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ABSTRACT

Recommender systems that can learn from cross-session data to

dynamically predict the next item a user will choose are crucial for

online platforms. However, existing approaches often use out-of-

the-box sequence models which are limited by speed and memory

consumption, are often infeasible for production environments,

and usually do not incorporate cross-session information, which is

crucial for effective recommendations. Here we propose Hierarchi-

cal Temporal Convolutional Networks (HierTCN), a hierarchical

deep learning architecture that makes dynamic recommendations

based on users’ sequential multi-session interactions with items.

HierTCN is designed for web-scale systems with billions of items

and hundreds of millions of users. It consists of two levels of mod-

els: The high-level model uses Recurrent Neural Networks (RNN)

to aggregate users’ evolving long-term interests across different

sessions, while the low-level model is implemented with Tempo-

ral Convolutional Networks (TCN), utilizing both the long-term

interests and the short-term interactions within sessions to pre-

dict the next interaction. We conduct extensive experiments on a

public XING dataset and a large-scale Pinterest dataset that con-

tains 6 million users with 1.6 billion interactions. We show that

HierTCN is 2.5x faster than RNN-based models and uses 90% less

data memory compared to TCN-based models. We further develop

an effective data caching scheme and a queue-based mini-batch

generator, enabling our model to be trained within 24 hours on a

single GPU. Our model consistently outperforms state-of-the-art

dynamic recommendation methods, with up to 18% improvement

in recall and 10% in mean reciprocal rank.
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For many web applications, making item recommendations that

match users’ interests is of key importance. Effective recommenda-

tions greatly improve users experience and retention, which leads

to long-term increase in engagement. In real-world scenarios, user’s

interests dynamically shift and evolve over time. While interests of

a user across different sessions might depend on their long-term

interests and are hence somewhat stable, the short-term in-session

interests tend to evolve rapidly. Therefore, an ideal recommender

system should be able to capture both levels of user’s dynamic

interests and update those interests in real-time based on user’s

interactions.

The most direct data sources to build a recommender system are

users’ past sequences of interactions, which are abundant and well

structured. Currently, rule-based models are still widely used to

make dynamic recommendations. Many works have shown that

rule-based models, e.g., recommending the items with the largest

number of interactions, is in fact a very strong baseline [12, 23].

Recent years have witnessed the power of sequence-based deep

learning models in computer vision [22], natural language pro-

cessing [19], and graph structured data [37]. In addition, recent

works have applied sequence models for dynamic recommender

systems [12, 31, 35] as well. These techniques usually involve using

a specific sequence model, such as RNN or Convolutional Neural

Networks (CNN), to encode users’ past interactions into a latent

feature space, which is then used for future predictions.

However, none of these approaches is suitable for recommender

systems that scale to modern web-scale production environments

with hundreds of millions of user, billions of items and tens of bil-

lions of interactions per day. In particular, rule-based models fail

to perform well in complex large-scale tasks. Purely RNN-based

or CNN-based approaches do not capture the hierarchical nature

of in- and cross-session user interests. In addition, RNN-based ap-

proaches are slow and difficult to train on massive data due to issues

with gradient backpropagation. CNN-based approaches have high

memory consumption, and do not involve smooth and interpretable

latent representations than can be reused for down-stream tasks.

Here we propose Hierarchical Temporal Convolutional Net-

works (HierTCN), a novel neural architecture for modeling users’

sequential interactions, which enables real-time large-scale rec-

ommender systems. We design our model with modern web-scale

recommender system production environment in mind; therefore,

HierTCN is memory-efficient and fast to compute. HierTCN con-

sists of two levels of models to capture hierarchical levels of user

interests. The high-level model uses RNN to capture users’ evolving

long-term interests across sessions, while the low-level model is

implemented with TCN, utilizing both a user’s long-term interests

and the short-term interactions within sessions to output a dynamic
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user embedding and make recommendations. We apply HierTCN

to a public dataset as well as a large private dataset with 1.7 bil-

lion training examples. We show that HierTCN has the following

benefits over existing approaches:

(1) HierTCN has a significant performance improvement over

existing deep learningmodels by about 30% on a public XING

dataset and 18% on a private large-scale Pinterest dataset.

(2) Comparedwith RNN-based approaches, HierTCN is 2.5 times

faster in terms of training time and allows for much easier

gradient backpropagation.

(3) Compared with CNN-based approaches, HierTCN requires

roughly 10% data memory usage and allows for easy latent

feature extraction.

Based on HierTCN, we build a dynamic recommender system that

scales to millions of users and billions of interactions. In terms

of scale, it is at least 100 times larger than existing dynamic deep

learning based recommender systems. The HierTCN-based recom-

mender system features in the following components:

(1) A framework for joint modeling the dynamics of millions of

users and items, which is not possible by existing approaches.

(2) An efficient offline training pipeline for HierTCN, which

consists of efficient data caching and mini-batch generator.

(3) An efficient online inference pipeline that enables real-time

recommendations using HierTCN.

2 RELATEDWORK

Sequence models. CNNs and RNNs are two important architec-

tures for sequence modeling. The sequential nature of RNN has

made it the default choice for sequence modeling, and Long short-

term Memory (LSTM) [13] and GRU [4] are the two most popular

RNN variants. CNN has a long history of its application to sequence

modeling as well [18]. 1D CNNwith dilated convolutions have been

shown to be powerful for audio data [21]. The idea has been further

developed by [2] and is summarized as Temporal Convolutional

Network (TCN), demonstrating its capability of modeling sequences

in general. Our work here builds on this line of work but extends it

by making it feasible for modeling hierarchical user interests and

large-scale production environments.

Static recommender systems. Recently, there has been a surge

of interest in applying deep learning to recommendation systems.

