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ABSTRACT

Workers in crowd markets struggle to earn a living. One reason for
this is that it is difficult for workers to accurately gauge the hourly
wages of microtasks, and they consequently end up performing
labor with little pay. In general, workers are provided with little
information about tasks, and are left to rely on noisy signals, such
as textual description of the task or rating of the requester. This
study explores various computational methods for predicting the
working times (and thus hourly wages) required for tasks based
on data collected from other workers completing crowd work. We
provide the following contributions. (i) A data collection method
for gathering real-world training data on crowd-work tasks and
the times required for workers to complete them; (ii) TurkScanner:
a machine learning approach that predicts the necessary working
time to complete a task (and can thus implicitly provide the expected
hourly wage). We collected 9,155 data records using a web browser
extension installed by 84 Amazon Mechanical Turk workers, and
explored the challenge of accurately recording working times both
automatically and by asking workers. TurkScanner was created
using ~150 derived features, and was able to predict the hourly
wages of 69.6% of all the tested microtasks within a 75% error.
Directions for future research include observing the effects of tools
on people’s working practices, adapting this approach to a requester
tool for better price setting, and predicting other elements of work
(e.g., the acceptance likelihood and worker task preferences.)
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1 INTRODUCTION

Workers on crowd platforms struggle to earn adequate wages
[18, 20, 27]. This is problematic, given that one of the main mo-
tivators for crowd workers is to earn sufficient money to make a
living [4, 5, 25, 26]. It is usually difficult for workers to earn higher
than minimum wage, because crowd markets provide limited infor-
mation on the offered microtasks. Workers struggle to gauge how
much time a task will require, and to make informed judgements on
whether tasks are worth their time. In this study, we introduce a ma-
chine learning approach to estimate the time required to complete
a task and the approximate hourly wage of the task.

Our work builds on recent work investigating crowd work wages.
Callison-Burch et al. developed the CrowdWorkers browser exten-
sion [6], which records working times on Amazon Mechanical Turk
(AMT). An analysis of this data revealed that the median hourly
worker wage was only 2 USD/h [12]. This is significantly lower
than the U.S. minimum wage (7.25 USD/h). TurkBench leveraged
historical records of completions of specific microtasks (called HITs
on AMT) to suggest lucrative work to workers [11], but this was
limited by which tasks had previously be seen. TurkBench could
not estimate the hourly wage the first time that a particular type
of task was performed. New tasks are frequently posted in crowd
marketplaces, and so it is important to be able to predict hourly
wages for previously unseen microtasks.

In this paper, we present TurkScanner, a machine learning ap-
proach for predicting the working times of microtasks to calculate
their hourly wages based on previous logs of other workers for other
tasks. This allows workers to judge whether microtasks are worth
doing, even for new tasks that no other workers have completed.

The first challenge we addressed in building TurkScanner was
to collect reliable ground truth data on the working times of real
tasks. Estimating working times automatically is difficult, because
we know that worker behavior patterns during microtasks and the
motivations behind them are diverse [23], such as visiting external
websites to complete the tasks, taking breaks, or accepting a number
of tasks and completing them in a row [12]. Rather than attempting
to calculate a single working time, we collected three different
times (two types of automatic recording and manual recording by
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the worker), along with the workers’ a posteriori judgments on
which were likely to be most accurate. Our extension collected 9,155
data records of microtask submissions from 84 unique workers. For
each worker, we collected information on each of the tasks they
completed, including the task (HIT) metadata and HTML content,
the reputation of the requester, and the worker profile. We aimed
to collect all of the data that workers would view before actually
completing a task. Intuitively, we expected results such as “HITs
with longer times provided in their metadata may take longer,”
“HITs posted by requesters with better ratings pay better,” and
“HITs that included many input elements take longer to complete.”
Our second challenge was to predict working times (and thus
hourly wages) for microtasks using a machine learning-based ap-
proach. To the best of our knowledge, TurkScanner represents the
first work to utilize machine learning to estimate the working times
of microtasks. We extracted ~150 features from our data collected
from AMT. Our cross-validated results showed that TurkScanner
achieved hourly wage predictions within a 75% working-time error
for 69.6% of all the microtasks (and within a 100% error for 84.3%).
We conclude this paper by suggesting future research directions,
to apply TurkScanner to support tools that empower both workers
and requesters. We believe these types of machine learning mecha-
nisms will enable a future in which crowd work becomes a more
transparent and beneficial activity for all stakeholders.

