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ABSTRACT

Automatic fact-checking systems detect misinformation, such as
fake news, by (i) selecting check-worthy sentences for fact-checking,
(ii) gathering related information to the sentences, and (iii) infer-
ring the factuality of the sentences. Most prior research on (i) uses
hand-crafted features to select check-worthy sentences, and does
not explicitly account for the recent finding that the top weighted
terms in both check-worthy and non-check-worthy sentences are
actually overlapping [15]. Motivated by this, we present a neural
check-worthiness sentence ranking model that represents each
word in a sentence by both its embedding (aiming to capture its
semantics) and its syntactic dependencies (aiming to capture its
role in modifying the semantics of other terms in the sentence).
Our model is an end-to-end trainable neural network for check-
worthiness ranking, which is trained on large amounts of unlabelled
data through weak supervision. Thorough experimental evaluation
against state of the art baselines, with and without weak supervi-
sion, shows our model to be superior at all times (+13% in MAP
and +28% at various Precision cut-offs from the best baseline with
statistical significance). Empirical analysis of the use of weak su-
pervision, word embedding pretraining on domain-specific data,
and the use of syntactic dependencies of our model reveals that
check-worthy sentences contain notably more identical syntactic
dependencies than non-check-worthy sentences.
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Figure 1: Syntactic dependencies example (from [20]).

1 INTRODUCTION

The fast and wide spread of misinformation (as opposed to true
information) on social media [22, 25], and the increasing use of
social media as a source of news! has turned “fake news” into an
important societal problem on a scale that requires automated solu-
tions. An automated fact-checking [21] pipeline typically consists
of three steps: (i) selecting check-worthy sentences (i.e. sentences
that contain check-worthy claims and should be fact-checked), (ii)
gathering related information to those sentences, and (iii) using
this related information to infer the factuality of each check-worthy
sentence. Prior research has so far focused mainly on steps (ii) and
(iii), for instance by generating claim-specific queries and querying
search engines for relevant supporting information [12], focusing
on specific sources such as Twitter [1], or exploiting knowledge
graphs from e.g. Wikipedia [5]. These approaches assume an input
of check-worthy claims. Considerably less research has focused
on detecting such check-worthy claims, that is, determining not
whether a sentence is true or not, but whether a sentence contains
a check-worthy claim (and should be fact-checked) or not.

Most research on check-worthiness detection uses hand-crafted
features, such as bag-of-word representations, sentiment, and em-
bedding averages [7, 8, 10, 19]. In addition, most work in this
area does not explicitly account for the recent finding that the
top weighted terms in both check-worthy and non-check-worthy
sentences are actually overlapping [15], hence compromising the
effectiveness of bag-of-word based methods.

Motivated by the above, we present a neural check-worthiness
sentence ranking model that uses a dual sentence representation:
each word in a sentence is represented by both its embedding (aim-
ing to capture the semantics of that word from its context) and its

Uhttps://www.reuters.com/article/us-usa-internet-socialmedia/
two-thirds-of-american-adults- get-news-from-social-media- survey-idUSKCN1BJ2A8
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syntactic dependencies (aiming to capture the role of that word in
modifying the semantics of other words in the sentence, see Figure
1). We train the network with these dual representations end-to-
end. This allows to learn such descriptive features directly from
the input data, rather than relying on predetermined hand-crafted
features that may not be useful for the task, and hence to adapt the
representations to the domain. To tackle the problem of having very
little available training data, we use an existing check-worthiness
system to weakly label sentences, and we use this weakly labelled
dataset to pretrain our neural network. This is inspired by recent
strong results [18, 23] in various information retrieval tasks with
few labelled data, but large amounts of unlabelled data.

Thorough experimental evaluation against all state of the art
baselines on political speeches from the 2016 U.S. election, shows
our model to be superior in all comparisons (+13% in MAP and
up to +28% at various Precision cut-offs from the best baseline,
with statistical significance). We empirically trace this superior
performance to the use of syntactic dependencies in the sentence
representation, where we find check-worthy sentences to contain
notably more identical syntactic dependencies than non-check-
worthy sentences. Further analysis shows that the performance
benefits of weak supervision increase with the amount of data used,
and that embeddings trained on smaller domain-specific data, as op-
posed to general purpose embeddings trained on the larger Google
News corpus, increase effectiveness. In addition, despite using deep
learning (a family of models that is generally considered of low
interpretability [24]), the attention weighting used by our model
on a word level provides humanly interpretable output, where the
parts of the sentence that are important for the check-worthiness
prediction can be determined.