Several approaches treat user interactions as static information by

ignoring the temporal dimension, and try to learn a static similarity

matrix between users and items [7, 11, 14, 26]. In contrast, our work

explicitly considers the dynamics of user-item interactions through

sequence modeling.

Dynamic recommender systems. RNN is the most widely used

architecture for dynamic recommender systems [6, 12, 16, 23, 34].

Concretely, [34] captures temporal aspects of user-item interac-

tions and uses LSTM cell coupled with stationary factors to identify

movie popularity fluctuations. [16] interpolates k-nearest-neighbor

method with a session-based RNN [12] and demonstrates perfor-

mance gains over static recommender systems. Recently, [6, 32]

combine point process models with the RNN-style state update

functions to capture the co-evolution of user and item embeddings.

However, these works only use one RNN network and do not explic-

itly consider multi-session settings. [23] is the most relevant work

with our paper, where a hierarchical Gated Recurrent Units (GRU)

framework is proposed. Our work differs in the way we design the

hierarchy, the application of the TCN model, and many practical

techniques that allow for deployment on real-world large-scale

problems. Experimental results also show significant performance

improvement of our model in both accuracy and speed. Further-

more, TCN-based sequence models remain largely unexplored for

recommender systems, except for a very recent preprint [38]. In

comparison, our work significantly alleviates the memory consump-

tion issue of TCN which restricts its large-scale application, and

explicitly models different levels of user interests.

3 PROPOSED MODEL

3.1 Problem Setup

We consider the problem of building a dynamic recommender sys-

tem that adapts to users’ preferences in real-time. For each user, we

observe a sequence of items c = (c1, c2, ...cn ) that are impressed to

a user, where ct ∈ Rd×mt
are the embeddings ofmt impressions at

time t . The user interacts with some subset of the impressed items,

which are denoted as x = (x1, x2, ...xn ), where xt ∈ Rd is the em-

bedding of the interacted item at time step t , with n being the total

number of interactions for the user. In our context, an interaction

xt refers to positive actions such as clicking, saving, sharing, or

buying an item, while impressions ct refer to just viewing items.

In addition, we assume that interactions can be segmented into

sessions using a function q(·), such that i = q(t) indicates that the
time step t belongs to session i . Our goal is to learn a function that

predicts xt from c≤t and x<t .

3.2 High-level Sketch of Our Approach

Our solution is based on inferring user and item embeddings from

the historical data (x, c). We note that typically users’ interests vary

significantly within sessions. Hence, it is crucial to update user

embeddings in near real-time in order to model their short-term

interests accurately. On the other-hand, item embeddings can be

fairly stable and only require update after regular time-intervals

and in-between these intervals they can be considered static for

the sake of efficiency. In practice, we update item embeddings daily,

whereas user embeddings are updated in near real-time. This choice

is discussed in detail in Section 3.6.1.

The main goal of our recommender system is to predict the

next interaction from a set of candidate items. We formulate the

problem using a function fθ (·) that infers the user embeddings ut ,
then compute the similarity between ut and the candidate item

embeddings to produce an unnormalized conditional distribution

p(xt |x<t ). Specifically,

p(xt |x<t ) = S(xt , ut ); ut = fθ (x<t ) (1)

where fθ (·) is implemented as a deep neural network, and S(·) is a
scoring function, e.g., a dot product, that measures the similarity

between xt and ut . To finally make a recommendation, we eval-

uate p(xt |x<t ) over a pool of candidate items and rank the items

in descending order. When the impression data c is known, the
candidate pool consists ofmt impressions at time step t ; otherwise,
the candidate pool could be all the items, a random subset of all the



items, or a selection of items via some simple heuristics. Next, we

review the key ingredients that constitute fθ (·).

3.3 Single-level Sequence Models

We review the two recent state-of-the-art sequence models, which

serve as the building blocks of our model.

3.3.1 Recurrent Neural Networks. RNNs are naturally designed for

modeling sequences. RNN maintains a hidden state vector that is

updated with new inputs using the following update function:

st = σ (Wxt + Ust−1) (2)

where xt is the input at time step t , st is the hidden state, andW,U
are trainable parameters. RNNs are known to suffer from vanishing

gradient problem, and Gated Recurrent Unit (GRU) is a popular

model that mitigates the issue [4]. The update function of a GRU

can be written as

gt = σ (Wдxt + Uдst−1)
rt = σ (Wr xt + Ur st−1)

ht = tanh(Whxt + Uh (st−1 ⊙ rt))
st = (1 − gt ) ⊙ ht + gt ⊙ st−1

(3)

where xt is the input at time step t , st is the hidden state, gt is the
update gate, rt is the reset gate, ht is the candidate activation, σ (·)
is the sigmoid function, and Wд ,Wr ,Wh ,Uд ,Ur ,Uh are trainable

parameters. A Multilayer Perceptron (MLP) with ReLU activation

is then used to output prediction ut+1:

ut+1 =W(2)
ReLU(W(1)st + b(1)) + b(2) (4)

where W(1),W(2), b(1), b(2) are trainable parameters. Overall, GRU

is a satisfying model for fθ (·), as ut+1 depends on all the previous

interactions x≤t .

3.3.2 Temporal Convolutional Networks. TCN is a special type of

1D CNN, which is a natural way to encode information from a

sequence [2]. A vanilla 1D convolutional layer can be written as

F (xt ) = (x ∗ f)(t) =
k−1∑
j=0

fTj xt−j , t ≥ k

u = (F (xk ), F (xk+1), ..., F (xn ))
(5)

where x is the input sequence, u is the output sequence, and f ∈
Rk×d is a convolution filter with size k . A 1D CNN is then con-

structed by stacking several vanilla 1D convolutional layers. How-

ever, 1D CNN is restricted by its shrinking output size and limited

receptive fields when being applied to model sequences, while TCN

features with two techniques that solve these problems namely

causal convolutions and dilated convolutions.