2 RELATED WORK

A wealth of previous literature has shown that workers are un-
derpaid and unfairly treated in crowd markets [15, 17, 24]. Most
crowdsourcing platforms allow requesters to freely create their
microtasks and set their prices. Requesters can also assess worker
performances to control the quality of their answers, such as by
screening workers’ eligibility to work with qualifications [12], or
by rejecting submitted tasks that do not meet their criteria [3]. On
the other hand, workers are usually provided with very limited in-
formation to select better microtasks [20]. For instance, most crowd
markets only provide the task price, the name of the requester, a
title, and a simple description. Such a lack of information makes
it very challenging for workers to find good microtasks and re-
questers. This power imbalance between requesters and workers
limits workers’ ability to ensure that they receive fair wages, and
this results in many workers being paid below minimum wage
[14, 16, 18, 20, 21, 26, 27]. This problem was formalized after Hara
et al. recently revealed that AMT workers earn a median hourly
wage of only 2 USD/h, based on their data-driven analysis [12].
This surprising fact clearly emphasizes the necessity of tools to
help crowd workers earn better wages.

Several researchers and practitioners have explored approaches
to provide workers with better opportunities to obtain information
on microtasks when selecting tasks [27]. There are several web-
based platforms on which workers communicate with each other
about microtasks and requesters. For instance, Turkopticon [20] is
an online forum and a tool where workers post reputation scores
of requesters concerning several criteria, as well as free comments.
Among other support tools, Turkopticon is highly appreciated and
actively utilized by workers [23]. Many workers also join online so-
cial communities, such as Turker Nation [1] and MTurk Crowd [2].
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On these community websites, workers not only share reputations,
but also recommend specific tasks and introduce tools and skills
utilized by expert workers. Web tools are also available to work-
ers to directly facilitate crowd work within the crowd market [8].
CrowdWorkers [6] is a web browser extension for AMT workers,
which collects microtask submission logs and visualizes the average
hourly wage for each posted task. TurkBench [11] is another web
platform for AMT workers, which renders a personalized, adaptive
working schedule based on collected task logs, to suggest the most
lucrative microtasks.

Like other tools, we aim to help workers select better microtasks.
More specifically, the goal of TurkScanner is to “predict” the hourly
wages of new unseen microtasks, based on other tasks completed by
other workers, rather than by calculations based on worker records
for the same task. We not only contribute the prediction algorithm,
but also address the challenge of defining the “working time” of
a microtask, so that we can calculate hourly wage based on this,
which has not been sufficiently discussed in prior work.

3 METHODS

In this section, we first describe our approach to defining the “work-
ing time” of a microtask. Next, we explain our browser extension
for data collection, designed based on our working time definitions.
We then explain the features of the dataset and its statistical anal-
ysis results. Finally, we present the details of TurkScanner, which
predicts the working times of microtasks and their hourly wages.

3.1 Defining Working Time

The “working time” refers to the amount of time required for work-
ers to complete particular tasks. To predict the working time using
machine learning, it is essential to collect real-world data on actual
working times. However, measuring the working times is highly
challenging. We know that various worker behavior patterns exist,
which prevents us from stably obtaining the correct working time
using simple methods. During microtasks, workers often browse
external websites in other tabs (either related or unrelated to the
task), take breaks, work on multiple tasks in parallel, and so on.