We contribute a competitive and interpretable end-to-end train-
able neural network model for check-worthiness ranking, which
uses a dual input representation of both word embeddings and
syntactic dependencies. Weak supervision is used to pretrain the
network on large amounts of unlabelled data.

2 RELATED WORK

Given a sentence (also referred to as statement) as input, Claim-
Buster [8, 9] outputs its check-worthiness score by extracting a
set of features (sentiment, statement length, Part-of-Speech (POS)
tags, named entities, and tf-idf weighted bag-of-words), and train-
ing a SVM classifier on these features to predict check-worthiness.
Patwari et al. [19] present a system called TATHYA that is based
on similar features, but that also includes as contextual features
sentences immediately preceding and succeeding the one being as-
sessed, as well as certain hand-crafted POS patterns. Gencheva et al.
[7] also extend the feature set used by ClaimBuster to include more
contextual features, such as the sentence’s position in the debate
text, and whether the debate opponent is mentioned. The work by
Gencheva et al. has been extended to both English and Arabic [10].
In the recent CLEF 2018 competition on check-worthiness detection
[17], Zou et al. [26] came first by using a large set of features (sim-
ilarly to the above mentioned work), and doing feature selection
with both a y?-test and a linear SVM using a L1 regularizer.

Prior work on neural networks for check-worthiness has been
done by Konstantinovskiy et al. [14], who use InferSent [6] to derive
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a universal neural sentence representation and then train a logistic
regression classifier on top of that. Similarly to our model, this
approach also uses neural sentence embeddings. However, unlike
our model, this approach uses universal sentence representations,
whereas we train our model end-to-end to learn the representations
directly from the input data, making the learning domain-specific.

In the related domain of sentence factuality detection Jimenez
and Li [11] present a neural approach with multiple word embed-
dings. They artificially generate additional non-factual sentences
to be used for training to increase robustness. Similarly to ours,
this work also presents neural approaches that combine multiple
word representations in order to improve performance. However,
whereas the infusion of artificially generated non-factual sentences
by Jimenez and Li [11] allows weak supervision of a single class,
we obtain weak labels independently of the type of sentence (i.e.
not on a single class).

3 NEURAL CHECK-WORTHINESS SENTENCE
RANKING

Given a set of sentences as input, the aim is to rank them in de-
scending order of check-worthiness. In order to better differentiate
between sentences of varying degree of check-worthiness, We cast
this as a ranking problem, as opposed to assigning a binary output
to each sentence, following prior work [7, 8, 10] . Note that any
ranked output can be made binary using an appropriate threshold,
in case a subsequent fact-checking pipeline requires binary labelled
sentences.

Given a set of sentences to be ranked, our model learns an end-
to-end trained representation of each sentence. We describe first the
representation of each word in the sentence (Section 3.1), followed
by the neural network architecture (Section 3.2).

3.1 Neural sentence representation

Our model uses a dual sentence representation: each word in a
sentence is represented by both its embedding and by its syntactic
dependencies. The word embedding aims to capture the semantics
of that word from its context. Embeddings of this type are generally
well understood and have been found effective for check-worthiness
detection [14]. The syntactic dependencies of a word aim to capture
the role of that word in modifying the semantics of other words in
the sentence, for instance by being the subject or predicate of the
sentence. We use a syntactic dependency parser [4] to map each
word to its dependency (as a tag) in relation to the sentence struc-
ture, which we then represent as a one-hot-encoding. Dependency
parsing is fast using state of the art tools (approximately 14,000
words per second) [4].

Our motivation is that syntactic dependencies may be impor-
tant for discriminating between common overlapping top-weighted
words in both check-worthy and non-check-worthy sentences. The
existence of common overlapping top weighted words in check-
worthy and non-check-worthy sentences is reported by Le et al.
[15] (see Figure 2 of [15] for examples), and to our knowledge, is
not explicitly addressed by any prior check-worthiness approach.
We posit that while these common top weighted words may not be
distinguishable by their word representation, they may be distin-
guishable by their syntactic role in the sentence.



Table 1: Statistics of the embedding training, evaluation, and
weakly labelled datasets.The evaluation dataset uses binary
labels, and the weakly labelled dataset continuous labels in
the interval [0, 1].