Causal convolutions. As is shown in Equation 5, a vanilla 1D

convolutional layer takes as input a lengthn sequence and outputs a

lengthn−k+1 sequence. The output can shrink further if more such

layers are stacked together. This property can be problematic in our

domain, as we want our model to make predictions at every time

step and make updates in real-time. A causal convolutional layer

solves the problem by concatenating a length k − 1 zero padding at

the beginning of the input sequence. Furthermore, it ensures that

there is no information leakage from the future into the past, which

is crucial when predicting future interactions. Concretely,

F (xt ) = (x ∗ f)(t) =
k−1∑
j=0

fTj xt−j x≤0 := 0

u = (F (x1), F (x2), ..., F (xn ))
(6)

This formulation ensures that the output sequence u is well-defined

over each time step, and prediction ut only depends on input x≤t .
Dilated convolutions. Another issue with vanilla 1D CNN is that

it has a receptive field linear to the number of layers, which in our

case is undesirable since we aim to model long-term dependencies.

Dilated convolution is a technique that allows for receptive fields

exponential to the number of layers. Specifically, when combining

with causal convolution, the r th level dilated convolutional layer

can be written as

F (xt ) = (x ∗lr f)(t) =
k−1∑
j=0

fTj xt−lr ·j x≤0 := 0

u = (F (x1), F (x2), ..., F (xn ))
(7)

where lr is the dilation factor which can be set as (k − 1)r−1 to

achieve exponentially large receptive field. We refer to this formu-

lation in Equation 7 as temporal convolutional layer.

A Temporal Convolutional Network (TCN) is then constructed

by stacking multiple temporal convolutional layers. To facilitate

training a deep TCN, a common practice is to organize temporal

convolutional layers into blocks, and add residual connections [10]

between blocks. By setting a proper size of filter and number of

layers, ut+1 can depend on the full historical interactions x≤t .

3.4 Design Choices of Hierarchical Sequence

Models

It is reasonable to consider using one of the above single-level se-

quence models to predict users’ future interactions based on their

past interactions. However, this formulation omits the session infor-

mation which implies a hierarchy of user interests. Users typically

have long-term interests that span across multiple sessions. These

interests need to be updated after the end of each session, i.e. in the

order of few hours to days. On the other hand, users’ short-term in-

terests are reflected via the interactions within each session, which

must be updated in the order of a few seconds. In principle, we

could include the session information as a feature to the single-level

sequence models, enabling them to learn the short- and long-term

interests. However, our experiments show that this approach does

not work well in practice. The issue is that such an approach does

not have the inductive bias over the hierarchy of user interests and

thus fails to generalize to unseen cases.

Rather than directly applying single-level sequence models, we

impose the inductive biases over users’ hierarchical interests via

incorporating the hierarchical structure in the design of the neural

network architecture. Specifically, our hierarchical model has a

low-level component that learns from interactions within a session,

and a high-level component that carries over information across

sessions. The low-level component outputs a user embedding ut



Figure 1: Visualization ofHierTCN architecture. HierTCN generates predictions u1, u2, ...un based on a sequence of interactions

x1, x2, ...xn . The high-level model (blue) is implemented with GRU which is updated by an aggregation of each session of

interactions using function AGG(·). The low-level model (orange) uses TCN to predict user embeddings at each time step,

based on a user’s past interactions within the session and the hidden state si of the high-level model. x̂, ŝ are the default start
tokens, which are used to produce the first output for the low-level model and the high-level model, respectively.

using a neural network fω (·), which can be written as:

ut = fω ((xi |∀q(i) = q(t), i < t), sq(t )) (8)

where (xi |∀q(i) = q(t), i < t) is the sequence of within-session

item embeddings before time step t , and sq(t ) represents a user’s
long-term interest which is modeled by a high-level component:

sq(t ) = fϕ ((xi |∀q(i) < q(t))) (9)

where fϕ (·) is the high-level model that summarizes the sequence of

interactions before the session q(t). In the remainder of this section,

we will discuss different ways of designing hierarchical sequence

models over multi-session data.

3.4.1 Choices of sequence models. The low-level model focuses

on predicting the next interaction, based on both within-session

interactions and the high-level information. The task is similar to

making sequential prediction without considering the session struc-

ture, but over a much shorter sequence compared with taking all

historical interactions of a user as input. Although RNN is generally

much slower than TCN since the computation cannot be paralleled,

both RNN and TCN can be chosen to represent fω (·).
For the high-level model, the goal is to model a user’s long-

term interests. For this task, RNN has a natural advantage, be-

cause it maintains a hidden representation over different time steps,

which can be naturally interpreted as a representation of the user’s

long-term interests. In contrast, TCN calculates the output directly

through layers of convolution. Since there is no hidden state being

maintained, the output is less smooth and interpretable, which is

undesirable, especially when we would like to model a relatively

stable long-term interests for all users. Moreover, TCN requires tak-

ing the raw input sequences as input. For the high-level model, this

requirement corresponds to keeping track of users’ entire history

of interactions whenever inference is needed, resulting in high data

memory usage, which is undesirable for large-scale implementation.

Thus, we conclude that RNN is more suitable for representing fϕ (·).

3.4.2 Choices of combining different levels of models. There are
two problems to consider when trying to combine the low-level

and the high-level model. The first problem is how to condition

the low-level prediction on the high-level information, to which

there are two approaches. The first approach is to use the high-

level representation to initialize the low-level model; the second

approach is to enforce the high-level representation propagated

into the low-level model at each time step. These two approaches

are first explored in [23], and we refer to them as Init connection
and Full connection, respectively.

