
Learning to GenerateQuestions by Learning
What not to Generate

Bang Liu1, Mingjun Zhao1, Di Niu1, Kunfeng Lai2, Yancheng He2, Haojie Wei2, Yu Xu2
1University of Alberta, Edmonton, AB, Canada

2Platform and Content Group, Tencent, Shenzhen, China

ABSTRACT
Automatic question generation is an important technique that can
improve the training of question answering, help chatbots to start
or continue a conversation with humans, and provide assessment
materials for educational purposes. Existing neural question gen-
eration models are not sufficient mainly due to their inability to
properly model the process of how each word in the question is
selected, i.e., whether repeating the given passage or being gener-
ated from a vocabulary. In this paper, we propose our Clue Guided
Copy Network for Question Generation (CGC-QG), which is a
sequence-to-sequence generative model with copying mechanism,
yet employing a variety of novel components and techniques to
boost the performance of question generation. In CGC-QG, we
design a multi-task labeling strategy to identify whether a question
word should be copied from the input passage or be generated in-
stead, guiding the model to learn the accurate boundaries between
copying and generation. Furthermore, our input passage encoder
takes as input, among a diverse range of other features, the predic-
tion made by a clue word predictor, which helps identify whether
each word in the input passage is a potential clue to be copied into
the target question. The clue word predictor is designed based on a
novel application of Graph Convolutional Networks onto a syntac-
tic dependency tree representation of each passage, thus being able
to predict clue words only based on their context in the passage and
their relative positions to the answer in the tree. We jointly train
the clue prediction as well as question generation with multi-task
learning and a number of practical strategies to reduce the com-
plexity. Extensive evaluations show that our model significantly
improves the performance of question generation and out-performs
all previous state-of-the-art neural question generation models by
a substantial margin.

CCS CONCEPTS
• Computing methodologies → Natural language process-
ing; Natural language generation; Machine translation.

KEYWORDS
QuestionGeneration, Copy Prediction,Multi-task Learning, Sequence-
to-Sequence, Graph Convolutional Networks

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313737

ACM Reference Format:
Bang Liu1, Mingjun Zhao1, Di Niu1, Kunfeng Lai2, Yancheng He2, Haojie
Wei2, Yu Xu2. 2019. Learning to Generate Questions by Learning What
not to Generate. In Proceedings of the 2019 World Wide Web Conference
(WWW’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3308558.3313737

1 INTRODUCTION
Asking questions plays a vital role for both the growth of human
beings and the improvement of artificial intelligent systems. As a
dual task of question answering, question generation based on a
text passage and a given answer has attracted much attention in
recent years. One of the key applications of question generation is to
automatically produce question-answer pairs to enhance machine
reading comprehension systems [8, 34, 35, 38]. Another application
is generating practice exercises and assessments for educational
purposes [4, 12, 13]. Besides, question generation is also important
in conversational systems and chatbots such as Siri, Cortana, Alexa
and Google Assistant, helping them to kick-start and continue a
conversation with human users [25].

Conventional methods for question generation rely on heuristic
rules to perform syntactic transformations of a sentence to fac-
tual questions [2, 12], following grammatical and lexical analysis.
However, such methods require specifically crafted transformation
and generation rules, with low generalizability. Recently, various
neural network models have been proposed for question generation
[8, 9, 14, 16, 42]. These models formulate the question generation
task as a sequence-to-sequence (Seq2Seq) neural learning prob-
lem, where different types of encoders and decoders have been
designed. Like many other text generation tasks, the copying or
pointer mechanism [11] is also widely adopted in question genera-
tion to handle the copy phenomenon between input passages and
output questions, e.g., [16, 31, 32, 38, 42]. However, we point out
that a common limitation that hurdles question generation mod-
els mainly use copying mechanisms to handle out-of-vocabulary
(OOV) issues, and fail to mark a clear boundary between the set of
question words that should be directly copied from the input text
and those that should be generated instead.

In this paper, we generate questions by learning to identify where
eachword in the question should come from, i.e., whether generated
from a vocabulary or copied from the input text, and given the
answer and its context, what words can potentially be copied from
the input passage. People usually repeat text chunks in an input
passage when asking questions about it, and generate remaining
words from their own language to form a complete question. For
example, in Fig. 1, given an input passage “Today, Barack Obama
gives a speech on democracy in the White House” and an answer
“Barack Obama”, we can ask a question “The speech in the White
House is given by whom?” Here the text chunks “speech” and “in

ar
X

iv
:1

90
2.

10
41

8v
1

 [
cs

.C
L

]
 2

7
Fe

b
20

19

https://doi.org/10.1145/3308558.3313737
https://doi.org/10.1145/3308558.3313737

Today, Barack Obama gives a speech on democracy in the White House

Answer

Who gives a speech today

The speech in the White House is given by whom

Passage:

Question 1:

Question 2:

Copy

Clue 1 Clue 2

Figure 1: Questions are often asked by repeating some text
chunks in the input passage, while there is great flexibility
as to which chunks are repeated.

the White House” are copied from the input passage. However, in
the situation that a vocabulary word is an overlap word between a
passage and a question, existing models do not clearly identify the
underlying reason about the overlapping. In other words, whether
this word is copied from the input or generated from vocabulary is
not properly labeled. For example, some approaches [42] only take
out-of-vocabulary (OOV) words that are shared by both the input
passage and target question as copied words, and adopt a copying
mechanism to learn to copy these OOV words into questions. In
our work, given a passage and a question in a training dataset,
we label a word as copied word if it is a nonstop word shared by
both the passage and the question, and its word frequency rank in
the vocabulary is lower than a threshold. We further aggressively
shortlist the output vocabulary based on frequency analysis of
the non-copied question words (according to our labeling criteria).
Combining this labeling strategy with target vocabulary reduction,
during the process of question generation, our model can make
better decisions about when to copy or generate, and predict what
to generate more accurately.

After applying the above strategies, a remaining problem is
which word we should choose to copy. For example, in Fig. 1, we
can either ask the question “Who gives a speech today?” or the ques-
tion “The speech in the White House is given by whom?”, where
the two questions are related to two different copied text chunks
“today” and “White House”. We can see that asking a question about
a passage and a given answer is actually a “one-to-many” mapping
problem: we can ask questions in different ways based on which
subset of words we choose to copy from input. Therefore, how to
enable a neural model to learn what to copy is a critical problem.
To solve this issue, we propose to predict the potential clue words
in input passages. A word is considered as a “clue word” if it is
helpful to reduce the uncertainty of the model about how to ask
a question or what to copy, such as “White House” in question 2
of Fig. 1. In our model, we directly use our previously mentioned
copy word labeling strategy to assign a binary label to each input
word to indicate whether it is a clue word or not.

To predict the potential clue words in input, we have designed
a novel clue prediction model that combines the syntactic depen-
dency tree of an input with Graph Convolutional Networks. The
intuition underlying our model design is that: the words copied
from an input sentence to an output question are usually closely re-
lated to the answer chunk, and the patterns of the dependency paths
between the copied words and answer chunks can be captured via
Graph Convolutional Networks. Combining the graphical represen-
tation of input sentences with GCN enables us to incorporate both
word features, such as word vector representation, Named Entity

Figure 2: An example to show the syntactic structure of an
input sentence. Clue words “White House” and “today” are
close to the answer chunk “Barack Obama” with respect to
the graph distance, though they are not close to each other
in terms of the word order distance.