In our approach, we recorded three different types of working
time for every microtask. Each of these has unique advantages and
disadvantages. When workers submitted microtasks, they were
subsequently asked to choose one of the working times to finally
label the collected data with. The options were as follows:

e TIME_ALL. Automatic recording method, consisting of the
time from when workers accept the task until they finish it.
Pros: This is the most reliable working time when a worker
immediately starts and completes a task without taking a break.
Cons: All of the time during which the worker is distracted (by
checking emails, getting coffee, etc.) is counted.

o TIME_FOCUS. An automatic recording method similar to TIME _
ALL, but only recording the time during which the microtask
page tab is in focus. Pros: This is a reliable working time even if
a worker is distracted by task-irrelevant content in other tabs.
Cons: This approach cannot count the working time for micro-
tasks that guide workers to other tabs at which the actual task
resides (e.g., surveys or Google searches).
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e TIME_BTN. A manual recording method carried out by work-
ers themselves, by toggling buttons to indicate when they are in
the working status. Pros: This is the most accurate working time
when a worker utilizes the button correctly, covering all possi-
ble worker behavior patterns. Cons: This approach is vulnerable
to human error (e.g., spams).

For workers’ final decisions, we also introduced the following
working-time type as a fourth option:

e TIME_CUSTOM. Manual input for the working time by work-
ers in the case that none of the above three options seem to be
correct. Pros: This can provide workers with a last-resort option,
to label the correct working time when all recording methods
failed. Cons: Errors may be present in workers’ answers.

We proposed a few hypotheses concerning workers’ judgments
of the working time. We expected the most dominant choice would
be TIME_BTN, because we anticipated that most workers would
browse external websites or temporarily leave their computers
for diverse reasons, and that the working time manually recorded
by themselves would look more reliable in most cases. Next, we
supposed that TIME_ALL would be the second most dominant
choice. However, we expected that this would still be chosen less
than TIME_BTN, because there are a certain number of workers
who interleave tasks on crowdsourcing platforms [23], such that
the working time cannot be correctly measured by this approach.
Finally, we expected that TIME_FOCUS and TIME_CUSTOM would
be chosen considerably less, but would still be useful when workers
accidentally ignored the recording button.

3.2 Data Collection With Web Browser Script

We developed a Google Chrome extension for data collection, which
crawls data from every completed microtask together with the
actual working time. The extension records the working time au-
tomatically, provides AMT workers with a button for manually
recording the working time, and asks workers to select the best
choice for the working time with which to finally label the data.

3.2.1  Worker Recruitment with Pre-Survey. To recruit AMT work-
ers, we prepared a pre-survey that asks for worker profile infor-
mation (e.g., gender, age, country, household income, worker ex-
perience, and worker hours per week). After the survey, we asked
workers to install our extension according to instructions and a
URL for the installation page. After installation, each participant
was given a unique “installation code,” to be copy-and-pasted back
into the HIT to verify that they both installed the extension and
completed the task. The survey took about 4 min to complete, in-
cluding the extension installation. We paid workers 0.60 USD (i.e.,
an expected 9 USD/h) to complete the pre-survey and correctly
paste the installation code.

3.2.2 HIT Crawling using Chrome Extension. When workers fin-
ished installing the extension, they were ready to begin data col-
lection. Workers were asked to work on microtasks as usual. The
extensions collected data for up to 10 days after being installed, yet
allowing the workers to uninstall it at any time (the workers were
paid in proportion to their contribution until uninstallation). The
data collection proceeded according to the three following steps
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Table 1: List of input features parsed from the collected
data. The features consist of three categories and 12 sub-
categories. The parenthesized numbers in bold text repre-
sent the feature dimension sizes.