Dataset #docs  #sents. sents.length unique words mean label
Embed. tr. 15,059 609,322 16.66 86,244 -
Evaluation 7 2,602 14.04 3,694 0.05
Weakly lab. 161 37,732 16.53 13,314 0.24
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Figure 2: Histogram of the ClaimBuster scores used as the

weak labels for each presidential candidate.

3.2 Network architecture

Based on the above, each word in a sentence has two distinct en-
codings, that together represent the word. We use this double rep-
resentation of each word as input to a recurrent neural network
(RNN) with GRU [3] memory units. The output from each word in

the RNN is aggregated using an attention mechanism computed as
_ exp(score(h;))

! = Siexp(score(h;))’

cell at time t, and score(:) is a learned function that maps the output

to a scalar. The attention-weighted sum is fed to a fully connected
layer, from which the output is predicted using a sigmoid activation
function. We train the network using the RMSprop optimizer with
binary cross entropy as the loss function (details in Section 4.3).

o where h; is the output of the GRU memory

4 EXPERIMENTAL SETUP

We conduct two experiments: (I) we compare our model against
state of the art baselines without weak supervision; (I) we use the
ClaimBuster API (one of the baselines in experiment I) to weakly
label a dataset of unlabelled political speeches (as described in
Section 4.2) and we use this weakly labelled data to pretrain the
baselines and our model. ClaimBuster API is trained on a non-
publicly available dataset and should therefore be considered as a
black box baseline.

4.1 Baselines

We compare our model against these baselines (introduced in Sec-
tion 2), which have yielded state of the art performance at their
date of publication: (1) ClaimBuster and its pretrained ClaimBuster
API [8], (2) TATHYA [19], and the approaches by (3) Zou et al. [26],
(4) Gencheva et al. [7], and (5) Konstantinovskiy et al. [14].
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4.2 Data

We use three datasets for three different purposes: (1) the embedding
training dataset, used to train domain-specific embeddings for our
model?; (2) the evaluation dataset, used to compare our model to
the baselines without weak supervision; and (3) the weakly labelled
dataset, used to compare our model to the baselines with weak
supervision. We describe these next (see Table 1 for statistics).

The Embedding Training Dataset contains documents related
to all US. elections available through the American Presidency
Project3, e.g. press releases, statements, speeches, and public fundrais-
ers, resulting in 15,059 documents. We use this dataset to pretrain
a domain specific word embedding for our model (see Section 5.2).

The Evaluation Dataset consists of a total of 2,602 sentences
from 7 check-worthiness annotated political speeches from the 2016
U.S election. Out of these 7 speeches, 4 are by Donald Trump and are
made available by the CLEF 2018 lab on automatic identification
and verification of political claims [17]. The remaining are the
inauguration and acceptance speech of Donald Trump and the
acceptance speech of Hilary Clinton, and are made available by
the authors of ClaimRank [10]. We choose the available PolitiFact
annotated labels for this dataset.

The Weakly Labelled Dataset consists of all publicly available
speeches by Hillary Clinton and Donald Trump from the 2016 U.S.
election, which are available through the American Presidency
Project. This amounts to 37,732 sentences from 161 speeches not
occurring in the evaluation dataset. We use the public API* of
ClaimBuster [8] to weakly label each sentence in all speeches. The
ClaimBuster scores range from 0 to 1 (the higher the score, the more
check-worthy the sentence), and are thus continuous as opposed
to the binary labels from the evaluation dataset. The distribution
of ClaimBuster scores can be seen in Figure 2, where we see that
sentences by Hillary Clinton are overall labelled as slightly more
check-worthy than those by Donald Trump.

4.3 Tuning

We measure the effectiveness of the ranking outputted by our model
and the baselines using mean average precision (MAP), and average
precision at multiple cut-offs: P@5, P@10, P@20, and P@R, where
R is the number of check-worthy sentences in a given test set. We
optimize the MAP when tuning parameters.

We tune and evaluate the approaches using 7-fold cross valida-
tion, where the sentences from one speech (see Section 4.2) act as
testing data once, while sentences from the remaining speeches
are used for training and validation. We use the sentences of each
speech as input to the models. In all folds, we set aside 10% of the
training data for validation. Each fold-wise evaluation is repeated 5
times with randomly chosen validation data. We report the average
score of each metric across the folds and repetitions.