(NE) tags, Part-of-Speech (POS) tags and so on, and the syntactic
structure of sentences for clue words prediction.

To generate questions given an answer chunk and the predicted
clue words distribution in an input sentence, we apply the Seq2Seq
framework which contains our feature-rich sentence encoder and
a decoder with attention and copy mechanism. The clue word
prediction results are incorporated into the encoder by a binary
feature embedding. Based on our multi-task labeling strategy, i.e.,
labeling for both clue prediction and question generation, we jointly
learn different components of our model in a supervised manner.

We performed extensive evaluation on two large question an-
swering datasets: the SQuAD dataset v1.1 [29] and the NewsQA
dataset [36]. For each dataset, we use the answer chunk and the
sentence that contains the answer chunk as input, and try to predict
the question as output. We compared our model with a variety of
existing rule-based and neural network basedmodels. Our approach
achieves significant improvement by jointly learning the potential
clue words distribution for copy and the encoder-decoder frame-
work for generation, and out-performs state-of-the-art approaches.

2 PROBLEM DEFINITION AND MOTIVATION
In this section, we formally introduce the problem of question
generation, and illustrate the motivation behind our work.

2.1 Answer-aware Question Generation
Let us denote a passage by P , a question related to this passage by
Q , and the answer of that question by A. A passage can be either
an input sentence or a paragraph, based on different datasets. A
passage consists of a sequence of words P = {pt } |P |t=1 where |P |
denotes the length of P . A question Q = {qt } |Q |t=1 contains words
from either a predefined vocabularyV or from the input text P . The
task is finding the most probable question Q̂ given an input passage
and an answer:

Q̂ = argmax
Q

prob(Q |P ,A). (1)

Fig. 3 shows an example of the dataset used in our paper. Note
that the answer A of the question Q is limited to sub spans of the
input passage. However, our work can be easily adapted to the cases
where the answer is not a sub span of the input passage by adding
an extra answer encoder.

2.2 What to Ask: Clue Word Prediction
Even given the answer of a desired question, the task of question
generation is still not a one-to-one mapping, as there are potentially
multiple aspects related to the given answer. For example, in Fig. 2,

Passage:
The Soviet Union and the People’s Republic of China supported
post–World War II communist movements in foreign nations and
colonies to advance their own interests, but were not always
successful.

Question:
Who along with Russia supported post WW-II communist
movements?

Answer:
the People’s Republic of China

Figure 3: An example from the SQuAD dataset. Our task is
to generate questions given an input passage and an answer.
In SQuAD dataset, answers are sub spans of the passages.

given the answer chunk “Barack Obama”, the questions “The speech
in the White House is given by whom?”, “Who gives a speech
on democracy?”, and “Today who gives a speech?” are all valid
questions. As we can see, although these questions share the same
answer, they can be asked in different ways based on which word
or phrase we choose to copy (e.g., “White House”, “democracy”, or
“today”).

To resolve this issue, we propose to predict the potential “clue
words” in the input passage. A “clue word” is defined as a word
or phrase that is helpful to guide the way we ask a question, such
as “White House”, “democracy”, and “today” in Fig. 2. We design a
clue prediction module based on the syntactical dependency tree
representation of passages and Graph Convolutional Networks.
Graph Convolutional Networks generalize Convolutional Neural
Networks to graph-structured data, and have been successfully ap-
plied to natural language processing tasks, including semantic role
labeling [23], document matching [20, 39], relation extraction [40],
and so on. The intuition underlying our model design is that clue
words will be more closely connected to the answer in dependency
trees, and the syntactical connection patterns can be learned via
graph convolutional networks. For example, in Fig. 2, the graph
path distances between answer “Barack Obama” to “democracy”,
“White House”, and “today” are 3, 3, and 2, while the corresponding
word order distances between them are 5, 8, and 10, respectively.

2.3 How to Ask: Copy or Generate
Another important problem of question generation is when to
choose a word from the target vocabulary and when to copy a
word from the input passage during the generation process. People
tend to repeat or paraphrase some text pieces in a given passage
when they ask a question about it. For instance, in Fig. 3, the ques-
tion “Who along with Russia supported post WW-II communist
movements”, the text pieces “supported”, “post”, and “communist
movements” are repeating the input passage, while “Russia” and
“WW-II” are synonymous replacements of input phrases “The So-
viet Union” and “World War II”. Therefore, the copied words in
questions should not be restricted to out-of-vocabulary words. Al-
though this phenomenon is well-known by existing approaches,
they do not properly and explicitly distinguish whether a word is
from copy or from generate.

In our model, we consider the non-stop words that are shared by
both an input passage and the output question as clue words, and

encourage the model to copy clue words from input. After labeling
clue words, we train a GCN-based clue predictor to learn whether
each word in source text can be copied to the target question. The
predicted clue words are further fed into a Seq2Seq model with
attention and copy mechanism to help with question generation.
Besides, different from existing approaches that share a vocabulary
between source passages and target questions, we reduce the size
of the target vocabulary of questions to be smaller than source
passages and only include words with word frequency higher than
a threshold. The idea is that the low-frequency words in questions
are usually copied from source text rather than generated from a
vocabulary. By combining the above strategies, our model is able to
learn when to generate or copy a word, as well as which words to
copy or generate during the progress of question generation. We
will describe our operations in more detail in the next section.

3 MODEL DESCRIPTION
In this section, we introduce our proposed framework in detail.
Similar to [8, 30, 42], our question generator is based on an encoder-
decoder framework, with attention and copying mechanisms in-
corporated. Fig. 4 illustrates the overall architecture and detailed
components in our model. Our model consists of three components:
the clue word predictor, passage encoder and question decoder.

The clue word predictor predicts potential clue words that may
appear a target question, based on the specific context of the input
passage (without knowing the target question). It utilizes a syntactic
dependency tree to reveal the relationship of answer tokens relative
to other tokens in a sentence. Based on the tree representation of
the input passage, we predict the distribution of clue words by a
GCN-based encoder applied on the tree and a Straight-Through
(ST) Gumbel-Softmax estimator [15] for clue word sampling. The
outputs of the clue word predictor are fed to the passage encoder
to advise the encoder about what words may potentially be copied
to the target question.

The passage encoder incorporates both the predicted clue word
distribution and a variety of other feature embeddings of the input
words, such as lexical features, answer position indicators, etc. Com-
bined with a proposed low-frequency masking strategy (a shortlist
strategy to reduce complexity on tuning input word embeddings),
our encoder learns to better capture the useful input information
with fewer trainable parameters.

Finally, the decoder jointly learns the probabilities of generating
a word from vocabulary and copying a word from the input passage.
At the decoder side, we introduce a multitask learning strategy to in-
tentionally encourage the copying behavior in question generation.
This is achieved by explicitly labeling the copy gate with a binary
variable when a (non-stop) word in the question also appears in the
input passage in the training set. Other multi-task labels are also
incorporated to accurately learn when and what to copy. We further
shortlist the target vocabulary based on the frequency distribution
of non-overlap words. These strategies, assisted by the encoded
features, help our model to clearly learn which word in the passage
is indeed a clue word to be copied into the target question, while
generating other non-clue words accurately.