The second problem is to update the high-level model with low-

level information. Suppose a user has n total interactions overm
sessions, and function AGG(·) aggregates the embeddings within a

session whose output is then used to update the high-level model.

[23] explores using the low-level model as the aggregation func-

tion, where the final hidden state of a RNN is used to update the

high-level model. However, this approach complicates the path

of gradient backpropagation, as the longest backpropagation path

has a length of n. In addition, the method couples the training of

the low-level model and the high-level model; consequently, the

biased low-level model at the start of training can negatively affect

the training of the high-level model, resulting in a slow conver-

gence. In contrast, we propose to use a simpler AGG(·) function,
e.g., the Mean(·) pooling function, by assuming that the ordering

of within-session interactions carries little information. Using a

Mean(·) pooling function only results in a length-m backpropaga-

tion path and decouples the training of the low-level model and the

high-level model. We empirically find that this approach converges

much faster and provides much better prediction performance.



3.5 HierTCN

Based on the discussions in Section 3.4, we design HierTCN, an

efficient and scalable hierarchical sequence model.

3.5.1 Model design. HierTCN consists of a high-level model imple-

mented with GRU and a low-level model implemented with TCN.

The long-term user interests are represented via GRU’s hidden

state. The hidden state is updated by an aggregation over item em-

beddings within each session, using the Mean(·) pooling function.

Specifically, after all the interactions in a session q(t) have been
observed, user’s long-term interests, represented as the GRU hidden

state sq(t ), are updated using the following equation:

sq(t ) = GRU(sq(t )−1,Mean((xi |∀q(i) = q(t)))) (10)

where q(t) refers to the session that contains time step t , (xi |∀q(i) =
q(t)) is the sequence of item embeddings in the session q(t), and
GRU(·) is a GRU described in Section 3.3.1.

The low-level TCN model represents short-term interests of the

users and predicts their next interactions within the session. We

use the Full connection (Section 3.4.2), i.e., include sq(t ) as the input
to the TCN at each time step. TCN outputs a prediction ut , which
can be interpreted as a dynamic user embedding. Concretely,

ut = TCN((concat(xi , sq(t )−1)|∀q(i) = q(t), i < t)) (11)

where concat(·) concatenates an input item embedding with the

corresponding high-level hidden state, (xi |∀q(i) = q(t), i < t) is the
sequence ofwithin-session item embeddings before time step t , sq(t )
is passed from the high-level model and propagates its gradients

into the high-level model when being trained, and TCN(·) is a TCN
described in Section 3.3.2.

To output a final recommendation, HierTCN uses dot product be-

tween user and item embeddings as the scoring function to compute

the unnormalized distribution p(xt |x<t )

p(xt |x<t ) = xTt ut (12)

We then compute p(xt |x<t ) over the items in a candidate pool and

rank the items in descending order, and output the top k items as

the final recommendations. The overall architecture of HierTCN is

visualized in Figure 1.

3.5.2 Objective function. In this section, we discuss the possible

objective functions than can be used to train HierTCN when being

applied to recommender systems. The performances of differ ob-

jective functions are compared in Section 4.4.1 When items can be

represented as real-value vectors, the following objective functions

are commonly used.

• L2 loss The simplest objective function would be minimizing

the L2 distance between the user embedding and the interacted

item embedding:

min | |xt − ut | |2 (13)

• Noise Contrastive Estimation (NCE) This objective is first

proposed by [8], and is popularized by the Word2Vec paper [20].

This objective function makes use of the negative samples. Specif-

ically, the objective function encourages the user embedding to be

similar to the positive item embedding, while enforcing the user

embedding to be different from the negative items’ embeddings.

NCE employs the following formulation:

min− log(σ (xTt ut )) −
∑
i
− log(σ (−cTtiut )) (14)

• Bayesian personalized ranking (BPR) [24] proposes using

the following BPR objective function, which can be interpreted

as maximizing the posterior estimator derived from a Bayesian

analysis of the item recommendation problem:

min−
∑
i
log(σ (cTtiut − xTt ut )) (15)

• Hinge loss Hinge loss is based on the idea of max margin learn-

ing [30], which has the following form:

min

∑
i
max

{
0,δ + cTtiut − xTt ut

}
(16)

When items do not come with features and thus are represented

as one-hot vectors, the following cross entropy loss can be used:

• Cross entropy lossWhen xt are one-hot vectors, cross entropy
loss can be written as

min−xTt log(ut ) (17)

3.5.3 Regularization and Normalization. There aremany techniques

to facilitate model convergence and prevent overfitting, and we

adopt the dropout [29] and batch normalization [15] in the HierTCN

model for both TCN and GRU modules. These techniques are not

widely adopted for sequence models, and we provide a thorough

discussion in this section.

Dropout. Dropout can be easily implemented for TCN by randomly

dropping activations for the subsequent layers. For RNN, normally

dropout is applied at the input, the output and the state transition

function [1]. However, the benefits of applying dropout for state

transition function are in fact doubtful because early state informa-

tion can be wiped out by an exponential factor over the sequence

length n. For recommender systems where users usually generate

long interaction sequences, this approach is especially undesirable.

We use the following approach [27] to applying dropout for GRU

transition. Specifically, dropout is only applied to the candidate

activation ht , and only the last equation in Equation 3 is modified

into st = (1 − gt ) ⊙ D(ht ) + gt ⊙ st−1, where D(·) is the dropout
function. This technique does not wipe out information from the

last time step, while still adding randomness to the state transition

to prevent overfitting.

Batch normalization. When carrying out batch normalization,

we find it necessary to keep track of the average statistics over each

time step independently [5]. For dynamic recommender systems,

since different users can have diverse sequence lengths, a common

technique is to zero pad all the sequences to the same length. When

updating the average statistics, it is important to mask out zero

padded values in the batch normalization layer, in order to prevent

it from using these meaningless values to update the statistics.