For ClaimBuster [9] and the model by Gencheva et al. [7], we
use the best performing setup described in [7]: a double layered
fully connected neural network with layer sizes of 200 and 50 re-
spectively. We validate these sizes by keeping the same ratio (4:1)
between the layers and test the largest sizes of {50, 100, 200, 400},

2None of the other approaches support training embeddings.
3https://web.archive.org/web/20170606011755/http://www.presidency.ucsb.edu/
4https://idir-server2.uta.edu/claimbuster/
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test batch sizes of {64, 128,256,512}, and use a learning rate of
0.0001. For the approach by Zou et al. [26] we use their multi-layer
perceptron model with two hidden layers with sizes of 100 and 8 as
per [26]. We validate these sizes by keeping the same ratio (12.5:1)
between layers and test the largest sizes of {50, 100, 200, 400} as
done earlier. For TATHYA [19] we use the same multi-classifier ap-
proach and the same parameters as described in the original paper.
For Konstantinovskiy et al. [14] we use the same logistic regression
approach as described in the original paper.

For our model, we evaluate the same layer sizes as above with a
ratio of 4:1 between the number of neurons in the GRU cell and the
single fully connected layer. We train the word embeddings using
the word2vec skip-gram model [16] on the embedding training
dataset of 15,059 domain specific documents described in Section
4.2. We use standard parameters with a window size of 5 and sample
25 negative samples per word. For the syntactic dependencies of
each word, we use the spaCy syntactic dependency parser [4]°.

For the experiment with weak supervision, the ClaimBuster
API returns a score from 0 to 1, indicating the degree of check-
worthiness estimated by the system. In each fold in the 7-fold cross
validation we find the threshold 7 that splits the data and makes
the fraction of check-worthy samples equal across the training
without and with weakly labelled training data. Using these splits
we evaluate two thresholding approaches: (1) Binarizing the labels
based on 7, and (2) truncating all values larger than 7 to the value of
7, and scaling the range [0, 7] into [0, 1]. In the cross validation, our
approach performs best with step (2) and the baselines perform best
with step (1) (these are the settings we report in Section 5). Note that
step (2) can be considered as soft thresholding, as the labels are not
binary. The weakly labelled data is used for pretraining the neural
models or added to the training data for traditional supervised
models.

5 RESULTS

Table 2 shows the results of the experimental comparison of our
model to the baselines without and with weak supervision. We see
that our model outperforms all baselines across all metrics (with
improvements ranging from +9-28%), except P@5 (only without
weak supervision) where our model is the second best perform-
ing approach. Note that P@k is known to be unstable, especially
at small values of k [2, 13]. The best performing baseline is the
approach of Konstantinovskiy et al. [14], the only other approach
using neural embeddings. This points out the effectiveness of neural
word embeddings for this task.

The difference in performance between ClaimBuster and the
ClaimBuster API is due solely to the quality of the training data
(it is otherwise the same approach) and illustrates the effect of
training data quality upon model performance. The fact that our
model still notably outperforms the ClaimBuster API baseline shows
the benefit of an end-to-end learned representation as opposed to a
feature engineered one, for this task.

Only ClaimBuster, the approach of Zou et al. [26], and our model
obtain notable improvements from the weakly labelled data (Claim-
Buster yields a performance similar to that of the ClaimBuster API).

5The syntactic dependency parser is available at https://spacy.io/

997

TATHYA [19], and the approaches by Gencheva et al. [7] and Kon-
stantinovskiy et al. [14] do not benefit from weak supervision, most
likely because feature-engineering is used as opposed to learning
the representation.

5.1 Syntactic dependency similarity between
check-worthy sentences

Our syntactic dependencies representations aim to discriminate
between top weighted words that are common in check-worthy
and non-check-worthy sentences based on the syntactic roles of
these words (see Section 3.1). To verify this we compute the average
overlap of unique syntactic dependency tags between the follow-
ing three types of randomly sampled sentence pairs: 1) Pairs of n
sampled check-worthy sentences, 2) pairs of n sampled non-check-
worthy sentences, and 3) mixed pairs of n sampled check-worthy
and n sampled non-check-worthy-sentences. We set n = 10 and
repeat the computations 1000 times. Table 3 displays the resulting
average overlaps and their standard deviation. We observe that
check-worthy sentence pairs have the highest average overlap of
syntactic dependencies, and non-check-worthy the lowest, but both
have a similar standard deviation. This indicates that syntactic de-
pendencies are more similar in check-worthy sentences than in
non-check-worthy sentences, and as such constitute a good discrim-
inator between check-worthy and non-check-worthy sentences that
otherwise contain an overlap of common top-weighted terms. Note
that the average overlap of 7 common syntactic dependencies in
check-worthy sentences practically applies to approximately half of
the words in those sentences (the average sentence length is 14.04
in that dataset — see Table 1). Mixed sentences (both check-worthy
and non-check worthy) have an average overlap in between that of
check-worthy and non-check-worthy sentences, but with a larger
standard deviation, indicating that syntactic dependencies from this
mixed group act as a mixed and less stable discriminating signal.