The entire model is trained end-to-end via multitask learning, i.e.,
by minimizing a weighted sum of losses associated with different

Clue Prediction Question Generation

Input Context

Output QuestionOutput Clue Indicators

Word Embedding
Feature Embedding
Answer Embedding

w1 w2 w3 w4 w5 w6 w7

W1 w2 w3 w4 w5 w6 w7

W1 w2 w3 w4 w5 w6 w7

W1 w2 w3 w4 w5 w6 w7

Graph Convolution
Layer

Feed Forward

Gumbel-Softmax

Transformed
word representation

Transformed
word representation

Clue Indicators

Word Embedding
Feature Embedding
Answer Embedding

Clue Embedding

Syntactic Parsing

0 1 0 0 1 1 0

w1 w2 w3 w4 w5 w6 w7

Attention Layer

. . .

. . .

.

Pcopy Pgenerate

Pfinal

gc

Pfinal = gcPcopy + (1 � gc)Pgenerate

ct

stst�1s0

w<sos> w<eos>wt�1wt�2

wt

Copy
Gate

Word Embedding

. . .

Overall Architecture

Clue Prediction Passage Encoder

Graph Convolution
Layer

Reduced Target Vocabulary +
Input Words

Question Decoder

Figure 4: Illustration of the overall architecture of our proposedmodel. It contains a GCN-based clue word predictor, a masked
feature-rich encoder for input passages, and an attention-and-copy-based decoder for generating questions.

labels. In the following, we first introduce the encoder and decoder,
followed by a description of the clue word predictor.

3.1 The Passage Encoder with Masks
Our encoder is based on bidirectional Gated Recurrent Unit (BiGRU)
[3], takingword embeddings, answer position indicators, lexical and
frequency features of words, as well as the output of the clue word
predictor as the input. Specifically, for each wordpi in input passage
P , we concatenate the following features to form a concatenated
representationwi to be input into the encoder:

• Word Vector. We initialize each word vector by Glove em-
bedding [28]. If a word is not covered by Glove, we initialize
its word vector randomly.
• Lexical Features. We perform Named Entity Recognition
(NER), Part-of-Speech (POS) tagging and Dependency Pars-
ing (DEP) on input passages using spaCy [24], and concate-
nate the lexical feature embedding vectors.
• Binary Features. We check whether each word is lowercase
or not, whether it is a digit or like a number (such as word
“three”), and embed these features by vectors.
• Answer Position. Similar to [42], we utilize the B/I/O tag-
ging scheme to label the position of a given answer, where
a word at the beginning of an answer is marked with B, I
denotes the continuation of the answer, while words not
contained in an answer are marked with O.
• Word Frequency Feature. We derive the word vocabulary
from passages and questions in the training dataset. We then
rank all the words in a descending order in terms of word

frequencies, such that the first word is the most frequent
word. The top rh words are labeled as frequent words. Words
ranked between rh and rl are labeled as intermediate words.
The remaining with rank lower than rl are labeled as rare
words, where rh and rl are two predefined thresholds. In
this way, each word will be assigned a frequency tag L (low
frequency), H (highly frequent) orM (medium frequency).
• Clue Indicator Feature. In our model, the clue predictor
(which we will introduce in more detail in Sec. 3.3) assigns a
binary value to each word to indicate whether it is a potential
clue word or not.

Denote an input passage by P = (w1,w2, · · · ,w |P |). The BiGRU
encoder reads the input sequencew1,w2, · · · ,w |P | and produces a
sequence of hidden states h1,h2, · · · ,h |P | to represent the passage
P . Each hidden state is a concatenation of a forward representation
and a backward representation:

hi = [
−→
h i ;
←−
h i], (2)

−→
h i = BiGRU(wi ,

−→
h i−1), (3)

←−
h i = BiGRU(wi ,

←−
h i+1), (4)

where
−→
h i and

←−
h i are the forward and backward hidden states of

the i-th token in P , respectively.
Furthermore, rather than learning the full representationwi for

every word in the vocabulary, we use a masking strategy to replace
the word embeddings of low-frequency words with a special <l>
token, such that the information of low-frequency words is only
represented by its answer/clue indicators and other augmented

feature embeddings, except the word vectors. This strategy can
improve performance due to two reasons. First, the augmented tag-
ging features of a low-frequency word tend to be more influential
than the word meaning in question generation. For example, given
a sentence “<PERSON> likes playing football.”, a question that can
be generated is “What does <PERSON> like to play?”—what the to-
ken “<PERSON>” exactly is does not matter. This way, the masking
strategy helps the model to omit the fine details that are not nec-
essary for question generation. Second, the number of parameters
that need be learned, especially the number of word embeddings
that need be tuned, is largely reduced. Therefore, masking out un-
necessary word embeddings while only keeping the corresponding
augmented features and indicators does not hurt the performance
of question generation. It actually improves training by reducing
the model complexity.

3.2 The Question Decoder with Aggressive
Copying

In the decoding stage, we utilize another GRU with copying mecha-
nism to generate question words sequentially based on the encoded
input passage representation and previously decoded words. We
first initialize the hidden state of the decoder GRU by passing the
last backward encoder hidden state

←−
h 1 to a linear layer:

s0 = tanh(W0
←−
h 1 + b). (5)

For each decoding time step t , the GRU reads the embedding of
the previous wordwt−1, previous attentional context vector ct−1,
and its previous hidden state st−1 to calculate its current hidden
state:

st = GRU([wt−1; ct−1], st−1). (6)

The context vector ct for time step t is generated through the
concatenated attention mechanism [21]. Attention mechanism cal-
culates a semantic match between encoder hidden states and the
decoder hidden state. The attention weights indicate how the model
spreads out the amount it cares about different encoder hidden
states during decoding. At time step t , the attention weights and
the context vector are calculated as:

et,i = v
⊺tanh(Wsst +Whhi), (7)

αt,i =
exp(et,i)∑ |P |
j=1 exp(et, j)

, (8)

ct =

|P |∑
i=1

αt,ihi . (9)

Combining the previous word embeddingwt−1, the current de-
coder state st and the current context vector ct , we can calculate
a readout state rt by an MLP maxout layer with dropouts [10].
Then the readout state is passed to a linear layer and a softmax
layer to predict the probabilities of the next word over the decoder
vocabulary:

rt =Wrwwt−1 +Wrcct +Wr sst (10)
mt = [max{rt,2j−1, rt,2j }]⊺j=1, ...,d (11)

p(yt |y1, · · · ,yt−1) = softmax(Womt), (12)

where rt is a 2-D vector.
The above module generates question words from a given vocab-

ulary. Another important method to generate words is copying from
source text. Copy or point mechanism [11] was introduced into
sequence-to-sequence models to allow the copying of unknown
words from the input text, which solves the out-of-vocabulary
(OOV) problem. When decoding at time step t , the probability of
copying is given by:

дc = σ (Wcsst +Wccct + b), (13)

where σ is the Sigmoid function, andдc is the probability of copying.
For the copy probability of each input word, we reuse the attention
weights given by Equation (8).

