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Kurzfassung

Der Einzug der modernen Informationstechnologie in unsere Gesellschaft führte in den
letzten fünfzig Jahren zu einer rasant wachsenden Menge von digitalen Inhalten. Während
das Informationsangebot stetig steigt, bleiben unsere Fähigkeiten zur Informationsver-
arbeitung unverändert. Aufgrund dieser Überladung mit Informationen kommt dem
Information Retrieval (IR) die wichtige Rolle zu, Systeme zu entwickeln, die relevante
Informationen von irrelevanten trennen können. Diese Trennung ist allerdings auf Grund
der Komplexität des Verstehens was relevant ist und was nicht, eine schwierige Aufgabe.
Um diese Komplexität zu bewältigen, wurde im IR ein empirischer Ansatz gewählt,
der zur Entwicklung praktikabler Retrieval-Modelle geführt hat, die einen systemati-
schen Fehler bzw. eine Neigung (Bias) in Richtung relevanter Information aufweisen.
Neben diesem Bias treten allerdings auch andere Verzerrungen auf, die problematisch für
den Retrieval-Vorgang sind. In dieser Arbeit werden diese problematischen Bias durch
die Betrachtung von Retrieval-Systemen als Informationsfilter bzw. Sampling-Prozesse
systematisch untersucht.

Es werden Bias erforscht die üblicherweise in zwei Bereichen des IR auftreten: Retrieval-
Modelle und Retrieval-Evaluierung. Zunächst wird das Retrieval-Bias von probabilisti-
schen IR-Modellen analysiert und neue Dokument-Prioren entwickelt um die Retrieval-
Leistung zu steigern. Im Anschluss wird das Zugänglichkeits-Bias von Retrieval-Modellen
erörtert. Für boolesche Retrieval-Modelle wird ein eigens entwickeltes mathematisches
Framework beschrieben. Hinsichtlich des Bias für Retrieval-Evaluierung werden Testda-
tensätze, welche mittels Pooling-Methode erstellt wurden und somit ein charakteristisches
Bias enthalten, analysiert. Um die Zuverlässigkeit der Evaluierung zu verbessern, werden
neue Pooling-Strategien beschrieben. Diese Strategien reduzieren das Bias bereits während
der Erstellung eines Testdatensatzes. Schließlich wird für die Maßzahlen Precision-
und Recall-at-Cutoff (P@n und R@n) ein neuer Pool-Bias-Schätzer entwickelt, welcher
das Bias während der Systemevaluierung reduziert.

Um die vorgeschlagenen Methoden dieser Arbeit zu evaluieren, wurden 15 Testdatensätze,
vier IR-Metriken und drei Bias-Messverfahren herangezogen. Durch Experimente werden
folgende Erkenntnisse gewonnen: durch das Verwenden von Dokument-Prioren basierend
auf Verboseness wird die Retrieval-Genauigkeit von probabilistischen IR-Modellen ge-
steigert; das Zugänglichkeits-Bias von booleschen IR-Modellen verschlechtert sich für
konjunktive Anfragen mit steigender Länge der Anfragen (für disjunktive Anfragen
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kann eine leichte Verbesserung festgestellt werden); das Testdatensatz-Bias kann bei
der Erstellung des Testdatensatzes durch Pooling-Strategien, welche aus dem Bereich
des Reinforcement Learning entlehnt sind (Multi-Armed Bandit Problem), verkleinert
werden; und das Testdatensatz-Bias kann in der Evaluierung durch die Analyse der
Pool-Beteiligung in den einzelnen Durchläufen reduziert werden. Speziell für den letzten
Punkt wird gezeigt, dass das Bias für P@n durch die Quantifizierung des neuen Systems
gegen die gepoolten Durchläufe und für R@n durch die Auslassung einzelner gepoolter
Durchläufe reduziert wird.

Diese Arbeit leistet einen wichtigen Beitrag zum Gebiet des IR, indem ein besseres
Verständnis von Relevanz durch die Betrachtung von Bias in Retrieval-Modellen und
Retrieval-Evaluierung erreicht wird. Die Identifizierung dieser Bias und deren Nutzung
bzw. Reduktion führt zur Entwicklung von performanteren IR-Modellen und zu einer
Verbesserung der derzeitigen Vorgehensweise hinsichtlich IR-Evaluierung.



Abstract

The advent of the modern information technology has benefited society as the digitisation
of content increased over the last half-century. While the processing capability of our
species has remained unchanged, the information available to us has been notably
increasing. In this overload of information, Information Retrieval (IR) has been playing
a prominent role by developing systems capable of separating relevant information
from the rest. This separation, however, is a difficult task rooted in the complexity
of understanding of what is and what is not relevant. To manage this complexity, IR
has developed a strong empirical nature, which has led to the development of grounded
retrieval models, resulting in the development of retrieval systems empirically designed to
be biased towards relevant information. However, other biases have been observed, which
counteract retrieval performance. In this thesis, the reduction of retrieval systems to
filters of information, or sampling processes, has allowed us to systematically investigate
these biases.

We study biases manifesting in two aspects of IR research: retrieval models and retrieval
evaluation. We start by identifying retrieval biases in probabilistic IR models and then
develop new document priors to improve retrieval performance. Next, we discuss the
accessibility bias of retrieval models, and for Boolean retrieval models we develop a
mathematical framework of retrievability. For retrieval evaluation biases, we study how
test collections are built using the pooling method and how this method introduces bias.
Then, to improve the reliability of the evaluation, we first develop new pooling strategies
to mitigate this bias at test collection build time and then, for two IR evaluation measures,
Precision and Recall at cut-off (P@n and R@n), we develop new pool bias estimators to
mitigate it at evaluation time.

Through a large scale experimentation involving up to 15 test collections, four IR
evaluation measures and three bias measures, we demonstrate that including document
priors based on verboseness improves the performance of probabilistic retrieval models;
that the accessibility bias of Boolean retrieval models quickly worsens for conjunctive
queries with the increase of the query length (while slightly improving for disjunctive
queries); that the test collection bias can be lowered at test collection build time by
pooling strategies inspired by a well-known problem in reinforcement learning, the multi-
armed bandit problem; and that this bias can also be improved at evaluation time by
analysing the runs participating in the pool. For this last point in particular, we show
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that for P@n, bias reduction is done by quantifying the potential of the new system
against the pooled runs, and for R@n, this is done instead by simulating the absence of
a pooled run from the set of pooled runs.

This thesis contributes to the IR field by giving a better understanding of relevance
through the lens of biases in retrieval models and retrieval evaluation. The identification
of these biases, and their exploitation or mitigation, leads to the development of better
performing IR models and the improvement of the current IR evaluation practice.
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CHAPTER 1
Introduction

In the era of information abundance, information consumption is mediated by the use
of search engines. These not only help to make information accessible but also discern
between what is relevant and what is not. This gives search engines utmost importance for
the progress of our society. However, this discernment, if not properly investigated, may
harm the access to some information, based on factors that have little to do with its degree
of relevance. In this thesis we investigate some of the biases observed in Information
Retrieval (IR). By the term bias is meant any form of deviation from an expectation.
In IR we observe various biases that affect retrieval models and their evaluation. The
analysis of these biases will lead to a better understanding of the effectiveness of retrieval
models and advance the current evaluation practice.

In statistics, the term ‘bias’ is presented as an undesirable property of an estimator. An
estimator is a function that aims to estimate a parameter of a population. An unbiased
estimator guaranties that the expectation of its estimates is equal to the parameter of
the population. Thereby the term ‘bias’ in statistics, but also in the English language
where it is somewhat used as a synonym of ‘unfair’, has developed a negative connotation.
However, the etymology of this term comes from the Old French ‘biais’, meaning ‘slant,
slope, oblique’, and, with uncertain origin, from the Greek ‘epikarsios’, meaning ‘athwart,
crosswise, and at an angle’, suggesting a more appropriate translation of this term to
modern English ‘incline’. The use of the term ‘incline’ per se, with respect to the term
‘bias’, is free of any negative or positive connotation. Indeed, its connotation is carried by
to what someone or something is inclined. For example, if a person is inclined to virtues
we have a positive inclination, while if a person is inclined to vices we have a negative
inclination, where, of course, virtues and vices are embodied by a culture of reference.
Accordingly in IR, if a search engine is inclined to retrieve relevant documents we have a
positive inclination, but if a search engine is inclined to retrieve irrelevant documents we
have a negative inclination. In this thesis, having as reference the IR field, we use the
term ‘bias’ as we would use the term ‘incline’, but without losing the meaning carried by
its definition in Statistics.
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1. Introduction

1.1 Types of Bias

Biases manifest when a non-negligible factor of a statistical phenomenon is not included
in the derivation of its model, thereby leading to a systematic distortion. A bias can
exist only if there is missing information, which happens when a sampling procedure is
used in order to estimate a parameter of a given population. Herein, we first introduce
two types of bias, model bias and selection bias, which often interplay, and then identify
them in IR.

Model bias refers to a bias observed on the distribution of a feature of the sample that
does not reflect the distribution of the same feature in the population. For example let
us imagine we have a ballot box that contains balls and cubes of two colours, red and
white. All categories of items are distributed in equal number: a quarter of red balls, a
quarter of white balls, a quarter of red cubes, and a quarter of white cubes. Our task
is to design a filter – a sample procedure – to maximise the number of sampled balls,
regardless of their colour. To do this, we design a filter that exploits the geometry of
spheres. If the filter has been properly designed, and we allow a margin of error, we
expect the sample set to contain mostly balls and some cubes due to a sample error.
Moreover, since all items in the ballot box are in equal number red and white, we expect
the same proportion of colourful items in the sampled set. But, if we observe a greater
number of white items than red ones we indicate the filter to be model-biased towards
the white items. However, to know this information does not tell us the causes of such
bias, but that in the design of the filter some features of the items have not been taken
into account. For instance, continuing with the previous example, further investigation
discovers that this happened due to the material of which the items are made, which is
indicated by their colour; the material of the white items is softer than the red ones so
that the vertexes of the cubes are flexible enough to make them, when pushed into the
filter, similar to spheres.

Selection bias refers to a bias observed on a sampled set when the sampling procedure
fails in performing a proper randomisation, therefore introducing a discrepancy between
the distribution of the sample set and the distribution of the population. For example
let us imagine we have a ballot box as defined in the previous example. Our task is to
design a filter to sample a representative set of items of the ballot box. If the filter has
been properly designed, and we allow a margin of error, we expect in the sample set to
contain around a quarter of white cubes, a quarter of red cubes, a quarter of white balls,
and a quarter of red balls, as in the ballot box. But, if we observe a greater number
of white items than red ones we indicate the filter to be selection-biased towards the
white items. However, as for the previous example, this information does not tell us the
causes of such bias but that in the design of the filter some features of the items have
not been taken into account. For instance, continuing with the previous example, further
investigation discovers that the softer white items, because of being less dense, tend to
emerge to the surface of the ballot box, thereby being over-sampled.

Although we have treated each bias type separately, based on the information we have
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1.2. Information Retrieval

about the distributions of the population’s features and the constraints we have on the
design of the filter, these two types of bias may interplay. For instance, let us imagine that
in the first example we cannot observe the distribution of items’ categories. To estimate
them we can construct a filter, as in the second example, and then use these estimates to
describe the distribution of items’ categories, which may suffer from selection bias that
contributes to the model bias as in the first example. Or, instead, let us imagine that in
the second example we cannot design a general filter. To design it we make a composition
of two filters, one optimised for cubes and one for balls and then compare these estimates,
each one as in the first example, and then use them to describe the population items’
distribution. However, both filters may suffer from model bias, which contributes to the
selection bias as in the second example. These two examples demonstrate the possible
model-selection bias interaction. In this thesis we treat model bias and selection bias
analytically, that is we deal with one type of bias at a time, assuming the other one to
be negligible.

Another way to distinguish between these two types of bias is to consider on what the
bias is observed. If the bias is observed on the targeted feature by the sampling procedure,
we talk about selection bias. If the bias is observed on another feature than the targeted
one, then we talk about model bias. In general, biases are difficult to identify because it
is not always clear on which feature of the data they manifest.

1.2 Information Retrieval
So far we have discussed definitions of biases that we observe in data when adopting
a sampling procedure in optimisation and estimation problems. Now, starting from
the definition of IR, we, on the one hand, frame these biases in IR and, on the other
hand, delimit the boundaries of this exploration. On the definition of IR, Manning et
al. [MRS08] write:

“IR is finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually
stored on computers).” (p. 1)

The main purpose of a retrieval system is to satisfy a user information need. This user
satisfaction plays a central role in IR, as also highlighted in its definition by being put in
the centre. Naturally, user satisfaction is considered as a criterion of system effectiveness
[AS10]. System effectiveness in IR measures how well a search engine performs in a task.
Traditionally, this is expressed in terms of the ratio between the number of correctly
identified relevant information and the retrieved information, called precision, and in
terms of the ratio between the number of correctly identified relevant information and all
the relevant information, called recall. But, what is relevant information? Intuitively, it is
anything that satisfies the user’s information need. This answer introduces considerable
complexity but it shows the dual relationship between user satisfaction and relevant
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1. Introduction

information, that is the understanding of one leads to the understanding of the other
and vice versa. To circumvent this complexity, IR has developed a strong empirical
foundation, in which we treat users as relevance holders. Thereby users are the main
actors in IR experimentation. However, a pure user-based experimentation would make
the IR studies expensive. Therefore, the IR community have experimental settings that
mitigate its cost, and have developed different approaches to letting the users perform
relevance judgements, which can be categorised as: off-line evaluation, on-line evaluation,
and hybrid evaluation.

By off-line evaluation, also known as test collection-based evaluation, is meant an
evaluation procedure that builds a test collection with the intervention of users, but that
once built, can be later used to evaluate other search solutions without requiring user
interaction. By on-line evaluation is meant an evaluation procedure that is done while
the user is using the service to be evaluated. A/B testing and interleaving are on-line
evaluation procedures [HLR16]. By hybrid evaluation is meant any form of evaluation
that aims to evaluate search solutions, as in the on-line evaluation, but that at the
same time also aims to build a test collection for later use, as in the off-line evaluation.
Counterfactual evaluation is a hybrid evaluation procedure [JS16] that consists in the
over sampling of user interaction signals in order to build a richer test collection, which
allows the testing of later developed hypnotises.

To the eyes of an IR practitioner, the evaluation of the effectiveness of a retrieval system
is important because it can lead to intuitive interpretations that easily translate to an
economic impact. For instance, the amount of time people are spending in reading useless
documents can be expressed in terms of precision, and the number of relevant documents
they are missing can be expressed in terms of recall. However, effectiveness measures
do not express another important aspect of search engines, which concerns overall their
ability in accessing the information available in the document collection. To tackle this
issue, another kind of evaluation has been developed, based on measuring how much an
IR system makes documents accessible, called accessibility.

In general, we divide the research conducted in IR into three major areas [Lip+14b]:
retrieval models, retrieval systems, and retrieval evaluation. In the retrieval models area
we deal with search engines in terms of their effectiveness in finding relevant information.
In the retrieval systems area we deal instead with their efficiency in finding relevant
information. In the evaluation area we deal with how to measure their effectiveness,
efficiency, and various biases. In this thesis we present and propose effective solutions
to measure and mitigate a set of biases observed in the IR field delimited by the
retrieval models and evaluation areas. In particular in the latter we focus on the further
development of accessibility measures, and the evaluation of effectiveness in an off-line
setting.
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1.3. Sources of Bias in Information Retrieval

1.3 Sources of Bias in Information Retrieval

Among the many biases observed in IR, in this thesis we focus on the ones that, we
believe, will mostly contribute to the future of the field, and that are of interest to
IR practitioners. We focus on the model bias of retrieval models introduced by an old
dichotomy between the multi-topicality and verboseness hypotheses, which tries to justify
why documents have different lengths. Following that, we concentrate on a measure
of accessibility, called retrievability, which measures the fairness of a search engine in
retrieving the documents of a collection of documents. Finally, we focus on a selection
bias observed in off-line evaluation, called pool bias.

1.3.1 Multi-Topicality and Verboseness Hypotheses

IR models try to maximise user satisfaction. To do so, retrieval models measure the
likelihood that a document is relevant to a given topic using features at the level of the
topic, the document, and the collection of documents. Due to the difficulty introduced
by the complexity of natural language, the combination of features computed on the text
can introduce model biases. A well-known model bias for standard IR retrieval models is
caused by the document length. The reason for such model bias can be found in the fact
that longer documents have higher prior probabilities of having a term repeated many
times, which means higher term frequency, and higher term frequency in these models is
interpreted as more relevant.

The most successful IR retrieval models, Best Match 25 (BM25) [Rob+93] and the various
Language Models (LMs) [PC98] normalise the term frequency based on the length of
the document. Without it, these models would be biased towards long documents. This
normalisation makes sense under the hypothesis that documents are long because of their
authors being verbose. However, a crude normalisation based on the document length
would generate a model bias towards short documents. Additionally, documents can be
long because their authors covered more ground about the topic therefore making them
more relevant, which suggests to not normalise under any circumstances. This dichotomy
is well explained by the two hypotheses introduced by Robertson et al. [Rob+93; RZ09],
the multi-topicality and verboseness hypotheses.

In Chapter 4, we present our contribution, which is a systematic modification of BM25
and LM retrieval models. Based on the observation that the two cases previously
discussed for length normalisation (multi-topicality and verboseness) are actually three:
multi-topicality, verboseness with word repetition and verboseness with synonyms, we
propose and test new normalisations. We focus on the verboseness with word repetition
and document length because easily measurable by counting words. To theoretically
justify the combination, we show the duality between document verboseness and length.
In addition, we investigate the duality between verboseness and other components of IR
models.
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1.3.2 Accessibility Measures
While effectiveness and efficiency measures are respectively user-centric and system-
centric, as pointed out by Azzopardi and Vinay [AV08a], both ignore the accessibility
of a document. Accessibility studies if a document is or is not accessible by the user
through the IR system. Accessibility plays a particularly important role in recall oriented
domains. For example, patent examiners are concerned about the fact that certain IR
systems are biased towards particular patents rather than others. Also in the medical
domain, medical researchers, doing systematic reviews include in their protocol the use
of different search engines in order to avoid such a bias.

A measure of accessibility is retrievability. Retrievability is a document-centric measure
that computes the a-priori likelihood that a document in a collection is retrieved, no matter
for which topic. It allows the researcher, when comparing the documents of a collection,
to understand the a-priori unbalance of a retrieval model in selecting documents.

Retrievability analyses are based on empirical studies and are computationally expensive.
In essence, a retrievability study consists in automatically generating a huge number of
queries, issuing them to an IR system, then counting how many times a document has
been retrieved. Each step of the process has different parameters, useful to characterise
the IR system: the likelihood of a query, the parameters of the IR model, and the
rank at which a document is considered retrieved. Parameters that, if not tuned
conscientiously, easily generate billions of queries making the experiment impractical,
leading to difficulties when running experiments with modern test collections. More
importantly, these parameters lead to aspects of retrievability unexplored (e.g. queries of
size greater than two). Therefore another approach has to be taken.

In Chapter 5, we show that the retrievability measure can be computed using an analytical
approach. We started modelling conjunctive and disjunctive queries in Boolean models,
which let us calculate retrievability without the need for generating large sets of synthetic
queries. We then bridge the discoveries to the best-match models, thanks to a theoretical
result that states that the result found represents an upper bound on the retrievability
for all the other best-match models.

1.3.3 Pooling Method
Since the very beginning of standardised IR benchmarking at the Text REtrieval Confer-
ence (TREC) in the early 1990s, the pooling method has been used to reduce the number
of judgements to be performed by relevance assessors, while still preserving the ability of
the benchmark to distinguish between two or more retrieval engines [VH05]. The original
pooling method was first proposed in 1975 by Spärk Jones and van Rijsbergen [SR75],
and first used when TREC started in 1991 [Har93]. This strategy consists in aggregating,
for every topic, the top K documents returned by many search engines, and presenting
only this set to human assessors for evaluation. Pooling fundamentally relies on the
assumption that if sufficiently many and sufficiently diverse systems participate in a pool
(i.e., provide lists of documents they consider to be relevant for each topic), a set of
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topic and document pairs can be identified that, once evaluated, will be predictive of the
future relative performance of two or more retrieval systems.

While the pooling method was introduced with the objective of finding as many relevant
documents as possible (under the hidden implication that if a document is not retrieved
by any system, it is probably irrelevant for the topic), the realistic objective is in fact to
produce an unbiased sample of the set of relevant documents [Spä03]. Since the early
days of the pooling method, it has been observed that, in the absence of sufficiently
numerous and diverse systems, there is a risk that the identified set of relevant documents
will be so limited that future systems, retrieving a new set of relevant (but actually
unjudged) documents, will be considered ineffective because they do not primarily find
the set of relevant documents found by the systems that were originally pooled [Rob08].
As a result this generates a selection bias called pool bias.

Our contribution on this area channels in two directions: On the one hand, in Chapter
6, we reduce bias at test collection build time by considering several pooling strategies.
We analyse old and new proposed pooling strategies on existing test collections. On the
other hand, in Chapter 7, we reduce the effect of the bias in existing test collections
at evaluation time. We develop a set of methods to reduce the pool bias for precision
at cut-off (P@n) and recall at cut-off (R@n). There are two reasons to consider such
‘simple’ measures: first, they are cornerstones for many other developed measures and,
second, they are easy to understand by all users. In particular, as previously mentioned,
they lead to more intuitive interpretations for practitioners.

1.4 Mathematical Framework and Software
In this thesis we draw a mathematical framework that unifies two main areas of study in
IR: retrieval models and retrieval evaluation. This framework mainly consists of symbols
that fix concepts and ideas making them easy to manipulate. The choice of intuitive
symbols aims to reduce the cognitive load of the reader when moving from one topic to
another. Therefore, before making the observations of Chapters 4–7, we believe that this
mathematical framework is also a valuable contribution to the field.

The software developed to run the experiments presented in this thesis is open-source
and available at the following website: http://www.aldolipani.com.
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1. Introduction

1.5 Publication List
The subsequent chapters of the thesis are heavily based on the following published papers.

Chapter 4 is on the multi-topicality verboseness dichotomy:

• Aldo Lipani, Mihai Lupu, Allan Hanbury, and Akiko Aizawa. “Verboseness
Fission for BM25 Document Length Normalization”. In: Proceedings of the
1st ACM International Conference on The Theory of Information Retrieval.
ICTIR ’15. Northampton, Massachusetts, USA: ACM, 2015, pp. 385–388.
Short paper;

• Aldo Lipani, Thomas Roelleke, Mihai Lupu, and Allan Hanbury. “A Systematic
Approach to Normalization in Probabilistic Models”. In: Information Retrieval
Journal (June 2018). Journal paper.

Chapter 5 is on a theoretical exploration of retrievability:

• Aldo Lipani, Mihai Lupu, Akiko Aizawa, and Allan Hanbury. “An Initial
Analytical Exploration of Retrievability”. In: Proceedings of the 2015 ACM
International Conference on The Theory of Information Retrieval. ICTIR ’15.
Northampton, Massachusetts, USA: ACM, 2015, pp. 329–332. Short paper.

Chapter 6 is on the mitigation of the pool bias at test collection build time:

• Aldo Lipani, Guido Zuccon, Mihai Lupu, Bevan Koopman, and Allan Han-
bury. “The Impact of Fixed-Cost Pooling Strategies on Test Collection Bias”.
In: Proceedings of the 2nd ACM International Conference on the Theory of
Information Retrieval. ICTIR ’16. Newark, Delaware, USA: ACM, 2016,
pp. 105–108. Short paper;

• Aldo Lipani, Joao Palotti, Mihai Lupu, Florina Piroi, Guido Zuccon, and Allan
Hanbury. “Fixed-Cost Pooling Strategies Based on IR Evaluation Measures”.
In: Proceedings of the 39th European Conference on IR Research. ECIR ’17.
Cham: Springer International Publishing, 2017, pp. 357–368. Full paper;

• Aldo Lipani, Mihai Lupu, Joao Palotti, Guido Zuccon, and Allan Hanbury.
“Fixed Budget Pooling Strategies Based on Fusion Methods”. In: Proceedings
of the 32nd ACM SIGAPP Symposium On Applied Computing. SAC ’17.
Marrakech, Morocco: ACM, 2017, pp. 919–924. Full paper;

• Aldo Lipani, Mihai Lupu, and Allan Hanbury. “Visual Pool: A Tool to
Visualize and Interact with the Pooling Method”. In: Proceedings of the
40th International ACM SIGIR Conference on Research and Development
in Information Retrieval. SIGIR ’17. Shinjuku, Tokyo, Japan: ACM, 2017,
pp. 1321–1324. Demo paper.
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Chapter 7 is on the mitigation of the pool bias at evaluation time for P@n and R@n:

• Aldo Lipani, Mihai Lupu, and Allan Hanbury. “Splitting Water: Precision
and Anti-Precision to Reduce Pool Bias”. In: Proceedings of the 38th Interna-
tional ACM SIGIR Conference on Research and Development in Information
Retrieval. SIGIR ’15. Santiago, Chile: ACM, 2015, pp. 103–112. Full paper;

• Aldo Lipani, Mihai Lupu, and Allan Hanbury. “The Curious Incidence of Bias
Corrections in the Pool”. In: Proceedings of the 38th European Conference
on IR Research. ECIR ’16. Cham: Springer International Publishing, 2016,
pp. 267–279. Full paper;

• Aldo Lipani, Mihai Lupu, Evangelos Kanoulas, and Allan Hanbury. “The
Solitude of Relevant Documents in the Pool”. In: Proceedings of the 25th ACM
International on Conference on Information and Knowledge Management.
CIKM ’16. Indianapolis, Indiana, USA: ACM, 2016, pp. 1989–1992. Short
paper.

1.6 A Reader’s Guide
This thesis is structured as follows. Chapter 2 presents the State-of-the-Art. Chapter 3
introduces the notation that is shared over the rest of the thesis. Then Chapter 4 focuses
on the normalisation component of some IR models, and Chapter 5 on the retrievability
measure. Next, Chapters 6 and 7 are dedicated to the pool bias, the former aims at
mitigating it at test collection build time, the latter at the time of application of an IR
measure. Finally, we conclude in Chapter 8.

In Figure 1.1 we present the map of this thesis. The reader is now at the end of the
introductory chapter, in grey. From now on they can follow 5 main paths from left to
right. If the reader is interested only in a specific bias treated in this thesis they can
take one of the four paths leading to the four main Chapters, 4, 5, 6 and 7. However, if
the reader is interested in a summary of the thesis findings they can directly skip to the
conclusion, as suggested by the fifth path.
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CHAPTER 2
State-of-the-Art

In this thesis we cover topics on major aspects of IR, retrieval models and retrieval
evaluation. Baeza-Yates and Ribeiro-Neto [BR11] give a general overview of IR. Roelleke
[Roe13] provides an advanced thorough presentation of retrieval models, including all the
retrieval models analysed in this thesis. In this work, Roelleke unifies the presentation and
derivation of these retrieval models by creating a common mathematical framework, which
has inspired the same approach in this thesis. Sanderson [San10] gives a comprehensive
overview of off-line evaluation, including the pool bias topic.

In Section 2.1 we present the state-of-the-art for the term frequency normalisation
component of various retrieval models. In Section 2.2 we overview the main work
conducted on evaluating the accessibility of retrieval models. We then move onto the
work done on the pool bias, with effort channelled in two main directions. On the one
hand, prior work has attempted to reduce the pool bias at test collection build time by
considering different pooling strategies [Büt+07; CPC98; MWZ07]. On the other hand,
for already existing test collections, some studies have adopted measures that reduce the
effect of the bias [WP09]. Sometimes, these two directions intertwine, and a new pooling
strategy is proposed together with a matching evaluation measure [YKA08], but that
significantly restricts the future use of the collection to specific measures. In Section 2.3
we focus on the first direction, while in Section 2.4 we focus on the second one. However,
this second direction can be subsequently split into two further directions. On the one
hand, prior work has created estimators for correcting the bias of existing evaluation
measures [WP09]. On the other hand, new evaluation measures have been developed
with the aim of being less sensitive to the pool bias (the work done for bpref [BV04],
followed by the work done by Sakai on the condensed lists [Sak07] or by Yilmaz et al. on
the inferred measures [YKA08; YA06]). In Section 2.4, we will focus on the former.
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2.1 Model Bias: Term Frequency Normalisation
The initiators of the discussion about the term frequency normalisation are the early
participants in TREC, with first insights appearing after TREC-3, and the first efforts
on document length normalisation showing improved results in TREC-4 [Har95]. To
understand why a document is long, Robertson and Zaragoza [RZ09] describe two
hypotheses: verboseness and multi-topicality hypotheses. The verboseness hypothesis
says that authors use more words than needed to convey the information. The multi-
topicality hypothesis says that authors convey the information but including more
topics, details, or aspects. These hypotheses have a conflicting effect when treating the
normalisation in terms of length, because while the first suggests to normalise the term
frequency by the document length, the second suggests the opposite.

Hence, the introduction of a soft normalisation for Best Match 25 (BM25) based on the
linear combination between a non-normalisation and a full normalisation based on the
average document length, which trade off is controlled by the introduction of the new
parameter, b. This is of course not the only method for length normalisation. Among
others, Singhal et al. [SBM96] studied it extensively for the TF-IDF model, and justified
it experimentally. In their study, they look at how the length distribution of retrieved
documents and relevant documents differ, and provide normalisation solutions to correct
this discrepancy.

Not much work has been done on the multi-topicality hypothesis, but some for the
verboseness hypothesis. Na et al. [NKL08] briefly introduce the concept of verboseness
given by the repetitiveness of terms. They compare it with multi-topicality under
the language modelling framework. The normalisation factors are corrected based
on the assumption that the vocabulary size of a document can be used to estimate
the number of topics contained in the document. They show an improvement with
respect to other smoothing methods. He and Ounis [HO05a] introduced a new term
frequency normalisation following the idea of Amati [AV02], who introduced the use
of Dirichlet Priors. He and Ounis point out the relationship between test collection
features on term frequency normalisation, and introduce a new parameter, learned from
the test collection. They proposed a method for tuning the term frequency normalisation
parameters based on the hypotheses that the optimal parameter values are those values
that make the normalisation factor give similar normalisation effects across different
corpora [HO03; HO05b]. Lv and Zhai pointed out that the length distribution observed on
retrieved documents of BM25 does not follow the length distribution observed on relevant
documents, as done by Singhal et al. [SBM96] for TF-IDF, biasing the system against
long documents. To compensate this bias they introduced a new ‘boosting’ parameter, δ,
which is summed to the normalised term frequency in a first version [LZ11b] and it is
summed to the term frequency component in a second version [LZ11a]. Rousseau and
Varzirgiannis [RV13] analyse the problem in terms of function composition, comparing
BM25 with TF-IDF and combining the two works just mentioned of Lv and Zhai to gain
a better understanding of the similarity across the models. This work formalises this
term frequency normalisation modification using functional composition, which allowed
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the authors to test combinations not yet analysed. Another effort has been made by
Cummins and O’Riordan [CO12], but this time on the analysis of the effect of query
length on the parameter b. To avoid the over penalisation of long documents, they added,
to the classic TF normalisation, the probability that a randomly selected document
contains at least one query term (this probability is proportional to the query length)
and use this factor to stabilise b at various query size. However this issue does not effect
our analysis since we do not change the query size in our experiments. This work, by
showing that there exists a relationship between the probability of a document to be
retrieved and the effectiveness of a search engine, takes us to the topic of the next section.

The overall criticism of all of these previous works is that the test collections used are
always based on News or Web corpora, therefore reflecting only these two domains.

2.2 Model Bias: Retrievability
Accessibility is a well-known concept in the field of transportation planning. Azzopardi
and Vinay [AV08a] introduce the concept of accessibility in IR, and advocated the
development of document accessibility measures for IR systems. Later they developed,
as a measure of accessibility, the retrievability measure [AV08b]. This measure indicates
how easily a document could be retrieved by an IR system.

To estimate the retrievability bias the retrievability measure is generally combined with
a coefficient of distribution imbalance. An often used coefficient is the Gini coefficient
[Gas72], which is a measure of inequality within a population. Many coefficients have
been tested [WA15], however they all provide similar information regarding the bias as
the Gini coefficient.

Retrievability, despite being still an immature concept in IR, has found already many
applications in many contexts. Azzopardi and Owens [AO09] have used it as a tool to
assess the bias of search engines on the web. Bache [Bac11] has performed a similar
analysis on the patent domain. Zheng and Cox [ZC09] have developed new pruning
strategies to improve the efficiency for inverted indices. Pickens et al. [PCG10] have
developed the concept of reverted index, where to be indexed are queries rather than
documents. This, together with a ranking technique, can be used as high performance
query expansion. We have now seen that retrievability has been a widely useful concept in
applications, however, we now focus on the work conducted on relating the retrievability
to effectiveness of a search engine and in particular how this relates to the term frequency
normalisation component of scoring functions, which controls the prior probability of a
document to be relevant based on its length.