As an example of the overlap problem of common top-weighted
terms, consider the check-worthy sentence "Since president Obama
came into office another two million hispanic americans have fallen
into poverty" and non-check-worthy sentence "I'm running to be
a president for all americans". In these cases the words president
and americans are both important to describe the content, but have
different syntactic dependencies (compound/attr and nsubj/pobj,
respectively).

5.2 Impact of pretrained word embeddings

Our model is the only approach in Table 2 to have word embeddings
trained on a domain specific dataset. All other approaches either
use no word embeddings (ClaimBuster [8] and TATHYA [19]), use
global word embedding averages (Zou et al. [26] and Gencheva et
al. [7]), or use a universally trained sentence representation based
on global embeddings (Konstantinovskiy et al. [14]). To isolate the
effect of these domain-specific trained embeddings upon the perfor-
mance of our model, we run our method as described in Section 4.3
but vary the pretraining of the embeddings as follows: 1) using no
embeddings at all; 2) using randomly initialized embeddings which
are not pretrained; 3) using general purpose embeddings pretrained
with word2vec on Google News’; 4) using our pretrained domain

https://code.google.com/archive/p/word2vec/
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Table 2: Effectiveness of sentence check-worthiness ranking without and with weak supervision. A marks statistically signifi-
cant improvements with respect to the overall best baseline at the 0.05 level using a paired two tailed t-test. A marks statistically
significant improvements with respect to the best overall approach without weak supervision at the 0.05 level using a paired
two tailed t-test. Significance comparisons are done on the average metric-wise performance in each of the 5 repeated runs.

Without Weak Supervision With Weak Supervision

MAP P@5 P@10 P@20 P@R | MAP P@5 P@10 P@20 P@R
ClaimBuster API® 0.230 0219 0.176 0.159 0.138 | - - - - -
TATHYA [19] 0.136  0.072 0.062 0.074 0.039 | 0.147 0.061 0.047 0.060 0.043
ClaimBuster [9] 0.176  0.170 0.112  0.105 0.078 | 0.224 0.198 0.147 0.138 0.121
Zou et al. [26] 0.187 0.143 0.105 0.099 0.086 | 0.212 0.171 0.111 0.121 0.097
Gencheva et al. [7] 0.238 0276 0.170 0.153  0.123 | 0.236 0.222 0.143 0.138 0.113
Konstantinovskiy et al. [14]  0.267 0.314 0.186 0.178  0.149 | 0.233 0.220 0.146 0.142 0.113
Our model 0.278 0291 0.194 0.193 0.159 | 0.3024% 0.344* 0.2384% 0.2184% 0.18942

Table 3: Average overlap of syntactic dependency tags and its
standard deviation between three types of sentence pairs.

Sentence pairs Average Overlap Standard deviation

Check-worthy 7.00 1.03
Non-check-worthy 4.74 1.08
Mixed 5.64 2.87

Table 4: Performance per type of embedding pretraining.
The last row shows the performance without the syntactic
dependency parsing.

Emb. pretrain MAP P@5 P@10 P@20 P@R
No embed. 0.184 0.153 0.116  0.103  0.087
No pretraining 0.237 0.230 0.156 0.148  0.130
Google News 0.268  0.262 0.178 0.184 0.143
Politics 0.302 0.344 0.238 0.218 0.189
Politics w/o syn. dep. 0.285 0.290  0.209  0.202  0.167

specific embeddings as described in Section 4.2. Table 4 shows the
results when varying the embedding strategy. We see that domain
specific embeddings (Politics) obtains large improvements — com-
pared to the general purpose embedding — with improvements up
to +12-34%. The last row of Table 4 shows the performance without
the syntactic dependency parsing (i.e., only the word embedding),
which highlights the large performance increase from the syntactic
dependency parsing. As expected, no pretraining of the embeddings
leads to much lower performance, though MAP is still comparable
to most baselines, except for Konstantinovskiy et al. [14]. Not using
embeddings at all severely drops overall effectiveness. Collectively
these findings show that performance benefits more from training
embeddings on smaller, yet domain-specific, data than on much
larger but general domain data.