Copying mechanism has also been used in question generation
[14, 31, 42], however, mainly to solve the OOV issue. Here we lever-
age the copying mechanism to enable the copying of potential clue
words, instead of being limited to OOV words, from input. Different
from existing methods, we take a more aggressive approach to train
the copying mechanism via multitask learning based on different
labels. That is, when preparing the training dataset, we explicitly
label a word in a target question as a word copied from the source
passage text if it satisfies all the following criteria:

i) it appears in both source text and target question;
ii) it is not a stop word;
iii) its frequency rank in the vocabulary is lower than a
threshold rh .

The remaining words in the question are considered as being gen-
erated from the vocabulary. Such a binary label (copy or not copy),
together with which input word the question word is copied from,
as well as the target question, are fed into different parts of the
decoder as labels for multi-task model training. This is to intention-
ally encourage the copying of potential clue words into the target
question rather than generating them from a vocabulary.

The intuition behind such an aggressive copying mechanism
can be understood by checking the frequency distributions of both
generated words and copied words (as defined above) in the train-
ing dataset of SQuAD. Fig. 5 shows the frequency distributions
of all question words, and then of generated question words and
copied question words. The mean and median rank of generated
words are 2389 and 1032, respectively. While for copied words, they
are 3119 and 1442. Comparing Fig. 5(b) with Fig. 5(c), we can see
that question words generated from the vocabulary tends to be
clustered toward high ranked (or frequent) words. On the other
hand, the fraction of low ranked (or infrequent) words in copied
words are much greater than that in generated words. This means
the generated words are mostly from frequent words, while the
majority of low-frequency words in the long tail are copied from
the input, rather than generated.

This phenomenon matches our intuition: when people ask a
question about a given passage, the generated words tend to be
commonly used words, while the repeated text chunks from source
passage may contain relatively rare words such as names and dates.
Based on this observation, we further propose to reduce the vo-
cabulary at the decoder for target question generation to be top
N frequently generated words, where N is a predefined threshold
that varies according to datasets.

0 5000 10000 15000 20000
Rank of Question Words in all Words

0

500

1000

1500

2000

2500

Nu
m
be

r o
f W

or
ds

mean rank=2719.87
median rank=1170

(a) Rank Distribution of All Question Words

0 5000 10000 15000 20000
Rank of Generated Question Words in all Words

0

500

1000

1500

2000

2500

Nu
m
be

r o
f W

or
ds

mean rank=2388.93
median rank=1032

(b) Rank Distribution of Generated Question Words

0 5000 10000 15000 20000
Rank of Copied Question Words in all Words

0

200

400

600

Nu
m
be

r o
f W

or
ds

mean rank=3119.29
median rank=1442

(c) Rank Distribution of Copied Question Words

Figure 5: Comparing the rank distributions of all question words, words from generation, and words from copy.

3.3 A GCN-Based Clue Word Predictor
Given a passage and some answer positions, our clue word predictor
aims to identify the clue words in the passage that can help to
ask a question and are also potential candidates for copying, by
understanding the semantic context of the input passage. Again, in
the training dataset, the non-stop words that are shared by both an
input passage and an output question are aggressively labeled as
clue words.

We note that clue words are, in fact, more closely connected to
the answer chunk in the form of syntactic dependency trees than in
word sequences. Fig. 6 shows our observation on the SQuAD dataset.
For each training example, we get the nonstop words that appear
in both the input passage and the output question. For each clue
word in the training set, we find its shortest undirected path to the
answer chunk based on the dependency parsing tree of the passage.
For each jump on the shortest path, we record the dependency
type. We also calculate the distance between each clue word and
the answer in terms of the number of words between them. As
shown in Fig. 6(a), prep, pobj, and nsubj appear frequently on these
shortest paths. Comparing Fig. 6(b) with Fig. 6(c), we can see that
the distances in terms of dependency trees are much smaller than
those in terms of sequential word orders. The average and median
distances on the dependency trees are 4.41 and 4, while those values
are 10.23 and 7 for sequential word distances.

In order to predict the positions of clue words based on their
dependencies on the answer chunk (without knowing the question
which is yet to be generated), we use a Graph Convolutional Net-
work (GCN) to convolve over the word features on the dependency
tree of each passage, as shown in Fig. 4. The predictor consists of
four layers:

Embedding layer. This layer shares the same features with the
passage encoder, except that it does not include the clue indicators.
Therefore, each word is represented by its word embedding, lexical
features, binary features, the word frequency feature, and an answer
position indicator.

Syntactic dependency parsing layer.We obtain the syntactic de-
pendency parsing tree of each passage by spaCy [24], where the
dependency edges between words are directed. In our model, we
use the syntactic structure to represent the structure of passage
words.

Encoding layer. The objective of the encoding layer is to encode
the context information into each word based on the dependency
tree. We utilize a multi-layered GCN to incorporate the information
of neighboring word features into each vertex, which is a word.
After L GCN layers, the hidden vector representation of each word

will incorporate the information of its neighboring words that are
no more than L hops away in the dependency tree.

Output layer. After obtaining the context-aware representation
of each word in the passage, we calculate the probability of each
word being a clue word. A linear layer is utilized to calculate the
unnormalized probabilities. We subsequently sample the binary
clue indicator for each word through a Gumbel-Softmax layer, given
the unnormalized probabilities. A sampled value of 1 indicates that
the word is predicated as a clue word.

3.3.1 GCNOperations on Dependency Trees. We now introduce the
operations performed in each GCN layer [18, 40]. GCNs generalize
the CNN from low-dimensional regular grids to high-dimensional
irregular graph domains. In general, the input to a GCN is a graph
G = (V,E) with N vertices vi ∈ V , and edges ei j = (vi ,vj) ∈ E.
The edges can be weighted with weightswi j , or unweighted. The
input also contains a vertex feature matrix denoted by X = {xi }Ni=1,
where xi is the feature vector of vertex vi .

Since a dependency tree is also a graph, we can perform the
graph convolution operations on dependency trees by representing
each tree into its corresponding adjacency matrix form. Now let us
briefly introduce the GCN propagation layers used in our model
[40]. The weighted adjacency matrix of the graph is denoted as
A ∈ RN×N where Ai j = wi j . For unweighted graphs, the weights
are either 1 or 0. In an L-layer GCN, let h(l−1)i denotes the input
vector and h(l)i denotes the output vector of node i at the l-th layer.
We will utilize a multi-layer GCN with the following layer-wise
propagation rule [40]:

h
(l)
i = σ (

N∑
j=1

Ãi jW(l)h
(l−1)
j /di + b(l)), (14)

where σ is a nonlinear function (e.g., ReLU), andW (l) is a linear
transformation. Ã = A + IN where IN is an n × n identity matrix.
di =

∑N
j=1 Ãi j is the degree of node (or word in our case) i in the

graph (or dependency tree).
In our experiments, we treat the dependency trees as undirected,

i.e., ∀i, j,Ai j = Aji . Besides, as we already included the dependency
type information in the embedding vectors of each word, we do
not need to incorporate the edge type information in the adjacency
matrix.