Azzopardi and Vinay [AV08b] argue that a certain level of retrievability bias is necessary
in order to allow the search engine to distinguish between what are relevant and irrelevant
documents for a given topic. They show that the effectiveness of a search engine is
inversely proportional to the retrievability bias. Bashir and Rauber [BR09], after having
designed a pseudo-relevance feedback technique inspired by a retrievability analysis,
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observed an increase in retrievability bias and in effectiveness. Then, when they applied
this method on the patent domain, they also observed an increase in retrievability bias
as well as in recall [BR10]. However, Wilkie and Azzopardi [WA13] show that this is
true until a certain extent, showing that this relationship is non-linear and can lead to a
decrease in effectiveness if too much retrievability bias is forced on the system.

Wilkie and Azzopardi [WA13] analysed the relationship between retrievability bias and
the term frequency normalisation parameter b of BM25. Here, they show that reducing
the retrievability bias leads to better effectiveness, however, if this term frequency
normalisation is too strong this leads to a degradation in effectiveness and at the same
time in an increase in retrievability bias. In this work no aspect of pool bias is analysed
or discussed. However, the authors speculate that this inversely proportional behaviour
between retrievability bias and effectiveness may be due to a document length bias
observed in some standard test collections as discovered by Losada et al. [LAB08].

2.3 Selection Bias: Pooling Method
The pooling method was already used in the first TREC, in 1992, 17 years after its
introduction by Spärck Jones and van Rijsbergen [SR75], based on the discussion of
building an ‘ideal’ test collection that would allow reusability. The algorithm [Har93] is
described as follows: 1) divide each set of results into results for a given topic; then, for
each topic: 2) select the top 200 (subsequently generalised to K) ranked documents of
each run, for input to the pool; 3) merge results from all runs; 4) sort results on document
identifiers; 5) remove duplicate documents. This strategy is known as fixed-depth pooling,
here also called Depth@K. This is the most commonly used pooling strategy. Since then
other pooling strategies have been proposed.

The aim of the pooling method, as pointed out by Spärck Jones, is to find an unbiased
sample of relevant documents [Spä03]. The bias can be minimised via increasing either
the number of topics, or the number of pooled documents, or the number and variety of
IR systems involved in the process.

With the aim of further reducing the cost of building a test collection, Buckley and
Voorhees [BV04] explored the uniformly sampled pool. At the time they observed
that P@n had the most rapid deterioration compared to a fully judged pool. The
poor behaviour of this strategy for top-heavy measures was confirmed recently in
Voorhees’ [Voo14] short comparison on pooling strategies.

Another strategy is the stratified pool [YKA08], a generalisation of both the fixed-depth
pool and the uniformly sampled pool. The stratified pool consists in layering the pool in
different strata based on the highest rank obtained by a document in any of the given
runs.

A comparison of the various pooling strategies has been reported by Voorhees [Voo14].
In this paper, it is advocated that for a recall oriented domain to use a stratification with
a fully sampled first stratum until rank 10, because this produces test collections that
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are less biased. However, in these experiments the number of judged documents is not
kept constant.

In order to reduce the amount of budget spent to build a test collection but maintaining
the same quality, Cormack et al. [CPC98] introduced the pooling strategy Move To
Front (MTF). This strategy improves on the Depth@K by pooling documents based on
the retrieval performance of the pooled runs. A similar idea is developed by Moffat et
al. [MZ08], who introduce a set of pooling strategies based on the evaluation measure
Rank-Biased Precision (RBP). These strategies are evaluated in terms of bias obtained
when using fewer relevant judgements. They observed that these strategies perform
better than Depth@K. Losada et al. [LPB16] considered a new perspective on pool
creation based on multi-armed bandits. The multi-armed bandit problem, studied in
reinforcement learning to trade-off between exploration and exploitation, fits well with
the characteristics of the pooling method. This paper introduced new pooling strategies,
but no evaluation in terms of pool bias was made. However, most of the pooling strategies
presented in these articles are more difficult to operationalise because they are adaptive,
that is these strategies require to know, every time needing to select a new document, if
the last pooled document was relevant or not relevant.

2.4 Selection Bias: Evaluation Measures
In this section we focus on the set of work conducted to create new measures to better
handle unjudged documents, and estimate the pool bias to adjust the measured score.

Buckley and Voorhees [BV04] introduced bpref as a measure specifically designed to
handle incomplete information, which, as pointed out by Sakai in 2007 [Sak07], is a
restricted form of Average Precision (AP) on a so called ‘condensed list’. These are
condensed versions of the runs where unjudged documents are filtered out. Sakai shows
that it is possible to obtain less biased results than bpref when applying the condensed list
to well-known IR measures, like AP, Normalised Discounted Cumulative Gain (NDCG)
and Q-measure. The concept of condensed list, first denoted as such by Sakai, was
however already explored in relation to AP with the measure Induced AP, introduced
by Yilmaz and Aslam [YA06]. Induced AP is average precision calculated on condensed
lists. The methods explored by these three contributions do not simulate the effect of
shallow pooling or of comparing unpooled runs against pooled ones, because they remove
the effect of bias sampling from the query relevance set, ending up with an unrealistic
use case. This was later addressed by Sakai and Kando [SK08], who demonstrated that
the condensed list approach favours new systems.

To deal with incomplete judgements, another measure was introduced by Moffat and
Zobel [MZ08], Rank-Biased Precision (RBP). This is expressed by a value and a residual.
The residual quantifies the uncertainty introduced by the unjudged documents. Its value
is computable thanks to the fact that it is not normalised by the number of relevant
documents. This implies that the computation of the measure defines a lower bound
for any given run. Moffat and Zobel attempted to make a measure that is naturally
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convergent, where the contribution of each rank has a fixed weight. This would have
both benefits of a normalised measure and those of a measure averageable over topics
with different numbers of relevant documents. However, this attempt was unsuccessful,
as pointed out by Sakai and Kando [SK08], who proved this to be inferior with respect
to the condensed list.

Moffat and Zobel [MZ08] when presenting RBP, introduce the discussion around the fact
that the residual can be used to estimate and correct pool bias. Webber and Park [WP09]
continue their work on RBP by adding to the score the average residual calculated against
the pool proceeding with a leave-one-run-out approach. To estimate it they span two
dimensions: the topics and the systems. Their method follows the assumption that the
scores produced by the runs are normally distributed, a probably incorrect but common
assumption. Although the method was presented only on RBP, they pointed out that
similar results were obtained also with P@n.
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CHAPTER 3
Theory

This chapter introduces the reader to the theory shared across the next chapters. The
developed theoretical framework will lead to the formalisation of the problems from which
the respective chapters will branch out to, on the one hand, if needed, further develop
its theory, and on the other hand, through experimentation, present solutions to the
problems.

Before indulging into the theory we first unify the mathematical notation used throughout
the thesis. We then present how to formalise an IR system and its evaluation. This
will guide us to the exposure of the sources of bias studied in this thesis, which will be
formalised and tackled in the next chapters.
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3. Theory

3.1 Notation
In the following table we present the notation used throughout the thesis. The table
includes a set of symbols, functions and operators used to express operations in a compact
way.

Symbols
U Set of users.
u A user u ∈ U .
Q Set of topics.
q A topic q ∈ Q.
R Set of runs.
Rp Set of pooled runs Rp ⊆ R.
O Set of organisations submitting a set of runs ⊆ R.
r A run r ∈ R.
D Collection of documents.
d A document d ∈ D.
T Set of terms.
t A term t ∈ T .
Dt Set of documents where t occurs.
Dr Set of documents in r.
Td Set of terms in d.
Tu Set of terms given by a user u.
J Set of pooled documents (J + ∪ J − = J and mutually exclusive).
J + Set of relevant pooled documents J + ⊆ J .
J − Set of irrelevant pooled documents J − ⊆ J .
ε A small number � maxr∈Rp(|r|)−1.
Symbolic Values
|Q| Number of topics.
|T | Number of terms.
|Td| Number of terms in d.
|D| Number of documents.
|Dt| Number of documents where t occurs (aka document frequency).
`c Length of the collection (number of term occurrences).
`d Length of the document d (number of term occurrences, note `d ≥ |Td|).
`t Number of occurrences of the term t in the collection, here also called term

length (aka collection frequency).
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Expectations
EDt [tfd ] = `t/|Dt| Average frequency of term t in the documents in which the

term occurs.
ETd

[tfd ] = `d/|Td| Average term frequency of terms that occur in document d.
¯̀
d := ED[`d] = `c/|D| Average document length.

¯̀
t := ET [`t] = `c/|T | Average term length.

Probabilities
P (t) = PL(t) = `t/`c Location-based probability of t.
P (d) = PL(d) = `d/`c Location-based probability of d.
PD(t) = |Dt|/|D| Document-based probability of t.
PT (d) = |Td|/|T | Term-based probability of d.
Functions
[Condition] Returns 1 if the binary condition within the brackets is

verified, 0 otherwise (aka Iverson bracket).
℘(R) Returns the powerset of the set given as its argument (aka

Weierstrass p).
τ@N(Rp, s) Returns the union of the top N documents retrieved by the

set of pooled runs Rp ordered by the function s.
ρ(d, r) Returns the rank at which the document d has been retrieved

in run r. If d 6∈ r Returns the lowest rank possible, which is
equal to the size of the collection of documents |D|.

σ(d, r) Returns the score at which the document d has been retrieved
in run r. If d 6∈ r it returns the lowest score returned by r,
mind∈r(σ(d, r)).

µ(a, b) Returns a random number in [a, b].
id(r) Returns a natural number n ∈ N unique for every r ∈ R

such that 1 ≤ n ≤ |R|.
Sequences
a|n1

n0 Set of elements of the sequence an from n0 to n1, {ai}n0≤i≤n1 .
Avg(a|n1

n0) Average of the sequence an for the values from n0 to n1.
Var(a|n1

n0) Variance of the sequence an for the values from n0 to n1.
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3.2 The Anatomy of an IR System

An IR system can be interpreted as a function f that, given as input a topic q ∈ Q and
a collection of documents D, associates to every document in D a value s ∈ R, as part of
a set r ∈ R, where R ⊆ D × R and r = {(d1, s1), . . . , (d|D|, s|D|)}. This can be expressed
as f : Q × D → R. In IR, topics and documents can be any type of information, called
modality, e.g. a piece of text, a piece of music, a video clip, a formula, or a combination
of them (e.g. texts and formulae [Lip+14a]). However, in this thesis we focus on text
retrieval, therefore we assume a topic to be expressed in textual form, and documents to
be pieces of text. Of course, this and the following can be generalised to other modalities
or to a combination of them.

A minimal retrieval system is made of a set of components [Lip+14c; Pir+15]. In
Figure 3.1 we show how the information flows in a retrieval system throughout its
components. Here, we distinguish between optional and required components. Optional
components are the ones outside the IR System Core box, and required components
are the ones within it. The components are: collection preprocessor (CP), document
preprocessor (DP), topic preprocessor (TP), indexer (IN), scorer (SC), ranker (RK), and
merger (ME).

Among the required components we have the document and topic preprocessors, which
are required to transform the text into comparable entities. These are then indexed by
the indexer component for quick scoring. The role of the scorer component is to compute
the degree of relevance between the topic and the documents. Then, the ranker outputs
them in order of relevance. The optional components are the collection preprocessor,
whose task can be cleansing of the collection of documents, and the merger component,
which, if needed, merges the ranked lists coming from multiple system cores.

In the next section and in Chapter 4 we focus on the scorer component. This component is
characterised by a scoring function also known as Retrieval Status Value (RSV) function.
The RSV, given a preprocessed document and a preprocessed topic, returns a value
indicating the degree of relevance of the document to the topic, RSV : Q × D → R. At
this point these documents and topics have been already preprocessed. The preprocessing
steps required for the models described in this thesis are in order: tokenization, and
stemming or lemmatisation. The tokenizer splits text into words following linguistic
features, e.g. in English spaces are indicator of word boundaries. The stemmer reduces a
word to its stem form, while lemmatiser reduces a word to its lemma.

Given these premises, our modelling is about the input of the scorer component, topic
and documents. A document is seen as a set of term value pairs ((t, tf ) ∈ Tc × N, where
Tc is the set of terms of the collection of documents c). The value associated to the
document term is equal to the number of occurrences of the term in the document d,
this is also known as within-document term frequency. A topic q, usually thought as
an item of a set of topics, likewise a document, is also seen as a set of term value pairs
((t, tf ) ∈ Tu × N, where Tu is the set of terms given by the user u). The value associated

20



3.3. Probabilistic Retrieval Models and Term Frequency Normalisation

CP DP IN SC

TPq

D RK ME r

IR System Core

RK

Figure 3.1: Information flow of a retrieval system throughout its components. The compo-
nents are: collection preprocessor (CP), document preprocessor (DP), topic preprocessor
(TP), indexer (IN), scorer (SC), ranker (RK), and merger (ME). This graph uses the
plate notation, that is the IR System Core component can be repeated as many times as
required.

to each topic term is equal to the number of occurrences of the term in the topic q, this is
also known as within-topic term frequency. This modelling is also known as bag-of-words.

In the next section we focus on modelling the function of the SC component. In particular,
we derive the RSV functions of three common retrieval models.

3.3 Probabilistic Retrieval Models and Term Frequency
Normalisation

The description of the IR system presented in the previous section focuses on the
functional aspects of an IR system rather than on its efficiency (e.g. the test collection
is not submitted to the search engine every time a topic is submitted). We are more
concerned about its effectiveness. The effectiveness of a search engine is dependent on
all its components. However, a big role is played by the retrieval status value function
defined by the retrieval model. In this section we will work through the derivation of
three common retrieval models.

Most IR models can be derived from measuring the dependence between document
and query. The document-query independence (DQI [RW08]) is the point-wise mutual
information expressed as:

DQI(d, q) := log
(

P (d, q)
P (d) · P (q)

)
(3.1)

Document and topic are considered as sequences of term events. The decomposition of
d leads to TF-IDF (and, for particular assumptions, to BM25), and the decomposition
of q leads to language modelling (LM). We first review the decomposition of d. When
decomposing d with,

P (d, q) = P (d|q)P (q)
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and then by assuming term events are independent, that is:

P (d|q) =
∏

t∈Td

P (t|q)tfd

substituting these two into Eq. (3.1) we obtain:

log
(

P (d|q)
P (d)

)
=
∑
t∈Td

tfd · log
(

P (t|q)
P (t)

)
(3.2)

Here, P (t|q) is the query term probability, and P (t) is the background model (collection-
wide) term probability. The equation makes two independence assumptions: different
terms are independent, and also the multiple occurrences of the same term are independent.
The first assumption is reflected in applying the sum over different terms, and the second
assumption is reflected by the total term frequency count, tfd . Another assumption
one can make is that the occurrence of the same term is semi-subsumed [RKB15],
2 · tfd/(tfd + 1), which leads to the definition of the TFBM25.

The question now remains of how to close the gap between P (t|q)/P (t) and IDF, as
commonly defined in the literature: IDF=1/PD(t). Mathematically, we are looking for a
justification that leads to the following equation:

log
(

P (t|q, c)
P (t|c)

)
=

log
(

1
PD(t|c)

)
t ∈ Tq

0 t 6∈ Tq

(3.3)

where, in order to avoid confusion in the next derivation steps, the collection symbol
c is made explicit. We note that P (t|c) and PD(t|c) are both in the denominators of
the functions. Let us consider what the relation between these two elements is, i.e.,
P (t|c)/PD(t|c). We have:

PD(t|c)
P (t|c) = |Dt|

|D|
· `c

`t
= `c

|D|
· |Dt|

`t
=

¯̀
d

bt

where in the right-hand side of the previous equation we use the definition of burstiness
[Roe13]:

bt = `t

|Dt|

that is,

PD(t|c) =
¯̀
d

bt
· P (t|c) (3.4)

and, substituting in the left side of (3.3), it becomes:

log
(

P (t|q, c)
P (t|c)

)
= log

(
P (t|q, c)

bt/¯̀
d · PD(t|c)

)
(3.5)
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If we were to return to Eq. (3.3), we are forced to consider:

P (t|q, c) =
{

bt/¯̀
d t ∈ Tq

bt/¯̀
d · PD(t|c) t 6∈ Tq

=
{

bt/¯̀
d t ∈ Tq

P (t|c) t 6∈ Tq

Essentially, we have observed that the IDF, in its generic form of 1/PD(t|c) implies that,
when the term is not part of the topic q, we estimate P (t|q) as the probability of the term
in the collection (P (t|c)) and when the term is part of q we estimate it as P (t|q) = bt/¯̀

d.

The within-document term frequency (tfd) in IR models is usually not used in pure form
due to its bias towards long documents. The step from tfd towards a quantification
function involves a normalisation component, referred to as Kd. The widely known
TFBM25 normalisation factor is:

Kd = k1 ·
(
1 − b + b · ˆ̀

d

)
(3.6)

Given that k1 and b are parameters of Kd, one should use the notation Kk1,b,d, but for
readability, we simplify the notation to Kd.

We now have the all components to define one of the variants of the RSV of TF-IDF:

RSVTF-IDF(d, q) =
∑

t∈Tq∩Td

tfd
Kd

log
( |D|

|Dt|

)

and of BM25:
RSVBM25(d, q) =

∑
t∈Tq∩Td

tfd
tfd + Kd

log
( |D|

|Dt|

)

Until now we have presented the RSV function of TF-IDF and how this leads to BM25.
We follow discussing the derivation of the LM model and highlight some commonality
with the derivation of TF-IDF. We remember that the discussion of the derivation of
TF-IDF and BM25 was started from Eq. (3.1), where we decomposed the DQI using
P (d, q) = P (d|q)P (q). Here we review the decomposition of q as:

P (d, q) = P (q|d)P (d)

We will then have:
P (q|d) =

∏
t∈Tq

P (t|d)tfq

and:
log

(
P (q|d, c)
P (q|c)

)
=
∑
t∈Tq

tfq · log
(

P (t|d, c)
P (t|c)

)
(3.7)

Using again the observation formalised in Eq. (3.4):

log
(

P (t|d, c)
P (t|c)

)
= log

(
P (t|d, c)

bt/¯̀
d · PD(t|c)

)
(3.8)
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As commonly done in language modelling, we estimate the P (t|d, c) as:

P (t|d, c) = λd P (t|d) + (1 − λd) P (t|c)

and substituting to Eq. (3.8) obtain:

log
(

P (t|d, c)
bt/ ED[`d] · PD(t|c)

)
= log

(
(1 − λd) + λd

P (t|d)
bt/¯̀

d · PD(t|c)

)
(3.9)

In LM, when applying a Dirichlet-based mixture (D-LM), the value of λd is [ZL01]:

λd = `d

`d + µ

where µ is a parameter of the collection. This parameter could be set based on the
average document length ¯̀

d. Zhai and Lafferty [ZL01] report values of µ ≈ 2000, though
they note that the range of optimal parameter values in different collections is quite large
(500–10000). Later, Fang, Tao and Zhai [FTZ04] posited that µ needs to be at least as
large as the average document length (¯̀

d), so a reasonable value form for λd has been:

λd = `d

`d + ¯̀
d

= 1
1 + ¯̀

d
`d

The RSV of D-LM is therefore:

RSVD-LM(d, q) =
∑
t∈Tq

tfq · log
(

1
1 + `d/¯̀

d

(
1 + tfd

|D|
`t

))

In summary, in this section we have explored the derivation of the three most common
retrieval models in IR, TF-IDF, BM25, and D-LM, and observed a series of symmetries
that we will further explain in Chapter 4.

3.4 Retrievability: a Measure of Accessibility
The retrievability measure defines how likely it is that a document is retrieved [AV08b].
Formally, the retrievability (ret) of a document d with respect to a set of topics Q
submitted to a particular retrieval system, is defined as:

ret(d) =
∑
q∈Q

oqf(d, q, K)

where oq is the probability (also called opportunity) of the topic being chosen, and f is a
utility function that measures how retrievable the document d is for a topic q given the
rank cut-off K. The function f can be defined in many ways, based on where d has been
retrieved in the results of the retrieval system.
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Before going into the definitions of the potential utility functions, we define the function
retrieval status rank (RSR) as follows:

RSR(d, q) = |{d′ ∈ D : RSV(d′, q) ≥ RSV(d, q)}| (3.10)

This function returns the rank of a document with respect to a collection of documents
D based on a retrieval status value function (RSV), which defines the scoring schema of
a retrieval model.

We now define the first utility function:

f(d, q, K) =
{

1 RSR(d, q) ≤ K

0 otherwise
= [RSR(d, q) ≤ K] (3.11)

this function returns 1 if the document is retrieved with rank above or equal to the cut-off
K, and 0 if below. In the right-hand side we have the same but using the Iverson bracket
notation.

A second utility function, known in the literature as the gravity based utility function
[AV08b] is defined as follows:

f(d, q, K) =


1

RSR(d,q) RSR(d, q) ≤ K

0 otherwise
= 1

RSR(d, q) [RSR(d, q) ≤ K]

where the weights to every document change for every rank at which it has been retrieved.
This is similar to the evaluation measure reciprocal rank (RR). However, in Chapter 5,
we consider only the first utility function.

3.5 Test Collection-Based Evaluation and Pool Bias
Effectiveness of an IR system refers to the ability of a search engine to satisfy user
information needs. A way to know if a retrieval system retrieves information that
is relevant or irrelevant to the user is to define, for a set of prescribed topics, which
documents are relevant or irrelevant. This, given a collection of documents, defines what
in IR is called a test collection, and this pair relationship between topics and documents
defining their relevance, relevance assessments. This, in combination with a retrieval
evaluation measure is the standard setup to assess the quality of an IR system.

To collect relevance assessments is an expensive process. The current size of collections
of documents makes judging every document per topic impossible. Therefore a sampling
method has been developed, named pooling, consisting in building a test collection
making use of the results produced by various search engines. The most used pooling
strategy developed in IR, here called Depth@K, goes as follows: 1) given a certain cut-off
K, the first K documents from each result are collected in a pool, 2) every document
in the pool is then judged by an assessor. This process is repeated for every topic.
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3. Theory

We here formalise this strategy by defining a building set function J and a document
scoring function s : D × ℘(R) → R, used by J to select the top scoring documents.
The Depth@K strategy is specified by the following definitions of s, which scores every
document d retrieved by the set of pooled runs Rp:

s(d, Rp) = max
r∈Rp:d∈Dr

(−ρ(d, r))

and J , which determines the set of pooled documents:

JRp = {d ∈ r, r ∈ Rp : s(d, Rp) ≤ K} (3.12)

We indicate the combined result of the previous scoring function s and the set build
function J with the symbol Depth@K, which for the sake of clarity is abbreviated with
DK .

When building a test collection, the main factor under the control of the test collection
builder is the number of judged documents. This number depends both on the number of
pooled runs and on the minimum number of judged documents per run. To show these
dependencies we define a relaxation of the Depth@K strategy that instead of pooling
the top K documents retrieved by the pooled runs, it randomly samples from each run a
fixed number of documents K. We call this strategy RandomDepth@K, abbreviated as
rDK . This defines an s function as:

s(d, Rp) = max
r∈Rp:d∈Dr

(ε)

and a building set function J as defined in Eq. (3.12). The following set inequality shows
the relation between these two components:

rDK+1
Rp

\ rDK
Rp

⊇ rDK+1
Rp\{rp} \ rDK

Rp\{rp} (3.13)

this inequality holds deterministically if the result of the function s on every application
of the set building function J is equal, that is the pool returned by repeated calls to the
pooling strategy rDK produces the same initially nondeterministic pool J . Otherwise
this inequality holds nondeterministically. Now, on the one hand, given an evaluation
measure f , monotonically increasing with the number of relevant documents in rDK like
P@n, we obtain:

f(r, rDK+1
Rp

) − f(r, rDK
Rp

) ≥ f(r, rDK+1
Rp\{rp}) − f(r, rDK

Rp\{rp})

where r is a run, Rp is the set of runs used to build the pool J as returned by rDK , rp ∈ Rp,
K is the minimum number of documents judged per run, and f(r, rDK) is the score of the
run r evaluated on the pool J created with rDK . The proof is evident if we observe that:
rDK

Rp
⊆ rDK+1

Rp
, rDK+1

Rp\{rp} ⊆ rDK+1
Rp

, rDK
Rp\{rp} ⊆ rDK+1

Rp\{rp} and rDK
Rp\{rp} ⊆ rDK

Rp
. When

rp = r, the inequality (Eq. 3.13) defines the reduced pool bias. This shows that the
bias is influenced by K, the minimum number of judged documents per run, and by
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3.5. Test Collection-Based Evaluation and Pool Bias

|Rp| the number of runs. However Rp is not usually under the control of the collection
builder, which makes this bias sometimes inevitable. On the other hand, if f is not
monotonically increasing with the number of relevant documents in J like R@n, this
inequality is undefined:

f(r, rDK+1
Rp

) − f(r, rDK
Rp

) R f(r, rDK+1
Rp\{rp}) − f(r, rDK

Rp\{rp})

We can observe that the bias is not dependent on Rp. Thereby increasing the number of
pooled runs or the number of pooled documents do not guarantee a reduction in pool
bias.

We define the pool bias as the effect that documents that were not selected in the pool
created from the original runs will never be considered relevant [Lip16]. Therefore, this
bias affects the evaluation of a system that has not been part of the pool, with any IR
evaluation measures, making the comparison with pooled systems unfair. In the following
we provide a formal definition of pool bias:

Definition 3.5.1. The pool bias βf (r, JRp) is a systematic error we observe when perform-
ing a measurement with an evaluation measure f on a run r using the pooled documents
resulting from a pooling strategy J with input a set of pooled runs Rp, which may or
may not contain information about the run r:

βf (r, JRp) = f(r, JRp) − f(r, I) (3.14)

where I is the ideal set of judgements one would obtain when evaluating the entire
collection of documents. We say that f(r, I) is the true measurement and f(r, JRp) is
the biased measurement.

However, the ideal set of judgements I, in reality does not exist, this bias cannot be
computed. Instead, in IR we usually dispose of an approximation of this set I, which
in the following we indicate as the ground-truth G. The use of G in the measurement
introduces a random error in the observed measurement f(r, JRp), which we define as
follows:

Definition 3.5.2. We define as the random error, the difference we would observe on a
measure f applied on a run r between the actual measurement and the true measurement:

ε = f(r, G) − f(r, I) (3.15)
where I is the ideal set of judgements, therefore making f(r, I) the true measurement
and G the actual ground-truth, therefore making f(r, G) the actual measurement.

This difference is defined as the random error because we have no means of control over
it. By its definition, the random error goes to zero, if f(r, G) tends to f(r, I) when the
number of judged documents |G| tends to |I|.

From this point, in Chapter 6, we develop pooling strategies that aim to build less biased
test collection by containing a more unbiased set of documents.
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3.6 Pool Bias Estimators
In the previous section we have seen that the pool bias is an artefact of the pooling
method and that it is partially under control of the collection builder. In addition to this
approach, we can tackle this problem at evaluation time, that is when a retrieval system
gets assessed using a retrieval evaluation measure. We do this by developing pool bias
estimators. We analyse here the first pool bias estimator introduced to the IR community.
In particular we evaluate this bias estimator for the retrieval evaluation measures P@n.
In the following f refers to P@n. We do this here rather than in Chapter 7 in order to
establish the notation and to prepare the ground for the detailed discussion there.

Webber and Park [WP09] present a method for the estimation of pool bias that computes
the error introduced by the pooling method when one of the pooled runs is removed from
the pool. This value is computed for each pooled run using a leave-one run-out approach
and then averaged and used as a correction coefficient. Their correction coefficient for a
run r /∈ Rp is the expectation:

βf (r) = E
r′∈Rp

[
f(r′, JRp) − f(r′, JRp\{r′})

]
(3.16)

where JRp is the set build function of a generic pooling strategy. This pool bias correctors
is later referred in Chapter 7 as BS.

To evaluate this bias estimator we use the mean absolute error (MAE). Eq. 3.16 is
simple enough that we can attempt to analytically observe how the estimator behaves
with respect to the reduced pool, in the context of a Depth@K pool at vary of K. We
identify analytically a theoretical limitation of this approach when used with a Depth@K
strategy. The quality of the estimator, in expectation, will not get any better in terms of
MAE than the reduced pool when increasing the cut-off value n. This means also that if
the MAE of BS is worse than the MAE measured on the reduced pool, this will not be
able to recover when increasing n over K.

We start analysing the absolute error (AE) of the BS estimator for a run r:∣∣∣∣f(r, G) −
[
f(r, DK

Rp
) + E

r′∈Rp

[
f(r′, DK

Rp
) − f(r′, DK

Rp\{r′})
]]∣∣∣∣

where G is ground truth1, DK
Rp

is the pool constructed using a Depth@K strategy where
K is its depth and Rp is the set of pooled runs. We compare it to the absolute error of
the reduced pool: ∣∣∣f(r, G) − f(r, DK

Rp
)
∣∣∣

We observe that when the depth of the pool K becomes greater or equal than n,
f(r′, DK

Rp
) becomes constant. For the sake of clarity we substitute it with Cn. We

substitute f(r, G), which is also a constant, with CG. Finally, we also rename the
1The ground truth is the pool using the maximum depth available in the test collection
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components a(K) = f(r, DK
Rp

), b(K) = Er′∈Rp [f(r′, DK
Rp\{r′})], and call g(K) the AE of

the BS estimator, and h(K) the AE of the reduced pool:

g(K) = |CG − [a(K) + Cn − b(K)]| and h(K) = |CG − a(K)|

To study the behaviour at vary of K, we define ḟ as the finite difference of f with respect
to K:

ḟ(r, DK
Rp

) = f(r, DK+1
Rp

) − f(r, DK
Rp

)

We finitely differentiate the previous two equations, and since both are decreasing
functions of K, to see where the margin between the two functions shrinks (the benefit
decreases), it is sufficient to study when the inequality ġ(K) ≥ ḟ(K) holds.

ġ(K) =
{

−ȧ(K) + ḃ(K), if CG − [a(K) + Cn − b(K)] ≥ 0
ȧ(K) − ḃ(K), if CG − [a(K) + Cn − b(K)] < 0

and ḣ(K) = −ȧ(K)

Therefore,

ġ(K) ≥ ḣ(K) iff
{

ḃ(K) ≥ 0, if CG − [a(K) + Cn − b(K)] ≥ 0
2ȧ(K) ≥ ḃ(K), if CG − [a(K) + Cn − b(K)] < 0

While the first condition is always verified (ḃ(K) is an average of positive quantities), the
second tells us that if ḃ(K) is less or equal to 2ȧ(K) the BS estimator decreases more
slowly than the reduced pool. This inequality does not say anything about the behaviour
of an arbitrary run r as it can be different for each r. Therefore, we study the MAE
using its expectation. We define RG as the set of runs of the ground truth G, in which
Rp ⊂ RG. Using the law of total expectation we can write:

E
r∈RG

[ḃ(K)] =

= E
r∈RG

[
E

r′∈RG\{r}

[
f(r′, DK+1

RG\{r,r′}) − f(r′, DK
RG\{r,r′})

]]
=

= E
r1,r2∈RG:r1 6=r2

[
f(r1, DK+1

RG\{r1,r2}) − f(r1, DK
RG\{r1,r2})

]
Using the pool inequality in Eq. 3.13:

E
r1,r2∈RG:r1 6=r2

[
f(r1, DK+1

RG\{r1,r2}) − f(r1, DK
RG\{r1,r2})

]
≤

≤ E
r1∈RG

[
f(r1, DK+1

RG\{r1}) − f(r1, DK
RG\{r1})

]
=

= E
r∈RG

[ȧ(K)] ≤ E
r∈RG

[2ȧ(K)]

Therefore, in expectation, at increasing of depth of the pool K, for P@n with n ≥ K,
the MAE of the BS estimator decreases more slowly than the MAE of the reduced pool.
The BS estimator does not suffer of the same constraint for R@n since it keeps changing
in particular it decreases when K is increased.
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CHAPTER 4
Model Bias: Term Frequency

Normalisation

Every Information Retrieval (IR) model embeds in its scoring function a form of term
frequency (TF) quantification. The contribution of the term frequency is determined by
the properties of the function of the chosen TF quantification, and by its TF normalisation.
The first defines how independent the occurrences of multiple terms are, while the second
acts on mitigating the a priori probability of having a high term frequency in a document
(estimation usually based on the document length). New test collections, coming from
different domains (e.g. medical, legal), give evidence that not only document length,
but in addition, verboseness of documents should be explicitly considered. Therefore
we propose and investigate a systematic combination of document verboseness and
length. To theoretically justify the combination, we show the duality between document
verboseness and length. In addition, we investigate the duality between verboseness and
other components of IR models.