HIT (71) — HIT-relevant information

META (3) HIT metadata set by requesters (e.g., reward, # of available
HITs)

TMPL (11) HIT templates natively provided by AMT as of October 2018
(one-hot vector)

URL (6) URL counts per content type included in a HIT page (e.g., an-
chor links, images, audios)

INP (18) Input tag counts per type included in a HIT page (“type” at-
tributes such as radio and text)

TXT (1) Visible word counts in a HIT page

KW  (32) Task-relevant keyword occurrence in either HIT title, HIT de-
scription, or a HIT page (keywords such as “survey” and "sum-
marize” arbitrary extracted by the authors)

WKR (28) — Worker-relevant information

PRFL (16) Worker profile information collected in pre-surveys (e.g., age,
worker experience in years, est. hourly wage)

EXT (8) AMT worker helper extension tools installed in web browser
(e.g., CrowdWorkers [6], MTurk Suite [13])

HIST (4) Working history information as workers (e.g., approval rate,
total earnings, # of HIT submission in a HIT group)

REQ (49) — Requester reputation information

TO (7)  Turkopticon [20] (e.g., average of 5-point scale requester eval-
uation of generosity, promptness, etc.)

TO2 (34) Turkopticon 2 [21] (e.g., average of 5-point scale HIT evalua-
tion of recommendability, communicativeness, etc.)

TV (8) TurkerView [9] (e.g., requester reputation for hourly wage set-
tings, # of reviews, etc.)

(a), (b), and (c) (with workers paid a 5-cent bonus for completing
each of (b) and (c) for each a HIT):

(a) Background data scraping. Once workers installed the ex-
tension, they were asked to select and work on any HIT as they
would usually do on the platform. The extension recorded the fol-
lowing data features, as shown in Table 1. When a worker visited a
HIT page, the extension scraped HIT-relevant information (HIT),
such as the HIT metadata and HTML contents of the HIT page
(i.e., the text/media content information) that would possibly de-
fine task goals and required interactions in the task. In addition,
the extension crawled worker-related information (WKR) from the
worker dashboard and the list of installed AMT-relevant extensions
once per day. WKR would also be important, because its features
would represent worker capabilities for microtasks [28], such as
their skill levels and the learning-curve effects [29]. Our extension
also obtained requester-relevant information (REQ) concerning
the reputations of requesters, provided via RESTful APIs in some
third-party platforms (i.e., Turkopticon [19], Turkopticon 2 [22], and
TurkerView [9]). This would help to understand how reasonably
the microtask would be paid based on the requester ratings.

(b) Manual working time recording. While working on HITs,
workers were asked to manually record the working time they spent
on each HIT. When workers accepted HITs, a red button was shown
on the project details bar located at the top of a HIT page (Figure 1a).
Workers recorded times at which they paused and resumed working
on microtasks by toggling the button. The two following additional
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Figure 1: Interface to record TIME_BTN. (a) The button at the
top of the HIT page can be toggled to pause/resume record-
ing working time. (b) A black screen is rendered over the HIT
at the beginning as a reminder workers to start the timer.

features were implemented to remind workers to click the button
when they start working on the HIT. First, workers were prompted
with a black screen rendered over the page (Figure 1b). This screen
disappeared immediately once they clicked the button. This made
it less likely for workers to complete a HIT without dismissing
the alert. Second, a red frame was displayed around the window
while the button was in the recording state, to assist workers in
recognizing the recording state. When workers interleaved HITs,
(i.e., worked on multiple HIT pages in multiple tabs simultaneously,
by moving back and forth), none of the HITs would record their
working times simultaneously, because we assumed that perfect
multi-tasking of HITs is not possible.

(c) Post-HIT survey. As soon as workers submitted a HIT, they
were prompted with a "Post-HIT survey" in a popup window and
they were asked to select the most accurate working time from
the various methods with which to label HIT records. The sur-
vey suggested four options for the HIT working time: TIME_ALL,
TIME_FOCUS, TIME_BTN, and TIME_CUSTOM (see Section 3.1 for
details). Workers were required to input working time, in the form
of X minutes and X seconds, only when they chose TIME_CUSTOM.
The pop up window disappeared immediately after workers sub-
mitted their choices by clicking a “Submit” button.