3.6 HierTCN for Real-world Recommender

Systems

In this section, we discuss how to apply HierTCN to build a real-

world dynamic recommender system. Specifically, we propose a

general framework that allows for a joint update of user and item



embeddings, and discuss some key techniques to ensure efficient

model training and inference.

3.6.1 Joint modeling of user and item embeddings. When applying

HierTCN for recommender systems, we propose two separate up-

date mechanism: (1) User interests change rapidly and thus their

embeddings get updated in real-time. (2) Item information changes

more slowly and thus we update item embeddings on a daily sched-

ule. This choice turns out to be very important in practice. Existing

approaches that learn latent variables over all the interactions in

a global chronological order between all the users and items [6]

cannot scale to billions of interactions that are observed in a real-

world recommender system. Such models become computationally

prohibitive and infeasible for large datasets.

We side-step this problem by designing a two-phase update

scheme. In the first phase, item embeddings are generated. The sec-

ond phase considers the item embeddings fixed and only generates

user embeddings.

Update of item embeddings. In the first phase, we first build

an item graph based on user-item interactions, where each node

represents an item and an edge is built if two items are interacted

by the same user within a short period of time. Then, we compute

the node embedding for each item, which integrates both visual

and textual features as well as the structural features of the item

graph using graph convolutional neural networks (GCN) based

on localized graph convolutional layers [36], whose computation

can be paralleled on a distributed system. Specifically, each node is

initialized with the concatenated visual and textual embeddings of

the item. We then apply 2 layers of localized graph convolutional

layers to compute the node embedding for a node u, where the l th

layer can be written as

n(l )u = AGG(ReLU(Q(l )z(l )v + q
(l ) |v ∈ N (u)))

z(l+1)u = ReLU(W(l )
concat(z(l )u ,n

(l )
u ))

(18)

where z(l )u is the l th level node embedding for node u, N (u) is the
local neighborhood of u, AGG(·) is an order invariant aggregation

function such as Mean(·) pooling, and Q(l ), q(l ),W(l )
are trainable

parameters. After gathering new user-item interactions, we update

the item graph and recompute the node embeddings for each item.

Update of user embeddings. In the second phase, we keep the

item embeddings fixed and train the HierTCN model using the past

interactions of users. Once the model is trained, any new within-

session or across-session activity leads to a relatively fast update of

the HierTCN model. Model can then be used in parallel to compute

user embeddings in real time.

Training user and item models. The GCN model is trained by

minimizing the following NCE-based objective function

− log(σ (zTu zv )) −CEvn∼Pn (u)[log(σ (−z
T
u zvn ))],∀v ∈ N (u) (19)

where Pn (u) is a negative sampling distribution for node u and C
is the number of negative samples, while HierTCN is trained with

the hinge loss described in Section 3.5.2. GCN model is trained

with about 7.5 billion samples and the HierTCN model is trained

with about 1.7 billion samples, more details of training the GCN

model are described in [36] and HierTCN training techniques are

discussed in 3.6.2.

Table 1: Statistics of the datasets (mean|std. deviation). Note
that XING dataset does not have the impression data.

Dataset XING Pinterest

Users 65,347 5,923,659

Items 20,778 74,202,787

Interactions 1,450,300 56,050,857

Impressions - 1,685,877,684

Sessions 535,747 23,354,523

Impressions per event - 9.8|8.6

Impressions per session - 25.8|51.1

Events per session 2.5|3.8 2.4|3.0

Sessions per user 8.2|7.0 3.9|4.7

Events per user 22.2|20.8 9.7|13.4

Impression per user - 284.6 | 252.0

Overall, this two-phase approach enables the dynamic modeling

of both user and item embeddings, which can be computationally

cost-prohibitive otherwise. We conduct extensive offline evaluation

on a subset of 6 million Pinterest users and present our results in

Section 4.

3.6.2 Efficient offline training of HierTCN. HierTCN is trained of-

fline with about 6 million users and 1.7 billion training examples

(Table 1). To conduct the training, we design an efficient offline

training pipeline for HierTCN, which includes the following key

components.

Item embedding cache. The item embeddings are represented

as 512 dimensional float vectors, thus directly storing 1.7 billion

interactions requires tens of terabytes of storage and even loading

all the data to memory takes a day. To speed up the data pipeline,

we first assign a universal ID to each of the 74 million items, and

only keep item IDs when saving the user interaction data. Then

we employ Linux huge page table [17] to cache all the item em-

beddings in a fixed chunk of memory. Finally, a sequence of item

embeddings can be fetched by a direct look-up in the page table

with a negligible query time. This approach enables us to load the

item embeddings once; then, any subsequent models can share the

embedding cache without the need to reload/rebuild the cache. In

practice, this approach can reduce the data loading time from a

day to a minute when launching a sequence model. Note that in

the online deployment setting, the item embedding cache is rebuilt

daily.

Queue-basedmini-batch generator. To train a HierTCN, a mini-

batch of training data should consist of the same number of sessions.

In practice, the number of sessions that a user has can range from

1 to several hundreds; thus, the common approach of doing zero

padding will cause huge amount of unnecessary data memory con-

sumption. To address the problem, we design a queue-based mini-

batch generator to significantly reduce memory consumption and

speed up training, based on the data loading scheme proposed in

[23]. The mini-batch generator first initializes B data queues where

B equals the batch size. Then an enqueue process loads a new user’s

sequence data and parses them by sessions, and enqueues the ses-

sions of data along with the user ID to the queue with the least

number of sessions. At the same time, a dequeue process takes a



number of sessions from each queue, with each session zero-padded

to the same length, then concatenates the sessions into batches and

feeds a batch of data into HierTCN. During computation, HierTCN

model constantly checks whether the user ID changes after a ses-

sion; if so, the model will reset the hidden state of the high-level

GRU to ensure each new user’s state is properly initialized. The

proposed mini-batch generator also naturally conducts the trun-

cated backpropagation technique [33], a key technique that ensures

stable training of RNN over long sequences.