We test these new TF normalisations on four test collections. These test collections
have been chosen based on their statistical properties, which are indicative of the use
of the English language in their domains. We do this on a well defined spectrum of TF
quantifications, which spectrum covers four of the possible degree of independence for the
multiple occurrences of the same term in documents. Finally, based on the theoretical and
experimental observations, we show how the two components of this new normalisation,
document verboseness and length, interact with each other. Our experiments demonstrate
that the new models never underperform existing models, while sometimes introducing
statistically significantly better results, at no additional computational cost.
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4.1 Introduction

The development of retrieval models is one of the key aspects of research in IR. The IR
models arise from experimental observations about the use of the language, predominantly
on collections of documents primarily composed of news corpora. Today, with the almost
total digitisation of most text produced, it is clear that the textual documents are not
just news and that different collections require different approaches [HL13]. Consequently,
the field has been driven to deal with different kinds of information types, demonstrated
by the creation of new and more domain specific initiatives in the main IR evaluation
campaigns: TREC, NTCIR, CLEF, and FIRE. Now, thanks to the observations made
in the context of these evaluation campaigns, we are able to revisit some of the original
assumptions and extend the models to integrate other collection statistics that reflect
the different use of the language in different domains.

Every IR model boils down to a scoring function in which we can distinguish a component
that increases with the number of occurrences of a term in a document (a term frequency
component, TF) and a component that decreases with the commonality of a term (an
inverse document frequency component IDF). In this chapter we focus on the TF
component. Its normalisation, first introduced by Robertson et al. [Rob+94] for BM25,
and then generalised by Singhal et al. [SBM96] for a generic model, consists in adjusting
the within-document term frequency (tfd) based on the ratio between the document length
(`d) and its expectation (ED[`d]), called pivoted document length normalisation. The
work of Singhal et al. is motivated by the experimental observation that the distribution of
length of the retrieved documents should match the distribution of length of the relevant
documents. Robertson et al. justify this normalisation, later declared as ‘soft’ for the
mitigation effect provided by the division by the mean, by introducing two contrasting
hypotheses [RZ09], named verboseness and multi-topicality, previously discussed in Section
2.1, in which we have observed that while the first hypothesis suggests a document should
be normalised by its length, the second suggests the contrary.

We point out that other collection statistics can be embedded in the TF normalisation
of probabilistic models, namely verboseness and burstiness. The former quantifies the
repetitiveness of terms in a document. The latter quantifies the repetitiveness of terms
across documents. In this chapter we focus primarily on verboseness, but we also make
some observations on burstiness and its relation with IDF.

4.2 Motivation

In this section we formally introduce the document verboseness and term burstiness. We
then motivate their investigation in IR models.

Verboseness is reflected by the ratio `d/|Td|: the document length divided by the number
of (distinct) terms in the document. The ratio corresponds to the average tfd (over all
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4.2. Motivation

terms) in document d:

vd := E
Td

[tfd ] = `d

|Td|
(4.1)

A document is verbose if few terms are repeated many times; its domain
is [1, `d], 1 for non-verbose (no term occurs more than once), and `d for
maximally verbose (one term is repeated `d times).

Intuitively, the more verbose (repetitive) a document is, the higher is the chance to find
a high tfd . In other words, a document has a high score just because words are repeated
(e.g. spamming), and therefore, one wants to demote verbose documents in the ranking.

Burstiness is reflected by the ratio `t/|Dt|, that is the term length in the collection c
(or number of occurrences of the term in c) divided by the number of the collection’s
documents where the term t occurs (aka document frequency). The ratio corresponds to
the average tfd (over the number of documents where the term t occurs) in collection c:

bt := E
Dt

[tfd ] = `t

|Dt|
(4.2)

A term is bursty if it occurs in few documents many times; its domain is
[1, `t], 1 for a non-bursty term (it occurs only once in each document where
it is present), `t for maximally bursty (all the occurrences are only in one
document).

Intuitively, the more bursty a term is, the higher is the chance to find a high tfd . In other
words, a bursty term occurs in fewer documents than a non-bursty (a normal) term, and
therefore, one wants to promote documents containing bursty terms.

Instead of verboseness and burstiness, scoring functions most often use normalisation
of the tfd based on the document length `d (e.g. in the TF component of BM25 and in
some versions of TF-IDF) .

The contribution of the document length is smoothed by its average, that corresponds
to the average `d (over all the documents) in collection c:

avgdl(c) = E
D

[`d] = `c

|D|
(4.3)

This is then used to calculate the pivoted document length (pivotisation is indicated in
this chapter by a hat) as follows:

ˆ̀
d := `d

ED[`d]
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4. Model Bias: Term Frequency Normalisation

The ˆ̀
d is greater than 1 for relatively long documents (greater than the average document

length), and smaller than 1 for short documents (lower than the average document
length).

It is surprising that IR models are keen to capture the ˆ̀
d, but seem to hide away

verboseness and burstiness, i.e., there is no parameter explicitly associated with these
properties. However we observe that some IR models implicitly use these normalisations.

Following, we observe which IR models capture verboseness and burstiness, and how
the parameters can be made explicit or added. As a supportive case we present the
verboseness dualities with the concept of burstiness [Roe13] and term length (aka collection
frequency).

4.3 Term Frequency Normalisation

Before getting into the details of the duality between document verboseness and length,
we formally define the standard pivotisation of document length and introduce the
pivotisation of verboseness. To do this we start from the foundation of every IR model:
the document-term matrix A ∈ N|D|×|T |, in which each element is a tfd indicated here by
ad,t for convenience of the notation. For any given matrix, we can define two ways to
sum the elements of this matrix; one that fixes a column (a term t) and sums over the
rows (the |D| documents) and one that fixes a row (a document d) and sums over the
columns (the |T | terms). Doing this we calculate two lengths: the length of a document
and the length of a term1, as follows:

St =
∑
d∈D

ad,t = `t Sd =
∑
t∈T

ad,t = `d

Now, if we want to compute the average of the values on each row or column, we have to
divide the sums obtained above by a value. For this value we actually have two options:
the number of columns or rows, and the number of non-zero elements in the columns or
rows. The first is what we would call the average, and the second the elite average. To
give an intuition, think of the question “What is the average number of Ferraris owned
by a person?”. This question has two answers: we can divide the total number of Ferraris
(the sum of the elements on a row/column) by the total number of people on the planet
(the number of columns/rows); or, we can consider only those people that have at least
one Ferrari and then divide the number of Ferraris by the size of this set of people. The
first one is the common average, while the second, obviously, is the elite average.

Returning to our document-term matrix, we will denote by a bar (ā) a common average

1Although the “length of a term” is non intuitive, here it is meant the L1-length of a vector
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4.3. Term Frequency Normalisation

and by a breve (ă) an elite average:

āt = 1
|D|

∑
d∈D

ad,t = `t

|D|

ăt = 1
|{ad,t : ad,t 6= 0}|

∑
d∈D

ad,t = 1
|Dt|

∑
d∈D

ad,t = `t

|Dt|
= bt

ād = 1
|T |

∑
t∈T

ad,t = `d

|T |

ăd = 1
|{ad,t : ad,t 6= 0}|

∑
t∈T

ad,t = 1
|Td|

∑
t∈T

ad,t = `d

|Td|
= vd

in which we observe that the two elite averages just defined ăt and ăd correspond to the
burstiness bt as defined in Eq. (4.2) and verboseness vd as defined in Eq. (4.1).

Considering the remaining elements, āt and ād, we can think of them as defining an average
document d̄ = {(t1, āt1) . . . (t|T |, āt|T |)} and an average term t̄ = {(d1, ād1) . . . (d|D|, ād|D|)}.

So, now, for each row d and for each column t we have a sum, an average, and an elite
average. To obtain a collection-level statistic, we have to aggregate again, calculating
sums and averages (common and elite averages are identical now, because all rows and
all columns have a non-zero aggregated value).

Doing so, we observe that

˘̀
d := 1

|D|
∑
d∈D

`d
¯̀
d :=

∑
t∈T

āt = `c

|D|
˘̀
d = ¯̀

d

i.e., the average document length ¯̀
d is equal to the sum of the elements of the average

document d̄.

However, the same observation is not valid for verboseness, because it is an elite average.
Instead, we have two notations:

v̆d := 1
|D|

∑
d∈D

vd v̄d :=
∑
d∈D

ād = `c

|T |
v̆d 6= v̄d

4.3.1 Duality: Document Verboseness and Length
Recalling the definition of verboseness from Eq. (4.1), it is the average number of times
a document’s term occurs within the document. To observe the duality of document
verboseness and length, Eq. (4.3), let us first define the notation to identify the singleton
of a document d ∈ D as Dd = {d} and the singleton of a term t ∈ T as Tt = {t}.
Obviously |Dd| = |Tt| = 1 and therefore we can write `d = `d/|Dd|. Let us now consider
the pivoted verboseness and pivoted document length, using the two sets of values defined
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4. Model Bias: Term Frequency Normalisation

above: ¯̀
d = ˘̀

d, v̄d and v̆d:

῭
d = `d

¯̀
d

= `d/|Dd|
`c/|D|

ˆ̀
d = `d

˘̀
d

= `d/|Dd|
ED[`d/|Dd|]

v̈d = vd

v̄d
= `d/|Td|

`c/|T |
v̂d = vd

v̆d
= `d/|Td|

ED[`d/|Td|]

where we indicate the non-elite pivotisation with a double dots and the elite pivotisation
with a hat. The duality is obtained substituting D → T to go from `d to vd or T → D
to go from vd to `d.

The pivoted verboseness of a document is with respect to the space of terms (T ), whereas
the pivoted document length of a document is with respect to the space of documents
(D). One can also show the duality between document verboseness and length based on
probabilistic expressions, for the average case:

῭
d = `d

¯̀
d

= PL(d)
PD(d) = `d/`c

|Dd|/|D|
ˆ̀
d = `d

˘̀
d

= PL(d)/PD(d)
ED[PL(d)/PD(d)]

v̈d = vd

v̄d
= PL(d)

PT (d) = `d/`c

|Td|/|T |
v̂d = vd

v̆d
= PL(d)/PT (d)

ED[PL(d)/PT (d)]

PL(d) is the location-based probability of a document. Dividing this by the term-based
probability of d, PT (d) = |Td|/|T | yields the pivoted verboseness. Dividing by the
document-based probability of d, PD(d) = |Dd|/|D| = 1/|D|, yields the pivoted document
length.

The dualities between average document verboseness and average document length justify
the combination of parameters as formalised in the definition capturing the normalisation
variants of Kd:

Definition 4.3.1 (TF Normalisations Kd). K̈d: the non-elite normalisation comprises the
non-elite pivots ῭

d and v̈d.

K̂d: the elite normalisation comprises the elite pivots ˆ̀
d and v̂d.
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4.3. Term Frequency Normalisation

The expression pivdl, pivoted document length, denotes one of the two:

pivdl =
{ ῭

d non-elite pivot
ˆ̀
d elite pivot

Analogously for pivdv, pivoted document verboseness.

Then, the pivotisation components are defined for the disjunctive (linear) and conjunctive
(product) combination of the pivots.

comb_pivb,a,∨(d) := 1 − b + b · [(1 − a) · pivdl + a · pivdv]

comb_pivb,a,∧(d) :=
[
pivdl1−a · pivdva

]b
The combined pivot becomes part of the usual definition of the normalisation parame-
ter Kd.

Kd = k1 · comb_piv(d)

It is worth pointing out now that for b = 0, or b = 1 and a = {0, 1} these two combinations
are the same. In particular we should note that:

comb_piv0,a,∧(d) = comb_piv0,a,∨(d) = 1

is the “traditional” Kd, created ignoring both document length, and verboseness (b = 0).

To summarise, there are four variants of the pivotisation factor Kd: non-elite disjunctive
denoted as K̈∨, non-elite conjunctive denoted as K̈∧, and the respective elite variants K̂∨
and K̂∧. The experiments emphasise the analysis of the behaviour of these four variants.

4.3.2 Example of the Calculation of the Pivotisations
This example illustrates the arithmetic to compute the pivoted document verboseness
and length.

Example 4.3.1 (Pivoted Document Verboseness and Length). Assume a document d with
`d = 300 word occurrences, and |Td| = 150 distinct words. The verboseness is:

vd = `d

|Td|
= 300

150 = 2

Let the collection contain `c = 107 word occurrences, and |T | = 105 distinct words.
The non-elite average document verboseness is 100, that is, on average, a term occurs
v̄d = 100.

The elite average verboseness is the average over the verboseness values of the documents.
For example, let v̆d = 5/2 be the elite verboseness.
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4. Model Bias: Term Frequency Normalisation

The pivoted verboseness is the verboseness divided by the average verboseness (e.g. the
non-elite average verboseness).

v̈d = vd

v̄d
= 2

100 = 1
50

while the pivoted elite verboseness is the verboseness divided by the elite average
verboseness:

v̂d = vd

v̆d
= 2

5/2 = 4
5

Regarding the document length, let ¯̀
d = 400 be the average document length. Then, the

pivoted document length is:
῭
d = `d

¯̀
d

= 300
400 = 3

4
Then we can combine the non-elite pivots, for example, in a disjunctive way:

K̈∨,d = k1 ·
{

1 − b + b ·
[
(1 − a) · 3

4 + a · 1
50

]}
or, the elite pivots in a conjunctive:

K̂∧,d = k1 ·
[(3

4

)a (4
5

)1−a
]b

The other two variants, elite pivots combined in a disjunctive way (K̂∨,d), and non-elite
pivots combined in a conjunctive way (K̈∧,d) are left to the reader.

4.3.3 Other Dualities
To strengthen the theoretical justifications, we explore two other dualities, namely the
duality between document verboseness and term burstiness, and later in the section the
duality between term burstiness and term length. Here, the definitions of the first couple:

document verboseness: vd := `d/|Td|
term burstiness: bt := `t/|Dt|

The duality is obtained substituting D → T and d → t to go from vd to bt or T → D and
t → d to go from bt to vd. Verboseness is the average term frequency when considering
the document length `d over the set Td of terms that occur in the respective document.
Burstiness is the average term frequency when considering the number of times the term
occurs `t over the set Dt of documents in which the respective term occurs.

Furthermore, starting from burstiness and substituting D → T , we observe another
duality, between term length and burstiness:

term burstiness: bt := `t/|Dt|
term length: `t := `t/|Tt|
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Table 4.1: List of all four dual properties.

document verboseness vd := `d/|Td|
document length `d := `d/|Dd| (noting that |Dd| = 1)

term burstiness bt := `t/|Dt|
term length `t := `t/|Tt| (noting that |Tt| = 1)

These dualities, based fundamentally on substitutions between the set of documents D and
the set of terms T , were briefly explored in the early 1990s, when Knaus et al. [KMS94],
and Amati and Kerpedjiev [AK92] talked about ITF (inverse term frequency) and IDF.

Whereas the IDF is applied for reasoning about the similarity between documents, the
ITF is applied for reasoning about the similarity between terms. Viewing the ITF and
IDF together shows that ITF is related to verboseness, and IDF is related to burstiness.

ITF(d, c) := − log PT (d|c)
(

= log |Tc|
|Td|

)

IDF(t, c) := − log PD(t|c)
(

= log |Dc|
|Dt|

)
Overall, the discussion supports the case to consider verboseness as a document-specific
parameter, whereas traditional IR focuses on the pivoted document length, only.

4.3.4 Summary
This section justified the systematic combination of pivoted document length and pivoted
verboseness, while placing them in the context of other dualities, involving burstiness
and term length. Table 4.1 shows the list of all the explored dualities.

4.4 Probabilistic Derivation of IR Models
To discuss the justification of TF quantifications, we consider the probabilistic derivation
of IR models, which we have presented in Section 3.3. In this section we have seen how
to derive the TF-IDF from DQI in Eq. (3.1) by expanding P (d, q) as P (d|q)P (q). Next,
by making two assumptions of independence, the first on the occurrences of different
terms and the second on the occurrences of the same term, we have obtained Eq. (3.2).
At this point we have seen that to provide a justification for TF-IDF, we are looking for
the bridges to close the gap between the probabilistic roots (assuming independence)
and the TF-IDF. Expressed as an equation, we are looking for justifications to transform
components of Eq. (3.2) to TF-IDF.

tfd · log P (t|q)
P (t)

↓ ↓
TF(t, d) · IDF(t)
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Figure 4.1: TF quantifications when Kd = 1.

where TF and IDF are the two components, term frequency and inverse document
frequency.

4.4.1 Observations about the TF
Still in Section 3.3, about the within-term frequency (tfd), we have observed that this
is usually not used pure due to its bias towards long documents and we have defined
the normalisation component Kd in Eq. (3.6). At this point, we have mentioned that by
revisiting the second assumption we can derive TFBM25. In the following we extend this
reasoning by considering a well-defined spectrum of TF quantifications [RKB15] defined
as follows:

Definition 4.4.1 (TF Quantifications).

TF(t, d) =


tfd/Kd TFtotal: independent
log(tfd/Kd + 1) TFlog: logarithmic
2 · tfd/(tfd + Kd) TFBM25: semi-subsumed
1/Kd TFconstant: subsumed

The shape of the different TF quantifications is shown in Figure 4.1. This spectrum
is well-defined because, each of these TFs correspond to an assumption regarding term
events [RKB15]. TFtotal corresponds to assuming independence, and the TFlog and
TFBM25 variants assume the occurrences of an event to be dependent.
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With this understanding of what the TF stands for, namely a factor modelling a depen-
dence assumption, the role of Kd is to tune the dependence assumption. For Kd > 1,
that is for long documents, TF(t, d) decreases, i.e., the dependence increases. This means
that in long documents, the multiple term occurrences are more dependent than in short
documents. This makes perfect sense when imagining a long document that repeats some
terms many times.

This discussion makes evident that it is not just the length of the document that matters.
To illustrate, consider two documents of equal length, for example, `d = 300 words. The
standard Kd will be equal for both documents. One document, however, contains many
repetitions of some words (the document is verbose), whereas the other document contains
many different words (the document is not verbose). Indeed, it is the verboseness and not
simply the document length that leads to high term frequencies, and thus, to dependencies
of multiple term occurrences. Therefore, this chapter views Kd as a combination of the
pivoted document length (pivdl) and the pivoted document verboseness (pivdv). Where
we use a different notation for the pivoted document length to distinguish between its
generalisation and its particular implementation (ˆ̀

d). The following equation indicates
the difference between the standard Kd as known for BM25 (as shown in Eq. (3.6)), and
the systematic extension proposed and investigated in this thesis:

Kd = k1 · f(pivdl, pivdv)

Here, f(pivdl, pivdv) is a function combining the two parameters, and this chapter
explores both a conjunctive and a disjunctive combination.

4.4.2 Observations about the IDF
Continuing in Section 3.3, we have seen that when answering the question on how to
close the gap between P (t|q)/P (t) and IDF, as commonly defined in the literature:
IDF=1/PD(t), we are looking for a justification that leads to Eq. (3.3), where the log
probability of a term is equal to 0 when the term does not belong to the set of query
terms, and equal to 1/PD(t) when it does. Then, after some mathematical passages, we
have obtained Eq. (3.5), in which we have observed that this equation makes burstiness
explicit, and in particular its otherwise implicit role in the relationship between IDF and
the probabilistic model. At this point, we recall that we were forced to consider:

P (t|q, c) =
{

bt/¯̀
d t ∈ Tq

bt/¯̀
d · PD(t|c) t 6∈ Tq

=
{

bt/¯̀
d t ∈ Tq

P (t|c) t 6∈ Tq

We now observe that this separation between the cases when t ∈ Tq and t 6∈ Tq is
reminiscent of smoothing in language modelling. We could for instance write:

P (t|q, c) = λq bt/¯̀
d + (1 − λq) P (t|c) (4.4)

with
λq =

{
1 t ∈ Tq

0 t 6∈ Tq
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We shall call this an extreme mixture.

If we were to continue this inspiration from language modelling, leaving the above for a
moment aside, to compute the P (t|q, c) we would estimate it through a linear mixture
between the P (t|c) and the P (t|q), as follows:

P (t|q, c) = λq P (t|q) + (1 − λq) P (t|c) (4.5)

This equation is traditionally made because to estimate the probability of a term given
the query q, when q is short, is not reliable (even more so than when considering a
document d).

Substituting Eq. (4.5) into Eq. (3.5), we have:

log
(

P (t|q, c)
bt/¯̀

d · PD(t|c)

)
= log

(
(1 − λq) + λq

P (t|q)
bt/¯̀

d · PD(t|c)

)
(4.6)

where P (t|q) is calculated in a traditional way with a maximum likelihood estimator.
However, this would not solve our problem given by the shortness of q. Instead, we need
to use the estimation of Eq. 4.4. Then, reintroducing the distinction between t ∈ Tq and
t 6∈ Tq (i.e., λq), we obtain

log
(

(1 − λq) + λq
P (t|q)

bt/¯̀
d · PD(t|c)

)
=
{

log
(
(1 − λq) + λq

1
PD(t|c)

)
t ∈ Tq

0 t 6∈ Tq

In which if we set λq = 1 then the foreground probability P (t|c) cancels out from the
linear mixture assumption ending up with the standard IDF. We shall call this inverse
document frequency IDFL, where L stands for linear mixture, in contrast to the standard
IDF (or IDFE) that is defined by an extreme mixture.

4.4.3 LM and TF-IDF
We already reached with our analysis a point where the border between LM and TF-IDF
gets blurred. In this section we recall the derivation of the LM model and highlight some
commonality with the derivation of TF-IDF. In Section 3.3, we have shown that to derive
LM, we start from Eq. (3.1) like for TF-IDF, but we then decompose P (d, q) = P (q|d)P (d).
By doing this we obtain P (q|d) =

∏
t∈Tq

P (t|d)tfq and (3.7). Again we observe here that
the formalisation in Eq. (3.4), makes explicit burstiness in the Eq. (3.8), as it was in
Eq. (3.5).

Analogously for the derivation of TF-IDF for the estimation of P (t|q, c) in Eq. (4.5), as
commonly done in language modelling, we have estimated P (t|d, c) = λd P (t|d) + (1 −
λd) P (t|c), which after substituting to Eq. (3.8) we have obtained (3.9). In which we
can now notice the symmetry with Eq. (4.6). We have then observed that in LM, when
applying a Dirichlet-based mixture (D-LM), the value of λd is [ZL01]:

λd = `d

`d + ¯̀
d

= 1
1 + ¯̀

d
`d

= pivdl
pivdl + 1
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Now, just as we did for the normalisation of TF in the TF-IDF derivation, we should
consider here not only the presence of the document length but also that of verboseness:

λd = f(pivdl, pivdv)
f(pivdl, pivdv) + 1

In a symmetric way we may define for TF-IDF a parameter not strongly dependent by the
presence or absence of the term in q (as it was the case in the extreme mixture observed
in the previous section) but rather using the Dirichlet based smoothing approach and
the maximum likelihood estimation for P (t|q) = tfq/`q:

λq = f(pivql, pivqv)
f(pivql, pivqv) + 1

However, the components of this formulation for λq are generally not very informative
(queries tend to be significantly shorter than documents, and therefore we cannot really
talk about the verboseness of a query). Instead, at this place we can exploit the duality
of document verboseness and length with term length and burstiness (see Section 4.3.3):

λq = f(pivtl, pivtb)
f(pivtl, pivtb) + 1

In summary, in this section we have explored the relationship between TF-IDF and LM.
Both models apply a mixture: TF-IDF for estimating P (t|q, c), and LM for estimating
P (t|d, c). Moreover, both models involve the component bt/¯̀

d · PD(t) measuring the
discriminativeness of the term, where burstiness is made explicit.

The mixture assumptions for P (t|q, c) lead to IDF and it becomes clear why IDF is
seen as capturing burstiness in an “implicit” way [CG99]. The Dirichlet-based mixture
for P (t|d, c), usually only associated with the document length, is extended with the
document verboseness, in this is executed analogously to the way the TF quantification
was extended for TF-IDF.

4.5 Experiments
In this section, we first present the material, then the experimental setup. Finally we
discuss the results.

4.5.1 Setup and Materials
To test the TF normalisation variants on the different kinds of TF quantifications, we
used 4 test collections: TREC HARD 2005, TREC Ad Hoc 8, CLEF eHealth’14, and
TREC Web 2002. Details and corpora properties shown in Table 4.2. The test collections
have been purposefully chosen with a high degree of variability of v̆d. In this way we can
observe the different use of the language in different domains (e.g. we observe that in
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Table 4.2: Test collection’s information about the collection size |D|, number of terms
|T |, collection length `c, average document length ¯̀

d, non-elite average verboseness v̄d,
elite average verboseness v̆d, average term length ¯̀

t, non-elite average burstiness b̄t, and
elite average burstiness b̆t. Ordered as indicated by the arrow (↓).

Corpus EC Challenge
|D| |T | `c
¯̀
d v̄d v̆d ↓

¯̀
t b̄t b̆t

Aquaint TREC HARD’05
1,033,461 647,280 282,858,247
273.700 436.995 1.519
436.995 273.700 1.384

Disks 4&5 TREC Ad Hoc 8
528,106 737,963 156,226,039
295.823 211.699 1.575
211.699 295.823 1.377

eHealth’14 CLEF eHealth’14
1,104,298 1,103,947 685,458,908
620.917 308.294 1.900
308.294 620.917 1.349

.GOV TREC Web’02
1,214,592 2,937,251 1,770,120,644
1,457.379 602.645 4.830
602.645 1,457.379 3.012

.GOV on average a term is repeated 218% more times than in the Aquaint collection).
We developed the tested IR models on the IR platform Terrier2 4.2. All the documents
have been preprocessed using the English tokenizer and Porter stemmer of the Terrier
search engine.

We tested a total of 24 models:

• 16 models based on TF-IDF variants: 4 TF normalisations for each of the 4
TF quantifications defined in Definition 4.4.1. Each model is identified by its
TF quantification, TFtotal, TFlog, TFBM25, and TFconstant and kind of TF nor-
malisation applied: non-elite disjunctive K̈∨,d, non-elite conjunctive K̈∧,d, elite
disjunctive K̂∨,d and elite conjunctive K̂∧,d.

• 4 models based on D-LM: Each Dirichlet-based mixture is identified by its kind
of λd normalisation applied: non-elite disjunctive λ̈∨,d, non-elite conjunctive λ̈∧,d,
elite disjunctive λ̂∨,d and elite conjunctive λ̂∧,d.

• 4 models based on the TF-IDFL: Each Dirichlet-based mixture is identified by its
kind of λq normalisation applied: non-elite disjunctive λ̈∨,q, non-elite conjunctive
λ̈∧,q, elite disjunctive λ̂∨,q and elite conjunctive λ̂∧,q. As TF(t,d), we select the
non-normalised TFtotal.

2http://www.terrier.org
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4.5. Experiments

The TF normalisation of each model presents three parameters: k1, b and the new a
introduced in this chapter. Whilst the D-LM and TF-IDFL based models present two
parameters: b and a. Our experiments focus on the parameter a. For k1 and b, there
are two ways of selecting their values: using the standard values from the literature, or
identifying trained values. For the models based on the TF-IDF variants, the standard
parameters for TFBM25 are k1 = 1.2 and b = 0.7 [Rob+94]. The standard parameter
for TFtotal and TFconstant is b = 0 that simplifies Kd to a constant. In this case we set
k1 = 1, because it is easy to demonstrate that to change the parameter k1, as long as
k1 > 0, does not change the rank of the retrieved documents for these two quantifications.
The same set of parameter values are set for the standard TFlog (b = 0, k1 = 1). For
the models based on the D-LM, the standard parameters are k1 = 1 and b = 0, which
reduces to the standard definition of D-LM [ZL01]. For the models based on the LM
variant derived by TF-IDF, the standard parameters are k1 = +∞, which reduces to
standard the TF-IDF model with non normalised TFtotal quantification.

To identify trained values, the parameters of each model have been spanned as follows:
a, b ∈ [0, 1] at steps of 0.1, and k1 ∈ [0, 5], from 0 to 1 at steps decided by the function
1/n with n ∈ {1, ..., 50}, and from 1 to 5 at steps of 0.1. The trained values are obtained
by maximising the mean over the topics of the selected evaluation measure. For every
model configuration that requires training we perform a 5-fold cross validation.

The IR evaluation measures are AP, NDCG and P@10.

4.5.2 Model Candidates / Structure
Each TF-IDF model candidate is characterised by choosing one of the following options:

1. Pivotisation: elite pivotisation or non-elite pivotisation for document verboseness
and length;

2. Normalisation: conjunctive (∧) or disjunctive (∨) combination of pivoted document
verboseness and length into Kd;

3. Quantification: TFtotal, TFlog, TFBM25, or TFconstant;

4. Parameter Settings: standard (S) or trained (T) parameters.

Each D-LM model candidate is characterised by choosing one of the following options:

1. Pivotisation: elite pivotisation or non-elite pivotisation for document verboseness
and length;

2. Normalisation: conjunctive (∧) or disjunctive (∨) combination of pivoted document
verboseness and length into λd;

3. Parameter Settings: standard (S) or trained (T) parameters.
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4. Model Bias: Term Frequency Normalisation

Each TF-IDFL model candidate is characterised by choosing one of the following options:

1. Pivotisation: elite pivotisation or non-elite pivotisation for term length and bursti-
ness;

2. Normalisation: conjunctive (∧) or disjunctive (∨) combination of pivoted document
verboseness and length into λq;

3. Parameter Settings: standard (S) or trained (T) parameters.

4.5.3 Results
The main results observed are:

1. Document Verboseness vs Length: show a certain independence as shown by the
shape of the distributions in Figures 4.2 and 4.3;

2. Pivotisation: for TF-IDF models the elite pivotisation is overall better than the
non-elite one; for D-LM models the non-elite pivotisation performs better.

3. Normalisation: for TF-IDF models the combination of document verboseness
and length achieves significantly better results, especially when combined in a
conjunctive fashion; for D-LM models the combination of document verboseness
and length rarely achieves statistical significance;

4. TF-Quantification: TFBM25 appears best, with TFlog close behind;

5. Standard vs Trained parameter: in both parameter configurations, standard and
trained, the use of verboseness makes the model achieve better results. On the
other hand, the use of term length has most of the time negligible impact.

For each test collections: HARD 2005 in Table 4.3, Ad Hoc 8 in Table 4.4, eHealth’14 in
Table 4.5, and Web 2002 in Table 4.6, we present the results obtained with the TF-IDF
model variants and the two pivotisations. In these tables we observe each model with
either its standard configuration (S), or its trained configuration (T), obtained taking
the configuration that maximises the evaluation measure AP. The standard parameters
of the normalisations for the TF quantifications: TFtotal, TFlog and TFconstant, have
the effect of disabling the normalisation component (b = 0). However, for TFBM25 this
does not happen. Thereby, we can study the effect of the parameter a in its standard
parametrisation. To do this we extract the best value obtained with the standard k1 and
b by selecting the maximum value of the measure AP obtained by varying the parameter
a. In case of the trained parameter values instead, for all the TF quantifications, we
show in the first row the best result obtained maximising the AP without the use of
verboseness in the scoring function (a = 1.0), and then we show the result obtained
when verboseness is added in the scoring function. The tables distinguish between the
conjunctive (∧) and disjunctive (∨) combinations of document verboseness and length.
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4.5. Experiments

Table 4.3: Comparison of the scores obtained with the TF-IDF model candidates with
each TF normalisation using the non-elite and elite pivotisation. Column K indicates
if standard (S) or trained (T) parameters are used. † indicates statistical significance
(paired t-test, p < 0.05) against the standard and ‡ against the trained parameters when
a is not used.

HARD’05
P Q K C k1 b a AP NDCG P@10

N
on

-E
lit

e

T
F t

ot
al

S - > 0 0.0 - 0.0721 0.2936 0.1920
- > 0 0.5 - 0.0900 † 0.3201 † 0.2160
∨ > 0 0.9 0.9 0.0904 † 0.3223 †‡ 0.2200T
∧ > 0 1.0 0.6 0.0942 †‡ 0.3277 †‡ 0.2380 ‡

T
F l

og

S - 1.0 0.0 - 0.1614 0.4424 0.4160
- 0.2 0.3 - 0.2005 † 0.4799 † 0.4360
∨ 0.2 0.4 0.2 0.2010 † 0.4801 † 0.4320T
∧ 5.0 0.8 0.7 0.2003 † 0.4813 † 0.4400

T
F B

M
25

S - 1.2 0.7 - 0.1848 0.4563 0.3660
∨ 1.2 0.7 0.6 0.1898 0.4584 0.4280 †
- 1.5 0.3 - 0.2023 † 0.4797 † 0.4440 †
∨ 1.9 0.4 0.5 0.2030 † 0.4802 † 0.4480 †T

∧ 3.2 0.4 0.3 0.2032 † 0.4812 † 0.4540 †

T
F c

on
st

an
t S - > 0 0.0 - 0.0613 0.2436 0.1500

- > 0 0.1 - 0.0735 † 0.2744 † 0.1620
∨ > 0 0.2 0.7 0.0742 † 0.2756 † 0.1620T
∧ > 0 0.1 0.0 0.0740 † 0.2745 † 0.1660

El
ite

T
F t

ot
al

S - > 0 0.0 - 0.0721 0.2936 0.1920
- > 0 0.5 - 0.0900 † 0.3201 † 0.2160
∨ > 0 1.0 0.6 0.0946 †‡ 0.3283 †‡ 0.2380 ‡T
∧ > 0 1.0 0.6 0.0942 †‡ 0.3277 †‡ 0.2380 ‡

T
F l

og

S - 1.0 0.0 - 0.1614 0.4424 0.4160
- 0.2 0.3 - 0.2005 † 0.4799 † 0.4360
∨ 0.2 0.6 0.5 0.2013 † 0.4798 † 0.4300T
∧ 0.2 0.8 0.7 0.2003 † 0.4810 † 0.4400

T
F B

M
25

S - 1.2 0.7 - 0.1848 0.4563 0.3660
∨ 1.2 0.7 0.6 0.2012 † 0.4759 † 0.4480 †
- 1.5 0.3 - 0.2023 † 0.4797 † 0.4440 †
∨ 1.5 0.5 0.5 0.2034 † 0.4807 † 0.4420 †T

∧ 1.9 0.8 0.7 0.2037 † 0.4833 † 0.4400 †

T
F c

on
st

an
t S - > 0 0.0 - 0.0613 0.2436 0.1500

- > 0 0.1 - 0.0735 † 0.2744 † 0.1620
∨ > 0 0.1 0.0 0.0735 † 0.2744 † 0.1620T
∧ > 0 0.1 0.0 0.0740 † 0.2745 † 0.1660
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4. Model Bias: Term Frequency Normalisation

Table 4.4: Comparison of the scores obtained with the TF-IDF model candidates with
each TF normalisation using the non-elite and elite pivotisation. Column K indicates
if standard (S) or trained (T) parameters are used. † indicates statistical significance
(paired t-test, p < 0.05) against the standard and ‡ against the trained parameters when
a is not used.