3.3 Data Description

Data collection was conducted for 10 days during late October 2018.
Our task dataset consisted of 9,155 HIT submission records collected
by 84 unique workers. The recorded HITs belonged to 1,641 unique
HIT groups, posted by 998 unique requesters. On average, workers
contributed for 6.5 days (SD = 3.5; Median = 8.1) and worked on
109 HITs (Min = 1; Max = 1,958; SD = 238.1; Median = 34).

Data Cleaning. To guarantee the quality of the dataset, we fil-
tered out the following HIT submission records: (i) All HIT records
of spam workers who used automated scripts (N=230); (ii) HIT
records for which the reported working time was abnormally short
or long (N=213); (iii) A large part of all the HIT records in the
top three most-submitted HIT groups, keeping only as many HIT
records as in the fourth largest HIT group, in order to reduce bias
in the dataset (N=1,104). After the data cleaning, 7,608 (83.1%) HITs
remained from 83 unique workers, for 1,587 HIT groups posted by
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Figure 2: Working time distribution of microtasks in the
dataset. (a) Working time in seconds, which admits a long-
tail distribution. (b) log;o working time, which can suppress
the prediction error due to outliers.

977 unique requesters. This dataset was utilized for the analysis in
the remainder of the paper.

Working Time Labels. On average, the reported working time
was 277.9 s (SD = 380.2; Median = 148.3). As in Figure 2(a), the
distribution of the working time had a long-tail; 69.0% of all the
working times were below the average. The hourly wage averaged
$9.15 (SD = 29.11; Median = 4.23). Among all HIT records, 2,270
(29.8%, in 674 HIT groups (42.4%)) were above the U.S. minimum
wage (7.25 USD).

For the final labels for the working time, workers chose TIME_ALL
for 3,802 (50.0%) HIT records, TIME_BTN for 2,525 (33.2%) records,
TIME_FOCUS for 748 (9.8%) records, and TIME_CUSTOM for the
rest 533 (7.0%) records. This partly supported our hypotheses, in
that TIME_FOCUS and TIME_CUSTOM occurred less than the oth-
ers, but went against our expectation that TIME_ALL would occur
more than TIME_CUSTOM by 16.8 points.

We then conducted a follow-up analysis on TIME_BTN. Our
investigation into the workers’ button usage showed that the button
was clicked at least once in 7,037 (92.5%) HITs, that the usage per
worker averaged 95.8%, and that merely 16 workers (19.3%) were
below the average. The button appeared to be correctly utilized in
most cases. However, the analysis also revealed that participants
seldom stopped the timer. The timer was stopped once in 73 HITs,
twice in 8 HITs, and three times or more in 8 HIT,s while the timer
was never stopped in the remaining 6,948 HITs. We then analyzed
the differences between TIME_BTN and TIME_ALL for microtasks
which TIME_BTN was chosen for the final choices. The results
showed that the differences in 72.5% of the records were less than
5 s, and those in 85.1% were less than 10 s. The results indicate that
most of the TIME_BTN records that were chosen for the final labels
were nearly equal to TIME_ALL, (i.e., the button was immediately
clicked when tasks started and finished without taking a break). On
the other hand, it was not possible for us to rigidly evaluate whether
the button was correctly used, because our collected dataset did
not contain tracking information of workers during HITs. We leave
this as a topic for future work.

3.4 TurkScanner: Hourly Wage Prediction

TurkScanner predicts the hourly wages of microtasks in two steps:
1) estimate the working times of microtasks based on HIT, WKR,
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Figure 3: Top-15 feature importance rankings. Features for
batch size, submission counts, and some explicit features
(i.e., price, time, microtask contents) seem to implicate work-
ing time length. Worker profiles are possibly effective, rep-
resenting workers’ proficiency on tasks.

and REQ, in a machine learning-based approach; 2) calculate the
hourly wage from the rewards and the estimated working times.

We predicted the working times of microtasks through regres-
sion using gradient boosted decision tree (GBDT) [10]. The model
was trained with 148-dimensional feature vectors of task-relevant
information (see Section 3.2), by minimizing the mean absolute error
between the predicted and actual working times. Upon training and
testing, our GBDT model outputs the working times of microtasks
on a log scale (base=10). As shown in Figure 2, the working times of
microtasks in our dataset admit a long-tail distribution. Taking the
logarithm prevents the model from being excessively optimized for
short-length microtasks and being affected by outliers.