3.6.3 Real-time inference. For real-time inference, the recommender

system consists of a mini-batch generator that produces mini-

batches and a trained HierTCN model that consumes the mini-

batches. The mini-batch generator can be paralleled by creating

multiple enqueue and dequeue processes, while the computation of

HierTCN model can be paralleled by deploying multiple copies of

the trained model, in order to achieve fast real-time computation.

Two of the key techniques are discussed below.

User hidden state cache. A real-time dynamic recommender sys-

tem requires efficient update of users’ hidden states. Similar to item

embedding cache, we cache all the users’ hidden states into the

memory, and maintain a dictionary that maps a user to the corre-

sponding hidden state. Whenever a user starts a session, the system

will read the hidden state of the user. After a session is closed, the

hidden state of a user is updated with the high-level GRU, and is

written to the original memory address.

Online queue-based mini-batch generator. We extend the of-

fline mini-batch generator into the online settings. Specifically, after

a user has interacted with an item, an enqueue process will fetch a

session of data that contains the user’s past interactions within the

session. In addition, the enqueue process reads the cached hidden

state of the user and concatenates the hidden state vector to all the

interactions within the session. Finally, the process enqueues the

session of data. At the same time, a dequeue process dequeues a

batch of sessions with each session zero-padded to the same length

and feeds them to HierTCN model. The process also retrieves the

recommendation results and sends the results to the web API, while

writing the updated hidden states to the cache.

4 EXPERIMENTS

4.1 Datasets

We use a public XING dataset and a large-scale private Pinterest

dataset. The statistics of the datasets are summarized in Table 1.

The aim of experimenting on a small-scale public dataset is to

demonstrate that HierTCN can achieve transferable and robust

performance, while rigorous and extensive evaluations are done

over the large-scale Pinterest dataset.

The public XING dataset is extracted from XING Recsys Chal-

lenge 2016 dataset [3], with about 11 thousand users and 500 thou-

sand interactions. The items do not come with features thus we

represent each item as a one-hot vector. The dataset also does not

have session information, thus we manually partition the interac-

tions using a 30-minute idle threshold. Following the prior work

[23], we remove interactions with type “delete” and do not con-

sider the interaction types in the data. We remove items with less

than 50 interactions and users with less than 10 or more than 1000

interactions.

The private Pinterest dataset is an internal dataset from Pin-

terest, with 6 million users, 56 million interactions and 1.7 billion

impressions over 3 months. We clean the dataset by removing users

with less than 10 or more than 1000 interactions. We represent

items using a Pinterest internal item graph based on user-item in-

teractions, with 3 billion nodes and 18 billion edges. Specifically,

each item is represented as a node, and we connect two items if an

user has interacted with both of them within a very short period of

time. Each item is initialized with 4096 dimensional visual features,

extracted from the 6-th fully connected layer of an image classifica-

tion network using VGG-16 architecture [28], and 256 dimensional

textual annotation features trained with Word2Vec [20]. A 2-layer

GraphSage model [9] is then trained over the item graph using

hinge loss function to differentiate positive and negative item sam-

ples. Finally, each item is represented by a 512 dimensional node

embedding vector. More details about learning the item embeddings

are discussed in [36].

4.2 Experimental Setup

4.2.1 Experimental setting. We consider two types of experiments.

The first is cold-start recommendations. We split all the data by user,

and select 80% of the users to train the model, 10% to tune the

hyper-parameters of the model and test on the remaining 10% users.

The second is warm-start recommendations. We select a fixed set of

users, then train the model on the first two months of data and test

on data in the following month. All the hyper-parameters remain

the same with the cold-start recommendation settings.

All the deep learning based models are trained with Adam opti-

mizer, with learning rate 0.001 and batch size 32. We stop training

the model when the validation error plateaus. We find that weight

normalization [25] does not help with the tasks we are experiment-

ing, while batch normalization [15] and dropout [29] is helpful for

the smaller XING dataset. For the large-scale Pinterest dataset, the

vanilla models without regularization perform well.

4.2.2 Evaluation metrics. Our primary goal is to predict the user

interaction in the next time step, which is evaluated by ranking the

ground truth interaction against a pool of candidates at the given

time step. For the XING dataset, the candidate pool is the set of

all the items, while for the Pinterest dataset, the candidate pool is

the impression data at the evaluated time step, which is given by a

separate production system and cannot be altered by the model.

For models that can directly produce the ranking of an item

(e.g., Maximum item similarity (MaxItem)), we directly use the

predicted ranking for evaluation. Formodels that can output specific

user embeddings, we compute the probability p(xt |x<t ) over the
candidate pool and rank the probability in descending order. We

repeat the same process over all the interactions for all the users in

the test data, and report various ranking statistics that are listed

below.

• Recall@K. Recall@K reports the proportion of times that the

ground truth interacted item is ranked within the top K list of

recommendations. Higher Recall@K is better.

• Mean Reciprocal Rank (MRR). This is a standard metric for

evaluating recommender systems, which is the average reciprocal



Table 2: Performance of cold-start recommendation on the XING dataset and the large-scale Pinterest dataset.