Ad Hoc 8
P Q K C k1 b a AP NDCG P@10

N
on

-E
lit

e

T
F t

ot
al

S - > 0 0.0 - 0.0635 0.2762 0.1360
- > 0 0.5 - 0.0977 † 0.3306 † 0.2240 †
∨ > 0 0.5 0.0 0.0977 † 0.3306 † 0.2240 †T
∧ > 0 1.0 0.5 0.1076 †‡ 0.3491 †‡ 0.2400 †

T
F l

og

S - 1.0 0.0 - 0.1753 0.4568 0.3360
- 0.1 0.3 - 0.2478 † 0.5381 † 0.4280 †
∨ 0.1 0.9 0.9 0.2563 † 0.5415 † 0.4560 †‡T
∧ 0.1 0.9 0.5 0.2625 †‡ 0.5475 † 0.4620 †‡

T
F B

M
25

S - 1.2 0.7 - 0.2433 0.5193 0.4680
∨ 1.2 0.7 0.8 0.2614 † 0.5438 † 0.4480
- 0.6 0.3 - 0.2614 † 0.5447 † 0.4520
∨ 0.6 0.3 0.1 0.2616 † 0.5441 † 0.4620 ‡T

∧ 2.7 0.6 0.5 0.2681 †‡ 0.5523 †‡ 0.4660

T
F c

on
st

an
t S - > 0 0.0 - 0.1550 0.4071 0.2060

- > 0 0.1 - 0.1868 † 0.4387 † 0.3260 †
∨ > 0 0.1 0.9 0.1880 † 0.4452 †‡ 0.3240 †T
∧ > 0 0.2 0.4 0.1922 † 0.4462 †‡ 0.3260 †

El
ite

T
F t

ot
al

S - > 0 0.0 - 0.0635 0.2762 0.1360
- > 0 0.5 - 0.0977 † 0.3306 † 0.2240 †
∨ > 0 1.0 0.7 0.1056 †‡ 0.3469 †‡ 0.2380 †T
∧ > 0 1.0 0.5 0.1076 †‡ 0.3491 †‡ 0.2400 †

T
F l

og

S - 1.0 0.0 - 0.1753 0.4568 0.3360
- 0.1 0.3 - 0.2478 † 0.5381 † 0.4280 †
∨ 0.1 1.0 0.7 0.2521 † 0.5435 † 0.4500 †‡T
∧ 0.1 0.8 0.6 0.2562 †‡ 0.5474 †‡ 0.4540 †‡

T
F B

M
25

S - 1.2 0.7 - 0.2433 0.5193 0.4680
∨ 1.2 0.7 0.6 0.2535 † 0.5399 † 0.4700
- 0.6 0.3 - 0.2614 † 0.5447 † 0.4520
∨ 0.5 1.0 0.7 0.2638 † 0.5463 † 0.4700T

∧ 0.6 0.6 0.5 0.2681 †‡ 0.5524 †‡ 0.4680 ‡

T
F c

on
st

an
t S - > 0 0.0 - 0.1550 0.4071 0.2060

- > 0 0.1 - 0.1868 † 0.4387 † 0.3260 †
∨ > 0 0.1 0.4 0.1878 † 0.4418 †‡ 0.3320 †T
∧ > 0 0.2 0.4 0.1922 † 0.4462 †‡ 0.3260 †
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4.5. Experiments

Table 4.5: Comparison of the scores obtained with the TF-IDF model candidates with
each TF normalisation using the non-elite and elite pivotisation. Column K indicates
if standard (S) or trained (T) parameters are used. † indicates statistical significance
(paired t-test, p < 0.05) against the standard and ‡ against the trained parameters when
a is not used.

eHealth’14
P Q K C k1 b a AP NDCG P@10

N
on

-E
lit

e

T
F t

ot
al

S - > 0 0.0 - 0.1166 0.3361 0.2640
- > 0 0.7 - 0.2594 † 0.5206 † 0.5580 †
∨ > 0 0.8 0.4 0.2610 † 0.5209 † 0.5540 †T
∧ > 0 1.0 0.4 0.2699 † 0.5322 † 0.5580 †

T
F l

og

S - 1.0 0.0 - 0.2106 0.4637 0.4280
- 0.2 0.7 - 0.4222 0.6701 † 0.7960 †
∨ 0.4 0.8 0.5 0.4242 0.6729 †‡ 0.8000 †T
∧ 1.9 1.0 0.4 0.4260 0.6729 † 0.8040 †

T
F B

M
25

S - 1.2 0.7 - 0.3729 0.6310 0.7640
∨ 1.2 0.7 0.0 0.3729 0.6310 0.7640
- 4.5 0.6 - 0.4022 † 0.6595 † 0.7840
∨ 4.5 0.6 0.0 0.4022 † 0.6595 † 0.7840T

∧ 4.5 0.7 0.0 0.4018 † 0.6542 † 0.7880

T
F c

on
st

an
t S - > 0 0.0 - 0.0474 0.2021 0.1140

- > 0 0.2 - 0.0755 † 0.2552 † 0.2280 †
∨ > 0 0.0 0.0 0.0840 † 0.3523 †‡ 0.1760 †T
∧ > 0 0.2 0.2 0.0745 † 0.2551 † 0.2260 †

El
ite

T
F t

ot
al

S - > 0 0.0 - 0.1166 0.3361 0.2640
- > 0 0.7 - 0.2594 † 0.5206 † 0.5580 †
∨ > 0 1.0 0.5 0.2697 † 0.5316 †‡ 0.5820 †T
∧ > 0 1.0 0.4 0.2699 † 0.5322 † 0.5580 †

T
F l

og

S - 1.0 0.0 - 0.2106 0.4637 0.4280
- 0.2 0.7 - 0.4222 0.6701 † 0.7960 †
∨ 0.2 1.0 0.4 0.4239 0.6713 † 0.8080 †T
∧ 0.2 1.0 0.4 0.4239 0.6715 † 0.8060 †

T
F B

M
25

S - 1.2 0.7 - 0.3729 0.6310 0.7640
∨ 1.2 0.7 0.1 0.3742 0.6320 0.7640
- 4.5 0.6 - 0.4022 † 0.6595 † 0.7840
∨ 5.0 1.0 0.5 0.4079 †‡ 0.6635 †‡ 0.7900T

∧ 5.0 1.0 0.4 0.4092 †‡ 0.6607 † 0.8000

T
F c

on
st

an
t S - > 0 0.0 - 0.0474 0.2021 0.1140

- > 0 0.2 - 0.0755 † 0.2552 † 0.2280 †
∨ > 0 0.2 0.0 0.0755 † 0.2552 † 0.2280 †T
∧ > 0 0.2 0.2 0.0745 † 0.2551 † 0.2260 †
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4. Model Bias: Term Frequency Normalisation

Table 4.6: Comparison of the scores obtained with the TF-IDF model candidates with
each TF normalisation using the non-elite and elite pivotisation. Column K indicates
if standard (S) or trained (T) parameters are used. † indicates statistical significance
(paired t-test, p < 0.05) against the standard and ‡ against the trained parameters when
a is not used.

Web’02
P Q K C k1 b a AP NDCG P@10

N
on

-E
lit

e

T
F t

ot
al

S - > 0 0.0 - 0.0171 0.1387 0.0260
- > 0 0.9 - 0.0568 † 0.2642 † 0.0880 †
∨ > 0 0.9 0.4 0.0577 † 0.2713 †‡ 0.0820 †T
∧ > 0 1.0 0.4 0.0563 † 0.2732 † 0.0800 †

T
F l

og

S - 1.0 0.0 - 0.0603 0.2719 0.1100
- 0.2 0.8 - 0.1951 † 0.4799 † 0.2420 †
∨ 0.2 0.9 0.6 0.1991 † 0.4803 † 0.2360 †T
∧ 0.2 0.9 0.2 0.1974 † 0.4812 † 0.2360 †

T
F B

M
25

S - 1.2 0.7 - 0.1948 0.4696 0.2380
∨ 1.2 0.7 0.0 0.1948 0.4696 0.2380
- 4.1 0.7 - 0.2010 0.4777 0.2520
∨ 3.1 0.7 0.1 0.2016 0.4816 0.2420T

∧ 5.0 0.8 0.2 0.1923 0.4722 0.2520

T
F c

on
st

an
t S - > 0 0.0 - 0.0140 0.1514 0.0140

- > 0 0.1 - 0.0310 † 0.2041 † 0.0500 †
∨ > 0 0.2 0.3 0.0310 † 0.2008 † 0.0500 †T
∧ > 0 0.1 0.5 0.0311 † 0.1979 † 0.0480 †

El
ite

T
F t

ot
al

S - > 0 0.0 - 0.0171 0.1387 0.0260
- > 0 0.9 - 0.0568 † 0.2642 † 0.0880 †
∨ > 0 1.0 0.4 0.0635 † 0.2860 †‡ 0.0940 †T
∧ > 0 1.0 0.4 0.0563 † 0.2732 † 0.0800 †

T
F l

og

S - 1.0 0.0 - 0.0603 0.2719 0.1100
- 0.2 0.8 - 0.1951 † 0.4799 † 0.2420 †
∨ 0.1 0.9 0.2 0.1989 †‡ 0.4817 † 0.2360 †T
∧ 0.1 0.9 0.2 0.1975 † 0.4816 † 0.2380 †

T
F B

M
25

S - 1.2 0.7 - 0.1948 0.4696 0.2380
∨ 1.2 0.7 0.0 0.1948 0.4696 0.2380
- 4.1 0.7 - 0.2010 0.4777 0.2520
∨ 3.6 0.8 0.2 0.2016 0.4808 0.2460T

∧ 3.3 1.0 0.4 0.1966 0.4770 0.2500

T
F c

on
st

an
t S - > 0 0.0 - 0.0140 0.1514 0.0140

- > 0 0.1 - 0.0310 † 0.2041 † 0.0500 †
∨ > 0 0.2 0.3 0.0319 † 0.1988 † 0.0520 †T
∧ > 0 0.1 0.5 0.0311 † 0.1979 † 0.0480 †

50



4.5. Experiments

Table 4.7: Comparison of the scores obtained with the D-LM model candidates using
the non-elite and elite pivotisation. Column K indicates if standard (S) or trained (T)
parameters are used. † indicates statistical significance (paired t-test, p < 0.05) against
the standard parameters.

Ch. P K C b a AP NDCG P@10

H
A

R
D

’0
5 S - 1.0 - 0.1912 0.4680 0.4220

Non-Elite ∨ 1.0 0.8 0.1970 0.4801 † 0.4580 †T ∧ 1.0 0.3 0.1998 † 0.4806 † 0.4380

Elite ∨ 1.0 0.0 0.1912 0.4680 0.4220T ∧ 1.0 0.0 0.1912 0.4680 0.4220

A
d

H
oc

8 S - 1.0 - 0.2583 0.5420 0.4560

Non-Elite ∨ 0.9 0.7 0.2625 † 0.5481 † 0.4600T ∧ 0.8 0.3 0.2606 0.5448 0.4480

Elite ∨ 0.9 0.0 0.2589 0.5410 0.4680T ∧ 0.9 0.0 0.2587 0.5415 0.4600

eH
ea

lth
’1

4 S - 1.0 - 0.3863 0.6444 0.7980

Non-Elite ∨ 0.8 0.5 0.3965 † 0.6468 0.7900T ∧ 0.7 0.7 0.4082 † 0.6616 † 0.7920

Elite ∨ 0.8 0.0 0.3939 † 0.6467 0.7820 †T ∧ 0.7 0.0 0.3927 † 0.6468 0.7900

W
eb

’0
2

S - 1.0 - 0.1877 0.4617 0.2380

Non-Elite ∨ 0.8 0.0 0.1984 † 0.4767 † 0.2580T ∧ 0.5 0.1 0.2039 † 0.4844 † 0.2600

Elite ∨ 0.9 0.3 0.2002 † 0.4785 † 0.2620T ∧ 0.5 0.0 0.2037 † 0.4836 † 0.2660

TFBM25 works generally better than the other TF quantifications, but not for all test
collections. For the test collection eHealth 2014 TFlog is better.

We also observe that best configuration is achieved using the elite pivotisation. The
conjunctive combination works generally better than the disjunctive case (24 of 32
experiments better than the disjunctive, all 7 unfavourable cases occur when using the
Web 2002 test collection).

In Table 4.7, we present the results obtained for every test collection using D-LM with
λd extended with verboseness. For this model the standard parameter is when b = 1,
and a = 0, which reduces the formula to the standard D-LM without verboseness [ZL01].
This variant is shown on the first row for every test collection. The following rows present
the variant of λd when combined with verboseness in disjunction and conjunction with
non-elite and elite pivots. For this model we observe that the presence of verboseness
produces for only one test collection significant improvements. Overall we observe that
the non-elite pivotisation should be preferred (all the experiments produce better results
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4. Model Bias: Term Frequency Normalisation

Table 4.8: Comparison of the scores obtained with the TF-IDFL model candidates using
the non-elite and elite pivotisation. Column K indicates if standard (S) or trained (T)
parameters are used. † indicates statistical significance (paired t-test, p < 0.05) against
the standard.

Ch. P K C b a AP NDCG P@10

H
A

R
D

’0
5 S - - - 0.0721 0.2936 0.1920

Non-Elite ∨ 1.0 1.0 0.0967 † 0.3329 † 0.2120T ∧ 1.0 1.0 0.0967 † 0.3329 † 0.2120

Elite ∨ 1.0 1.0 0.0753 † 0.2994 † 0.1960T ∧ 1.0 1.0 0.0753 † 0.2994 † 0.1960

A
d

H
oc

8 S - - - 0.0635 0.2762 0.1360

Non-Elite ∨ 1.0 1.0 0.1500 † 0.4135 † 0.2440 †T ∧ 1.0 1.0 0.1500 † 0.4135 † 0.2440 †

Elite ∨ 1.0 1.0 0.0688 † 0.2914 † 0.1480 †T ∧ 1.0 1.0 0.0688 † 0.2914 † 0.1480 †

eH
ea

lth
’1

4 S - - - 0.1166 0.3361 0.2640

Non-Elite ∨ 1.0 1.0 0.1623 † 0.4177 † 0.3220T ∧ 1.0 1.0 0.1623 † 0.4177 † 0.3220

Elite ∨ 1.0 1.0 0.1231 † 0.3502 † 0.2780T ∧ 1.0 1.0 0.1231 † 0.3502 † 0.2780

W
eb

’0
2

S - - - 0.0171 0.1387 0.0260

Non-Elite ∨ 1.0 1.0 0.0249 † 0.1865 † 0.0460 †T ∧ 1.0 1.0 0.0249 † 0.1865 † 0.0460 †

Elite ∨ 1.0 1.0 0.0183 † 0.1456 † 0.0280T ∧ 1.0 1.0 0.0183 † 0.1456 † 0.0280

than the elite one). No difference is observed by using a disjunctive or conjunctive
combination of the pivots.

In Table 4.8, we present the results obtained for every test collection using the TF-IDFL
model with λq that combines in a LM fashion the term length and burstiness. For this
model the standard parameter is when λq = 1, which reduces this IR model to a non
TF-normalised TFtotal-IDF model. This variant is shown on the first row for every test
collection. The following rows present the variant of λq when combined in disjunction
and conjunction with non-elite and elite pivots. We observe that this parametrisation
produces significantly better results than the standard case. Also here, as for D-LM, no
difference is observed by using a disjunctive or conjunctive combination of the pivots. We
also observe that overall the values of the trained parameter a are often equal to 1, which
suggests that, for these model variants, the term length does not play an important role
in adjusting the document’s score. This is a curious behaviour since it is dual to the
D-LM model, where the document verboseness did not play an important role either.
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4.6. Discussion

Table 4.9: 5-fold cross validation of the trained TF-IDF models candidates observed in
Tables 4.3, 4.4, 4.5, and 4.6 for the evaluation measure AP.

P Q C k1 b a HARD’05 Ad Hoc 8 eHealth’14 Web’02

N
on

-E
lit

e

T
F t

ot
al - > 0 ∗ - 0.0873 0.0927 0.2594 0.0543

∨ > 0 ∗ ∗ 0.0873 0.0927 0.2594 0.0543
∧ > 0 ∗ ∗ 0.0942 0.1058 0.2699 0.0523

T
F l

og

- ∗ ∗ - 0.2005 0.2436 0.4136 0.1911
∨ ∗ ∗ ∗ 0.2293 0.2591 0.6081 0.2058
∧ ∗ ∗ ∗ 0.2257 0.2679 0.5985 0.2048

T
F B

M
25

∨ 1.2 0.7 ∗ 0.2228 0.2718 0.5679 0.2033
- ∗ ∗ - 0.1983 0.2597 0.3987 0.1937
∨ ∗ ∗ ∗ 0.2316 0.2671 0.6050 0.2042
∧ ∗ ∗ ∗ 0.2006 0.2634 0.3990 0.1892

T
F c

on
st

. - > 0 ∗ - 0.0735 0.1868 0.0727 0.0309
∨ > 0 ∗ ∗ 0.1215 0.2087 0.2647 0.0559
∧ > 0 ∗ ∗ 0.0740 0.1881 0.0735 0.0291

El
ite

T
F t

ot
al - > 0 ∗ - 0.0873 0.0927 0.2594 0.0543

∨ > 0 ∗ ∗ 0.1495 0.1206 0.5188 0.0965
∧ > 0 ∗ ∗ 0.0942 0.1058 0.2699 0.0523

T
F l

og

- ∗ ∗ - 0.2005 0.2436 0.4136 0.1911
∨ ∗ ∗ ∗ 0.2268 0.2591 0.6070 0.2060
∧ ∗ ∗ ∗ 0.2265 0.2593 0.6131 0.2062

T
F B

M
25

∨ 1.2 0.7 ∗ 0.2301 0.2573 0.5631 0.2033
- ∗ ∗ - 0.1983 0.2597 0.3987 0.1937
∨ ∗ ∗ ∗ 0.2339 0.2718 0.6028 0.2023
∧ ∗ ∗ ∗ 0.2010 0.2636 0.4089 0.1926

T
F c

on
st

. - > 0 ∗ - 0.0735 0.1868 0.0727 0.0309
∨ > 0 ∗ ∗ 0.1198 0.2075 0.2645 0.0553
∧ > 0 ∗ ∗ 0.0740 0.1881 0.0735 0.0291

Finally, in Table 4.10 we present the result of the 5-fold cross validation for all the trained
case of the these last two models, D-LM and TF-IDFL.

4.6 Discussion

Finally we make some observations across the experimental results about the behaviour
of the parameter a. Before that however, let us make an observation on the nature of
the data at our disposal. Figures 4.2 and 4.3 show the distribution of the document
verboseness versus document length for the elite and non-elite pivotisations. In both cases
we see that verboseness brings additional information compared to document length: the
plotted distributions are well spread, away from the first diagonal.
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4. Model Bias: Term Frequency Normalisation

Table 4.10: Comparison of the 5-fold cross validation of the trained D-LM and TF-IDFL
model candidates observed in Tables 4.7 and 4.8.

Challenge P C D-LM TF-IDFL

HARD’05
Non-Elite ∨ 0.2288 0.1523

∧ 0.1998 0.0967

Elite ∨ 0.2258 0.1369
∧ 0.1912 0.0753

Ad Hoc 8
Non-Elite ∨ 0.2679 0.1600

∧ 0.2539 0.1500

Elite ∨ 0.2653 0.0821
∧ 0.2556 0.0688

eHealth’14
Non-Elite ∨ 0.5740 0.4545

∧ 0.4060 0.1623

Elite ∨ 0.5769 0.4116
∧ 0.3927 0.1231

Web’02
Non-Elite ∨ 0.2051 0.0450

∧ 0.2011 0.0250

Elite ∨ 0.2092 0.0393
∧ 0.2010 0.0183

Comparing the two distributions, it is interesting to observe that the non-elite pivotisation
is significantly more skewed than the elite one: the x-axis of the left plot has a scale in
the (0,0.02) range, while the one on the right plot has a scale that matches the y-scale:
(0, 4). This supports and grounds our hypothesis that elite pivotisation should provide
us with a better means to balance verboseness and document length with parameter a.

The a parameter controls the contribution of elite pivoted verboseness and elite pivoted
document length. When a < 0.5, the contribution of the document verboseness is higher
then the contribution of the document length, and vice versa when a > 0.5. Looking at
the distribution for the elite pivotisations of the documents, redefining the origin to the
point (1, 1) we split the distributions in four quadrants enumerated as in Figure 4.5. We
know that whatever a we fix, the documents in the I quadrant will be always demoted
to some degree, and in the III quadrant the documents will be always promoted to
some degree. So here the question is what happens to the documents in the IV and II
quadrant. When to be preferred is the contribution of document verboseness (a > 0.5)
more documents with low verboseness (v̂d < 1) and high length (ˆ̀

d > 1) will be promoted
against the documents of the IV quadrant, and when preferred is the contribution of the
document length (a < 0.5) the contrary happens. Therefore, the a values, previously
listed, should anti-correlate with the ratio of the number of relevant documents between
the II quadrant and the IV quadrant. Here the two lists of values sorted by test collection,
of a extracted from Tables 4.3, 4.4, 4.5, and 4.6, for the standard BM25 case with

54



4.6. Discussion

Figure 4.2: Distribution of verboseness on the x-axis and document length on the y-axis
of the relevant documents (in gold) and all the documents (in black). The left plot shows
the non-elite pivotisation case of verboseness (v̈d) and length (d̈v) and the right plot
shows the elite pivotisation case of verboseness (v̂d) and length (ˆ̀

d).

trained a: 0.8, 0.6, 0.4, and 0.0 and ratios: 0.63, 0.86, 1.16 and 4.20, where we observe
that they anti-correlate. Therefore if we think that all the documents of the collection
should be relevant we should find the a value that mostly balances the proportion of
non verbose but long documents with the short but verbose documents. All the test
collections but Disks 4&5 have been crawled from the Web. For all of them we can
observe that the plots manifest a visible noise. These black dots that could be caused
by duplicated documents would not be visible if to be used would be just one of the
residual distributions. Especially for eHealth’14 in which is well-known in the eHealth
IR community the presence of duplicated documents.

In Tables 4.3, 4.4, 4.5, and 4.6 we observe that the best performing configuration, for both
TFlog and TFtotal, uses the trained parameters combined in disjunction, in particular in
Table 4.4 these configurations also show statistical significance against both standard
configuration and trained configuration when verboseness is not present (a = 0). The
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4. Model Bias: Term Frequency Normalisation

Figure 4.3: Continuation of Figure 4.2 for the rest of test collections.

elite pivotisation performs generally better than the non-elite pivotisation. The best
performing configurations are with elite pivotisation, trained parameters in conjunction.
We observe also that in general the elite pivotisation weighting role is taken by a (b = 1
means that a full document verboseness and length normalisation is applied).

In Figure 4.4 we further analyse the best configuration on a per topic bases. Here, we
show the difference in AP between the AP of the trained TFBM25-IDF with verboseness
combined in conjunction with elite pivots, and the trained classic TFBM25-IDF. If the
difference is positive the variant with verboseness is better than the classic version.

4.7 Summary

This chapter presents an extensive study of TF quantifications and normalisations. The
quantifications are with respect to a well-defined spectrum comprising TFtotal, TFlog,
TFBM25, and TFconstant. Each of these TF quantifications reflects a dependence assump-
tion. In particular, TFtotal and TFconstant are the extremes of the quantification spectrum,
assuming independence for the former and subsumption for the latter. TFBM25 is a
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Figure 4.4: Difference on a per topic based between the AP of the trained TFBM25-IDF
with verboseness combined in conjunction with elite pivots, and the trained classic
TFBM25-IDF. When the difference is positive the variant with verboseness performs
better than the classic version.
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4. Model Bias: Term Frequency Normalisation

1

1

Figure 4.5: Enumeration of the quadrants.

relatively strong dependence assumption, and TFlog is in the middle between TFtotal and
TFBM25. Each of these quantifications incorporates a TF normalisation parameter,
usually denoted as Kd.

Whereas current approaches regarding Kd consider only the document length as parameter
of Kd, this chapter makes the case for Kd to be a combination of document verboseness
and length. There are many heuristic options for how to combine the parameters, and
this chapter contributes the theoretical foundations leading to a systematic combination
of document verboseness and length.

The chapter reports results of an experimental study investigating the effect of various
settings of Kd for the four main TF quantifications. The overall finding is that combining
document verboseness with document length (either in a conjunctive or disjunctive way)
improves retrieval quality when compared to results considering document length only.

We expand this in two directions, first by exploring a similar normalisation in the context
of LM and second a similar normalisation in the context of TF-IDF. For the former,
we include document verboseness into the Dirichlet smoothing where a non-significant
effect is observed, which signifies that document verboseness can be neglected. For the
latter, in Section 4.4.3 we have observed the duality between document verboseness and
document length on one side, and term burstiness and term length on the other side,
and we observed the effect of these normalisations on the query side with respect to LM.
Here, significant improvements are observed, however these improvements are obtained
primarily by the use of term burstiness, while the term length can be neglected. In
both directions improvements are observed given by the new parametrisations, and their
results show a dual behaviour, given by the exclusion of document verboseness in the
former, and by the exclusion of term length in the latter.

In summary in this chapter we have provided an exhaustive study of normalisation factors
in IR probabilistic models using four test collections. Based on the observations made on
these test collections, we have made the case that different domains, having different text
statistics, can be directly factored into the existing probabilistic models. We have thus
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provided a quantification of the various document and term statistics into one factor that
balances different prior probabilities that all of these models, more or less explicitly, rely
on.
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CHAPTER 5
Model Bias: Retrievability

In the previous chapters we have seen that a major issue in Information Retrieval (IR) is
the evaluation of retrieval systems. We recall that the general understanding of evaluation
is about efficiency and effectiveness. By efficiency is meant all the performing aspects of
an IR system (e.g. indexing time, memory consumed by its index, response time); and
by effectiveness is meant the ability of the IR system to satisfy the information needs of
the users within a domain. But we have also seen that while effectiveness and efficiency
measures are respectively system-centric and user-centric, as pointed out by Azzopardi
and Vinay [AV08a], both ignore the accessibility of a document. Accessibility studies if a
document is or is not accessible by the user through the IR system, which its concept
becomes concrete with the definition of a measure of accessibility called retrievability.

Retrievability is a document-centric measure that computes the a-priori likelihood that a
document in a collection is retrieved, no matter for which topic. This measure quantifies
the model bias of an IR system in selecting documents. A quick quantification of this
bias may lead to the development more effecting and also efficient IR systems.

In this thesis, we approach the problem of retrievability from an analytical perspective.
We start modelling conjunctive and disjunctive queries in a Boolean model. Then, we show
that this represents an upper bound on retrievability for all other best-match models.
We follow this with an observation of imbalance in the distribution of retrievability,
using the Gini coefficient. Simulation-based experiments show the behaviour of the
Gini coefficient for retrievability under different types and lengths of queries, as well as
different assumptions about the document term-size distribution in a collection.
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5. Model Bias: Retrievability

5.1 Introduction
Retrievability allows the researcher, when comparing the documents of a collection, to
understand the a-priori unbalance of retrieval models in retrieving documents. Moreover,
recent discoveries have shown that there is a relation between the retrievability and
the effectiveness evaluation measures [WA14], allowing a glimpse of the ability of the
retrievability analyses to predict the performance of retrieval models without the need
of expensive test collections. However, as we have already discussed in Section 1.3.2,
retrievability analyses are based on empirical studies and are computationally expensive.

In this chapter we develop a mathematical framework that will allow us to compute
the retrievability of a document under certain IR models. We start with the analysis
of the perfect-match models (Boolean models). We then bridge the discoveries to the
best-match models, thanks to a small theoretical result that states their relationship.
Finally, inspired by the experimental discoveries in which it has been pointed out that
given an IR model, the length of the document influences its accessibility [WA13], we
explore, under some assumptions, to which degree this happens. We do so analytically
and through simulations.

5.2 The Retrievability Measure
In this Section we briefly recall the definitions discussed in Section 3.4. The retrievability
measure quantifies how likely is that a document is retrieved by a retrieval system.
Formally, the retrievability (ret) of a document d with respect to a set of topics Q
submitted to a retrieval system, is defined as:

ret(d) =
∑
q∈Q

oqf(d, q, K) (5.1)

where oq is the opportunity of the topic being chosen, q a topic, and f a utility function
that measures how retrievable the document d is for a topic q given the rank cut-off
K. It is common to use as utility function f as defined in Eq. (3.11). This function
returns 1 if the document is retrieved with rank above or equal to the cut-off K, and 0 if
below. However, in this chapter we focus mostly on Boolean models. In this context,
the outcome of the system is not a ranked list of documents but rather a set – we can
neglect the cut-off K.

In previous retrievability studies, the topics Q have been generated following one of two
strategies:

1. starting from the indexed terms, for single term queries, all the terms that ap-
pear in the collection at least 5 times; for bi-term topics, each bi-gram in the
collection [AV08b];

2. starting from the documents, extracting all the bi-grams from the collection, and
selecting those that appear more than 20 times [BR09; BR10].
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5.3. Retrievability in Perfect-Match Models

In both cases, the adopted procedure is an approximation of the entire set of possible
topics.

The study of Boolean models does not require the generation of all the possible topics.
We only need some assumption about the class of topic used. There are only a few
characteristics of a topic: its length in terms, whether it is a uni-gram or n-gram, and
whether it is conjunctive or disjunctive. Therefore, given the type of topics, we set off to
analytically calculate the expected ret(d) for each document that has a specific number
of unique terms.

5.3 Retrievability in Perfect-Match Models
A Boolean model is defined in the usual way: it considers relevant (and returns) a
document matching the (sub)set of terms in the query. A best-match model is essentially
a ranking model applied on top of a Boolean model. Therefore, in this study we do not
consider those ranking models which bypass individual terms and do their similarity
computation in an abstract semantic space (e.g. Latent Semantic Indexing and Latent
Dirichlet Allocation). In other words, a best-match model here is any model where the
implementation can be done using an inverted list and a weighting method.

5.3.1 The Conjunctive Case

For conjunctive queries all the topic terms are required in order to retrieve a specific
document. Given |Tq|, the size of the topic, we can calculate ret(d) by interpreting the
components of Eq. 5.1. The opportunity to use topic q, oq, is generally fixed to 1 in
Azzopardi’s and colleagues’ work [AV08b; WA15]. In this case, we can focus on the
function f . We shall come back to oq shortly.

The utility function f is essentially an indicator function with codomain in {0, 1} if its
parameter is false or true. For a Boolean model, the utility function is therefore:

fB(d, q, K) =
{

1 if Tq ⊆ Td

0 otherwise
= [Tq ⊆ Td] (5.2)

where in the right-hand side of the second equation we use the Iverson bracket, which
is a more compacted way of expressing the formula in its left-hand side. The Iverson
notation returns 1 if the condition within the squared brackets is true, and 0 otherwise.

