about 60% of the learned weights are
negative on all the data sets in our experiments (regarding both
papers [13, 24]). �is indicates that it is crucial to learn also the
dissimilarity (negative weights) between items besides their similar-
ity (positive weights). Moreover, when we simply set the negative
weights to zero (see easer≥ 0 in Table 1), which obviously is not
the optimal non-negative solution, the resulting accuracy drops
and is very close to the one of Slim. Apart from that, note that
easer≥ 0 is still quite dense (40% positive weights) compared to
Slim, which indirectly indicates that the sparsity of Slim (due to
L1-norm regularization) did not noticeably improve the ranking
accuracy of Slim in our experiments.

Regarding regularization, the optimal L2-norm regularization
parameter (λ) for easer is about 500 on ML-20M, 1,000 on Net�ix,
and 200 on MSD. �ese values are much larger than the typical
values used for Slim, which o�en are of the order of 1, see [16].
Note that Slim additionally uses L1-norm regularization, and hence
has much fewer (non-zero) parameters than easer.

As expected based on Section 3.4, we also found the (wall-clock)
training-time of easer to be smaller by several orders of magnitude
compared to Slim : [13] reports that parallelized grid search for Slim
took about twoweeks on theNet�ix data, and theMSD data was ’too
large for it to �nish in a reasonable amount of time’ [13]. In contrast,
training easer on the Net�ix data took less than two minutes, and
on the MSD data less than 20 minutes on an AWS instance with 64
GB RAM and 16 vCPUs in our experiments. �ese times have to
be multiplied by the number of di�erent hyperparameter-values
to be grid-searched. Note, however, that easer only has a single
hyperparameter (regarding L2-norm regularization), while Slim has

Table 1: Ranking accuracy (with standard errors of about

0.002, 0.001, and 0.001 on theML-20M,Netflix, andMSD data,

respectively), following the experimental set-up in [13].

(a)ML-20M Recall@20 Recall@50 NDCG@100
popularity 0.162 0.235 0.191
easer 0.391 0.521 0.420
easer≥ 0 0.373 0.499 0.402
results reproduced from [13]:
Slim 0.370 0.495 0.401
wmf 0.360 0.498 0.386
cdae 0.391 0.523 0.418
Mult-vae pr 0.395 0.537 0.426
Mult-dae 0.387 0.524 0.419
(b) Netflix
popularity 0.116 0.175 0.159
easer 0.362 0.445 0.393
easer≥ 0 0.345 0.424 0.373
results reproduced from [13]:
Slim 0.347 0.428 0.379
wmf 0.316 0.404 0.351
cdae 0.343 0.428 0.376
Mult-vae pr 0.351 0.444 0.386
Mult-dae 0.344 0.438 0.380
(c)MSD
popularity 0.043 0.068 0.058
easer 0.333 0.428 0.389
easer≥ 0 0.324 0.418 0.379
results reproduced from [13]:
Slim — did not �nish in [13] —
wmf 0.211 0.312 0.257
cdae 0.188 0.283 0.237
Mult-vae pr 0.266 0.364 0.316
Mult-dae 0.266 0.363 0.313

0 10000 20000 30000 40000
item-ranks

0

2

4

6

8

10

lo
g(

ite
m

 re
c.

-c
ou

nt
  i

n 
to

p 
10

0)

Figure 3: ease
r
(green) recommends long-tail items more

o�en in the top-100, compared to Mult-vae
pr

(dotted), on

MSD data.

two hyperparameters (concerning L1 and L2 norms) to be jointly
optimized.

Comparison to linear and deep non-linear models in [13]:

Table 1 shows that easer was consistently outperformed on only
5



Table 2: Comparison to the neighborhood-approaches in

[24]: ease
r
considerably improves over ’ii-SVD-500’ [24].

easer easer reproduced from [24]:
≥ 0 ii-SVD-500 item-item wmf

NDCG@10 0.6258 0.6199 0.6113 0.5957 0.5969

the ML-20M data, and only by a small margin by the best com-
peting model (Mult-vae pr). On the Net�ix and MSD data, easer
obtained signi�cantly be�er ranking results than any of the compet-
ing linear, non-linear, deep or probabilistic models evaluated in [13].
On the MSD data, easer even improved over the best competing
model by 25%, 17% and 23% regarding Recall@20, Recall@50, and
NDCG@100, respectively. �is is consistent with the results of the
Million Song Data Challenge on Kaggle [14], where neighborhood-
based approaches were found to vastly outperform model-based
approaches [1]. As discussed in Section 4.3, easer may also be
viewed as a principled neighborhood approach.