Dataset Metric HierTCN HierGRU HRNN [23] TCN GRU MV MaxItem

XING Recall@10 (Higher is better) 0.139 0.105 0.113 0.108 0.124 0.107 -

MRR (Higher is better) 0.071 0.037 0.040 0.038 0.043 - -

MRP (Lower is better) 0.121 0.161 0.149 0.198 0.141 - -

Pinterest Recall@1 0.206 0.184 0.174 0.194 0.195 0.1658 0.1487

Recall@5 0.663 0.639 0.619 0.653 0.655 0.6120 0.5843

Recall@10 0.855 0.839 0.828 0.850 0.852 0.8173 0.7921

MRR 0.402 0.380 0.366 0.391 0.392 0.3593 0.3400

MRP 0.304 0.326 0.338 0.313 0.311 0.3484 0.3724

Table 3: Performance of warm-start recommendation on the large-scale Pinterest dataset.

Dataset Metric HierTCN HRNN [23] TCN MV MaxItem

Pinterest Recall@1 0.202 0.188 0.183 0.174 0.155

Recall@5 0.667 0.650 0.641 0.631 0.600

Recall@10 0.855 0.848 0.838 0.830 0.801

MRR 0.399 0.386 0.379 0.370 0.348

MRP 0.313 0.324 0.336 0.346 0.374

rank for the items that a user actually interacts with. Higher MRR

is better.

• MeanRankPercentile (MRP).We divide the rank of the ground

truth interaction by the size of the candidate pool, and average

over all test cases. This is useful for Pinterest dataset where the

size of candidate pool vary over different interactions. Lower

MRP is better.

4.2.3 Baseline methods. We compare HierTCN with a variety of

baseline methods, which are summarized below. To ensure a fair

comparison, for all deep learning based model, we adjust the layer

number and hidden units number such that all the models have

very similar number of trainable parameters.

Rule-based models. Rule-based models maintain a pool Pt that
consists of the past k interacted item embeddings t for each user.

• Moving average (MV). The moving average model outputs the

average of all the item embeddings in Pt .
• Maximum item similarity (MaxItem) Rather than output a

prediction, the MaxItem model can only evaluate a given candi-

date item embedding. An evaluation score is calculated as the

highest dot product value between a candidate item embedding

and embeddings in Pt , which is then used for ranking the candi-

dates.

Single-level sequencemodels. Single-level sequencemodels take

sequences of user interactions without being partitioned into ses-

sions. To make a fair comparison, we include a session indicator,

marking the start of a session, as a input feature. Specifically, we

consider the following two sequence models:

• TCNWe implement a TCN model with 6 blocks of convolutional

layers, where each block consists of 2 temporal convolutional

layers that have 128 filters with size 5. The dilation factor of

each block is set to grow exponentially with the number of the

block, which is 1,2,4,8,16,32 in our scenario. We also add residual

connections [10] between each block to facilitate training the

model.

• GRU We construct a GRU model by stacking 4 layers of GRU

cells described in Equation 3, each with 200 dimensional hidden

state.

Hierarchical sequence models. We also compare HierTCN with

the state-of-the-art hierarchical deep learning model, as well as a

variant which we refer to as HierGRU.

• HRNNWe implement a hierarchical GRU model following the

paper [23]. Both high-level and low-level model are implemented

with 4 layers of GRU cells, each with 128 dimensional hidden

state. The high-level GRU’s hidden state is used to initialized the

low-level GRU, while the final hidden state of the low-level GRU

is used to update the high-level GRU.

• HierGRU We implement a baseline version of HierTCN, where

the only difference is that we change the low-level model from

TCN to GRU. Both the high-level GRU and the low-level GRU has

4 layers of GRU cells, each with 128 dimensional hidden state.

• HierTCN This is our proposed model. The high-level model is a

4-layer GRU, each layer has 128 dimensional hidden state. The

low-level model is a TCN with 4 blocks of convolutional layers,

and the other settings are the same as a single-level TCN.

4.3 Experimental results

4.3.1 Results on Public XING dataset. Table 2 summarize the per-

formance of all the models in XING dataset. Since items are rep-

resented as one-hot vectors, MV model cannot rank properly for

unseen items thus only Recall@10 is reported. For the same reason,

MaxItem is not implemented as the dot product between one-hot

vectors is not meaningful. Our model significantly outperforms all

the baseline methods by a large margin, and achieves 30.4% average

performance improvement over the best baseline method (GRU).

We observe that hierarchical GRU models converge very slowly,



Figure 2: Summary of HierTCN’s performance over users

with different number of historical interactions. Lower is

better.

Figure 3: Summary of HierTCN’s performance when observ-

ing different number of interactions within a session.

Figure 4: Summary of HierTCN’s performance over sessions

that have different time gap with previous sessions.

which may result from the complex gradient propagation path. In

this task, all the models directly predict the probability of each

item over all possible items, resulting an output dimension of over

10 thousand. We train the models with the simplest cross entropy

loss, and people can use a more complex loss function including

[23] to achieve better performance. The aim here is not to achieve

the state-of-the-art performance on the XING dataset; rather, the

results are used to show that the proposed HierTCN model can

achieve more robust performance compared with baseline methods

even in this simplified setting.

Table 4: The total time to finish one epoch training for the

Pinterest dataset (in seconds).

Dataset Model Training

Pinterest HierTCN 295.3s

HierGRU 747.8s

HRNN [23] 693.1s

TCN 254.0s

GRU 776.8s

Table 5: Cold-start performance of HierTCN with different

objective functions. 10% of the training data are used for the

experiment.

Dataset Metric L2 NCE BPR Hinge

Pinterest Recall@1 0.167 0.192 0.183 0.201

Recall@5 0.611 0.642 0.632 0.657

Recall@10 0.817 0.838 0.832 0.851

MRR 0.360 0.386 0.377 0.396

MRP 0.349 0.322 0.331 0.309

4.3.2 Results on Large-scale Pinterest dataset. Table 2 and Table

3 summarize the performance of all the models in the large-scale

Pinterest dataset. For cold-start evaluation, HierTCN outperforms

the best hierarchical baseline by 18% in Recall@1, 10% in MRR.