For a random document d and topic q, in the case of the Boolean model, the expectation of
the utility function is the probability P (Tq ⊆ Td), which can be calculated by considering
all possible sets of n terms (|Tq| = n) from the collection dictionary:

P (Tq ⊆ Td) =
(

|Td|
n

)(
|T |
n

)−1
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Therefore, in the case of oq = 1 and by defining Qn as the set of topics of length n
generated with the term of the collection T as follows:

Qn =
{
q ∈ {Tq′ ∈ ℘(T ) : |Tq′ | = n

}
× 1n}

where ℘(T ) is the powerset of T and 1n is the set of vectors of ones of size n, we obtain:

ret(d) =
∑

q∈Qn

(
|Td|
n

)(
|T |
n

)−1

given that

|Qn| =
(

|T |
n

)

we finally have:

ret(d) =
(

|Td|
n

)
(5.3)

However, if oq was considered 1 for practical reasons in simulations, in this theoretical
exercise where we already assumed that the vocabulary is limited by the collection
vocabulary, we can estimate the probability of a topic of length n as 1/|Qn|. Feeding
that into the equation above, we obtain:

ret(d) =
∑

q∈Qn

(
|T |
n

)−1(|Td|
n

)(
|T |
n

)−1

and following the same motivation as above:

ret(d) =
(

|Td|
n

)(
|T |
n

)−1

This is closer to a probabilistic perspective of retrievability, but in what follows we shall
continue to use the form of Eq. 5.3 because, on one hand, it is simpler, and on the other
hand, it is closer to what related empirical studies have been working with. Now, let us
consider all possible topic sizes, that is with n that goes from 1 to |T | the size of the
terms in the document collection. The retrievability of a document d in case of using any
combinations of n terms as conjunctive queries is:

ret(d) =
|T |∑

n=1

(
|Td|
n

)
=

|Td|∑
n=1

(
|Td|
n

)
= 2|Td| − 1 (5.4)

The second equality is possible because for any n > |Td| the binomial coefficient is 0.

64



5.3. Retrievability in Perfect-Match Models

5.3.2 The Disjunctive Case
In this section we explore the case when the terms’ topics are submitted in disjunction,
which means that at least one topic term is required to retrieve a document. Given n,
the size of topic, we can calculate ret(d) similarly to the conjunctive case above. In this
case, the utility function is:

fB(d, q, K) =
{

1 if Tq ∩ Td 6= ∅
0 otherwise

Again, the expectation of this function for a query of size |Tq| = n is given by the
probability:

P (Tq ∩ Td 6= ∅) =
[(

|T |
n

)
−
(

|T | − |Td|
n

)](
|T |
n

)−1

where the first factor is the difference between the number of combinations of topic size n
minus the number of combinations of size n that do not retrieve the document d (all the
combinations without a document term), and the second factor is the number of possible
combinations of topic size n. Consequently for any topic of length n, we have:

ret(d) =
(

|T |
n

)
−
(

|T | − |Td|
n

)
(5.5)

Now, let us consider all possible topic sizes, that is with n that goes from 1 to |T |, the
size of the terms in the document collection. The retrievability of a document d in case
of using any combinations of n terms as disjunctive queries is:

ret(d) =
|T |∑

n=1

[(
|T |
n

)
−
(

|T | − |Td|
n

)]
= (2|Td| − 1) · 2|T |−|Td| (5.6)

The second equality is obtained by dividing the summation into two sums and simplifying
as done in Eq. 5.4. This retrievability, if computed, can easily exceed the precision of a
calculator. This, due to the constant factor 2|T |, where |T | in collections of documents
is usually in the order of millions. However, if these values are going to be used on a
normalised coefficient of imbalance (the Gini coefficient is one of them), these can be
dived by 2|T | obtaining a rank equivalent form equal to 1 − 2−|Td|.

5.3.3 Summary
In Table 5.1 we summarize the analysed retrievability cases of a perfect-match model by
presenting the formulae to compute the retrievability score of a document based on the
query type, conjunctive or disjunctive, and on two specific cases: 1) when considering
fixed-length queries of length n, or 2) when considering all queries of length from 1 to
|T |, the number of terms in the collection of documents.
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Table 5.1: Summary of the analysed retrievability cases for IR perfect-match models
based on query type and query-size.

Query Type Query Size ret

Disjunctive n Eq. (5.3)
1, . . . , |T | Eq. (5.4)

Conjunctive n Eq. (5.5)
1, . . . , |T | Eq. (5.6)

5.4 Bridging the Best-Match Models
Now that we know how to compute analytically the retrievability of a document for
perfect-match models, we move to the best-match models. For these models the analytical
computation of their retrievability becomes more complicated. However, a first observation
is given in the theorem and corollary below.

Before going into this first result, we define the utility function fS for a best-match model
like we have done for the utility function of the perfect-match models, fB in Eq. (5.2).
We first recall the definition of the function retrieval status rank (RSR), because useful
for the proof of the Theorem below, as given in Eq. (3.10) in Section. 3.4:

RSR(d, q) = |{d′ ∈ D : RSV(d′, q) ≥ RSV(d, q)}| (5.7)

This function returns the rank of a document with respect to a collection of documents
D based on a retrieval status value function (RSV), which defines the scoring schema of
a best-match model. Following the definition of fS :

fS(d, q, K) =
{

1 RSR(d, q) ≤ K

0 otherwise
= [RSR(d, q) ≤ K]

This function returns 1 if d is among the top K documents of a collection D ordered in
terms of their RSV, otherwise it returns 0. The right-hand side of the second equation is
again obtained by using the Iverson bracket.

Theorem 1. The retrievability of a document under a Boolean retrieval model B is an
upper bound for the retrievability of the same document and the same topic types, under
any ranking system S.

Proof. From the definition of retrievability we have:

retR(d) ≤ retB(d) ⇔
∑
q∈Q

oqfS(d, q, K) ≤
∑
q∈Q

oqfB(d, q, K)

Therefore, ∑
q∈Q

oqfS(d, q, K) ≤
∑
q∈Q

oqfB(d, q, K) ⇔ fS(d, q, k) ≤ fB(d, q, K)
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For the conjunctive case, we have that the above is equivalent to:

[RSR(d, q) ≤ K] ≤ [Tq ⊆ Td]

Now, assuming the contrary,

[RSR(d, q) ≤ K] > [Tq ⊆ Td] ⇔ [RSR(d, q) ≤ K] = 1 ∧ [Tq ⊆ Td] = 0

Similarly, for the disjunctive case we would have:

[RSR(d, q) ≤ K] > [Tq ⊆ Td] ⇔ [RSR(d, q) ≤ K] = 1 ∧ [Tq ∩ Td 6= ∅] = 0

Both contradict our definition of the ranking function in Eq. 5.7

Naturally, from this result, one obtains the following corollary:

Corollary 1. When there is no cut-off (K = |D|), the retrievability of a document in any
of the best-match models is equal to its retrievability in the perfect-match model.

In other words, this corollary says that, when no information about the ranking is taking
into account, perfect-match models and best-match models are equivalent.

In the analysis so far we have only considered queries of various sizes, but not with multi-
word terms (n-grams). However, since n-grams are essentially terms in themselves, the
only thing that would change is the scale of the calculation, rather than the observations
about the nature of retrievability itself. We would agree that a more in-depth study into
retrievability with n-grams is desirable, if only to prove our statement above, but we do
make this simplification for this particular study.

5.5 The Gini Coefficient
The purpose of this section is to observe the distribution of retrievability not over
documents but rather over document lengths, counted in unique terms. This is because
we want to observe the effect of retrievability on this document lengths distribution, but
also because in the current analytical view, two documents with the same number of
unique terms are indistinguishable.

To assess the bias of an IR model it is possible to observe the Lorenz curve, which
visualises the inequality among documents within a collection. The Lorenz curve has
already been introduced in retrievability studies as the cumulative distribution of ret(d)
ordered in non-decreasing order with varying of d. The Gini coefficient was proposed as
a way to summarise with a single value the amount shown by the Lorenz curve [AV08b;
WA15]. It is defined as:

G = n + 1
n

− 2
∑n

i=1(n + 1 − i)yi

n
∑n

i=1 yi
(5.8)
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where yi is the population indexed in non-decreasing order (yi ≤ yi+1), and n is the size
of the population. The domain of this function is [0, 1]. A Gini coefficient of 1 indicates
maximal inequality, where all the documents are irretrievable but one. A Gini coefficient
of 0 indicates perfect equality, where all the documents have the same likelihood of being
retrieved. For these reasons we consider this as a measure of fairness.

As we have observed in the previous analysis, ret(d) for a perfect-match model is a
function of the number of unique terms in the document. It can be in fact shown that
ret(d) is monotonically increasing with |Td|. Therefore, given a distribution of document
lengths (based on unique terms) in a collection of documents, with probability mass
function u(s) = P (S = s), where S is the length of a document counted in unique terms,
and n = |D|, the numerator in Eq. 5.8 is:

|D|∑
i=1

(|D| + 1 − i)ret(di) =
∞∑

i=1

φ(i)∑
j=1

[
|D| + 1 −

(
j +

i−1∑
s=1

φ(s)
)]

ret(dφ(i)) (5.9)

where φ(i) = b|D|u(i) + 1/2c is the expected number of documents of length i, and dφ(i)
is a document of length i. The denominator is substituted by:

|D|∑
i=1

ret(di) =
∞∑

i=1

φ(i)∑
j=1

ret(dφ(i)) (5.10)

Substituting Eq. (5.9) and Eq. (5.10) to Eq. (5.8), and simplifying, we obtain:

G = |D| + 1
|D|

−
2

∞∑
i=1

[
|D| + 1

2 −
(

i−1∑
s=1

φ(s) + φ(i)
2

)]
φ(i)ret(dφ(i))

|D|
∞∑

j=1
φ(j)ret(dφ(j))

This, with respect to the original formulation in Eq. (5.8), computes the Gini coefficient
giving as input the distribution of document lengths. This formulation is useful for the
analysis we will conduct in the next section.

5.6 Discussion
With this definition of the Gini coefficient (G), we can now observe the effects of the
query term-size and distribution of document lengths in the collection. We do this by
exploring three different shapes of distributions: the uniform distribution in Figure 5.1,
the Poisson distribution in Figure 5.2, and the Gamma distribution in Figure 5.3. We
use them to test the behaviour of the Gini coefficient on these three distributions to
observe how the fairness in terms of retrievability changes when varying a property of the
test collection, the document lenght distribution. For each shape of distribution, three
instances are drawn by keeping the average document length constant (50, 150, 250),
their variances increase but without a prefixed criteria.
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Uniform Distributions

|Wd|

Conjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Disjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Figure 5.1: Gini coefficient, given a uniform term-size distribution of a collection of
documents vs. different cases with varying of n of n-term queries. The top row shows
the three term-size distributions tested. a and b are the parameters of the uniform
distribution. The middle row shows the two conjunctive cases, with n-terms queries and
with n-terms queries from 1 to n. The last row shows the disjunctive case, with n-terms
queries and with n-terms queries from 1 to n
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Poisson Distributions

|Wd|

Conjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Disjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Figure 5.2: Gini coefficient, given a Poisson term-size distribution of a collection of
documents vs. different cases with varying of n of n-term queries. The top row shows
the three term-size distributions tested. λ is the parameter of the Poisson distribution.
The middle row shows the two conjunctive cases, with n-terms queries and with n-terms
queries from 1 to n. The last row shows the disjunctive case, with n-terms queries and
with n-terms queries from 1 to n
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Gamma Distributions

|Wd|

Conjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Disjunctive Case, n-Terms,

n

and from 1 to n-Terms

n

Figure 5.3: Gini coefficient, given a Gamma term-size distribution of a collection of
documents vs. different cases with varying of n of n-term queries. The top row shows
the three term-size distributions tested. k and θ are the parameters of the Gamma
distribution. The middle row shows the two conjunctive cases, with n-terms queries and
with n-terms queries from 1 to n. The last row shows the disjunctive case, with n-terms
queries and with n-terms queries from 1 to n
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We first compare the behaviour of the Gini coefficients between the conjunctive and
disjunctive case, because they are similar across the distribution shapes. We observe that
when using conjunctive queries the Boolean system becomes more biased when the topic
term-size n increases, until converging to 1, the maximum value of the Gini coefficient –
point of maximum imbalance. While when using disjunctive queries the bias decreases
slightly with increasing of n, making the Boolean system more fair. When comparing
between the two cases, fixed term-size n queries and queries with term-sizes from 1 to
n, we do not observe any visible difference between the two. This suggests that when
studying retrievability it is sufficient to explore the former case, the fixed term-size n
queries case, because it is as informative as considering all the query term-sizes from 1 to
|T | and easier to calculate.

We now observe the behaviour of the Gini coefficient with different distribution shapes.
A property of the uniformly distributed document term-size case, in Figure 5.1, is that it
guarantees an equal number of documents for every term-size |Td|. However, we observe
that the Gini coefficient values computed on the three instances of the distribution are
insensible to this property. They are all almost overlapping – increasing the mean and
variance of the distribution does not change the fairness of the Boolean retrieval model.

A more localised distribution like the Poisson distribution instances produce an observable
effect when measuring the Gini coefficient on the conjunctive case. A test collection with
longer documents are overall more retrievable than shorter documents and therefore the
Boolean model in the conjunctive case behaves more fairly. This is also observable in the
case of the Gamma distribution where the instance with the highest mean and variance
is more fair for the conjunctive case. However, for this distribution shape, the three
instances produce different results in the disjunctive case. The instance that makes a
Boolean model more fair is the one with an higher mean and variance.

Juxtaposing these distribution shapes, we observe that the worst shape for the conjunctive
case is the uniform distribution, followed by the Gamma distribution. This is because
they converge to 1 more quickly than the instances of Poisson distribution. While for the
disjunctive case the worst distribution shape is again the uniform distribution, followed
by the Gamma distribution. The Poisson distribution is again the best case. However,
for the case of the Gamma distribution, having a higher mean makes the disjunctive case
better than the disjunctive case for the uniform distribution.

In Figure 5.4 we show how the retrievability changes when varying n in the four cases
for a document term size |Td| = 50. In particular we observe that for the conjunctive
case by considering only queries of size n ret(d) increases until reaching a maximum
and then decreases to zero. This happens as soon as the topic size becomes larger than
the document size – the query contains at least a term not contained in the document.
When considering all query sizes from 1 to n, ret(d) is equal to the cumulative sum of
the retrievability as measured in the previous case, therefore since this previous function
converges to zero this cumulation converges with an asymptote. For the disjunctive case
we observe that the retrievability increases exponentially. This happens in the same way
in both cases, for n and for the cumulative sum from 1 to n.
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n n

Figure 5.4: Retrievability ret(d) in the four cases for a document of |Td| = 50 with varying
of n query terms. The y-axis of the first plot to the left is in log-scale; the second plot
shows the same but only for the conjunctive case but with y-axis in linear-scale.

|Td| |Td|

|Td| |Td|

Figure 5.5: The first row shows how the retrievability ret(d) varies for the four cases with
varying of |Td| for single term queries, the first plot on the left for the conjunctive case,
and the second plot on the right for the disjunctive case; The two plots on the second
row are similar to the two plots in the first row but with n equal to 2, 3, and 4, the first
plot on left for the conjunctive case, the second plot on the right for the disjunctive case.
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In Figure 5.5 we show how the retrievability changes when varying the term-size of a
document |Td|. We provide examples for different ns (1, 2, 3, and 4). We observe that if
n = 1 the retrievability is the same, regardless of the case, and increases linearly. This
is also demonstrated by the previous Figure 5.4 by observing that they all start from
the same point. We observe that when n > 1 the retrievability of the various cases
increases much faster than linear, in particular the disjunctive case increases faster than
the conjunctive case.

5.7 Summary
We have shown that retrievability for the Boolean model can be approached analytically.
While in this study we considered different probability distributions for document lengths,
the method can also be used in the presence of an actual test collection to calculate
accessibility without the need for generating large sets of synthetic queries. Furthermore,
the relationship between document term-size and retrievability, even in this particular
retrieval model, may provide insights into new normalisation factors for best-match
models.
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CHAPTER 6
Selection Bias: Pooling Method

The empirical nature of Information Retrieval (IR) mandates strong experimental prac-
tices. A keystone of such experimental practices is the Cranfield/TREC evaluation
paradigm. Within this paradigm, the collection of relevance judgements has been the
subject of intense scientific investigation. This is because, on one hand, consistent, precise,
and numerous judgements are keys to reducing evaluation uncertainty and test collection
bias; on the other hand, however, relevance judgements are costly to collect. The selection
of which documents to judge for relevance, known as the pooling method, has therefore a
great impact on IR evaluation. In this chapter we focus on the bias introduced by the
pooling method, known as pool bias, which affects the reusability of test collections, in
particular when building test collections with a limited budget. We formalise and evaluate
a set of 22 pooling strategies based on: traditional strategies, voting systems, retrieval
fusion methods, evaluation measures, and multi-armed bandit models. To do this we
run a large-scale evaluation by considering a set of 9 standard TREC test collections, in
which we show that the choice of the pooling strategy has significant effects on the cost
needed to obtain an unbiased test collection. We also identify the least biased pooling
strategy in terms of pool bias according to three IR evaluation measures: AP, NDCG,
and P@10.
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6.1 Introduction
The effectiveness of an IR system is evaluated with the use of test collections. A test
collection consists of a collection of documents, a set of topics (expressions of information
needs), and a set of relevance assessments, which express the relevance relationship
between topics and documents.

This set of relevance assessments is, in the vast majority of cases, by necessity a very
small subset of the Cartesian product between the set of documents and the set of topics.
If we were to consider even a relatively small test collection, with 500,000 documents
and 50 topics (this is approximately the size of the Ad Hoc 8 test collection [VH99b]),
the total relevance judgements to be made would be 5 × 106. At a very optimistic rate of
120 seconds/judgement, this represents the equivalent of 95 years of work for one person
[KZ14]. Therefore, since the very beginning of standardised IR benchmarking at the Text
Retrieval Conference (TREC) in the early 1990s, “pooling” has been used to reduce the
number of judgements, while still preserving the ability of the benchmark to distinguish
between two or more retrieval engines [VH05].

Since the proposal of the Depth@K pooling strategy, substantial research effort has
gone into improving the evaluation procedures, reducing the associated costs, increasing
the reliability of test collections, and devising alternative pooling strategies [San10]
(e.g. [CPC98; Büt+07; MWZ07; WP09]).

Reliability is understood here as the opposite of bias in a test collection. Since the early
days of pooling, it has been observed that, in the absence of sufficiently numerous and
diverse systems, there is a risk that the identified set of relevant documents will be so
limited that future systems, retrieving a new set of relevant (but at this point unjudged)
documents, will be considered ineffective because they do not primarily find the set of
relevant documents found by the systems that were originally pooled [Rob08]. Incomplete
judgements, i.e., the presence among the retrieved results of unjudged documents, have
little impact on the small newswire collections used in early TREC years; however, they
do lead to uncertainty in the evaluation quality on larger, web-size collections, thus
rendering evaluation on these collections invalid [Buc+07; Zob98].

In this chapter, we focus on reducing the bias at test collection build time, exploring
different pooling strategies to identify the most efficient way to create the pool, while
controlling the bias. We focus on a specific case of pooling: when the pool has to respect
a financial constraint (budget) that limits the number of documents to be pooled to a set
value (N documents). We call this fixed-cost pooling. Moreover, these N documents to
be judged are fairly distributed across topics (equally divided when possible). Both are
typical constraints in most IR evaluation exercises like TREC, CLEF and NTCIR. While
a number of isolated studies have analysed and proposed a number of pooling strategies,
a complete picture of their effectiveness and bias is still lacking, and little has been
analysed about these strategies in the context of fixed-cost pooling. This chapter extends
and complements the body of evidence regarding pooling by providing: a synthesis of
a substantial line of research done on the pooling method; a coherent mathematical
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framework to describe pooling strategies; the identification of theoretical similarities
between the analysed strategies; and a large-scale evaluation using 9 test collections.
Based on this, we provide guidelines for building more stable test collections. In addition
to the traditional Depth@K pooling strategy, we analyse the pool bias of a set of 22
previously identified pooling strategies.

6.2 Pooling Strategies

We examine each of the pooling strategies that we empirically investigate in this chapter
as alternative to the standard Depth@K strategy. These pooling strategies can be
classified in different ways. In this chapter we do it by (1) their origin: classic pooling,
voting systems, retrieval fusion methods, IR evaluation measures, and multi-armed bandit
models; and (2) the pooling strategy type: adaptive or non-adaptive. By adaptive we
refer to those pooling strategies that adapt their behaviour based on knowledge acquired
in the previous selection step(s), and by non-adaptive we refer to those pooling strategies
that do not adapt.

As mentioned in the introduction, in this chapter we are mainly concerned with pools
formed by exactly N documents, but the methods may be further generalised to variable-
size pools (e.g., by implementing different stopping criteria; this is left for future work).
Moreover, the fair distribution of the N documents across topics by equally dividing
them may be also further generalised to variable-size topic pools (e.g., by implementing
different topic allocation strategies, this is also left for future work).

Each pooling strategy takes the pooled runs and outputs the set of pooled documents.
We formally analyse the pooling strategies by defining a scoring function (s) on all
candidate documents, and a set-building function (J) that uses s to obtain the set of
pooled documents (J ). This aims at highlighting the differences and commonalities
among pooling strategies. Each strategy is identifiable by the properties of s and J . This
formalisation will naturally lead to the taxonomy of pooling strategy types: non-adaptive,
and adaptive. In particular the latter will be subdivided into adaptive with run allocation,
and adaptive without run allocation. By with run allocation we refer to an adaptive
strategy that, to select the next document, it first selects a run – allocates a judgement
to be performed to this run – then selects a document from this run. While without
run allocation refers to an adaptive strategy that selects a document by aggregating
information across runs. In Figure 6.1 we show the taxonomy of the pooling strategies
analysed in this chapter.

Herein, we make the effort to unify all the pooling strategies under this framework in
order to be able to formally assess their similarities and differences. Some of the pooling
strategies below are relatively new to IR, although the underlying intuitions have been
extensively used in IR as evaluation measures, and retrieval fusion methods [AM01; Mac09;
MA02]. We also present the recently developed multi-armed bandit-based strategies
[LPB16], and classic pooling strategies [CPC98].
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Type

Adaptive

Without Run Allocation With Run Allocation

BordaTake@N

CondorcetTake@N

RBPAdaptive*Take@N

HedgeTake@N

RBPAdaptiveTake@N

MTFTake@N

DCGTake@N

CombMAXTake@N

CombMINTake@N

CombMEDTake@N

CombSUMTake@N

CombANZTake@N

CombMNZTake@N

RRFTake@N

PPTake@N

RBPTake@N

Using RelevanceNon Using Relevance Using Relevance

Depth@K

Take@N

MABUCBTake@N

MABBetaTake@N

MABMaxMeanTake@N

FairTake@N

Non-Adaptive

Retrieval Fusion Method

O
ri
g
in

Classic Pooling

Multi-Armed Bandit Model

IR Evaluation Measure

Voting System

Figure 6.1: Taxonomy of the pooling strategies analysed in this chapter based on the
pooling strategy type and their origin. Every cell represents a combination of these two
classifications. The cells marked with a squiggly line are those cells for which a pooling
strategy cannot exist.

In what follows, we introduce the non-adaptive pooling strategies, next the adaptive
ones.

6.2.1 Non-Adaptive Pooling Strategies
Non-adaptive pooling strategies do not modify their behaviour based on the current
pooled documents, regardless of whether these documents have been judged or not. The
strategy Depth@K belongs to this category. The following subsections group the pooling
strategies by their origin: classic pooling, voting systems, retrieval fusion methods, and
IR evaluation measures.

Classic Strategies

Before analysing the considered pooling strategies, we start recalling the formalisation
discussed in Section 3.5 of the most common strategy: Depth@K. Then, we present
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some natural variants, Take@N and FairTake@N , which consider the number of required
documents (N) as a parameter.

Depth@K (D). This strategy creates, for each topic, a global ranked list of documents
where each document is scored based on its highest position across all Rp runs. Given
this ranked list, the top ranked documents are selected to form the pool. The Depth@K
strategy is specified by the following definitions of s, which scores every document d
retrieved by the set of pooled runs Rp:

s(d, Rp) = max
r∈Rp

(−ρ(d, r)) (6.1)

and J , which determines the set of pooled documents:

JRp = {d ∈ Dr : r ∈ Rp : s(d, Rp) ≥ −K} (6.2)

A primary feature of this pooling strategy is its fairness to the pooled runs. A strategy is
fair when the probability of a document to be judged at a given position is constant across
runs. This is guaranteed by selecting the top K documents from every run. However,
although this pooling strategy takes into consideration the contribution of all pooled
runs, it has no control on the exact size of the final set of pooled documents (|J |). It is
therefore not a fixed-cost pooling strategy. Moreover, the number of documents selected
per topic can vary depending on the size of the overlapping retrieved documents the
pooled runs share on a per topic basis.

We introduce a natural extension of Depth@K that guarantees a given number N of
pooled documents, called Take@N , effectively turning Depth@K into a fixed-cost pooling
strategy. We now formalise this strategy, show its limitation, and introduce a new version
that addresses it.

Take@N (T). This strategy creates, for each query, a global ranked list of documents
using a new definition of s:

s(d, Rp) = max
r∈Rp

(−ρ(d, r) − ε · id(r)) (6.3)

This definition of s is similar to the definition in Eq. 6.1. However, it differs by the small
deterministic contribution (ε · id(r)) that is used to provide a unique score for every d in
order to break ties. This contribution is small enough to not change the order defined by
the document’s ranks, and it is deterministic because it is based on the ids of the runs.
The top n ranked documents, fraction of the size of the pool N , are selected to be pooled
as follows:

JRp = τ@n(Rp, s) (6.4)

where τ@n is always well defined, i.e., there is no ambiguity on which documents to
return first. Compared to Depth@K, this strategy presents a drawback: it does not
guarantee fairness with the pooled runs. With Depth@K all runs contribute equally to
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the pool (first K documents). With Take@N , not all runs may contribute the same. The
contributions are however only slightly unbalanced: the maximum difference between
the number of documents contributed by two runs is equal to one. This strategy also
compared with Depth@K behaves differently across topics, because while Depth@K can
vary based on the size of the overlapping retrieved documents the pooled runs share,
Take@N distributes the N documents to be judged uniformly. That is, to every topic is
assigned, if possible, the same fraction of documents to be judged (n · |Q| = N).

FairTake@N (F). This strategy aims to address the lack of fairness of Take@N by
introducing a nondeterministic selection of the documents to be judged. This strategy
shares some of the characteristics of the Stratified pooling strategy [YKA08]. The
Stratified strategy defines multiple strata, each characterised by a depth and a sample
rate. This strategy is defined in two steps. First, each document is assigned to a stratum
based on its highest rank across the pooled runs. Then, documents are sampled based on
the sample rate of the stratum. FairTake@N is akin to having a stratification composed
of two strata, a stratification with sample rate 1 as deep as the number of documents to
be judged nq,0 does not exceed nq, the fraction of documents to be judged assigned to the
topic q, and a second stratification of depth 1 with sample rate equal to (nq − nq,0)/|Rp|,
which guarantees eventually to have exactly nq judged documents. By definition, this
strategy is fair with the pooled runs because any document at a given position has the
same probability to be judged. In this strategy s is defined as:

s(d, Rp) = max
r∈Rp

(−ρ(d, r) − ε · µ(0, 1)) (6.5)

J is defined as in Eq. 6.4. Fairness is achieved by introducing a small random component
to the score s. This value breaks potential ties and is small enough to not influence the
ranking. Its random nature ensures that any document has equal opportunity to be
sampled from any run. In this way, the strategy selects nq documents to be judged in a
fair way because every run will have in expectation (across topics) the same number of
judged documents.

Voting System-Based Strategies

These strategies are based on the intuitions underlying voting systems. In general, voting
systems take one of two forms: (1) positional voting systems that rely on the rank at
which a document is retrieved (e.g. to assign a voting score to that document), and (2)
majority voting systems that assign document weights based on pairwise comparisons
between candidate documents.

BordaTake@N (B). This strategy is a positional voting strategy in which candidate
documents are ranked in order of preference. For this strategy, s is defined as:

s(d, Rp) =
∑

r∈Rp

B(d, r) + ε · µ(0, 1) (6.6)
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where B defines the particular implementation of the Borda count. In this case, because
we are dealing with truncated ballots (i.e., not every document is ranked by each run),
we follow the method also used by [AM01]: for a document d, the strategy assigns a
score equal to the size of the collection of documents (|D|) minus the rank at which d
has been retrieved in the r (ρ(d, r)) if d has been retrieved by r, or else, if d has not
been retrieved by r, the average score the strategy would have assigned to the documents
retrieved between the last ranked document (equal to the size of the run |Dr|) and the
size of the collection of documents (|D|). Formally, B is defined as follows:

B(d, r) =
{

|D| − ρ(d, r) if d ∈ r

Avg|Dr|<n≤|D| (|D| − n) if d 6∈ r
' −

{
ρ(d, r) if d ∈ r
|D|+|Dr|+1

2 if d 6∈ r

where the symbol ' indicates rank equivalence, and the expression on the right side of
' is a simplified rank equivalent form of the same strategy. J is defined as in Eq. 6.4.
Comparing this equation with Eq. 6.3 we observe that BordaTake@N is different from
Take@N in that it considers the sum of all ranks at which a document has been retrieved,
while Take@N only considers the highest rank (the earliest rank).

CondorcetTake@N (C). This majority voting strategy ensures that pooled documents
are those that, when compared to not-pooled documents, have been retrieved at higher
ranks by more systems. Strategies that fulfil this condition satisfy the Condorcet criterion,
and it is easy to prove that Depth@K, Take@N , FairTake@N and BordaTake@N do not
satisfy this condition. Specifically, this strategy starts by forming a list containing the
set of all documents retrieved by the pooled systems. Then, it sorts the list according to
the following procedure. Each document pair di and dj is then compared as follows. We
iterate through the document rankings of each system and increment a counter if di is
ranked above dj (or decrement the counter in the converse situation). When all systems
have been considered, if the counter is positive, then di should be ranked above dj ; if it
is negative, then the opposite ranking should be enforced. This leads to the definition of
the following comparative function:

C(d0, d1, Rp) =
∑

r∈Rp

sign(ρ(d1, r) − ρ(d0, r)) (6.7)

This function does not define a total order, leading to the so-called Condorcet paradox.
Imagine three documents, da, db, and dc, such that da is preferred over db, db over dc,
and dc over da. This cycle is a paradox because the conclusions are in conflict with each
other. A solution is to adopt a method that still respects the Condorcet condition but
that does not lead to this paradox. In our case we use what is known as Copeland’s
method, which counts the number of times a document beats the other documents. This
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leads to the following definition of s:

s(d, Rp) =
∑

d′∈D

{
1 C(d, d′, Rp) > 0
0 otherwise

+ ε · µ(0, 1) '

'
∑

d′∈
⋃

r∈Rp
Dr

{
1 C(d, d′, Rp) > 0
0 otherwise

+ ε · µ(0, 1) (6.8)

where the expression on the right side is a simplified rank equivalent form of the same
strategy. This strategy is related to the Borda voting system. It can be proven that
the relaxation of the Condorcet criterion used in the Copeland method leads to the
Borda strategy (see Appendix A.1). This observation illustrates why this method is
majority-based. It only counts when a document in the majority of the cases, across
runs, has a higher score than another document, rather than counting its contribution
per each individual run, like in BordaTake@N .

Retrieval Fusion Method-Based Strategies

Another class of non-adaptive pooling strategies is based on retrieval fusion methods.
The main difference with the other strategies is that these are based on the score each
ranker gives to a document (rather than the rank). To allow the comparison of scores
between runs, score normalisation is required, otherwise the pooling strategy would be
biased towards the runs that produce larger scores. Following existing practice in fusion
for retrieval [AM01; Cro00; Lee97; MA01], we apply the following feature scaling:

σ(d, r) = σ(d, r) − mind′∈Dr (σ(d′, r))
maxd′∈Dr (σ(d′, r)) − mind′∈Dr (σ(d′, r))

which normalises all the values into the range [0, 1]. To be noted that for any document
not retrieved by the run r by the definition of σ, which returns the minimum value
observed in the run, σ returns 0.

CombMAXTake@N (MAX). This strategy assigns to each document the maximum
retrieval score that the document has across all systems. In general, a document may be
retrieved by multiple systems, and this likely happens with different scores. s is therefore
defined as:

s(d, Rp) = max
r∈Rp

(σ(d, r)) + ε · µ(0, 1) ' max
r∈Rp:d∈Dr

(σ(d, r)) + ε · µ(0, 1) (6.9)

where on the right side of ' we can observe a simplified rank equivalent form of the
same strategy. After constructing a new document ranking with the maximum scores,
the pool is obtained as for FairTake@N , i.e., only the documents with the highest nq

scores are included in the pool J , where nq is the fraction of documents to be judged
assigned to the topic, as defined in Eq. 6.4. The CombMAX retrieval fusion method,
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which shares the same underlying intuition of CombMAXTake@N , is a commonly used
strong baseline in the literature of fusion methods for retrieval. This strategy minimises
the probability to discover relevant documents being poorly ranked. This definition of s
and the definition in Eq. 6.3 are similar, while the former uses documents’ ranks, the
latter documents’ scores.

CombMINTake@N (MIN). While the previous strategy minimises the probability to
discover relevant documents being poorly ranked, this strategy minimises the probability
to discover irrelevant documents ranked at early ranks. This strategy also combines the
scores from different runs (by extracting the minimum score of each document across all
runs). s is therefore defined as:

s(d, Rp) = min
r∈Rp

(σ(d, r)) + ε · µ(0, 1) (6.10)

J is defined as in Eq. 6.4.