Stacking this operation by L layers gives us a deep GCN network.
The input to the nodes in the first layer of the GCN are the feature
vectors of words in the passage. After L layers of transformations,
we can obtain a context-aware representation of each word. We

ac
l

ac
om

p
ad

vc
l

ad
vm

od
ag

en
t

am
od

ap
po

s
at
tr

au
x

au
xp

as
s

ca
se cc

cc
om

p
co
m
po

un
d

co
nj

cs
ub

j
cs
ub

jp
as
s

da
tiv

e
de

p
de

t
do

bj
ex

pl in
tj

m
ar
k

m
et
a

ne
g

nm
od

np
ad

vm
od

ns
ub

j
ns
ub

jp
as
s

nu
m
m
od

op
rd

pa
ra
ta
xi
s

pc
om

p
po

bj
po

ss
pr
ec
on

j
pr
ed

et
pr
ep pr
t

pu
nc

t
qu

an
tm

od
re
lcl

xc
om

p

Dependency Type

0e+00

1e+05

2e+05

3e+05

Am
ou

nt

(a) Distribution of Syntactic Dependency Types between
Copied Words and the Answer

0 5 10 15
Dependency Distance

0e+00

1e+04

2e+04

3e+04

4e+04

5e+04

Am
ou

nt

mean distance=4.41
median distance=4
minimum distance=1
maximum distance=36

(b) Distribution of Syntactic Dependency Distances be-
tween Copied Words and theAnswer

0 10 20 30 40 50 60
Sequence Distance

0e+00

5e+03

1e+04

2e+04

2e+04

2e+04

Am
ou

nt

mean distance=10.23
median distance=7
minimum distance=1
maximum distance=347

(c) Distribution of Sequential Word Distances between
Copied Words and the Answer

Figure 6: Comparing the distributions of syntactic dependency distances and sequential word distances between copied words
and the answer in each training sample.

then feed them into a linear layer to get the unnormalized proba-
bility of each word being a clue word. After that, the unnormalized
probabilities are fed to a Straight-Through (ST) Gumbel-Softmax
estimator to sample an N -dimensional binary vector indicating
whether each of the N words is a clue word or not.

3.3.2 Gumbel-Softmax. Gumbel-Softmax [15] is a method of sam-
pling discrete random variables in neural networks. It approximates
one-hot vectors sampled from a categorical distribution by making
them continuous, therefore the gradients of model parameters can
be calculated using the reparameterization trick and the standard
backpropagation. Gumbel-Softmax distribution is motivated by
Gumbel-Max trick [22], an algorithm for sampling from a categori-
cal distribution. Let (p1, ...,pk) denotes a k-dimensional categorical
distribution where the probability pi of class i is defined as:

pi =
exp(log(πi))∑k
j=1 exp(log(πj))

, (15)

where πi is the unnormalized log probability of class i . We can easily
draw a one-hot sample z = (z1, · · · , zk) ∈ Rk from the distribution
by the following equations:

zi =

{
1, i = argmaxj (loд(πj) + дj)
0, otherwise

(16)

дi = − log(− log(ui)), (17)
ui ∼ Uniform(0, 1) (18)

where дi is Gumbel noise used to perturb each log(πi). In this way,
taking argmax is equivalent to drawing a sample using probabilities
(p1, · · · ,pk).

Gumbel-Softmax distribution replaces the argmax function by
differentiable softmax function. Therefore, a sample y = (y1, · · · ,yk)
drawn from Gumbel-Softmax distribution is given by:

yi =
exp((log(πi) + дi)/τ)∑k
j=1 exp((log(πj) + дj)/τ)

, (19)

where τ is a temperature parameter. The Gumbel-Softmax distribu-
tion resembles the one-hot sample when τ diminishes to zero.

Straight-Through (ST) Gumbel-Softmax estimator [15] is a dis-
crete version of the continuous Gumbel-Softmax estimator. It takes
different paths in the forward and backward propagation. In the

Table 1: Description of evaluation datasets.

Dataset Train Dev Test P-Length∗ Q-Length∗ A-Length∗

SQuAD 86, 635 8, 965 8, 964 32.72 11.31 3.19
NewsQA 77, 538 4, 341 4, 383 28.14 7.82 4.60
∗ P-Length: average number of tokens of passages.
∗ Q-Length: average number of tokens of questions.
∗ A-Length: average number of tokens of answers.

forward pass, it discretizes a continuous probability vector y sam-
pled from the Gumbel-Softmax distribution into a one-hot vector
yST = (yST1 , · · · ,y

ST
k) by:

ySTi =

{
1, i = argmaxj yj ,
0, otherwise.

(20)

In the backward pass, it uses the continuous y, so that the error
signal can still backpropagate.

Using the ST Gumbel-Softmax estimator, our model is able to
sample a binary clue indicator vector for an input passage. Then the
clue indicator vector is fed into the passage encoder for question
generations, as shown in Fig. 4.

4 EVALUATION
In this section, we evaluate the performance of our proposedmodels
on the SQuAD dataset and the NewsQA dataset, and compare them
with state-of-the-art question generation models.

4.1 Datasets, Metrics and Baselines
The SQuAD dataset is a reading comprehension dataset, consist-
ing of questions posed by crowd-workers on a set of Wikipedia
articles, where the answer to every question is a segment of text
from the corresponding reading passage. SQuAD 1.1 is used in our
experiment containing 536 Wikipedia articles and more than 100K
question-answer pairs. When processing a sample from dataset,
instead of using the entire document, we take the sentence that
contains the answer as the input. Since the test set is not publicly
available, we use the data split proposed by [42] where the original
dev set is randomly split into a dev test and a test set of equal size.

In the NewsQA dataset, there are 120K questions and their cor-
responding answers as well as the documents that are CNN news
articles. Questions are written by questioners in natural language
with only the headlines and highlights of the articles available to

them. With the information of the questions and the full articles,
answerers select related sub-spans from the passages of the source
text and mark them as answers. Multiple answers may be provided
to a same question by different answerers and they are ranked by
validators based on the quality of the answers. In our experiment,
we picked a subset of NewsQA where answers are top-ranked and
are composed of a contiguous sequence of words within the input
sentence of the document.

Table 1 shows the number of samples in each set and the average
number of tokens of the input sentences, questions, and answers
listed in columns P-Length, Q-Length, and A-Length respectively.

We report the evaluation results with following metrics.

• BLEU [26]. BLEU measures precision by how much the
words in prediction sentences appear in reference sentences
at the corpus level. BLEU-1, BLEU-2, BLEU-3, and BLEU-4,
use 1-gram to 4-gram for calculation, respectively.
• ROUGE-L [19]. ROUGE-L measures recall by howmuch the
words in reference sentences appear in prediction sentences
using Longest Common Subsequence (LCS) based statistics.
• METEOR [6]. METEOR is based on the harmonic mean of
unigram precision and recall, with recall weighted higher
than precision.

In the experiments, we have eight baseline models for compari-
son. Results reported on PCFG-Trans, MPQG, and NQG++ are from
experiments we conducted using published code on GitHub. For
other baseline models, we directly copy the reported performance
given in their papers.We report all the results on the SQuAD dataset,
and for the NewsQA dataset, we can only report the baselines with
open source code available.