The gain over the best single-level sequence model is 6% in Re-

call@1, 3% in MRR. The gain over the best rule-based model is 24%

in Recall@1, 13% in MRR. From the results, we can see that deep

learning approaches perform much better than rule-based models,

since users are possible to interact with hundreds of millions of

items in Pinterest, and thus rule-based models are incapable of cap-

turing this complex dynamics. Among deep learning approaches, it

is interesting to see that hierarchical GRU models perform worse

than single-level sequence models; empirically, we find that hi-

erarchical GRU models converge slowly when we use the same

learning rate as other models (0.001), while experiencing perfor-

mance oscillation when we try to increase the learning rate. On

the contrary, HierTCN consistently outperforms the single-level

sequence models, and we do not observe issues for optimizing the

model. This indicates that the hierarchical structure does capture

more aspects of user interests. For warm-start evaluation, HierTCN

also significantly outperforms the baseline models, with on average

12% improvement in Recall@1 and 5% improvement in MRR, and

we can find similar observations from the results.

4.3.3 Running time. Table 4 summarizes the running time of dif-

ferent methods. We report the running time to finish one epoch

training for all the deep learning models. We observe that models

that make use of TCN are roughly 2.5 times faster than GRU-based

models, which supports the argument that TCN is generally much

faster than GRU. Moreover, adding the hierarchical structure in

HierTCN only slightly affects the computation speed, owing to the

fact that we only update the high-level model of HierTCN after

each session and we use an efficient mini-batch generator. The



Table 6: Effects of adding different regularizations to Hi-

erTCN. BN and Drop stands for batch normalization and

dropout.

Dataset Regularization None Drop BN Drop + BN

XING Recall@10 0.139 0.129 0.145 0.147

MRR 0.071 0.066 0.073 0.075

MRP 0.121 0.120 0.109 0.107

efficient mini-batch generator makes the training of hierarchical

GRU models even slightly faster than the single-level GRU model.

4.3.4 GPU memory consumption. GPU memory consumption con-

sists of the memory to store model parameters, which is the same

for all models in our experiments, and the memory to store the

input data. TCN model takes a huge amount of memory to store

the input data, because it has to keep the entire historical sequence

to make a prediction. In contrast, HierTCN only needs to store the

input sequence at each session. The specific reduction of memory

consumption varies with the number of sessions that a user has,

and we observe up to 90% reduction in the experiments.

4.4 Performance analysis

4.4.1 Choice of objective functions. Table 5 summarizes the re-

sults of using different loss functions for HierTCN on the Pinterest

dataset. We conduct experiments in the cold-start setting and use

only 10% of all the training data for this objective function com-

parison, thus the performance scores are worse than Table 2. We

observe that using hinge loss provides about 5% improvement of

Recall@1 and 3% improvement of MRR over the best competing loss

function (NCE). In addition, using negative samples significantly

improves the performance, and we observe 20% improvement of

Recall@1 and 10% improvement of MRR over L2 loss.

4.4.2 Effects of dropout and batch normalization. To make fair com-

parison with baseline methods, we do not add dropout or batch

normalization in the experiments. We conduct further experiments

to examine the effects of adding dropout and batch normalization.

From Table 6, we can see that adding dropout out alone does not

improve the model performance, while adding batch normaliza-

tion do help. When combining both techniques, there is further

performance improvement. In addition, when adding batch nor-

malization, we observe significant faster convergence; however,

the model eventually overfits, and thus doing early stopping is

necessary.

4.4.3 Model behavior analysis. We conduct further analyses to un-

derstand the performance of HierTCN under different scenarios.

We select MRP as the metric and lower is better. To examine the

overall performance of HierTCN, we summarize the performance

of HierTCN over users with different historical interactions in Fig-

ure 2. It is clearly shown that HierTCN’s performance increases

as more interactions are observed. We analyze the performance

of the low-level model by summarizing HierTCN’s performance

over different number of observed interactions within a session.

Figure 3 shows that as more interactions are observed within a

Figure 5: Recommendations given by different models. The

first row shows the past interactions of a user, and the fol-

lowing 3 rows show the top-6 recommendations at time step

6 made by different models. The image marked with a red

box is the ground-truth interaction.

session, the performance of HierTCN gets better. Finally, we exam-

ine the performance of the high-level model by summarizing the

performance of sessions that have different time gaps with previous

sessions. Figure 3 shows that as the session’s time gap increases,

a user’s behavior becomes less predictable and the performance

of HierTCN decreases. In summary, these analyses show that all

the components of HierTCN perform reasonably under different

scenarios.

4.4.4 Visualization of recommendations. Finally, we select a typical
example to illustrate the superior performance of HierTCN. The

first row in Figure 5 shows the past interactions of a user, which

includes items related to food and bed. The following three rows il-

lustrate the performance given by a rule-based model, a single-level

sequence model and HierTCN. From the results we can see that rule-

based model recommends all food-related items because they are

prevalent in the past interactions, TCN exaggerates the existence

of bed-related item and recommends too many items related to

furniture, and HierTCN reaches a balance between recommending

both types of items and achieves better performance.

5 CONCLUSION

In this paper, we have proposed Hierarchical Temporal Convolu-

tional Networks for real-time large-scale recommender systems.

By designing a novel hierarchical model using RNN and TCN, our

model efficiently captures different levels of user interests and com-

bines RNN’s benefits of maintaining long-term hidden states and

TCN’s ability of conducting efficient and effective computation.

We proposed a framework for large-scale dynamic recommender

systems and applied HierTCN to a real-world dataset that contains



millions of users and billions of activities. Compared with the state-

of-the-art methods, HierTCN achieves superior performance and is

much more scalable.
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