CombMEDTake@N (MED). This strategy takes a middle-ground approach to the
selection of pooling documents based on fusion, by selecting the median score (as opposed
to the maximum or minimum score as in CombMAXTake@N and CombMINTake@N ,
respectively). s is defined as follows:

s(d, Rp) = Med
r∈Rp

(σ(d, r)) + ε · µ(0, 1) (6.11)

J is defined as in Eq. 6.4.

CombSUMTake@N (SUM). Instead of selecting a single score as in CombMAXTake@N ,
CombMINTake@N , and CombMEDTake@N , CombSUMTake@N sums all the available
document’s scores. s is therefore defined as:

s(d, Rp) =
∑

r∈Rp

σ(d, r) + ε · µ(0, 1) '

' Avg
r∈Rp

(σ(d, r)) + ε · µ(0, 1) '

'
∑

r∈Rp:d∈Dr

σ(d, r) + ε · µ(0, 1) (6.12)

where we observe that the expression on the right side of the first ' demonstrates the
rank equivalence of this strategy with a strategy defined by the arithmetic mean across
runs, differing only by a constant (1/|Rp|); and the expression on the right side of the
second ' presents a simplified rank equivalence form of the same strategy. Comparing
this equation with Eq. 6.6, we observe that CombSUMTake@N is the counterpart of the
Borda strategy, but for scores (Borda uses ranks). Q is defined as in Eq. 6.4.
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6. Selection Bias: Pooling Method

CombANZTake@N (ANZ). This strategy computes the average of the non-zero doc-
ument scores. This strategy effectively eliminates the effect of a single run failing to
retrieve a document (and thus assigning a zero score to that document). s is therefore
defined as:

s(d, Rp) = 1
|{r ∈ Rp : σ(d, r) > 0}|

∑
r∈Rp

σ(d, r) + ε · µ(0, 1) (6.13)

J is defined as in Eq. 6.4.

CombMNZTake@N (MNZ). This strategy aims to give higher weights to documents
retrieved by multiple systems. This is achieved by multiplying the sum of scores of a
document by the number of runs that retrieved that document. s is defined as:

s(d, Rp) = |{r ∈ Rp : σ(d, r) > 0}|
∑

r∈Rp

σ(d, r) + ε · µ(0, 1) (6.14)

J is defined as in Eq. 6.4.

IR Evaluation Measure-Based Strategies

This section presents several strategies inspired by IR evaluation measures. These pooling
strategies accumulate evidence of the importance of a document d for a given topic based
on both a) the rank ρ(d, r) at which d has been retrieved in the pooled run r ∈ Rp, and
b) the specific characteristics of the considered IR evaluation measure.

All the pooling strategies below share the same generalisation of s, in which the contribu-
tion from every rank is replaced by a gain function related to the evaluation measure. s
is defined as follows:

s(d, Rp) =
∑

r∈Rp:d∈Dr

G(ρ(d, r)) + ε · µ(0, 1) (6.15)

where G is the gain defined by the evaluation measure.

DCGTake@N (DCG). This strategy uses the gain function defined in the discounted
cumulative gain (DCG) to rank candidate documents [JK02]. The gain is characterised
by an inverse log2 decay function, as follows:

G(ρ) = 1
log2(ρ + 1) (6.16)

Candidate documents are ranked in decreasing order of the sum of values computed by
G in s. J is defined as in Eq. 6.4.
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RRFTake@N (RRF). This strategy is rooted in the reciprocal rank (RR) evaluation
measure, which is commonly used to assess system effectiveness in tasks such as known
item search, question answering, or query auto completion [Dum+02]. A variant of RR,
the reciprocal rank fusion (RRF), has been used as retrieval fusion method [CCB09].
RRF makes use of an additional parameter, α, that controls the decay of the document
contribution score as a function of the rank. In this pooling strategy we employ the same
idea, with α = 60 as in [CCB09]; other values will be investigated in future work. Its G
is defined as follows:

G(ρ) = 1
ρ + α

(6.17)

Candidate documents are ranked in decreasing order of the sum of values computed by
G in s. J is defined as in Eq. 6.4.

PPTake@N (PP). This strategy (PP, for perfect precision) is inspired by the family
of measures that count the number of relevant documents found at rank ρ and divide
it by the number of documents up to rank ρ. Average Precision [BV00] and Sakai’s
Q-Measure [Sak04] are examples of metrics belonging to this family. To define the G
function for these class of IR evaluation measures, we assume to compute these IR
evaluation measures on a ranked list as if all documents up to rank ρ are relevant,
therefore the rank score attributed to a document retrieved by runs in Rp is the number
of runs that have retrieved that document:

G(ρ) = 1 (6.18)

This leads to a set-based majority voting procedure to rank documents and select the top
N . It is set-based because the order in which the documents are retrieved does not count.
This can be seen as a relaxation of the Borda strategy. Candidate documents are ranked
in decreasing order of the sum of values computed by G in s. J is defined as in Eq. 6.4.

RBPTake@N (RBP). This strategy (named Method A in the original article [MWZ07])
computes document scores based on Rank Biased Precision (RBP) [MZ08]. The RBP
formula is characterised by a parameter p that models the user persistence, i.e., the
likelihood that the user examines a document. The persistence parameter is effectively
used to discount the contribution of a relevant document, similarly to other gain-discount
based measures [Car11]. The gain function is defined as follows:

G(ρ) = (1 − p)pρ−1 (6.19)

In our experiments we use p = 0.8; this is akin to previous work that relied on RBP for
evaluation [PZ07; ZPM10] and for pooling [MWZ07]. The use of RBP as a document
discount factor in weighting the contribution of documents to the pool creates a family
of 3 pooling strategies [MWZ07], one being RBPTake@N . We present the other two in
the next subsection. Candidate documents are ranked in decreasing order of the sum of
values computed by G in s. J is defined as in Eq. 6.4.
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Figure 6.2: Derivative of gain functions G normalised by |G′(1)|, for DCGTake@N ,
RRFTake@N , PPTake@N , and RBPTake@N as functions of the rank position, for a run
r. The figure also shows a special case of an adaptive pooling strategy, HedgeTake@N .

Figure 6.2 shows the normalised derivative of the gain functions (G). For the sake of
comparison we observe the normalised derivative, because we are not interested in the
values of the functions, but on their sensitivity to change with respect to a change in the
rank (ρ) of the retrieved document. We normalise by dividing the derivatives by their
first values (G′(1)). This is possible because multiplying by a constant value generates
new but rank equivalent strategies. In this plot we can observe that for PP the function
does not depend on the rank position at which the document has been retrieved, while
for RRF the function increases almost linearly. For DCG and RBP the documents are
almost indistinguishable when retrieved after rank 10 for the first, and 20 for the second.

6.2.2 Adaptive Pooling Strategies
So far we have discussed the non-adaptive pooling strategies. These strategies are
characterized by first computing a score for each candidate document, ranking the
documents in decreasing score, and selecting the top N documents. They are non-
adaptive because the score of a document is not affected by the previously selected
documents.

Another class of pooling strategies is adaptive. Pooling strategies in this class recompute
the scores used by the ranking function s based on the last document selected. This is
formalised by having s taking as input the current set of pooled documents and iteratively
changing the scores of the documents.

First, the definition of s is expanded to consider the documents that have already been
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6.2. Pooling Strategies

pooled. The superscript J indicates that we now receive the pooled documents as an
input. The new definition of s, which will be denoted as sJ

+ , ensures that documents that
have been pooled in the previous iteration are not re-scored:

sJ
+(d, Rp) =

{
sJ (d, Rp) d 6∈ J
−∞ d ∈ J

(6.20)

Setting sJ
+(d, Rp) to −∞ ensures that already pooled documents do not get selected

again. The specific definition of sJ (d, Rp) will be determined by each pooling strategy.

The set J grows as documents are pooled. The pooled documents after the n-th iteration
of judgements will be referred to as Jn . The construction of the Jns is achieved
recursively:

J1 = τ@1(Rp, s∅
+)

Jn = Jn−1 ∪ τ@1(Rp, s
Jn−1
+ )

JRp = Jn

(6.21)

J1 contains the top-ranked document (beginning of the assessment process), and Jn

contains all previously judged documents (Jn−1) together with a newly selected document
that depends on how s

Jn−1
+ re-scores the documents. This definition of a pooling strategy

generalises the non-adaptive definition previously presented in Eq. 6.4.

There exists another type of adaptive strategy: the adaptive with run allocation. These
adaptive strategies also specify which runs should be pooled (e.g., by iteratively choosing
documents from one run or another). This is formalised by a sequence rn that determines
from which run r the documents have to be pooled.

We have seen that in the adaptive pooling strategies without run allocation, s is defined
by the pooling strategy using as input the previous pooled documents. In the adaptive
pooling strategies with run allocation, s is defined as follows:

sJn−1(d, Rp) = −ρ(d, rn) (6.22)

where the effect of the run pooling strategy is only observed in the run allocation sequence
({rn}n∈N1), which is different for every strategy. This definition of s scores every document
of the allocated run in order of their retrieved rank position, and by substituting it into
Eq. (6.20), it allows s+ to re-rank to the end of the list all the documents already pooled.

Adaptive pooling strategies modify their behaviour based on the current pooled doc-
uments. These strategies can be further divided into two categories based on which
kind of document information is required in the adaptive stage: non relevance-based,
and relevance-based. All the pooling strategies listed below are relevance-based pooling
strategies, except for RBPAdaptiveTake@N , which is a non relevance-based one. The
adaptive pools are incrementally built using the recursive definition of J in Eq. 6.21. We
now describe the pooling strategies that belong to the adaptive class, classified by their
origin: classic strategies, IR evaluation measures, and multi-armed bandit models.
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6. Selection Bias: Pooling Method

Classic Strategies

This category includes traditional strategies developed in IR. In this category, two
strategies exhibit adaptive behaviour, the Move-To-Front strategy (MTFTake@N), and
the Hedge strategy (HedgeTake@N).

MTFTake@N (MTF). MTF is an heuristic developed by Cormack et al. [CPC98], which
associates a priority to each run. Initially, all runs have maximum priority. At every
iteration of J , this strategy selects a random run among the maximum priority runs.
Then, it takes the first document retrieved by this run and judges it for relevance. At the
next iteration, if the document was relevant (J +

n−1 \ Jn−2 6= ∅) then MTFTake@N will
continue selecting and judging documents from the same run. Otherwise, the priority of
the current run is decreased and the method randomly selects another maximum priority
run. We first define the following function that returns the number of times a run r has
been sampled:

#(r, r|n1 ) = |{i ∈ {1, 2, 3, . . . , n} : r = ri}|
The run selection sequence is defined as follows:

r1 = arg min
r∈Rp

(µ(0, 1))

rn =


rn−1 if J +

n−1 \ Jn−2 6= ∅
arg minr∈Rp

( ∣∣∣{d ∈ Dr : ρ(d, r) ≤ #(r, r|n−1
1 )} ∩ J −

n−1

∣∣∣+
+ε · µ(0, 1)

)
otherwise

(6.23)
r1 makes an initial random selection (all runs have the maximum priority), and rn either
continues on the current run because the last document was relevant (rn−1), or jumps to
another maximum priority run. s is as defined in Eq. 6.22 and J in Eq. 6.21.

HedgeTake@N (H). This strategy is an online learning algorithm proposed by Aslam et
al. [APS03] for metasearch and pooling. It associates a set of losses to the contributing
runs. These losses depend on the relevance outcomes and the positions in the runs of the
judged documents. For example, a run’s loss is increased (decreased) if the run retrieved
a irrelevant (relevant) document at a high position. After each assessment, the run’s
losses are updated and the next pick (next assessed document) depends on the run’s
losses and the positions of the unjudged documents in the runs. For each document-run
pair, the following function takes the document’s position and estimates the loss we
would obtain if the document is deemed irrelevant:

G(ρ) = ln(|D|/ρ)
This loss needs to be computed for all documents (including those that do not belong to
the run). This is achieved by extending G as follows:

G∗(d, r) =
{

G(ρ(d, r)) if d ∈ Dr

Avg|Dr|<i≤|D| G(i) otherwise
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If the document does not belong to the run then the loss is estimated as the average
loss the document would get if retrieved in positions from |Dr| + 1 to |D|. As we obtain
relevance assessments, we iteratively accumulate the loss induced by each run (L(r, J )).
These runs’ losses depend on the relevance outcomes and the positions in the runs of the
judged documents (as defined by G∗). The loss of run r is defined as follows:

L(r, Jn−1) = 1
2

∑
d∈J −

n−1

G∗(d, r) − 1
2

∑
d∈J +

n−1

G∗(d, r)

Next, the loss is normalised by:

L(r, Jn−1) = βL(r,Jn−1)∑
r′∈Rp

βL(r′,Jn−1) (6.24)

This normalisation has a parameter β ∈ [0, +∞[ that controls the way in which new
judgements change the weights. We set β = 0.1 as in Losada et al. [LPB16]; other values
will be investigated in future work. Finally, s is defined as the weighted average of the
documents’ losses across all runs:

sJn−1(d, Rp) =
∑

r∈Rp

(
L(r, Jn−1) · G∗(d, r)

)
+ ε · µ(0, 1) (6.25)

J is defined as in Eq. 6.21. It is interesting to observe that this strategy takes into
account also the irrelevant documents. Now, we make some observations about how this
pooling strategy changes behaviour as we vary β. In particular we analyse three special
values of β, when β → 0, β = 1, and β → +∞ (see Appendix A.2). When β = 1 we
observe that this strategy reduces to a non-adaptive evaluation measure-based strategy
with G defined as follows:

G(ρ) = log
(1

ρ

)
+ log(|D|!)

|D|
When β tends to +∞, we observe that this strategy reduces to a MTFTake@N like
pooling strategy. This observation derives from the fact that when β tends to +∞ the
normalisation in Eq. 6.24 will select the run that has the largest L score. From this
run, due to Eq. 6.25, the document with the highest rank, not yet pooled, is selected.
Now, if the document was relevant, a new document will be picked from the same run
because it is still the run with the largest score; if the document is not relevant, the
score of the run is reduced, and a new document will be picked potentially from a run
with a larger score, like the MTFTake@N strategy. However there is a main difference
between these two strategies, for MTFTake@N the run is kept the same every time a
picked document is judged relevant, in this case this is embedded in the definition of
selection of the run by increasing the score for the run. When β tends to 0, we observe
an opposite behaviour than the one observed when β tends to +∞: the score for a run is
increased if the retrieved document is irrelevant and decreased if the document is relevant.
This generates a pooling strategy that instead of continuing to sample from runs that
retrieved relevant documents like MTFTake@N , it continues to sample from runs that
retrieved irrelevant documents.
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IR Evaluation Measure-Based Strategies

The next two strategies are extensions of RBPTake@N . Thanks to the convergent
behaviour of RBP, [MWZ07] have naturally extended RBPTake@N to include additional
information into the scoring function s.

RBPAdaptiveTake@N (RBPA). This strategy is an adaptive version of RBP (named
Method B in the original article [MWZ07]), which adds documents to the pool in an
incremental way. For each run r ∈ Rp, it computes its residual e(r, J ), i.e., a value
proportional to the number of not judged documents in the run. The residual is defined
as:

e(r, Jn−1) = p|r| + (1 − p)
∑

d∈Dr:d6∈Jn−1

pρ(d,r)−1

s is defined as follows:

sJn−1(d, Rp) =
∑

r∈Rp:d∈Dr

(GRBP(ρ(d, r)) · e(r, Jn−1)) + ε · µ(0, 1) (6.26)

With each new selection, the runs’ residuals change and the score sJn−1(d, Rp) needs to
be recomputed (thus, the adaptive nature of RBPAdaptiveTake@N). J is defined as in
Eq. 6.21.

RBPAdaptive*Take@N (RBPA*). This pooling strategy (named Method C in the origi-
nal article [MWZ07]) is also an adaptive pooling strategy that uses both the RBP residuals,
as RBPAdaptiveTake@N , and the actual RBP score b(r, J ) of a run r, computed using
binary relevance:

b(r, Jn−1) =
∑

d∈Dr:d∈J +
n−1

GRBP(ρ(d, r))

The candidate documents for pooling are ranked by decreasing:

sJn−1(d, Rp) =

=
∑

r∈Rp:d∈Dr

[
GRBP(ρ(d, r)) · e(r, Jn−1) ·

(
b(r, Jn−1) + e(r, Jn−1)

2

)3]
+

+ ε · µ(0, 1) (6.27)

At each iteration n, this strategy uses the information about the relevance of the last
selected document (observe the set of judged relevant documents J +

n−1 in Eq. 6.27).
Being an adaptive strategy, J is defined as in Eq. 6.21.
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Multi-Armed Bandit Models-Based Strategies

These strategies model pooling as a multi-armed bandit problem [LPB16]. The bandit-
based strategies are adaptive. As we select and judge documents, we gain knowledge on
the quality of the contributing runs. Run selection is driven by the classical exploration
versus exploitation dilemma, which works as follows. At any point, we can opt for
exploiting our current knowledge (i.e., choose the run that has supplied the highest
average number of relevant documents) or, alternatively, we can opt for exploring (i.e.,
choose a suboptimal run). Exploitation maximises the expected reward on the next pick,
but exploration may produce the greater total reward over a long period of time (the runs
that are currently inferior can eventually become good suppliers of relevant documents).
Every bandit-based strategy implements a specific bandit allocation method. A bandit
allocation method chooses the next pick (next run) based on past actions and obtained
rewards (relevance of judged documents).

MABGreedyTake@N (BG). This strategy is based on the ε-greedy bandit allocation
method. A greedy approach consists of always selecting the run with the largest average
of judged relevant documents. This greedy approach, which is similar to MTFTake@N ,
has been shown to be sub-optimal. A simple variant consists of behaving greedily most
of the time and sometimes selecting a random (suboptimal) run. A simple strategy
that implements this idea is εn-greedy [SB98]. At any point, εn-greedy plays with
probability 1 − εn the run with the highest average of judged relevant documents, and
with probability εn a randomly chosen run. εn is known as the exploration probability.
It is good practice setting εn such that it decreases with the number of picks (n). This is
because estimates become more accurate as more evidence is encountered and, therefore,
the exploration probability should decrease. We employ the following definition of
εn = min(1, c0|Rp|/(c2

1(n − 1))), where c0 and c1 are parameters. Following Losada et
al. [LPB16], we set c0 to 0.01, and c1 to 0.1. For each run, we first compute the proportion
of the run’s judged documents that were deemed as relevant:

P (r, r|n−1
1 , Jn−1) =

1/2 #(r, r|n−1
1 ) = 0

|{d∈Dr:ρ(d,r)≤#(r,r|n−1
1 )}∩J +

n−1|
#(r,r|n−1

1 ) otherwise
(6.28)

following the run succession used by s as defined in Eq. 6.22:

rn =

arg maxr∈Rp
(µ(0, 1)) µ(0, 1) < min

(
1,

c0|Rp|
c2

1(n−1)

)
arg maxr∈Rp

(
P (r, r|n−1

1 , Jn−1) + ε · µ(0, 1)
)

otherwise
(6.29)

The second line of the equation above encodes the greedy action, which selects the run
with the highest average (ε · µ(0, 1), again, is incorporated here to break the ties), while
the first line encodes the exploration action (random run selection). J is defined as in
Eq. 6.21.
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MABUCBTake@N (UCB). This strategy implements a version of UCB, the UCB1-
Tuned method [ACF02]. UCB associates an upper confidence index to each run. This
index estimates the uncertainty about the quality of the run (average relevance of
documents from the run). After n rounds of judgement, we would like to sample from the
leading run (the one with the largest proportion of judged relevant documents). But we
need to be sure that the other runs have been sampled enough. Otherwise, we cannot be
sure that they are indeed inferior. MABUCBTake@N (UCB) computes upper confidence
bounds for the proportions of relevant documents supplied by the runs and compares
the upper confidence bounds of apparently inferior runs with the estimated mean of the
leading run. The index of the UCB1 strategy is the sum of two components: the current
estimated mean and a quantity related to the size of the one-sided confidence interval
for the estimated mean. UCB1-Tuned is an evolution of UCB1 that takes into account
the variance of each run. In this strategy we use the probability of extracting relevant
documents as defined in Eq. 6.28, and we define its average by renaming the function P
in Eq. (6.28) defined in the previous strategy as follows:

Pµ(r, r|n−1
1 , Jn−1) = P (r, r|n−1

1 , Jn−1)

The definition of its variance is:

Pσ2(r, r|n−1
1 , Jn−1) = P (r, r|n−1

1 , Jn−1)(1 − P (r, r|n−1
1 , Jn−1))

S defines the reward to maximise:

S(r, Jn−1, r|n−1
1 ) = Pµ(r, r|n−1

1 , Jn−1)+

+

√√√√ ln(n − 1)
#(r, r|n−1

1 )
min

(
1
4 , Pσ2(r, r|n−1

1 , Jn−1) +
√

2 ln(n − 1)
#(r, r|n−1

1 )

)
+ ε · µ(0, 1)

Here, we observe that, for the reward to be properly defined, #(r, r|n−1
1 ) must always be

≥ 1. To guarantee this, all the runs get the first document evaluated. Therefore, in the
definition of P in Eq. (6.28) used to define Pµ and Pσ2 , we can ignore the first case when
#(r, r|n1 ) = 0. The initialisation is achieved by defining F as follows:

F (r, Jn−1) = max
d∈Dr:d6∈Jn−1

(−ρ(d, r)) + ε · µ(0, 1)

and the run allocation policy is defined as:

rn =

arg maxr∈Rp
(F (r, Jn−1)) if ∃ r ∈ Rp, ∃ d ∈ Dr : ρ(d, r) = 1

arg maxr∈Rp

(
S(r, Jn−1, r|n−1

1 )
)

otherwise
(6.30)

J is defined as Eq. 6.21.
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MABBetaTake@N (BB). This strategy is based on a heuristic called Thompson sam-
pling [Tho33]. It represents each run with a probability of supplying a relevant document,
and each run’s probability is associated with a probability distribution under a Bayesian
framework. The process begins with no knowledge of these probabilities. This is encoded
by applying a uniform prior for each run. This uniform initialisation, which is equivalent
to the Beta distribution when assigning its shape parameters α = 1 and β = 1 (Beta(1, 1)),
represents the lack of knowledge about the chances of extracting relevant documents
from each run. Run selection is done by extracting a sample from each distribution (|Rp|
samples, one from each Beta distribution) and the run yielding the largest sample is
chosen. This selection approach tends to select runs that have a high mean (i.e., high
likelihood of yielding relevant documents). Next, the top ranked unjudged document of
the chosen run is judged for relevance, and the relevance outcome is used for updating the
run’s Beta distributions. With binary relevance, the relevance outcome can be modelled
as a Bernoulli variable. This is a mathematical convenience because it guarantees that
the update leads to posterior distributions (after incorporating the new evidence) that are
also Beta distributed. So, we iteratively update the parameters of the Beta distributions
based on the relevance of the judged documents. The run allocation sequence used by s
in Eq. 6.22 is defined as follows:

rn = arg max
r∈Rp

(Beta(1 + |r ∩ J +
n−1|,

1 + |r ∩ J −
n−1|))

(6.31)

J is defined as Eq. 6.21. To be noted that here the small random component (ε · µ(0, 1)),
useful to break the ties, is not necessary since it is already a stochastic process.

MABMaxMeanTake@N (MM). This is another Bayesian solution that represents the
runs with Beta probabilities and updates the probability distributions based on the
relevance assessments. The difference between MABBetaTake@N and MABMaxMean-
Take@N is that MABMaxMeanTake@N does not make run selection by sampling from
the Beta distributions. The run selected by MABMaxMeanTake@N is simply the one
that has the maximum mean of the Beta distributions. The run allocation sequence,
used in s as in Eq. 6.22, is defined as:

rn = arg max
r∈Rp

(
1 + |r ∩ J +

n−1|
2 + |r ∩ J −

n−1|
+ ε · µ(0, 1)

)
(6.32)

J is defined as in Eq. 6.21.

Losada et al. [LPB16] also describe a non-adaptive version of a multi-armed bandit
based-strategy, which randomly allocates the runs from which to select the documents
to be pooled. However, this strategy, as expected, performs similarly to FairTake@N ,
therefore it has not been considered in this thesis.
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6.3 Experiments and Results

We do a large-scale evaluation in terms of pool bias of the 22 pooling strategies presented
above on 9 test collections using 3 measures of bias and 3 IR evaluation measures. In
this section we first present the experimental design. Next, we present the material and
experiment setup. We then introduce the measures of bias; and finally, we present the
results.

6.3.1 Experimental Design

In Section 3.5, we have presented that the pooling method is used to build test collections
in evaluation efforts like TREC. In these evaluation efforts, an evaluation challenge
is instantiated and the set of topics Q to be evaluated defined. Next, participating
organizations O are invited to submit a set of runs of a given size, of which a subset
per O is then used to form the set of pooled runs Rp. Next, a pooling strategy is used
to pool the documents to be judged by human relevance assessors. At the end of this
building process, a test collection is released that is then used in laboratory experiments
that, unavoidably, will suffer from pool bias.

In order to compare the effectiveness of the pooling strategies presented above in mitigating
the effect of pool bias, we run a series of simulation experiments in which we simulate the
process of building a test collection. One simulation consists in, given a set O, building a
test collection with the runs submitted by |O| − 1 organizations and measure the bias
on the runs submitted by the leftover organization. This can be formally expressed as
follows: Given a set of organizations O, a set of runs Rp submitted by O, and an ideal
set of judgements I that has a relevance value for each document, we can compute an
ideal mean absolute error for a pooling strategy J as follows:

1
|Rp|

∑
r∈Rp

∣∣∣f(r, JRp\{r′∈Rp:or′ =or}) − f(r, I)
∣∣∣ =

= 1
|Rp|

∑
r∈Rp

∣∣∣βf (r, JRp\{r′∈Rp:or′ =or})
∣∣∣ (6.33)

where the right-hand side is obtained by substituting the pool bias as defined in Eq. (3.14).
This is referred to in the literature as a leave-one organization-out approach. This
approach is preferred to a leave-one run-out approach because it better simulates the
case that the retrieval model used by the organization has not contributed to the pool.
However, due to the presence (in Eq. (6.33)) of the ideal set of judgements I, which in
reality does not exist, this error cannot be computed. Instead, in IR we usually dispose of
an approximation of this set I, which in the following we indicate as the ground-truth G.
The use of G in the measurement introduces a random error in the observed measurement
f(r, JRp), as defined in Eq. (3.15). Substituting the random error to Eq. (6.33) we can
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define the actual Mean Absolute Error (MAE) as:

MAE(JRp) =

= 1
|Rp|

∑
r∈Rp

∣∣∣f(r, JRp\{r′∈Rp:or′ =or}) − f(r, G)
∣∣∣ =

= 1
|Rp|

∑
r∈Rp

∣∣∣βf (r, JRp\{r′∈Rp:or′ =or}) + ε
∣∣∣ (6.34)

Therefore, when using G in the simulations that calculate MAE, the absolute value we
are measuring is a composition of the pool bias and random error. However, we claim
that this random error is not an issue for our comparison because:

1. this is an error measured between G and I, which makes it independent and
constant across the set of tested pooling strategies Js;

2. the presence of this error is in line with standard evaluation praxis in IR, because
this is the same error we would observe every time we test a run on an existing
test collection;

3. the random error is 0 for some combination of f and G, e.g. this happens when f
is P@n and at least the first n documents retrieved by r are contained in G.

In order to measure the difference in pool bias we must have perfect knowledge of all
the documents that appear in any of the runs. The objective of these experiments is
to quantify the effect of missing information (introduced by the pooling strategy) —
therefore, we cannot allow missing information to exist at the onset of the experimental
process. In this context, the best test collections are those originally built with Depth@K,
because this requirement is easily satisfiable by using the pooled runs Rp and resizing
them to a depth equal to |r| = K.

This process of test collection transformation is depicted in Figure 6.3. Essentially, the
newly created test collections are “clean” in the sense that no information is kept for any
of the runs for ranks above K. This cleaning is essential in order to ensure the validity
of the experiments with different pooling strategies. If we were not to do this cleaning,
when using f(r, G) to observe the pool bias resulting of the use of a particular pooling
strategy we would be confounding it with the pool bias of the original test collection.

This experimental design raises three potential issues:

1. the effect of experimenting with fixed-cost pooling strategies with test collections
that were originally built with a Depth@K strategy;

2. the selection of too few documents to be judged (low N) may cause the reduction
of the number of judged documents per topic at the level that makes any analysis
based on this judgements inconclusive;
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Figure 6.3: In the top left corner we illustrate the shape and setup of the original test
collection. The y-axis indicates the runs, the x-axis the rank, every block represents a
pooled document, which colour indicates its status: green if relevant, red if irrelevant,
and white for unjudged. K indicates the depth of the pooling strategy used to build
the original test collection; h indicates the horizon of the pooling strategy; and nmax
the maximum evaluation depth available. In the right corner we present the shape and
setup of the three experiments. At the top, the shape and setup used to compare the
performance of the different pooling strategies and compare the expected number of
judged documents. At the bottom, the shape and setup used to verify the consistency of
the results of the first experiment varying h.

3. the resizing of the runs may have unexpected effects on the conclusion of the
simulation experiments, i.e., would a certain pooling strategy be preferred for a
lower runs’ size and another one for a higher one?

To address these questions we design three additional experiments. In the first experiment,
we compare the FairTake@N strategy against the Depth@K strategy to verify that these
two strategies manifest a similar behaviour. To allow the comparison of these two different
kinds of strategies we set the parameter N of FairTake@N strategy in function of the
number of documents judged, by setting the parameter K of the Depth@K strategy. In
the second experiment, for every pooling strategy J , we measure the average number of
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judged documents (AJ) for the pair run-topic, which we define as follows:

AJ(JRp) = 1
|Rp|

∑
r∈Rp

∣∣∣{d ∈ Dr : d ∈ JRp\{r′∈Rp:or′ =or}
}∣∣∣

this is then average across topics. AJ measures the expected number of judged documents
we would expect on a new run. In the third experiment we verify the consistency of the
results when used in a real setting. To do this with the same test collections we test the
same case but reducing what we call the horizon of the pooling strategies. The horizon
(h) is defined as the depth of the runs available to the pooling strategy. If the results
found are not consistent with the ones found by the designed experiment, we have to
reconsider our previous conclusions, if they are consistent, it means that the horizon
effect is a negligible effect in our comparison. To illustrate our methodology we provide
a graphical representation of both experiments, the designed one and this new one in
Figure 6.3.

6.3.2 Material

To test the effectiveness of the different pooling strategies we selected 9 test collections
from TREC [VH05]: Ad Hoc 3 [Har94], Ad Hoc 8 [VH99a], Web 9 [Haw00], Web 2014
[Col+15], Robust 2005 [Voo05], Genomics 2005 [Her+05], Legal 2006 [BLO06], Blog 2006
[Oun+06], and Microblog 2011 [Oun+11]. We selected these test collections because of:
1) the diverse origin – in fact they cover 6 different domains: News, Web, Genomics,
Legal, Blog, and Microblog; 2) the large number of judged documents in the collections;
3) the large number of organizations that contributed to the pools – we assume that
the number of participating organizations is directly proportional to the variety of the
submitted runs, and 4) the pooling strategy used to build the collections, i.e., fixed
depth at cut-off K pooling strategy (Depth@K). The last point makes the collections
suitable for testing new pooling strategies. As explained in the sample design, these
test collections require to be normalized to a clean Depth@K. In addition, due to the
prototypical nature of the tracks organized to build the test collections, we filtered out
the 25% of lowest performing runs from our experimentation. This filtering is done to
remove those runs that are likely to contain bugs or very exploratory methods. This
procedure is in line with standard practices in the IR field [VB02]. The details about
this normalization process and the test collection statistics are described in Table 6.1.

6.3.3 Measures of Pool Bias

The measures of pool bias take as input an IR evaluation measure f . We have already
presented the first measure of bias in Eq. 6.34, the mean absolute error (MAE). This
measure estimates the expected observed pool bias plus random error on the score of a
non-pooled run. This is done by averaging the difference in score of the every r ∈ Rp

when pooled with the ground truth G, and when non-pooled, together with the runs
submitted by its same organization, with a fixed-cost pooling strategy (J). A low MAE
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Table 6.1: Pool properties of test collections, for the original pool, and the synthesized
“cleaned” pool. The cleaned pool is equivalent to a Depth@K with K equal to the one
used to build the original pool.