As to explain easer’s relative improvements from ML-20M via
Net�ix to MSD data, various properties of the data sets may be
considered. As shown by table 1 in [13], the number of user-item
interactions, and the sparsity of the data sets do not appear well
correlated with easer’s relative performance in Table 1. Only the
number of users correlates well with the improvements of easer
over the competing models, which, however, appears to be spurious.

�e explanation can be understood in terms of the tradeo� be-
tween recommending generally popular items vs. personally rel-
evant items to each user, which is supported by two empirical
�ndings: (1) we evaluated the popularity model in Table 1 as an
additional baseline, where the items are ranked by their populari-
ties (i.e., the number of users who interacted with an item). �ese
unpersonalized recommendations obviously ignore the personal-
ized relevance to a user. Table 1 shows that this popularity model
obtains be�er accuracy on the ML-20M data than it does on the
Net�ix data, while its accuracy is considerably reduced on theMSD
data. �is suggests that good recommendations on the MSD data
have to focus much more on personally relevant items rather than
on generally popular items, compared to the ML-20M and Net�ix
data. (2) When counting how o�en an item was recommended in
the top-100 across all test-users, and then ranking the items by
their counts, we obtained Figure 3 for the MSD data: it shows that
easer recommended long-tail items more o�en than Mult-vae pr

did. In contrast, there was almost no di�erence between the two
approaches on either of the data sets ML-20M and Net�ix (�gures
omi�ed due to page limit).

�e notable improvement of easer over the other models on the
MSD data suggests that it is able to be�er recommend personally
relevant items on this data set. On the other hand, easer’s results
on the ML-20M and Net�ix data suggest that it is also able to make
recommendations with an increased focus on popular items. We
suspect that easer’s large number of parameters, combined with
its constraint regarding self-similarity of items, provides it with
su�cient �exibility to adapt to the various data sets. In contrast,
the model architectures based on hidden layers with limited ca-
pacity seem to be unable to adapt well to the increased degree of
personalized relevance in the MSD data.

Comparison to neighborhood-based approaches in [24]:

Considerable improvements were obtained in [24] by �rst predict-
ing the scores for all user-item interactions with a neighborhood-
based approach (’item-item’ in Table 2) that was followed by a
low-rank singular value decomposition of the predicted user-item
score-matrix (’ii-SVD-500’ in Table 2): an increase in NDCG@10
by 0.0156 and 0.0144 compared to the baseline models ’item-item’
and wmf, respectively, as reproduced in Table 2. In comparison,
easer obtained increases of 0.0301 and 0.0289 over the baseline
models ’item-item’ and wmf, respectively, see Table 2. �is is about
twice as large an improvement as was obtained by the approach
’ii-SVD-500’ proposed in [24].

Given the small size of this training data-set, a large L2-norm
regularization was required (λ = 3000) for easer. Like in the
previous experiments, also here about 60% of the learned weights
were negative in easer, and se�ing them to zero (easer≥ 0 in Table
2) resulted in a small decrease in NDCG@10, as expected. In terms
of wall-clock time, we found that training easer was about three
times faster than computing merely the factorization step in the
ii-SVD-500 approach.

6 CONCLUSIONS

We presented a simple yet e�ective linear model for collabora-
tive �ltering, which combines the strengths of autoencoders and
neighborhood-based approaches. Besides enabling e�cient training
(with savings of up to several orders of magnitude if the model �ts
into memory), the derived closed-form solution also shows that the
conceptually correct similarity-matrix to be used in neighborhood
approaches is based on the inverse of the given data Gram-matrix.
In contrast, state-of-the-art neighborhood approaches typically
use the data Gram-matrix directly. In our experiments, we found
that allowing the learned weights to also take on negative values
(and hence learn dissimilarities between items, besides similarities),
was essential for the obtained ranking accuracy. Interestingly, the
achieved ranking accuracy in our experiments was on par or even
(notably) be�er than those of various state-of-the-art approaches,
including deep non-linear models as well as neighborhood-based
approaches. �is suggests that models where the self-similarity
of items is constrained to zero may be more e�ective on sparse
data than model architectures based on hidden layers with limited
capacity. We presented a basic version as to illustrate the essence of
the idea, and leave various modi�cations and extensions for future
work. Several practical extensions are outlined in [22].
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