The model evaluation was conducted through four-fold cross
validation. When partitioning the dataset, we picked 25% of the
83 workers, and used all their HIT submission records for the test
set. This means that the same worker never belonged to both the
training and test sets. Therefore, the validation results indicate the
extent to which the model is capable of predicting the working
time without being trained using HIT submission records of the
same worker. To obtain the predicted working times for all the
microtasks in the dataset, we tested the model for all the validation
pairs, and analyzed them all together. To prevent the results from
being too dependent in each trial, we iterated training and testing
50 times, and then calculated the average working time for each
HIT record to obtain the results for subsequent analysis.

4 RESULTS AND DISCUSSION

In this section, we describe the evaluation results of TurkScanner.
We first analyze feature importance, followed by analyses of the
prediction accuracy for the working time and hourly wage.

4.1 Feature Importance

We first measured the feature importance, to better understand
how each feature dimension contributes to predicting the working
time. Among the diverse methods available to measure the feature
importance, we selected “weight” provided by XGBoost [7], which
counts how many times a feature is utilized for splitting across all
generated trees. We iterated the training of the initial model 50
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times, and then took the averages of the feature importance values
for the following analysis.

Figure 3 visualizes the importance ranking of the features for the
working time prediction. Features that could provide indications
to estimate the microtask size appeared to be especially important.
For instance, larger HIT group submission count numbers (first
place in the ranking), the number of remaining HITs in the group
(third), and the word count in the HTML would imply how quickly
HITs can be completed, because shorter HITs are more likely to
be performed repeatedly. More intuitively, features concerning the
price (HIT reward: second), time (time allotted for a HIT: seventh),
and task contents (word count in HTML: fourth) could also help
to represent the working time. These features also appeared to be
effective as reputations by workers (REQ features: fifth, sixth, 12th,
14th, and 15th). Worker profiles and task submission histories were
also thought to be effective (WKR features: 8th—11th and 13th). All
these features represent workers’ proficiencies with their working
hours, accepted HITs, and earned rewards. This could possibly help
to ensure the reliability of the working time prediction.

4.2 Working Time Prediction

Figure 4 presents a heat map of the confusion matrix representing
the distribution of the working time prediction results per working
time bin. The size of each bin increases gradually towards the right,
where the bin of the leftmost columns gathers all the HIT records
whose actual working times are between 3 and 8 s, whereas that
of the second right-most column includes those between 600 and
1,200 s. Note that we only utilized this binning rule for the analysis:
TurkScanner outputs consist of float values for the working time.

The heat map indicates that a large proportion of the predicted
working times hit the bin or a nearby bin. Seventeen percent of all
the HIT submission records are in the diagonal cells in the heat
map, surrounded by bold grid lines, (i.e., they are categorized in the
correct bins). Allowing the prediction results to be categorized into
neighboring bins, the proportion of correct predictions increases
to 47.4% with a one-cell difference (indicated by thin grid lines),
and 70.8% with a two-cell difference (indicated by dotted lines). We
also note that the predicted working times of HIT records with
shorter working time labels (less than 60 s) are likely to be longer.
Likewise, the predicted working times of HITs with longer working
time labels (more than 600 seconds) tend to be shorter. This may be
because the distribution of the logarithmic working time labels is
closer to the normal distribution (see Figure 2b). As mentioned in
Section 3.4, the objective function of the GBDT algorithm trains the
model such that the overall error across all the data is minimized.
Therefore, the model may have been trained to reduce the prediction
error for HIT records with medium-length working times, where
the largest amount of data samples are.