Test Collection Properties
Ad Hoc 3 Ad Hoc 8 Web 9

|D| 263,509 528,155 1,692,096
|R| 40 130 104

|Rp| 23 74 62
|O| 22 41 23
|Q| 50 50 50
K 200 100 100

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 97,319 75,378 86,830 86,830 70,070 70,030

|J +| 9,805 9,287 4,728 4,728 2,617 2,616
Robust 2005 Genomics 2005 Legal 2006

|D| 1,033,461 4,591,008 6,910,192
|R| 74 62 34

|Rp| 18 55 6
|O| 17 32 8
|Q| 50 49 38
K 55 60 100

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 37,798 22,173 39,958 38,604 31,041 18,929

|J +| 22,173 4,563 4,584 4,387 3,931 2,386
Blog 2006 Microblog 2011 Web 2014

|D| 509,137 16,000,000 733,019,372
|R| 54 184 30

|Rp| 28 98 27
|O| 14 58 10
|Q| 50 49 50
K 100 30 25

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 67,382 60,207 60,129 26,370 14,432 12,334

|J +| 19,891 18,425 2,965 2,549 5,665 4,895

means that the score obtained by a run with J strategy when not pooled is close to the
score obtained by the run when evaluated with the ground-truth.

The second measure of bias we present is system rank error (SRE). This measure counts
the number of rank positions lost or gained by runs in the system ranking with respect
to when it is pooled with the ground truth G, defined by the test collection, and not
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Table 6.2: List of the pooling strategies analysed in this thesis where the columns
refer, in order, to the pooling strategy type, the full name of the pooling strategy, its
abbreviation, and the references to the equations of the document scoring function (s)
and the set-building function (J) that formally define the pooling strategy.

Type Pooling Strategy Abbr. s J

N
on

-A
da

pt
iv

e

Depth@K D Eq. 6.1 Eq. 6.2
Take@N T Eq. 6.3 Eq. 6.4
FairTake@N F Eq. 6.5 Eq. 6.4
BordaTake@N B Eq. 6.6 Eq. 6.4
CondorcetTake@N C Eq. 6.8 Eq. 6.4
CombMAXTake@N MAX Eq. 6.9 Eq. 6.4
CombMINTake@N MIN Eq. 6.10 Eq. 6.4
CombMEDTake@N MED Eq. 6.11 Eq. 6.4
CombSUMTake@N SUM Eq. 6.12 Eq. 6.4
CombANZTake@N ANZ Eq. 6.13 Eq. 6.4
CombMNZTake@N MNZ Eq. 6.14 Eq. 6.4
DCGTake@N DCG Eq. 6.15 & 6.16 Eq. 6.4
RRFTake@N RRF Eq. 6.15 & 6.17 Eq. 6.4
PPTake@N PP Eq. 6.15 & 6.18 Eq. 6.4
RBPTake@N RBP Eq. 6.15 & 6.19 Eq. 6.4

A
da

pt
iv

e

MTFTake@N MTF Eq. 6.22 & Eq. 6.23 Eq. 6.21
HedgeTake@N H Eq. 6.25 Eq. 6.21
RBPAdaptiveTake@N RBPA Eq. 6.26 Eq. 6.21
RBPAdaptive*Take@N RBPA∗ Eq. 6.27 Eq. 6.21
MABGreedyTake@N BG Eq. 6.22 & Eq. 6.29 Eq. 6.21
MABUCBTake@N UCB Eq. 6.22 & Eq. 6.30 Eq. 6.21
MABBetaTake@N BB Eq. 6.22 & Eq. 6.31 Eq. 6.21
MABMaxMeanTake@N MM Eq. 6.22 & Eq. 6.32 Eq. 6.21

pooled with a fixed-cost pooling strategy (J). We define SRE as:

SRE(JRp) =
∑

r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

: f(r, JRp\{r′′∈Rp:or′′ =or}) ≤ f(r′, G) < f(r, JRp)∨

∨ f(r, JRp) < f(r′, G) ≤ f(r, JRp\{r′′∈Rp:or′′ =or})
}∣∣∣

A low SRE means that the rank position of the runs when not pooled using J is close to
the rank position of the runs when pooled with the ground-truth. In IR when comparing
ranking of runs, it is common practice to evaluate their significance. We implemented
this in the next measure named system rank error with statistical significance (SRE*).
SRE* is similar to SRE but instead of counting all the position differences of a run
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against all the other runs, it counts only if significant according to a paired t-test with
p < 0.05 calculated on the ground-truth. SRE* is defined as follows:

SRE∗(JRp) =
∑

r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

:
(
f(r, JRp\{r′′∈Rp:or′′ =or}) ≤ f(r′, G) < f(r, JRp)∨

∨ f(r, JRp) < f(r′, G) ≤ f(r, JRp\{r′′∈Rp:or′′ =or})
)
∧

∧ t-testpaired(r, r′, G) < 0.05
}∣∣∣

Juxtaposing these measures of bias we can observe that a zero MAE value implies that
SRE and SRE* are also equal to zero. However, the contrary is not true. We can also
observe that this is true between SRE and SRE*, where a zero SRE corresponds to a
zero SRE*, but not vice versa.

6.3.4 Experimental Setup
In this paragraph we present the setup of the first three experiments, the first, designed
to compare the pooling strategies, the second, where we compare the two different kind
of pooling strategies, fixed-cost strategy and fixed-depth strategy, and the third, where
we measure the expectation of the number of judged documents per run. For these three
experiments, each pooling strategy takes as parameter the pool size, i.e., the number
of judged documents. To test how the different strategies behave for different values of
this parameter, we repeated the experiment varying the pool size, for the first and third
experiments, from 5,000 in steps of 5,000 till all the judgements of the test collection
were used. We did this for Ad Hoc 3, Ad Hoc 8, and Web 9. For Blog 2006 we varied
the pool size from 2,000 in steps of 2,000, and for Genomics 2005, Legal 2006, Microblog
2011, Robust 2005, and Web 2014 we varied the pool size from 1,000 in steps of 1,000
due to the smaller size of these test collections. For the second experiment we set the
parameter N of the fixed-cost strategy in function of the number of documents judged,
by setting the parameter K of the non fixed-cost strategy, varying K from 10 in steps of
10 to the maximum possible K.

In the forth experiment, when we verify the stability of the first experiment, for each
pooling strategy we fix N = 10, 000 we then repeated the experiment varying the horizon
h from 10, in steps of 10 till the size of the original test collection K. We did this for all
the test collections.

In all four experiments, the pool size N , when possible, is equally divided across the
topics. Due to an imbalance of documents judged in the original Depth@K strategy
among the topics, for big Ns and for some topics we would not find enough documents
to cover the number of allocated judgements for these topics, N/|Q|, where |Q| is the
number of topics. In this case the number of judged documents available per topic
can vary. Therefore, the aggregated number of documents to be judged for a fixed-cost
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pooling strategy would not equal the desired pool size of N judged documents. To avoid
this, we implement a heuristic that redistributes the remaining judgements, when needed,
fairly across the rest of the topics that still have available documents. Given as input the
set of pooled runs (Rp) this heuristic does, in order to achieve the prefixed N pooled
documents across topics, a search on the space of possible per-topic sizes. This search
space is constrained by the fact that every per-topic size cannot be greater than the
number of available judged documents per topic. The heuristic first starts by assigning
to each topic q a per-topic size nq equal to N divided by the number of topics (N/|Q|).
So for example, if we have a N of 10,000 documents for 50 topics the heuristic assigns to
every topic an nq = 200, ∀q ∈ Q. Now, if for some topics the assigned nqs are too large,
for example there is a lack of documents to be judged for these topics the heuristic then
reduces the nqs of these topics to the maximum allowed (that is of course smaller than
N/|Q|) and reassigns the remaining judgements to the other topics for which there are
still available documents. The reassignment is done by incrementing by 1 each topic nq

until one of the two conditions is verified: 1) the topic has been exhausted, that is no more
documents are available, in this case the topic is excluded and the algorithm continues
with the other topics, or 2) the sum of the nqs has reached N (n1 + ... + n|Q| = N),
in this case the algorithm stops returning the found solution. However if this second
condition is not verified before all the topics get exhausted the heuristic returns an error.
This means that there are not enough documents already judged in the original pool to
achieve a solution of size N .

The IR evaluation measures we selected for this study are AP, NDCG, and P@10. The
reason for this selection is twofold: (a) these measures are widely used in IR, and (b)
they encompass common features of most IR measures: top-heaviness, precision based,
recall based, and utility based.

6.3.5 Results
In Figure 6.4 we show the bias evaluation obtained using the non-adaptive pooling
strategies and in Figure 6.5 the bias evaluation obtained using the adaptive ones for
the Ad Hoc 8 test collection. In the figures, each column is an IR evaluation measure
while each row is a measure of bias. The x-axis in each of the plots is the number of
judged documents, while the y-axis is the scale of the respective measure bias. Every
line is a pooling strategy. In Figures 6.6 and 6.7 we show the same for all the other test
collections but measuring MAE on the evaluation measure AP. In these figures we can
observe that for some test collections like Blog 2006, Web 2014, and Legal 2006, the
measured bias increases when increasing the number of judged documents N , notably
also for the FairTake@N . This behaviour does not exist when tested on P@10, and it
has to be because of the recall component of the measures AP and NDCG. While this is
apparently disturbing, in fact, for the purposes of selecting which strategy to apply in
the future, it does not change our conclusions.

In these figures we can observe that all lines converge to a pool bias value of the test
collection (or zero when the baseline is subtracted) for large pool size values. This is
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Figure 6.4: Pool bias measured for the non-adaptive pooling strategies in terms of the
measures of bias (row): MAE, SRE, and SRE*, and IR evaluation measures (columns):
AP, NDCG, and P@10. This is plotted by using the Ad Hoc 8 test collection, and for
different pool sizes (i.e., aggregated number per topic of documents that require relevance
judgement). The lines in grey are the adaptive pooling strategies (in Figure 6.5) for
comparison.
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Figure 6.5: Pool bias measured for the adaptive pooling strategies in terms of the measures
of bias (row): MAE, SRE, and SRE*, and IR evaluation measures (columns): AP, NDCG,
and P@10. This is plotted by using the Ad Hoc 8 test collection, and for different pool
sizes (i.e., aggregated number per topic of documents that require relevance judgement).
The lines in grey are the non-adaptive pooling strategies (in Figure 6.4) for comparison.
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Figure 6.6: Pool bias measured for the non-adaptive pooling strategies in terms of the
measure of bias MAE and IR evaluation measure AP, and for different pool sizes (i.e.,
aggregated number per topic of documents that require relevance judgement). The lines
in grey are the adaptive pooling strategies (in Figure 6.7) for comparison.
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Figure 6.7: Pool bias measured for the adaptive pooling strategies in terms of the measure
of bias MAE and IR evaluation measure AP, and for different pool sizes (i.e., aggregated
number per topic of documents that require relevance judgement). The lines in grey are
the non-adaptive pooling strategies (in Figure 6.6) for comparison.
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Figure 6.8: Pool bias measured for the Depth@K (D) strategy and FairTake@N (F)
strategy in terms of the measure of bias (left to right): MAE, SRE, SRE∗, and the IR
evaluation measures: AP, NDCG, P@10. This is plotted by using the Ad Hoc 8 test
collection.

because all the pooling strategies are constrained to select documents for which we have
relevance assessments. This is done as explained previously by only including in the
analysis pooled runs and by resizing them to the same depth of the Depth@K pooling
strategy used to build the test collection. Thereby, all alternative pooling strategies will
reduce to the original Depth@K strategy with K defined by the test collection.

In Tables 6.3, 6.4, 6.5, 6.6 and 6.7, we show the performance of each pooling strategy for
N = 10, 000.

In Figure 6.8 we show the comparison between the Depth@K strategy against the
FairTake@N strategy for Ad Hoc 8. The values N are reported in the x-axis text beside
the K values.

In Figures 6.9 and 6.10, we show the expected number of judged documents across runs
and topics (JD) for Ad Hoc 8. The JD values give us an estimate of how many documents
we should expect to be judged for a non pooled run and for a single topic. Every line
is a pooling strategy, and the x-axis in each of the plots is the total number of judged
documents, while the y-axis is the scale of JD.

In Figures 6.11 and 6.12, we show the stability of the results when varying the horizon
of the pooling strategies for a fixed pool size N = 10, 000 for Ad Hoc 8. Every line is a
pooling strategy, and the x-axis in both figures is the horizon, while the y-axis is MAE,
SRE, and SRE∗ measured on AP, NDCG, and P@10.
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Table 6.3: Performance of the pooling strategies for N equal to 10,000.

C Strat. |J +| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

3

F 2962 0.0782 137 76 0.1295 173 104 0.0347 34 0
B 3801 0.0877 145 84 0.1353 171 104 0.0208 19 0
C 3810 0.0877 146 85 0.1351 171 104 0.0203 19 0
MAX 3243 0.0626 122 63 0.1058 155 88 0.0492 55 1
MIN 1294 0.1383 221 154 0.1586 209 139 0.4212 254 165
MED 2769 0.0855 148 86 0.1326 173 107 0.0619 70 5
SUM 3690 0.0763 131 71 0.1193 162 95 0.0296 28 0
ANZ 2352 0.0438 97 42 0.0739 126 63 0.0966 121 40
MNZ 3744 0.0831 141 80 0.1270 165 98 0.0227 19 0
DCG 3747 0.0884 148 86 0.1366 173 105 0.0202 18 0
RRF 3736 0.0882 147 85 0.1360 172 104 0.0187 17 0
PP 3788 0.0874 146 85 0.1353 171 104 0.0219 21 0
RBP 2996 0.0797 141 79 0.1308 173 104 0.0328 32 0
RBPA 2960 0.0787 138 76 0.1299 171 103 0.0347 33 0
RBPA∗ 3201 0.0753 133 72 0.1235 167 99 0.0300 28 0
H 4256 0.0455 84 27 0.0807 125 58 0.0428 46 0
MTF 3676 0.0683 124 63 0.1104 156 89 0.0283 25 0
BG 3151 0.0777 134 73 0.1262 170 101 0.0317 30 0
UCB 3003 0.0789 137 76 0.1294 171 103 0.0342 33 0
BB 3950 0.0585 108 47 0.0959 146 78 0.0292 28 0
MM 4265 0.0535 98 39 0.0866 135 68 0.0330 35 0

A
d

H
oc

8

F 1681 0.0655 1104 423 0.0961 1229 579 0.0265 190 34
B 2193 0.0541 974 309 0.0858 1150 503 0.0150 46 9
C 2193 0.0542 976 311 0.0860 1148 501 0.0150 47 9
MAX 1939 0.0456 905 238 0.0694 1052 409 0.0348 305 47
MIN 557 0.1333 2066 1356 0.1823 1987 1313 0.3728 2481 1697
MED 1221 0.0828 1203 520 0.1126 1314 659 0.0601 664 185
SUM 2328 0.0475 912 252 0.0726 1059 416 0.0134 48 9
ANZ 675 0.0716 1267 583 0.0413 802 267 0.1929 1834 1051
MNZ 2258 0.0494 928 268 0.0779 1103 458 0.0128 38 9
DCG 2195 0.0536 972 307 0.0841 1142 495 0.0140 40 9
RRF 2205 0.0530 961 296 0.0834 1136 490 0.0140 41 9
PP 2188 0.0545 976 311 0.0864 1153 506 0.0154 50 9
RBP 1782 0.0628 1080 402 0.0932 1206 556 0.0219 120 22
RBPA 1690 0.0649 1097 417 0.0954 1220 570 0.0255 171 34
RBPA∗ 2084 0.0511 959 294 0.0761 1100 453 0.0182 91 10
H 2635 0.0229 528 28 0.0345 651 76 0.0285 254 9
MTF 2464 0.0386 819 168 0.0590 957 317 0.0162 87 9
BG 2053 0.0515 974 305 0.0776 1102 455 0.0219 140 17
UCB 1903 0.0576 1039 361 0.0856 1171 521 0.0236 157 23
BB 3019 0.0210 503 19 0.0323 622 55 0.0197 157 9
MM 3267 0.0160 391 5 0.0247 520 25 0.0179 147 9
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Table 6.4: Continuation of Table 6.3 for the rest of the test collections.

C Strat. |J +| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

F 947 0.0379 577 36 0.0504 510 56 0.0170 177 4
B 1250 0.0309 476 21 0.0419 448 44 0.0088 103 1
C 1249 0.0311 478 21 0.0424 454 45 0.0086 104 1
MAX 1098 0.0268 448 17 0.0372 421 40 0.0188 206 4
MIN 380 0.0790 1427 686 0.1366 1434 861 0.1967 1798 1057
MED 675 0.0449 652 82 0.0529 567 119 0.0525 663 103
SUM 1162 0.0339 511 25 0.0459 472 48 0.0098 112 0
ANZ 595 0.0340 549 30 0.0232 262 9 0.0629 794 153
MNZ 1227 0.0314 476 21 0.0428 452 46 0.0089 100 0
DCG 1223 0.0320 491 22 0.0434 457 47 0.0088 98 1
RRF 1229 0.0320 487 22 0.0431 457 45 0.0087 97 0
PP 1256 0.0308 472 21 0.0419 446 43 0.0090 108 1
RBP 977 0.0390 582 37 0.0513 511 54 0.0148 148 2
RBPA 945 0.0390 580 38 0.0518 511 55 0.0168 178 4
RBPA∗ 1122 0.0318 497 22 0.0425 462 45 0.0122 127 1
H 1319 0.0236 400 9 0.0301 342 23 0.0151 162 1
MTF 1197 0.0313 489 21 0.0410 445 44 0.0115 121 1
BG 1021 0.0372 562 34 0.0478 495 53 0.0162 174 3
UCB 973 0.0382 578 38 0.0506 508 54 0.0171 179 3
BB 1415 0.0228 380 10 0.0296 327 19 0.0115 126 1
MM 1555 0.0156 269 2 0.0216 242 8 0.0115 131 3

W
eb

20
14

F 4058 0.0247 113 25 0.0353 110 30 0.1343 155 41
B 4046 0.0249 118 26 0.0366 113 31 0.1354 157 41
C 4024 0.0248 115 25 0.0353 108 30 0.1369 157 41
MAX 4101 0.0249 115 25 0.0355 110 32 0.1364 155 43
MIN 3974 0.0306 147 38 0.0433 142 42 0.1650 177 54
MED 3963 0.0299 146 38 0.0419 134 39 0.1570 172 50
SUM 4107 0.0249 117 26 0.0355 110 32 0.1355 155 42
ANZ 4089 0.0248 114 25 0.0356 110 32 0.1360 155 42
MNZ 4097 0.0249 117 25 0.0356 110 32 0.1353 154 42
DCG 4056 0.0247 115 25 0.0351 109 30 0.1341 155 41
RRF 4054 0.0247 114 25 0.0351 109 30 0.1342 155 41
PP 4039 0.0253 121 27 0.0369 111 31 0.1379 156 41
RBP 4078 0.0248 114 26 0.0353 109 30 0.1340 155 41
RBPA 4053 0.0248 113 25 0.0353 110 30 0.1344 155 41
RBPA∗ 4192 0.0254 121 27 0.0367 116 33 0.1314 153 41
H 4169 0.0266 126 27 0.0390 124 34 0.1400 163 44
MTF 4300 0.0254 122 26 0.0365 117 32 0.1309 152 41
BG 4141 0.0247 118 24 0.0355 110 31 0.1332 154 41
UCB 4099 0.0248 112 24 0.0355 110 31 0.1339 155 41
BB 4332 0.0257 122 26 0.0375 118 33 0.1314 153 40
MM 4366 0.0260 124 27 0.0384 120 34 0.1321 152 41
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Table 6.5: Continuation of Table 6.4 for the rest of the test collections.

C Strat. |J +| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

R
ob

us
t

20
05

F 2620 0.0285 51 11 0.0404 50 12 0.0447 35 11
B 2889 0.0286 52 9 0.0395 51 12 0.0358 26 10
C 2708 0.0354 60 17 0.0488 58 15 0.0389 27 10
MAX 2775 0.0235 45 7 0.0342 41 7 0.0419 32 11
MIN 2117 0.0625 106 57 0.0706 88 41 0.2317 121 66
MED 2377 0.0174 36 8 0.0248 33 7 0.0969 77 29
SUM 2848 0.0242 45 7 0.0345 42 7 0.0383 31 10
ANZ 2673 0.0190 39 6 0.0280 37 6 0.0556 49 13
MNZ 2907 0.0247 44 7 0.0350 41 7 0.0367 27 10
DCG 2890 0.0284 50 9 0.0395 50 12 0.0359 26 10
RRF 2891 0.0284 50 9 0.0395 51 12 0.0359 26 10
PP 2917 0.0271 51 8 0.0382 48 10 0.0366 27 10
RBP 2633 0.0285 51 11 0.0407 50 12 0.0431 34 11
RBPA 2607 0.0292 51 11 0.0412 52 13 0.0446 37 11
RBPA∗ 3034 0.0192 38 5 0.0274 36 5 0.0374 31 10
H 3168 0.0125 25 5 0.0163 18 2 0.0506 42 11
MTF 3374 0.0134 26 5 0.0191 24 2 0.0357 27 10
BG 2805 0.0239 45 7 0.0347 43 9 0.0424 33 10
UCB 2680 0.0276 50 11 0.0390 49 11 0.0452 35 11
BB 3712 0.0107 23 5 0.0141 16 3 0.0340 27 10
MM 3791 0.0107 21 5 0.0135 17 3 0.0330 27 10

G
en

om
ic

s
20

05

F 1870 0.0437 785 88 0.0542 699 103 0.0288 398 2
B 2170 0.0384 734 61 0.0488 662 77 0.0206 291 0
C 2168 0.0388 735 62 0.0493 665 80 0.0212 308 0
MAX 1952 0.0372 715 53 0.0480 646 68 0.0302 421 2
MIN 1284 0.0622 1224 380 0.0854 1113 401 0.2347 1502 643
MED 1485 0.0247 584 34 0.0266 471 23 0.0979 1113 269
SUM 2055 0.0382 721 61 0.0497 666 84 0.0229 320 1
ANZ 1662 0.0296 592 23 0.0359 523 25 0.0600 740 48
MNZ 2142 0.0373 718 55 0.0484 657 76 0.0205 295 0
DCG 2147 0.0377 724 56 0.0482 662 76 0.0208 304 0
RRF 2170 0.0379 725 57 0.0484 656 73 0.0203 292 0
PP 2178 0.0379 723 57 0.0485 659 76 0.0213 311 0
RBP 1914 0.0436 788 90 0.0537 700 104 0.0268 367 1
RBPA 1876 0.0441 794 94 0.0545 709 108 0.0288 397 3
RBPA∗ 2034 0.0374 724 55 0.0468 637 59 0.0258 365 2
H 2115 0.0289 616 22 0.0333 497 20 0.0409 541 2
MTF 2184 0.0335 675 39 0.0430 613 48 0.0244 351 0
BG 2016 0.0390 740 63 0.0494 654 67 0.0268 378 1
UCB 1960 0.0423 773 80 0.0523 681 92 0.0275 386 1
BB 2335 0.0267 560 13 0.0345 506 15 0.0266 372 0
MM 2422 0.0227 505 5 0.0295 448 8 0.0253 348 0
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Table 6.6: Continuation of Table 6.5 for the rest of the test collections.

C Strat. |J +| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

Le
ga

l2
00

6

F 1280 0.0433 10 4 0.1006 8 1 0.1092 14 5
B 1352 0.0378 7 1 0.0865 7 0 0.0961 9 1
C 1317 0.0392 8 2 0.0891 7 0 0.0978 10 2
MAX 1440 0.0377 7 1 0.0860 7 0 0.0939 9 1
MIN 1220 0.0487 11 3 0.0989 9 2 0.1132 15 6
MED 1253 0.0473 11 3 0.0980 9 2 0.1088 14 5
SUM 1442 0.0375 7 1 0.0857 7 0 0.0939 9 1
ANZ 1426 0.0378 7 1 0.0861 7 0 0.0939 9 1
MNZ 1448 0.0374 7 1 0.0854 7 0 0.0930 9 1
DCG 1361 0.0375 7 1 0.0864 7 0 0.0961 9 1
RRF 1357 0.0374 7 1 0.0866 7 0 0.0965 10 2
PP 1382 0.0456 11 3 0.0957 7 0 0.1066 15 6
RBP 1327 0.0385 7 1 0.0875 7 0 0.0956 9 1
RBPA 1334 0.0376 7 1 0.0869 7 0 0.0961 9 1
RBPA∗ 1436 0.0365 7 1 0.0868 7 0 0.0912 9 1
H 1570 0.0371 7 1 0.0887 7 0 0.0943 9 1
MTF 1569 0.0378 7 1 0.0878 7 0 0.0917 9 1
BG 1360 0.0383 7 1 0.0873 7 0 0.0978 10 2
UCB 1340 0.0375 7 1 0.0872 7 0 0.0961 9 1
BB 1719 0.0368 7 1 0.0870 7 0 0.0877 9 1
MM 1749 0.0364 7 1 0.0866 7 0 0.0868 9 1

B
lo

g
20

06

F 4061 0.0213 117 19 0.0190 62 4 0.2205 219 96
B 5612 0.0153 75 9 0.0272 85 12 0.1758 192 69
C 5502 0.0160 78 10 0.0277 86 14 0.1833 193 70
MAX 3189 0.0209 109 26 0.0206 68 6 0.2533 242 119
MIN 3015 0.0681 264 161 0.0774 206 100 0.3961 278 155
MED 3130 0.0612 255 152 0.0650 182 76 0.3761 269 146
SUM 4898 0.0154 79 8 0.0288 82 11 0.1810 195 72
ANZ 1783 0.0524 233 130 0.0533 169 63 0.3735 270 147
MNZ 5587 0.0153 78 9 0.0282 87 12 0.1669 185 62
DCG 5494 0.0149 74 9 0.0271 84 11 0.1734 190 67
RRF 5525 0.0149 70 9 0.0276 86 12 0.1738 191 68
PP 5629 0.0157 78 10 0.0267 82 12 0.1794 192 69
RBP 4153 0.0198 110 15 0.0196 58 4 0.2139 217 94
RBPA 4035 0.0210 116 18 0.0190 60 4 0.2200 221 98
RBPA∗ 4814 0.0181 103 12 0.0189 56 3 0.1956 203 80
H 5171 0.0245 114 23 0.0200 74 3 0.2449 242 119
MTF 5657 0.0167 99 9 0.0179 59 3 0.1821 194 71
BG 4582 0.0192 109 16 0.0190 62 4 0.2057 212 89
UCB 4393 0.0198 113 19 0.0194 60 4 0.2130 216 93
BB 6191 0.0151 93 8 0.0164 61 3 0.1764 190 67
MM 6623 0.0149 93 7 0.0156 56 2 0.1791 197 74
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Figure 6.9: Expected number of judged documents for the pair run-topic (JD), for non
pooled runs tested on all 9 test collections against all non-adaptive pooling strategies.
This is plotted in function of the different pool sizes (i.e., aggregated number per topic of
documents that require relevance judgement). The lines in grey are the adaptive pooling
strategies (in Figure 6.10) for comparison.
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Figure 6.10: Expected number of judged documents for the pair run-topic (JD), for non
pooled runs tested on all 9 test collections against all adaptive pooling strategies. This
is plotted in function of the different pool sizes (i.e., aggregated number per topic of
documents that require relevance judgement). The lines in grey are the non-adaptive
pooling strategies (in Figure 6.9) for comparison.
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Figure 6.11: Pool bias measured for the non-adaptive pooling strategies in terms of the
measures of bias (row): MAE, SRE, and SRE*, and IR evaluation measures (columns):
AP, NDCG, and P@10. This is plotted by using the Ad Hoc 8 test collection, and for
different horizons (i.e., depth of the runs used by the pooling strategies). The lines in
grey are the adaptive pooling strategies (in Figure 6.12) for comparison.
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Figure 6.12: Pool bias measured for the adaptive pooling strategies in terms of the
measures of bias (row): MAE, SRE, and SRE*, and IR evaluation measures (columns):
AP, NDCG, and P@10. This is plotted by using the Ad Hoc 8 test collection, and for
different horizons (i.e., depth of the runs used by the pooling strategies). The lines in
grey are the non-adaptive pooling strategies (in Figure 6.11) for comparison.
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Table 6.7: Continuation of Table 6.6 for the rest of the test collections.

C Strat. |J +| AP NDCG P@10
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

M
ic

ro
bl

og
20

11

F 1679 0.0241 1049 10 0.0317 1146 16 0.0181 427 6
B 1864 0.0207 915 7 0.0271 996 12 0.0107 253 4
C 1870 0.0211 934 7 0.0274 1007 13 0.0110 262 5
MAX 1740 0.0216 964 9 0.0281 1043 14 0.0187 457 6
MIN 1067 0.0717 3337 1246 0.0902 3307 1312 0.2179 4344 2410
MED 1196 0.0201 1078 22 0.0246 992 31 0.1094 2959 1073
SUM 1793 0.0145 749 2 0.0163 695 1 0.0247 598 5
ANZ 1524 0.0135 683 1 0.0155 652 0 0.0521 1416 57
MNZ 1825 0.0146 760 2 0.0166 710 1 0.0232 572 6
DCG 1849 0.0215 947 7 0.0277 1010 13 0.0107 255 2
RRF 1866 0.0211 931 7 0.0274 1006 12 0.0108 252 3
PP 1871 0.0202 894 7 0.0269 992 11 0.0107 256 6
RBP 1741 0.0244 1063 12 0.0317 1140 16 0.0136 328 4
RBPA 1682 0.0244 1065 12 0.0317 1150 20 0.0173 414 7
RBPA∗ 1875 0.0183 816 6 0.0240 880 4 0.0122 288 2
H 1880 0.0187 828 6 0.0230 854 4 0.0163 402 4
MTF 1989 0.0150 662 2 0.0201 776 3 0.0103 244 2
BG 1764 0.0226 997 9 0.0295 1070 14 0.0142 340 5
UCB 1723 0.0242 1052 10 0.0316 1141 17 0.0155 376 3
BB 2127 0.0111 530 1 0.0143 574 1 0.0096 239 2
MM 2186 0.0095 465 0 0.0123 496 0 0.0089 225 2

6.4 Discussion
In the following we discuss the results reported above. We consider the FairTake@N
strategy as our baseline. While this strategy is slightly different from Depth@K (see
Section 6.2), FairTake@N is the strategy closest to Depth@K that guarantees full control
over the number of documents to be assessed.

We start our discussion analysing the operationability of a pooling strategy. Next, we
focus on the non-adaptive strategies, then we analyse the adaptive ones. Finally, we
compare them to each other.

6.4.1 Pooling Operationability
The operationalisation of a pooling strategy refers to the flexibility that a strategy
gives to the test collection builder in gathering the relevance assessments. If a pooling
strategy does not impose a constraint on how to gather this information, then we say
that this pooling strategy is operationalisable. The advantage of such strategies is that
the two processes, pooling and assessing of the documents, are independent. This lack
of interdependency, since the assessments are performed by human beings, makes it
easier to tackle the cognitive biases that may affect the assessors while performing the
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judgements. The standard way to address these biases is to make the assessors judge
a randomised sample of the pooled documents. In general we identify the following
operationability properties of a pooling strategy: aggregable, ordinable, and parallelisable.
In the following discussion we will be primarily concerned with distinguishing those
pooling strategies that do not have one or more of these properties.

A pooling strategy is aggregable when the collection builder is able to aggregate relevance
assessments for a document across judgements from multiple assessors. Pooling strategies
that do not present this quality put an additional burden on the collection builder. This
is because these strategies require information about the relevance of documents already
assessed to decide which documents to pool next. Thereby a non aggregable strategy
requires that the assessment process is coordinated such that the assessment and selection
of the next document to assess cannot start until all assessors have judged the current
document: this may happen at different times due to different assessor cognitive abilities,
workload, and work scheduling.

A pooling strategy is ordinable when the collection builder is able to control in which
order the relevance assessments are performed. The absence of such a property may
introduce cognitive biases. For example, some pooling strategies may favour such a bias
because it requires the judgement of documents in order of their predicted relevance.
This bias is instead usually overcome by the ordinable pooling strategies by randomising
the pooled documents before presenting them to the assessors.

For the parallelisable property of a pooling strategy we can distinguish two parallelisation
forms, cross-topic and per-topic parallelisations. The former refers to parallelising the
assessments by judging at the same time multiple topics, i.e., exclusively assign each
topic to an assessor, but assigning different topics to different assessors. The latter refers
to parallelising, given a topic, the assessments for this topic, i.e., distributing documents
that are retrieved for the same topic across multiple assessors to speed up the assessment
process. While the former is often possible, the latter, always preferable, is sometimes
difficult to obtain.

All non-adaptive pooling strategies are aggregable, ordinable, and fully parallelisable;
for the adaptive pooling strategies, all but RBPAdaptiveTake@N are only cross-topic
parallelisable.

6.4.2 Non-Adaptive Strategies
Among the voting system-based strategies, we observe that BordaTake@N performs
slightly better than the CondorcetTake@N in all evaluation measures, although Borda-
Take@N is a relaxation of CondorcetTake@N . Both strategies are better than FairTakeN
when used with P@10 and only initially worse when used for AP and NDCG. Condorcet-
Take@N has the issue that when comparing pairs of documents, if the two are not in the
top K of the run, it neither adds nor subtracts anything from the value this strategy
computes for the pair. This may lead to situations where it is impossible to compute a
complete ordering of documents, e.g., in the situation where a document di is preferred
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to dj , dj to dk, and also dk to di. To bypass this theoretical limitation Montague and
Aslam [MA02] implemented a sorting method that avoids this limit case, but also does not
guarantee an optimal result (compare Algorithms 3 and 2 in the original paper [MA02]),
while in this chapter a better solution was found by using Copeland’s method.