5.3 Effect of varying the amount of weakly
labelled data

We analyse how our model, when used with weak supervision,

scales with the amount of weakly labelled data, by reporting per-
formance across the range of 0% to 100% weakly labelled data with
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Figure 3: Impact of the amount of weakly labelled data upon
our model (0 corresponds to no weakly labelled data).

10% increments. At each step we repeat the experiment 5 times
with randomly sampled weakly labelled data, and report the av-
erage score. Figure 3 displays performance as a function of the
percentage of weakly labelled data. As expected, the scores of all
metrics generally increase as the amount of data increases. How-
ever, the largest increases happen in the first 50% of the data, and
then small increases or stagnation for the remaining range up to
around 90%. The performance drop at 40% may be explained by
the limited number of repetitions of the sampling process, which
was done due to runtime considerations. We expect that a larger
number of repetitions would smooth out this slight drop.

5.4 Model interpretability

Check-worthiness detection can be part of semi-automatic or even
fully manual fact checking processes, to filter claims that human
fact checkers should investigate. In such cases, the output of check-
worthiness detection should be easily interpretable by humans. Our
model, despite being a deep learning model (generally considered to
have low interpretability [24]) - provides easily interpretable output
to humans through the attention mechanism that is computed on
a word level (see Section 3.2). This score can be used to highlight
which parts of a sentence are important for the prediction of check-
worthiness. Table 5 illustrates this with a sample of true and false
predictions made by our model. We see that sentences with high



predicted scores (both correctly and incorrectly predicted as check-
worthy) contain a quantifiable fact consisting of a relative large
number, e.g. a large amount of money (trillion dollars, $800 billion), a
high percentage (60 percent), or a large collection of entities (nearly
all other presidents combined). Sentences with low predicted check-
worthiness are more varied, but generally either lack a quantifiable
element or are generally vague (buy American and hire American,
fix the system, no patience for injustice). We can also use the model to
find seemingly incorrectly labeled sentences, as e.g. the non-check-
worthy labelled sentences with high predictions could indeed be
labelled as check-worthy instead, e.g. "our trade deficit in goods with
world last year was nearly $800 billion dollars".

Table 5: Check-worthy and non-check-worthy samples with
high and low predictions (Y) and ground truth labels (Y).
Words are colored according to attention weight: the deeper
the shade of red, the larger the attention score assigned.

Y Y Sentence

1 0.96 america has spent approximately six trillion -

1 0.95 today, our total business tax

1 0.26 its the same reason why she wo nt take
responsibility for her central role in unleashing
isis all over the world .

1 0.22 we will follow two simple rules ; buy american and

hire american .

0 0.04 millions of democrats will join our movement
, because we are going to fix the system so it
works fairly and justly for all americans .

0 0.05 1ihave no patience for injustice .

0 0.94 in the last eight years , the past administration

has put on more new debt _

0 0.95 our trade deficit in goods with the world last year
was

6 CONCLUSION

We have presented an end-to-end trainable neural network model
for ranking check-worthy sentences. The model is pretrained via
weak supervision from a large collection of unlabelled data and
employs a recurrent neural network with a double representation
of each word using domain specific word embeddings and the syn-
tactic dependency parsing of a sentence. We evaluate our model
on check-worthy annotated political speeches from the U.S. 2016
presidential election (following the same setting as in the official
CLEF 2018 competition on check-worthiness detection [17] but
using even more data). Our model does not make use of specialized
hand-crafted features as most related work [7, 8, 10, 19], but instead
adapts the model and its representation to the domain by being
trained in an end-to-end fashion. Thus, our model should by design
be able to adapt to other check-worthiness tasks with results de-
pending on the type of discourse and rhetoric. Our model effectively
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incorporates weak supervision: using an existing check-worthiness
ranking system to weakly label political speeches significantly im-
proved performance. Overall, our model outperforms all state of the
art baselines in mean average precision and precision at different
cut offs, with statistically significant +9-28% gains from the best
performing baseline. Further analysis revealed the significance of
domain specific word embeddings, compared to traditional general
purpose embeddings, and how check-worthy sentences share a
syntactic similar structure than non-check-worthy sentences.

Future work consists of investigating further multiple weak sig-
nals and incorporating text discourse context into the model.
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