4.3 Hourly Wage Calculation

We calculated the hourly wage using the rewards and predicted
working times of microtasks. Over all the tested HIT records, the
predicted hourly wage averaged 5.21 USD (SD = 4.53; Median =
4.20). For N = 5,297 (69.6% of all the collected HIT records) the
hourly wage was predicted within a 75% error, and for N = 6,412
(84.3% of all the records) it was predicted within a 100% error.
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Figure 4: Working time prediction results in a confusion matrix, illustrated by a heat map. A large portion of the prediction
results are distributed diagonally, which implies that the model successfully captured the trend in the working time prediction.

The prediction performed reasonably well for HIT records with
actual hourly wages lower than around 15 USD. On the other hand,
many of the HIT records with higher hourly wages were not pre-
dicted to be as high as they actually were. To further analyze the in-
correct results, we directly inspected the corresponding HIT records.
As a result, we determined that most of these were (i) survey HITs
with external URL(s) and (ii) microtasks for which contents were
dynamically rendered with JavaScript. These two types of HITs are
very similar in that they do not have much static HTML content
by themselves. Because we revealed in our feature analysis that
some types of HTML content (e.g., text counts in the HIT page, URL
counts, and input tags) affected the prediction results, the model
might have not been able to predict these HITs accurately.

5 LIMITATIONS AND FUTURE WORK
5.1 Limitations

We first describe limitations concerning the data cleaning described
in Section 3.3. Our data cleaning method could be improved by
scraping additional information, so that more noisy data are re-
moved from the dataset. First, tracking the statuses of completed
microtasks (i.e., accepted or rejected) could filter out unreliable
data. If microtasks are rejected, then some of the scraped data are
likely to be inconsistent. For instance, the working time may be
too short compared to the task. Second, we could track worker
behavior such as cursor movements, scrolling, and the keyboard
input for a certain time window. Using such information, we can
verify whether the history of recorded working times corresponds
to the user behavior, and remove records if not.

We could also collect a more refined dataset by tracking mi-
crotask bonuses. TurkScanner only considered fixed rewards for
microtasks, and bonuses were not taken into account for the hourly
wage prediction. This would underestimate the value of microtasks
whose reward schemes largely depend on bonuses for the micro-
task content. Tracking the sizes of bonuses paid for each microtask
would help TurkScanner to build a more accurate prediction model.

5.2 Future Work

Our next step will be to develop TurkScanner as a support tool
for workers and requesters to solve real-world problems. We will

observe how TurkScanner could help workers reach better decisions
on which microtasks to start. We will also incorporate aspects
that can be found in other similar recommender systems, such as
predicting HIT acceptance rates, or recommending HITs based on
workers’ task preferences. TurkScanner could also assist requesters
with performing better price setting. It could predict the hourly
wage for microtasks prior to posting on the platform, and suggest
that requesters increase their rewards for better wages. This would
greatly contribute to improving the average microtask price in the
market, and accelerate future crowdsourcing research.

More generally, TurkScanner represents a new approach to un-
derstanding and predicting the times required for arbitrary user
interface tasks. This could be utilized in a variety of settings, such
as setting wages in other domains, helping people to better orga-
nize or schedule their time, or in automated usability testing. One
can imagine a scenario in which every new task a government or
company posts comes accompanied with an estimate of the cost
of introducing the new task. It may still be required to fill out an
extra web form to justify conference travel, but at least it would
be explicitly known how much time (and thus money) would be
required to do so.

6 CONCLUSION

In this study, we tackled the challenge of predicting the hourly
wages of microtasks based on data collected from previous workers.
We first presented a data collection method with our web browser
extension for gathering data about crowd work and labeling the
data with accurate working times. We asked workers to select their
answers from choices of working times recorded either automati-
cally and manually by the workers themselves. We then proposed
TurkScanner, a system based on the GBDT regression model, to
predict working times, and thus calculate hourly wages as its final
output. Our evaluation results indicated TurkScanner would need
further improvement on its prediction performance. Nonetheless,
we clearly showed the possibility that workers can know whether
their crowd work will be worth the pay before actually embark-
ing on it, which would make crowd work more transparent and
beneficial for workers and requesters.
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