• PCFG-Trans [12] is a rule-based system that generates a
question based on a given answer word span.
• MPQG [31] proposed a Seq2Seq model that matches the
answer with the passage before generating the question.
• SeqCopyNet [43] proposed a method to improve the copy-
ing mechanism in Seq2Seq models by copying not only a
single word but a sequence of words from the input sentence.
• seq2seq+z+c+GAN [37] proposed a model employed in
GAN framework using the latent variable to capture the
diversity and learning disentangled representation using the
observed variable.
• NQG++ [42] proposed a Seq2Seq model with a feature-rich
encoder to encode answer position, POS and NER tag infor-
mation.
• Answer-focusedPosition-awaremodel [33] incorporates
the answer embedding to help generate an interrogative
word matching the answer type. And it models the relative
distance between the context words and the answer for the
model to be aware of the position of the context words when
generating a question.
• s2sa-at-mp-gsa [41] proposed a model which contains a
gated attention encoder and a maxout pointer decoder to
address the challenges of processing long text inputs. This
model has a paragraph-level version and a sentence-level
version. For the purpose of fair comparison, we report the

results of the sentence-level model to match with our set-
tings.
• ASs2s [16] proposed an answer-separated Seq2Seq to iden-
tify which interrogative word should be used by replacing
the target answer in the original passage with a special token.

For our models, we evaluate the following versions:
• CGC-QG (no feature-rich embedding).We name ourmodel
as Clue Guided Copy for Question Generation (CGC-QG). In
this variant, we only keep the embedding of words, answer
position indicators, and clue indicators for each token, and
remove the embedding vectors of other features.
• CGC-QG (no target reduction). This model variant does
not contain target vocabulary reduction operation.
• CGC-QG (no clue prediction). The clue predictor and clue
embedding are removed in model variant.
• CGC-QG. This is the complete version of our proposed
model.

4.2 Experiment Settings
We implement our models in PyTorch 0.4.1 [27] and train the model
with a single Tesla P40. We utilize spaCy [24] to perform depen-
dency parsing and extract lexical features for tokens. As to the
vocabulary, we collect it from the training dataset and keep the top
20K most frequent words for both datasets.

We set the threshold rh = 100 and rl = 2000. For target vocabu-
lary reduction, we set N = 2000. The embedding dimension of word
vector is set to be 300 and initialized by GloVe. The word vectors of
words that are not contained in GloVe are initialized randomly. The
word frequency features are embedded to 32-dimensional vectors,
and other features and indicators are embedded to 16-dimensional
vectors. All embedding vectors are trainable in the model. We use
a single layer BiGRU with hidden size 512 for the encoder, and a
single layer undirected GRU with hidden size 512 for the decoder.
The dropout rate p = 0.1 is applied to the encoder, decoder, and the
attention module.

During training, we optimize the Cross-Entropy loss function
for clue prediction, question generation, and question copying, and
perform gradient descent by the Adam [17] optimizer with an initial
learning rate lr = 0.001, two momentum parameters are β1 = 0.8
and β2 = 0.999 respectively, and ϵ = 10−8. The mini-batch size for
each update is set to 32 and model is trained for up to 10 epochs
(as we found that usually the models derive the best performance
after 6 or 7 epochs). We apply gradient clipping with range [−5, 5]
for Adam. Besides, exponential moving average is applied on all
trainable variables with a decay rate 0.9999. When testing, beam
search is conductedwith beamwidth 20. The decoding process stops
when a token <EOS> that represents end of sentence is generated.

4.3 Main Results
Table. 2 and Table. 3 compare the performance of our model with
existing question generation models on SQuAD and NewsQA in
terms of different evaluation metrics. For the SQuAD dataset, we
compare our model with all the baseline methods we have listed. As
to the NewsQA dataset, since only a part of the baseline methods
made their code public, we compare our model with approaches
that have open source code. We can see that our model achieves

the best performance on both datasets and significantly outper-
forms state-of-the-art algorithms. On the SQuAD dataset, given
an input sentence and an answer, the BLEU-4, ROUGE-L, and ME-
TEOR of our result are 17.55, 44.53, and 21.24 respectively, while
corresponding previous state-of-the-art results are 16.17, 44.24, and
19.67 from different approaches. Similarly, our method also gives a
significantly better performance on NewsQA compared with the
baselines in Table 3.

The reason is that we combine different strategies in our model to
make it learnwhen to generate or copy aword, andwhat to generate
or copy. First, our model learns to predict clue words through
a GCN-based clue predictor. Second, our encoder incorporates a
variety of embeddings of different features and clue indicators.
Combiningwith themasking strategy, ourmodel can better discover
the relationship between input patterns and output patterns. Third,
the reduced target vocabulary also helps our model to better capture
when to copy or generate, and the generator is easier to train with
a reduced vocabulary size. And most importantly, our new criteria
of marking a question word as copied word (as described in Sec.3.3)
helps the model to make better decisions on which path to go, i.e., to
copy or to generate, during question generation. By incorporating
part of these new strategies and modules into our model, we can
achieve performance better than state-of-the-art models on SQuAD
and NewsQA. With all these designs implemented, our model gives
the best performance on both datasets.

There is a significant gap between the performance on SQuAD
and on NewsQA due to the different characteristics of the datasets.
The average answer length of NewsQA is 44.2% larger than it of
SQuAD according to the statistics shown in Table 1. Long answers
usually hold more information and are more difficult to generate
questions. Furthermore, reference questions in NewQA tend to
have less strict grammars and more diverse phrasings. To give a
typical example, “Iran criticizes who?” is a reference question in
NewsQA which does not start with an interrogative word but ends
with one. These characteristics make the performance on NewsQA
not as good as on SQuAD. However, our approach is still signifi-
cantly better than the compared approaches on NewsQA dataset. It
demonstrates that copy from the input is a general phenomenon
across different datasets. Our model better captures what copied
words are and what generated words are in a question based on
our new criteria of labeling a question word as copied word or not.

4.4 Analysis
We evaluate the impact of different modules in our model by ab-
lation tests. Table 2 and Table 3 list the performance of our model
variants with different sub-components removed.

When we remove the extra feature embeddings in our model,
i.e., the embeddings of POS, NER, Dependency Types, word fre-
quency levels (low-frequent, median-frequent, high-frequent), and
binary features (whether it is lowercase, digit), the performance
drops significantly. This is because the tags and feature embeddings
represent each token in different aspects. The number of different
tags is much smaller than the number of different words. Therefore,
the patterns which can be learned from these tags and features are
more obvious than what we can learn from word embeddings. Even
though a well-trained word vector may contain the information of

other features such as POS or NER, explicitly concatenating these
feature embedding vectors helps the model to capture the patterns
to ask a question more easily.

Removing the operation of target vocabulary reduction also hurts
the performance of our model. As we discussed earlier, the non-
overlap question words (or generated words) are mostly covered
by the high frequency words. Reducing the target vocabulary size
helps our model to better learn the probabilities of generating these
words. On the other hand, it also encourages the model to better
capture what they can copy from input text.

Finally, without the clue prediction module, the performance
also drops on both datasets. This is because when given an answer
span in a passage, asking a question about it is still a one-to-many
mapping problem. Our clue prediction module learns how people
select the related clue words to further reduce the uncertainty of
how to ask a question by learning from a large training dataset.
With predicted clue indicators incorporated into the encoder of
generator, our model can fit the way how people ask questions in
the dataset.

5 RELATEDWORK
In this section, we review related works on question generation
and graph convolutional networks.

Existing approaches for question generation can be mainly clas-
sified into two classes: heuristic rule-based approaches and neural
network-based approaches. The rule-based approaches rely on well-
designed rules or templates manually created by human to trans-
form a piece of given text to questions [2, 12, 13]. However, they
require creating rules and templates by experts which is extremely
expensive. Also, rules and templates have a lack of diversity and
are hard to generalize to different domains.

Compared with rule-based approaches, neural network-based
models are trained end-to-end and do not rely on hand-crafted
rules or templates. Most of the neural question generation models
consider the task as Seq2Seq and take advantage of the encoder-
decoder framework with attention mechanism. [30] utilizes an
encoder-decoder framework with attention mechanism to gener-
ate factoid questions from FreeBase. [8] generates questions from
SQuAD passages based on a sequence-to-sequence model with
attention mechanism.

However, given an input sentence, generating questions is a one-
to-many mapping, as we can ask different questions from different
aspects. Purely relying on Seq2Seq model may not be able to learn
such a one-to-manymapping [9]. To resolve this issue, recent works
assume the aspect is known when generating a question [16, 31,
32, 38, 42] or can be detected by a third-party pipeline [7]. [42]
enriches the sequence-to-sequence model with answer position
indicator to indicate if the current word is an answer word or not,
and further incorporates copy mechanism to copy words from
the context when generating a question. [14, 31] fuse the answer
information into input sentence first, and apply a Seq2Seq model
with attention and copy mechanism to generate answer-aware
questions. [9] takes question difficulty into account by a difficulty
estimator, and generate questions on different difficulty levels. [33]
enriches the model with both answer embedding and the relative
distance between the context words and the answer. [34, 35] model

Table 2: Evaluation results of different models on SQuAD dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

PCFG-Trans∗ 28.77 17.81 12.64 9.47 31.68 18.97
SeqCopyNet − − − 13.02 44.00 −

seq2seq+z+c+GAN 44.42 26.03 17.60 13.36 40.42 17.70
NQG++∗ 42.36 26.33 18.46 13.51 41.60 18.18
MPQG − − − 13.91 − −

Answer-focused Position-aware model 43.02 28.14 20.51 15.64 − −
s2sa-at-mp-gsa 44.51 29.07 21.06 15.82 44.24 19.67

ASs2s − − − 16.17 − −

CGC-QG (no feature-rich embedding) 45.50 29.63 21.58 16.38 43.11 20.52
CGC-QG (no target reduction) 45.80 30.27 22.29 17.05 44.09 20.79
CGC-QG (no clue prediction) 45.58 30.07 22.08 16.80 44.51 20.80

CGC-QG 46.58 30.90 22.82 17.55 44.53 21.24

Experiments are conducted on baselines followed by a “∗” using released source code. Results of other baselines
are copied from their papers where unreported metrics are marked “−”.

Table 3: Evaluation results of different models on NewsQA dataset.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR

PCFG-Trans∗ 16.90 7.94 4.72 3.08 23.78 13.74
MPQG∗ 35.70 17.16 9.64 5.65 39.85 14.13
NQG++∗ 40.33 22.47 14.83 9.94 42.25 16.72

CGC-QG (no feature-rich embedding) 39.35 22.10 14.36 9.99 42.00 16.60
CGC-QG (no target reduction) 40.00 22.84 15.01 10.52 42.33 16.89
CGC-QG (no clue prediction) 39.85 22.82 14.96 10.45 43.16 17.11

CGC-QG 40.45 23.52 15.68 11.06 43.16 17.43

Experiments are conducted on baselines followed by a “∗” using released source code.

question answering and question generation as dual tasks. They
found that jointly training the two tasks helped to generate better
questions.

We argue that even with an answer indicator, the problem of
question generation is still a one-to-many mapping. To solve this
problem, we enrich the model with a “clue word” predictor, where a
clue word means a word that is related to the aspect of the targeting
output question and usually copied to the question. We represent
an input sentence by its syntactic dependency tree and represent
each word using feature-rich embeddings, and let the model learn
to predict whether each word in context can be a clue word or not.
Combining the clue prediction module with a Seq2Seq model with
attention and copy mechanism, our model learns when to generate
a word from a target vocabulary and when to copy a word from
the input context.

Graph Convolutional Networks generalize Convolutional Neural
Networks to graph-structured data, and have been developed and
grown rapidly in scope and popularity in recent years [1, 5, 18, 20,
23]. Here we focus on the applications of GCNs on natural language.
[23] applies GCNs over syntactic dependency trees as sentence en-
coders, and produces latent feature representations of words in a
sentence for semantic role labeling. [20] matches long document
pairs using graph structures, and classify the relationships of two
documents by GCN. [40] proposes an extension of graph convo-
lutional networks that is tailored for relation extraction. It pools
information over dependency trees efficiently in parallel. In our
paper, we apply GCN over the dependency tree of an input sentence,

and predict the potential clue words in the sentence together with
a Gumbel-Softmax estimator.

6 CONCLUSION
In this paper, we demonstrate the effectiveness of teaching the
model to make decisions during the question generation process
on which words to generate and to copy. We label the nonstop
and overlap words between input passages and questions as copy
targets and use such labels to train our model. Besides, we fur-
ther observe that the distribution of generated question words are
mostly common words with relative high frequency. Based on this
observation, we reduce the vocabulary size for generating question
words. To help the model better capture how to ask a question and
alleviate the issue of one-to-many mapping when asking a question,
we propose a GCN-based clue prediction module to predict which
part of words can be a clue word to ask a question given an answer.
It utilizes the syntactic dependency tree representation of a passage
to encode the information of each token in the passage, and sam-
ple a clue indicator for each token using a Straight-Through (ST)
Gumbel-Softmax estimator. Our simulation results on the SQuAD
dataset and NewsQA dataset show that our model outperforms a
range of existing state-of-the-art approaches significantly.

REFERENCES
[1] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,

Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[2] Yllias Chali and Sadid A Hasan. 2015. Towards topic-to-question generation.
Computational Linguistics 41, 1 (2015), 1–20.

[3] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[4] Guy Danon and Mark Last. 2017. A Syntactic Approach to Domain-Specific
Automatic Question Generation. arXiv preprint arXiv:1712.09827 (2017).

[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. InAdvances
in Neural Information Processing Systems. 3844–3852.

[6] Michael Denkowski and Alon Lavie. 2014. Meteor universal: Language spe-
cific translation evaluation for any target language. In Proceedings of the ninth
workshop on statistical machine translation. 376–380.

[7] Xinya Du and Claire Cardie. 2018. Harvesting Paragraph-Level Question-Answer
Pairs from Wikipedia. arXiv preprint arXiv:1805.05942 (2018).

[8] Xinya Du, Junru Shao, and Claire Cardie. 2017. Learning to ask: Neural question
generation for reading comprehension. arXiv preprint arXiv:1705.00106 (2017).

[9] Yifan Gao, Jianan Wang, Lidong Bing, Irwin King, and Michael R Lyu. 2018.
Difficulty Controllable Question Generation for Reading Comprehension. arXiv
preprint arXiv:1807.03586 (2018).

[10] Ian J Goodfellow, DavidWarde-Farley, Mehdi Mirza, Aaron Courville, and Yoshua
Bengio. 2013. Maxout networks. arXiv preprint arXiv:1302.4389 (2013).

[11] Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua
Bengio. 2016. Pointing the unknown words. arXiv preprint arXiv:1603.08148
(2016).

[12] Michael Heilman. 2011. Automatic factual question generation from text. Lan-
guage Technologies Institute School of Computer Science Carnegie Mellon University
195 (2011).

[13] Michael Heilman and Noah A Smith. 2010. Good question! statistical ranking
for question generation. In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics. Association for Computational Linguistics, 609–617.

[14] Wenpeng Hu, Bing Liu, Jinwen Ma, Dongyan Zhao, and Rui Yan. 2018. Aspect-
based Question Generation. (2018).

[15] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization
with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).

[16] Yanghoon Kim, Hwanhee Lee, Joongbo Shin, and Kyomin Jung. 2018. Im-
proving Neural Question Generation using Answer Separation. arXiv preprint
arXiv:1809.02393 (2018).

[17] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[18] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[19] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries.
Text Summarization Branches Out (2004).

[20] Bang Liu, Ting Zhang, Di Niu, Jinghong Lin, Kunfeng Lai, and Yu Xu. 2018.
Matching Long Text Documents via Graph Convolutional Networks. arXiv
preprint arXiv:1802.07459 (2018).

[21] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. 2015. Effec-
tive approaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025 (2015).

[22] Chris J Maddison, Daniel Tarlow, and TomMinka. 2014. A* sampling. In Advances
in Neural Information Processing Systems. 3086–3094.

[23] Diego Marcheggiani and Ivan Titov. 2017. Encoding sentences with graph con-
volutional networks for semantic role labeling. arXiv preprint arXiv:1703.04826
(2017).

[24] MatthewHonnibal. 2015. spaCy: Industrial-strengthNatural Language Processing
(NLP) with Python and Cython. https://spacy.io. [Online; accessed 3-November-
2018].

[25] Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Margaret Mitchell, Xiaodong
He, and Lucy Vanderwende. 2016. Generating natural questions about an image.
arXiv preprint arXiv:1603.06059 (2016).

[26] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In Proceedings of the
40th annual meeting on association for computational linguistics. Association for
Computational Linguistics, 311–318.

[27] Adam Paszke, Sam Gross, Soumith Chintala, and Gregory Chanan. 2017. Pytorch:
Tensors and dynamic neural networks in python with strong gpu acceleration.

[28] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[29] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[30] Iulian Vlad Serban, Alberto García-Durán, Caglar Gulcehre, Sungjin Ahn, Sarath
Chandar, Aaron Courville, and Yoshua Bengio. 2016. Generating factoid questions
with recurrent neural networks: The 30m factoid question-answer corpus. arXiv
preprint arXiv:1603.06807 (2016).

[31] Linfeng Song, Zhiguo Wang, Wael Hamza, Yue Zhang, and Daniel Gildea. 2018.
Leveraging Context Information for Natural Question Generation. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 2 (Short Papers),
Vol. 2. 569–574.

[32] Sandeep Subramanian, TongWang, Xingdi Yuan, Saizheng Zhang, Yoshua Bengio,
and Adam Trischler. 2017. Neural Models for Key Phrase Detection and Question
Generation. arXiv preprint arXiv:1706.04560 (2017).

[33] Xingwu Sun, Jing Liu, Yajuan Lyu, Wei He, Yanjun Ma, and Shi Wang. 2018.
Answer-focused and Position-aware Neural Question Generation. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.
3930–3939.

[34] Duyu Tang, Nan Duan, Tao Qin, Zhao Yan, and Ming Zhou. 2017. Question
answering and question generation as dual tasks. arXiv preprint arXiv:1706.02027
(2017).

[35] Duyu Tang, Nan Duan, Zhao Yan, Zhirui Zhang, Yibo Sun, Shujie Liu, Yuanhua
Lv, and Ming Zhou. 2018. Learning to Collaborate for Question Answering and
Asking. In Proceedings of the 2018 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume
1 (Long Papers), Vol. 1. 1564–1574.

[36] Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni,
Philip Bachman, and Kaheer Suleman. 2016. Newsqa: A machine comprehension
dataset. arXiv preprint arXiv:1611.09830 (2016).

[37] Kaichun Yao, Libo Zhang, Tiejian Luo, Lili Tao, and Yanjun Wu. 2018. Teaching
Machines to Ask Questions.. In IJCAI. 4546–4552.

[38] Xingdi Yuan, Tong Wang, Caglar Gulcehre, Alessandro Sordoni, Philip Bach-
man, Sandeep Subramanian, Saizheng Zhang, and Adam Trischler. 2017. Ma-
chine comprehension by text-to-text neural question generation. arXiv preprint
arXiv:1705.02012 (2017).

[39] Ting Zhang, Bang Liu, Di Niu, Kunfeng Lai, and Yu Xu. 2018. Multiresolution
Graph Attention Networks for Relevance Matching. In Proceedings of the 27th
ACM International Conference on Information and Knowledge Management. ACM,
933–942.

[40] Yuhao Zhang, Peng Qi, and Christopher D Manning. 2018. Graph Convolution
over Pruned Dependency Trees Improves Relation Extraction. arXiv preprint
arXiv:1809.10185 (2018).

[41] Yao Zhao, Xiaochuan Ni, Yuanyuan Ding, and Qifa Ke. 2018. Paragraph-level
Neural Question Generation with Maxout Pointer and Gated Self-attention Net-
works. In Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing. 3901–3910.

[42] Qingyu Zhou, Nan Yang, Furu Wei, Chuanqi Tan, Hangbo Bao, and Ming Zhou.
2017. Neural question generation from text: A preliminary study. In National
CCF Conference on Natural Language Processing and Chinese Computing. Springer,
662–671.

[43] Qingyu Zhou, Nan Yang, Furu Wei, and Ming Zhou. 2018. Sequential Copying
Networks. arXiv preprint arXiv:1807.02301 (2018).

https://spacy.io

	Abstract
	1 Introduction
	2 Problem Definition and Motivation
	2.1 Answer-aware Question Generation
	2.2 What to Ask: Clue Word Prediction
	2.3 How to Ask: Copy or Generate

	3 Model Description
	3.1 The Passage Encoder with Masks
	3.2 The Question Decoder with Aggressive Copying
	3.3 A GCN-Based Clue Word Predictor

	4 Evaluation
	4.1 Datasets, Metrics and Baselines
	4.2 Experiment Settings
	4.3 Main Results
	4.4 Analysis

	5 Related Work
	6 Conclusion
	References