Among the retrieval fusion based-pooling strategies, as expected, we observe a poor
performance of the CombMINTake@N strategy. In fact it clearly performs worse than
the FairTake@N baseline across all IR evaluation measures and measures of bias for all
test collections. The strategy CombMINTake@N prefers the lowest scoring documents
and is therefore likely to identify mostly irrelevant items, making the final (evaluation)
scores highly unstable. This happens also to CombMEDTake@N for all but one test
collection (Microblog 2011). The strategy CombANZTake@N usually performs poorly
with all measures of bias except when computed on the IR evaluation measure NDCG.
The strategy CombMAXTake@N performs consistently better than the baseline with
all the IR evaluation measures but one, P@10. The strategies CombMNZTake@N and
CombSUMTake@N behave similarly across both evaluation and bias measures. These
strategies are better than FairTake@N when used with P@10 and only initially worse
when used for AP and NDCG.

Among the evaluation measure based-pooling strategies, DCGTake@N , PPTake@N ,
and RRFTake@N correlate with each other, while RBPTake@N does not. They all
tend to be better than the baseline only for P@10 and worse initially for NDCG and
AP. RBPTake@N is the most conservative. Based on Figure 6.2, we observe that the
rank of the non-adaptive strategies is perfectly correlated with their speed of discount
(change in reward for popularity) for RRFTake@N , DCGTake@N , and PPTake@N , with
the exception of RBPTake@N . The linear and logarithmic discounts remove the rank
information from the documents rewarding more popular documents amongst the runs.
The relationship between the discount and the top-heaviness of the evaluation measures
AP and NDCG also explains the twist in preference, where FairTake@N is preferred for
low N , then for higher N almost all non-adaptive methods outperform it, before they
all converge to the same value. For P@10 we observe that DCGTake@N , RRFTake@N ,
and PPTake@N are the best, followed by RBPTake@N .

Juxtaposing all the non-adaptive strategies we observe that the voting system-based
strategy BordaTake@N behaves similarly to the retrieval fusion method-based strategy
CombMNZTake@N ; and voting system-based strategies and IR evaluation measure-
based strategies partially correlate with the retrieval fusion method-based strategy
CombSUMTake@N .

For the non-adaptive pooling strategies we can conclude that the most stable strat-
egy is CombMAXTake@N . However, if the measure to be optimised is only P@10,
DCGTake@N should be preferred. This is not only based on Ad Hoc 8 (Figure 6.4),
but is clearly visible for all test collections in Tables 6.3, 6.4, 6.5, 6.6 and 6.7. However,
although a selected non-adaptive pooling strategy performs better than the baseline, the
collection builder, at the cost of losing some operationability properties, can move to
lesser biased pooling strategies in the next category, the adaptive ones.
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6.4.3 Adaptive Pooling Strategies

Between the two classic pooling strategies we observe that the traditional MTFTake@N
pooling strategy outperforms the baseline in every evaluation measure and test collec-
tion. This strategy is one of the most stable pooling strategies across IR evaluation
measures, and on average discovers over 25% of relevant documents more than the
baseline. The HedgeTake@N strategy outperforms MTFTake@N in all IR evaluation
measures but P@10, and in all test collections but Blog 2006 where HedgeTake@N fails
for AP and NDCG when compared against FairTake@N . We can observe that although
HedgeTake@N discovers on average 27% more relevant documents than the baseline,
it is not effective in reducing the bias. This happens in the case of Blog 2006 where
the strategy is worse than the baseline. The reason for this failure has to be found
in the parameter β that has been trained using test collections with a lower rate of
relevant documents. In fact we predicted that increasing β from 0.1 to 0.9 would have
increased the performance of HedgeTake@N to become higher than the baseline. This
can be observed by the fact that when β = 1 this strategy reduces to an unbounded
RRFTake@N like strategy (see Appendix A.2), whose performance for AP is better than
the baseline.

Between the two IR evaluation measure-based pooling strategies we observe that the per-
formance of the RBPAdaptiveTake@N strategy is comparable to the FairTake@N . The
RBPAdaptive*Take@N strategy outperforms the baseline in every evaluation measure
and test collection.

Among the multi-armed bandit-based strategies the MABUCBTake@N strategy performs
comparably to the FairTake@N strategy. Among MABGreedyTake@N , MABBeta-
Take@N , MABMaxMeanTake@N , they all outperform the baseline for all IR evaluation
measures and bias measures. In particular MABMaxMeanTake@N is the best performing
pooling strategy in terms of bias.

Comparing all the adaptive pooling strategies, we observe that RBPAdaptive*Take@N ,
MTFTake@N , MABGreedyTake@N , and MABMaxMeanTake@N are always better
than the baseline for every IR evaluation measure. For the adaptive pooling strategies we
can draw the following conclusion: the least biased pooling strategy is MABMaxMean-
Take@N . It is interesting to observe that this pooling strategy is the one that discovers
the highest number of relevant documents, above 45% more than the baseline.

6.4.4 Non-adaptive vs. Adaptive Pooling Strategies

We now consider all the tested pooling strategies together. We observe that the best
pooling strategy is MABMaxMeanTake@N for all test collections. However if some
operationalisation properties are required, the CombMAXTake@N should be preferred.
Overall the adaptive pooling strategies demonstrate to be more stable across IR evaluation
measures. In fact RBPAdaptive*Take@N , MTFTake@N , MABGreedyTake@N , and
MABMaxMeanTake@N always perform better than the baseline.
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6.4.5 Accuracy and Stability of the Results

As discussed in Section 6.3.1, this experimental design raises three potential issues.

About the comparison between Depth@K strategy and FairTake@N , Figure 6.8 shows
that the behaviour of the bias of these two pooling strategies is similar despite the
substantial difference that exist between them, i.e., the first lets the number of documents
to be judged to vary on a per topic basis, while for the second strategy this number is
fixed for all the topics. We can observe that FairTake@N is a stronger baseline when the
measures of bias are computed on the IR evaluation measures AP and NDCG, and as
good as Depth@N when the measures of bias are computed on P@n, in particular for
SRE∗.

About the inconclusiveness of the results due to having too few documents judged in the
non-pooled runs, Figure 6.10 tells us, indeed, about the accuracy of the computation of
the term, f(r, JRp\{r′∈Rp:or′ =or}), which is present in all three bias measures. For example,
if we consider the non-adaptive pooling strategy CombANZTake@N , we observe that for
Ad Hoc 8, with a pool size N = 5, 000, the expected number of documents judged per run
per topic is around 2.10, which means that when computing an IR evaluation measure
on these non pooled runs, their accuracy is probably compromised. However, because
such pool sizes are still used, and there are no available guidelines in the literature on
how many judged documents are really necessary, we chose to provide these plots to let
the readers assess the results by themselves.

About the stability of the results when changing the horizon of the pooling strategies,
Figures 6.12 and 6.12 shows that all the best pooling strategies but two are consistent
with the results discussed above. In fact, the best strategies continue to be the best also
when changing horizon. The two pooling strategies that show an unstable behaviour
are CombMEDTake@N and CombANZTake@N , which favour lower horizons. This
experiment shows that the pooling strategies are stable when increasing their horizon.
Based on this observation, we expect them to be consistent when increasing their horizon
beyond the tested one.

6.4.6 Limitations

There are still a number of limitations and possible extensions to this work. First and
foremost, we are constrained by the data available to us. As we have detailed in the
beginning of Section 6.3, we do not see an alternative to a proper investigation of pool
bias without “cleaning” the test collections and generating runs that have no documents
beyond what we know to be evaluated. Nevertheless, this does significantly reduce the
“knowledge” available to us as we have to discard a non-negligible percentage of the
ground-truth. We see addressing this as a significant effort, to be perhaps undertaken as
a new evaluation effort in TREC. Our study would hopefully serve as a initial step, to
identify those pooling strategies that should be further tested in the context of such a
large scale evaluation exercise.
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Beyond this, a limitation that has appeared as we were presenting the various pooling
strategies is the setting of their parameters. Throughout this chapter we have considered
only parameters that have been published in previous works, but often enough these
parameters were used for different purposes (retrieval fusion methods, IR evaluation
measures) and maybe different values would be better fitted for pooling strategies.

There are a number of decisions that are taken in every evaluation campaign, that
complement the pooling strategy itself. The number of runs, the number of topics,
the distribution of evaluation effort over topics are all elements that are worth further
investigation in relation to the pooling strategy. Finally, as the title clearly indicates, we
focus here on pools of a fixed size. While this is often a real-world constraint, the study
of variable-sized pools and the balance between the effort to assess another document
and the bias reduction expected from this effort is equally worth pursuing.

6.5 Summary
In this chapter we have explored a large array of pooling strategies, from the standard
Depth@K (closely approximated here by FairTake@N in the context of fixed-cost pooling)
to recent strategies based on voting systems, retrieval fusion methods, IR evaluation
measures, and multi-armed bandits methods. In doing so, we have observed parallels
between strategies that had been developed independently (e.g. BordaTake@N and
CondorcetTake@N , or HedgeTake@N and RRFTake@N) and distinguished between
adaptive and non-adaptive pooling strategies, with their different operationalisations.

The baseline, FairTake@N remains a solid candidate, but it can be improved upon. If we
have constraints on operationalisation and are therefore mandated to use a non-adaptive
method, then CombMAXTake@N (using the maximum score obtained by a document
across the runs) would be recommended, particularly when top-heavy metrics like AP
and NDCG are the target evaluation metrics. There is one exception, the Blog 2006
test collection, where the RBPTake@N provided better results. However, the Blog 2006
collection is quite unusual: compared to all other test collections, it has an extremely high
percentage of relevant documents being judged and the runs are very diverse (because
topical relevance was not the main objective of the evaluation in that collection). However,
for all test collections, if the measure to be optimised is P@10, DCGTake@N should be
preferred.

If, however, adaptive pool generation is operationalisable (i.e., including feedback from
assessors in the pool generation process), we should use a multi-armed bandit-based
method, MABMaxMeanTake@N , which is the least biased among all the tested pooling
strategies; moreover, it is the strategy that discovers the highest number of relevant
documents, on average 40% more than the baseline.

In the course of this study we have also observed that the ability of a pooling strategy in
discovering a high number of relevant documents is somewhat correlated with the less
biased ones, but not completely, e.g. the best non-adaptive strategy, CombMAXTake@N ,
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discovers a number of relevant documents comparable to the baseline but performs better
in terms of bias than other non-adaptive strategies that discover on average even more
than 15% relevant documents than the baseline. This verifies the statement made by
Spärck Jones about the aim of the pooling strategy: a pooling strategy’s objective is not
to discover the highest number of relevant documents, but to discover an unbiased set of
documents [Spä03].
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CHAPTER 7
Selection Bias: Evaluation Measures

The increasing informatisation of our society is the spawn of many information rich
domains. The strong empirical nature of IR and the variety of the solutions required for
these domains has led to the partition of the IR community into smaller groups with
more niche interests. This separated effort to bridge as many domains as possible has
resulted in the building of lower quality, but sometimes unique, test collections. In this
chapter we analyse the pool bias observed in these test collections and present solutions
to mitigate it for two well-known IR evaluation measures, P@n and R@n. We chose
these evaluation measures because they are cornerstones of IR evaluation practice and to
satisfy the emerging need of having more valid and easy to interpret evaluation measures.
In particular, in this chapter, we start by explaining how the pool bias affects P@n and
R@n. We then present the bias estimators under a coherent mathematical framework to
ease their comparison. To evaluate these estimators, we run a large scale experimentation
using 15 purposefully chosen TREC test collections, and three measures of bias.
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7.1 Introduction
A test collection is a valuable resource for Information Retrieval (IR) researchers because
it gives the IR community a common ground to facilitate the development of search
models. Numerous test collections have been developed in the field since the first Cranfield
experiments in the 1960s. Since the start of TREC in the 1990s, this creation happens at
a rate of approximately 25 test collections per year. A test collection is composed of: a
set of documents, a set of topics and a set of relevance assessments for each topic, derived
from the collection of documents. The number of documents in the collection generally
makes the full judgement of the document set for every topic infeasible. Therefore, the
relevance assessment process is generally optimised by pooling the top K documents for
each run. The pool is constructed from systems taking part in the challenge for which
the collection was made, at a specific point in time, after which the collection is generally
frozen in terms of relevance judgements. The pooling method aims to identify an unbiased
sample of relevant documents. Nevertheless, pool bias negatively affects the score of
unpooled runs – those of systems not present at the time of test collection creation. This
is a drawback that ultimately affects the reliability of the test collection. The variables
controlling this reliability are [LH05]: the number of topics and their representativeness
of the information needs of the target user, the number of documents assessed per run,
and, last but not least, the diversity of the pooled systems (often however only assessed
as the cardinality of the set of runs).

In the last decades the IR community have branched out significantly in a variety of
domains and applications, with the creation of specific IR test collections focusing on
specific problems. At the same time, benchmarking techniques developed in the IR
community are being implemented in industry. Information aware companies request
measures to quantify the quality of their information access systems in general, and
search systems in particular. With a narrower focus however, the effort to successfully
solve the challenges facing the creators of test collections takes on new significance. Most
notably, it is often difficult to acquire a sufficient number of participants and diverse
systems in order to fulfil the required run diversity to guarantee a reliable test collection.

In this chapter, we analyse the problem of pool bias at the evaluation measure level
by presenting multiple pool bias estimators, under the same mathematical framework.
We do this based for Precision at cut-off (P@n) and Recall at cut-off (R@n). There are
two reasons to consider such a simple measures. First, they are a cornerstone for many
other measures developed for the most popular of user models at present: the web user
[HJ10]. Second, they are easy to understand by all users. This understandability of the
IR measures has drawn moderate attention from our community recently [CS14]. Our
own experience in the industry leads us to believe that when results are not presented
as simply precision and recall, any numbers are just assumed to be precision or recall.
Decision makers at lower or higher levels, trying to make sense of AP, or any other
commonly used measure in our community, will most often read 0.12 as 12% and simply
assume that either 12% of documents are relevant or 12% of relevant documents have
been returned on average. Of course, we do not forget why all the other measures have
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been invented to replace, or complement, precision at cut-off and recall at cut-off: (1) for
an ideal run, if the topic has fewer relevant documents than n, P@n and R@n do not reach
1; P@n is not normalised by the number of relevant documents, therefore it is difficult to
average over topics, (2) both measures partially neglect the position of the documents.
Nevertheless, there are many cases where these measures are useful in particular P@n,
which is most often, but not only, for the user modelled as considering blocks of 10
documents at a time on the web. This is also demonstrated by its continued use and
reporting throughout a majority of evaluation challenges at TREC, CLEF, NTCIR or
FIRE. In short, the contributions of this chapter are as follows: (1) a new perspective
on P@n and R@n; (2) an extensive analysis of the pool bias estimators in the literature;
and (3) novel bias estimators for P@n and R@n.

7.2 Pool Bias in IR Evaluation Measures

In Section 3.5, we have defined the pool bias and we have seen that the degree of bias
observed in a run tested on a test collection depends on many factors. An important
one is the pooling strategy used. To understand the other factors we need to review the
pooling method, and in particular in this chapter we focus on the Depth@K pooling
strategy, because it is the most used pooling strategy in IR.

In the same Section 3.5, we have also shown that the pool bias can be minimised via
increasing either the number of pooled documents, or the number and variety of pooled
systems. But albeit the first one is a controllable parameter that largely depend on the
budget invested in the creation of the test collection, the second, the number and variety
of the involved IR systems depends on the interest and participation of the IR community
in the issued challenge. This problem is more evident in domain specific IR, where a
sufficient participation is almost always unreached. Such lack of diversity not only yields
to a greater pool bias but more importantly to a not follow-up challenge, making the
already built test collections unique in their kind, therefore precious.

In the following, we formally define the IR evaluation measures analysed in this chapter
and how the pool bias manifests at the measure level.

7.2.1 Estimating Precision at Cut-off

In evaluating IR systems, Precision (P) is one of the two fundamental measures. We
recall its definition: given D a set of documents, Dr a subset of D (the documents in a
run r), J + the set of relevant documents, P is defined as:

P (r) = |Dr ∩ J +|
|Dr|

Precision represents the proportion of relevant and retrieved documents against the
retrieved ones. From this definition of P we derive the definition of Precision at cut-off n
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(P@n), used to better handle ranked retrieval systems:

P@n(r) = |{d ∈ Dr ∩ J + : ρ(d, r) ≤ n}|
n

where the function ρ returns the rank of a document d in a run r. The measure takes
into account only the relevant documents because it is supposed to be used when there is
a complete knowledge of the relevance function over the documents in the run. When
we consider the problem of missing relevance assessments this assumption is not true,
ending up considering unjudged documents as irrelevant. To overcome this problem and
take into account the missing information about the run, we define the complement of
precision, called anti-precision (P ). Anti-Precision measures the proportion of irrelevant
and retrieved documents against the retrieved documents. In statistics, a similarly defined
quantity is referred to as the False Discovery Rate (FDR) [BH95]. It is used in quantifying
the results of multiple hypothesis testing experiments. However, given the very different
use of it here, we continue to refer to it as anti-precision in this study, and define it as:

P (r) = |Dr| − |Dr \ J −|
|Dr|

where J − is the set of irrelevant documents. We define P in this less intuitive way
than the |Dr ∩ J −|/|Dr| because this will be useful later when comparing it against the
definition of recall in the next section. As well as for precision, we can define also its
cut-off version:

P@n(r) = n − |{d ∈ Dr \ J − : ρ(d, r) ≤ n}|
n

Indeed, when a run is fully judged, r ∈ R : ∀d ∈ Dr, d ∈ J + ∪ J −, the following equation
holds:

P (r) + P (r) = 1
When it is not, and unjudged documents are present in the run, the sum of P and P
is lower than 1, reduced by a quantity that represents the proportion of retrieved and
unjudged documents against the retrieved documents. We refer to this as k̄P .

P (r) + P (r) = 1 − k̄P (r)

This quantity represents the uncertainty of the measurement. Just as for P and P , k̄P

can be also defined at cut-off (k̄P @n), as follows:

P@n(r) + P@n(r) = 1 − k̄P @n(r)

Now that we have defined P and its related functions, we define the bias observed when
measuring P on a run. Then we quantify the range of this bias and its expected behaviour.
All of this is in order to understand the causes of bias for P .

We start by defining a quantity βP that indicates the pool bias observed on the measure
P , as:

P̂ (r) − P (r) = βP (r) (7.1)
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where P̂ represents the unbiased value of P for the run r, which in this case is the same
as saying that the run r has been totally judged. As for the previous quantities βP can
also be defined at cut-off (βP @n):

P̂@n(r) − P@n(r) = βP @n(r) (7.2)

where P̂@n still represents the unbiased value of P@n for the run r, but in this case it
needs to be judged till the cut-off n.

To know the range of these βP s we solve the following inequalities for P :

P (r) ≤ P̂ (r) ≤ P (r) + k̄P (r) (7.3)

or for P@n:
P@n(r) ≤ P̂@n(r) ≤ P@n(r) + k̄P @n(r) (7.4)

Then, by substituting Eq. (7.1) into Eq. (7.3) we obtain that:

0 ≤ βP (r) ≤ k̄P (r)

Similarly substituting Eq. (7.2) into Eq. (7.4):

0 ≤ βP @n(r) ≤ k̄P @n(r)

These inequalities define the lower and upper bounds of the βP s and βP @ns. Thus, these
βs are positive numbers (≥ 0) bounded from above by the ratio of unjudged documents
in the run k̄P , or k̄P @n for the cut-off case.

To correct the pool bias means to estimate βP or βP @n. In particular, in this chapter
we focus on estimating βP @n.

7.2.2 Estimating Recall at Cut-off
The second fundamental IR measure to evaluate the performance of search engines is
Recall (R). We recall its definition: given Dr a subset of D (the documents in a run r),
J + the set of relevant documents, R is defined as:

R(r) = |Dr ∩ J +|
|J +|

(7.5)

Recall represents the proportion of relevant and retrieved documents against the relevant
ones. This is a complementary measure with respect to precision because it emphasises
the retrieval of a relevant document, while P emphasises the relevance of a retrieved
document. For recall, this is the case because it is normalised by the number of relevant
documents, retrieved and non-retrieved, for precision, this is the case because it is
normalised by the number of retrieved documents, relevant and irrelevant. From R we
derive the definition of Recall at cut-off n (R@n), used to better handle ranked retrieval
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systems. Given ρ a function that returns the rank of a document d in a run r, R@n is
defined as:

R@n(r) = |{d ∈ Dr ∩ J + : ρ(d, r) ≤ n}|
|J +|

Similarly to precision, the measure takes into account only the relevant documents because
it is supposed to be used when there is a complete knowledge of the relevance function
over the documents in the run. When we consider the problem of missing relevance
assessments this assumption is not true, ending up considering unjudged documents as
irrelevant. To overcome this problem and take into account the missing information
about the run, we define the complement of recall, called anti-recall (R). Anti-Recall
measures the proportion of relevant but non-retrieved documents against the relevant
documents:

R(r) = |J +| − |Dr \ J −|
|J +|

As well as for recall, we define also its cut-off version (R@n):

R(r) = |J +| − |{d ∈ Dr \ J − : ρ(d, r) ≤ n}|
|J +|

Indeed, when a run is fully judged, r ∈ R : ∀d ∈ Dr, d ∈ J + ∪ J −, the following equation
holds:

R(r) + R(r) = 1

When it is not, and unjudged documents are present in the run, the sum of R and R
is less than 1, decreased by a quantity that represents the proportion of retrieved and
unjudged documents against the relevant documents. We refer to this as k̄R.

R(r) + R(r) = 1 − k̄R(r)

Just as for R and R, k̄R can be also defined at cut-off (k̄R@n), as follows:

R@n(r) + R@n(r) = 1 − k̄R@n(r)

Now that we have defined R and its related functions, we define the bias observed
when measuring R on a run. Then, we quantify the range of this bias and its expected
behaviour. All of this in order to understand the causes of bias for R.

We start by defining a quantity βR that indicates the pool bias observed on the measure
R, as:

R̂(r) − R(r) = βR(r) (7.6)

where R̂ represents the unbiased value of R for the run r, which in this case it is the
same as saying that the run r has been totally judged. As for the previous quantities
also βR can be defined at cut-off (βR@n):

R̂@n(r) − R@n(r) = βR@n(r) (7.7)
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where R̂@n still represents the unbiased value of R@n for the run r.

To know the range of these βRs we solve the following inequalities for R:

R(r) ≤ R̂(r) ≤ (R(r) + k̄R(r)) 1
1 + k̄R(r) (7.8)

Similarly to what done for P and P @n, the inequality on left-hand side is simply obtained
by assuming that non of the unjudged documents retrieved by r are relevant, while the
inequality of the right-hand side is obtained by assuming the contrary, that is all of
the unjudged documents retrieved by r are relevant. While the result of the former
assumption is simply R(r), the latter assumption produces a less intuitive outcome. To
make this explicit we present the mathematical passages performed to obtain it. We
start from the definition of R as in Eq. 7.5:

R(r) = |Dr ∩ J +|
|J +|

⇒ |Dr ∩ J +| + |Dr \ J |
|J +| + |Dr \ J |

=

=
|Dr∩J +|

|J +| + |Dr\J |
|J +|

1 + |Dr\J |
|J +|

= (R(r) + k̄R(r)) 1
1 + k̄R(r)

After recalling the definition of R, we show the effect of the assumption on R. This
assumption means that a quantity equal to |Dr\J | should be added to both the numerator
and denominator of the definition of R. We add this to the numerator because this
quantity, now considered relevant, adds to the number of relevant documents retrieved
by the run. Likewise, we add this also to the denominator because this quantity adds to
the the overall number of relevant documents, since those documents were not considered
relevant. Finally, by multiplying and dividing this expression by |J +| and performing
the needed substitutions we obtain the right-hand side of the equation. Following the
same reasoning, for R@n we obtain:

R@n(r) ≤ R̂@n(r) ≤ (R@n(r) + k̄R@n(r)) 1
1 + k̄R@n(r) (7.9)

Then, by substituting Eq. (7.6) to Eq. (7.8) we obtain that:

0 ≤ βR(r) ≤ (1 − R(r)) k̄R(r)
1 + k̄R(r)

Similarly substituting Eq. (7.7) to Eq. (7.9):

0 ≤ βR@n(r) ≤ (1 − R@n(r)) k̄R@n(r)
1 + k̄R@n(r)

These inequalities define the lower and upper bounds of the βRs and βR@ns. Thus, these
βs are positive numbers (≥ 0) bounded from above by a number in function of the ratio
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of irrelevant documents in the pool (1 − R(r), or 1 − R@n(r) for the cut-off case) and
the ratio of unjudged documents in the run (k̄R(r), or k̄R@n(r) for the cut-off case).

To correct the pool bias means to estimate the βRs. In particular, in this chapter we
focus on estimating βR@n.

However, when the cut-off of the recall is lower than the one guaranteed by a pooling
strategy, for example if runs are pooled using a Depth@K pooling strategy with n < K,
the range of the bias is defined as follows:

R@n(r) 1
1 + k̄R@K(r) ≤ R̂@n(r) ≤ (R@n(r) + k̄R@n(r)) 1

1 + k̄R@K(r) (7.10)

Substituting again Eq. (7.7) to Eq. (7.10):

−R@n(r) k̄R@K(r)
1 + k̄R@K(r) ≤ βR@n(r) ≤

(
k̄R@n(r)
k̄R@K(r) − R@n(r)

)
k̄R@K(r)

1 + k̄R@K(r)

we can observe that when there is a discrepancy between the size of the run pooled and the
cut-off of recall, the lower bound is translated back of a value equal to −R@n(r) k̄R@K(r)

1+k̄R@K(r) ,
while the upper bound is also reduced but in a more complicated way. This translation
affects every pooled run.

7.2.3 Summary

In this section we have shown what the pool bias is and its causes. Then, we analysed
how it is propagated when evaluating retrieval systems with P@n and R@n. In particular,
we have observed that the pool bias for R@n is also affected by the pooling strategy used.
In the next section we formally introduce the pool bias estimators for P@n and R@n.

7.3 Pool Bias Estimators
In this section we generalise the estimators presented in this chapter as a special form of
rotation estimator (aka cross-validation or leave-one-out). We then provide a classification
of the studied estimators.

An estimator is a function that, given a run r, a pooling strategy J , and the set of runs
Rp used to build J = JRp , returns an estimation of the bias of the run r. We generalise
a pool bias estimator as follows:

β(r) = Ar E
r′∈Rp

[ 1
ar′

C(r′, r, JRp)
]

(7.11)

C(r′, r, JRp) =
{

f(r′, JRp) − f(r′, JRp\{r′}) simulation-based
f(r′ ◦ r, JRp) − f(r′, JRp) perturbation-based

(7.12)
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where E is an expectation over the pooled runs Rp; Ar and ar′ are normalisation constants
for the run to be estimated r, and the pooled run r′; f quantifies a feature of r given a
set of relevance assessments J (i.e., an IR evaluation measure); and C is a function used
to define the transformation of the input before the application of f .

This generalisation is a specialisation of the rotation estimation. Since we are quantifying
the bias of a run r due to its absence from the set of pooled runs, we can adopt two
approaches to obtain an estimation:

Simulation-based estimators. These estimators simulate the absence of a pooled run
from the pool, and compute the difference between the score when it is pooled and
when it is not pooled;

Perturbation-based estimators. These estimators perturb a pooled run using the run
r to indirectly measure the potential of r, i.e., by measuring the performance
improvement on the perturbed pooled run.

These two classes of estimators are identified by the function C, which can take one of
the two forms presented in (7.12).

The constants Ar and ar are useful to compensate the potential bias of the measured
feature f . The expectation E refers to the Arithmetic mean unless otherwise specified.
For the sake of clarity we define here the two expectations used in this chapter, as AM
for the arithmetic mean:

AM(V ) = 1
|V |

∑
v∈V

v

and GM for the geometric mean:

GM(V ) = |V |

√∏
v∈V

v

In the next sections we will introduce the bias estimators for P@n and R@n. However,
before delving into their formalisations, we observe that if a test collection has been built
using a Depth@K pooling strategy given an estimator for P@n we can always compute an
estimator for R@n. To achieve this conclusion we start from observing how to compute
R given P:

R(r) = |Dr ∩ J +|
|J +|

=
|Dr ∩ J +| · |Dr|

|Dr|
|J +|

= P (r) · |Dr|
|J +|

(7.13)

similarly for R@n given P@n:

R@n(r) = |{d ∈ Dr ∩ J + : ρ(d, r) ≤ n}|
|J +|

=

=
|{d ∈ Dr ∩ J + : ρ(d, r) ≤ n}| · n

n

|J +|
= P@n(r) · n

|J +|
(7.14)
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Now, recalling the definition of the estimation βR in Eq. (7.6) and βP in Eq. (7.1) and
substituting them to Eq. (7.13) we obtain:

βR(r) = R̂(r) − R(r) = P̂ (r) · n

|J +| + βP (r) · n
− R(r) = (P (r) + βP (r)) · n

|J +| + βP (r) · n
− R(r)

similarly for P@n, by recalling the definition of the estimation βR@n in Eq. (7.7) and
βP @n in Eq. (7.7) and substituting them to Eq. (7.14) we obtain:

βR@n(r) = R̂@n(r) − R@n(r) =

= P̂@n(r) · n

|J +| + βP @n(r) · n
− R@n(r) = (P@n(r) + βP @n(r)) · n

|J +| + βP @n(r) · n
− R@n(r)

However, when the test collection is built with the Depth@K strategy, this score needs
to be adjusted as follows:

βR@n(r) = (P@n(r) + βP @n(r)) · n

|J +| + βP @n(r) · n + βP @K(r) · max(K − n, 0) − R@n(r) (7.15)

where βP @n(r) is the estimation for P@n and βP @K(r) is the estimation for P@K.
This is also theoretically justified by interpreting P @n plus its correction as a probability
[GG05]. In the experimental section we will indicate these estimators with the name of
the estimator for P@n but with P as superscript.

7.3.1 Simulation-based Estimators
The intuition at the base of such estimators is that we can observe, by simulating the
absence of a pooled run from the pool, how a quantity associated to the run changes
when is pooled and is not pooled. A bad pool would make this variation in quantity
large, while a good pool would make this variation minimal.

Estimating Pool Bias for Precision at Cut-off

In this section we give an overview of two pool bias estimators. Webber and Park [WP09]
introduced the first presented estimator to mitigate the pool bias of Rank-Based-Precision
(RBP) and P@n, we call this the basic simulation estimator. Next, breaking down the
main assumption of this estimator and studying P@n behaviour, we introduce the second
estimator named k̄-normalised simulation estimator.

Basic Simulation (BS). This estimator consists in adding to the score of a new run a
coefficient equal to the mean difference between the score obtained when a run, initially
part of the pool Rp, is pooled and not-pooled. Webber and Park tested this estimator
on RBP but claimed to be working also with P@n [WP09]. The correction coefficient for
a run (r 6∈ Rp) is defined by the following Ar and ar′ :
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Ar = 1 (7.16) ar′ = 1 (7.17)

and a function C defined as:

C(r′, r, JRp) = P@n(r′, JRp) − P@n(r′, JRp\{r′})

Substituting these elements into Eq. (7.11) we obtain the basic simulation estimator:

βP @n(r) = AM
r′∈Rp

(
P@n(r′, JRp) − P@n(r′, JRp\{r′})

)
(7.18)

From this formulation we can already observe two limitations. The first limitation is
that the correction is not bounded by r, thereby we may have a score that may exceed
the upper limit of the P@n codomain, which is [0, 1]. The second limitation is that it
computes a coefficient that is constant and therefore does not depend on the actual status
of r.

There are two main assumptions behind this estimator. The first, a more general
assumption, which is present in all estimators is that any given new run is sampled
from the same distribution as the pooled ones. This is of course not always true,
because runs are selected based on their performance by human intervention. The second
assumption is that the distribution of differences P@n(r′, JRp) − P@n(r′, JRp\{r′}) is
normally distributed, as indicated by the use of the arithmetic mean in the last equation.
To empirically demonstrate the groundlessness of this hypothesis, we observe in Figure
7.1, on the left side, that the distribution of differences is not normally distributed. This
makes the estimate for the correction biased for a new run because the distribution
generated by the pooled runs is not centred on the calculated mean.

However, while the first assumption is not under our control, but it is more about the
quality of the test collection, with the next estimator we focus on tackling the second
assumption that arises when applying this estimator to P@n.

k̄-Normalised Simulation (k̄NS). This estimator solves the main issue of the previous
estimator: the assumption of normality for the distribution of the differences. To find
a better prior, we look at the ratio between the number of uniquely identified relevant
documents discovered by pooling the run r and the number of unjudged documents that
the run would have if it had not been pooled. This quantity may be interpreted as the
probability of the unjudged documents of the run to be relevant:

P (d ∈ Dr \ JRp\{r}, d ∈ J+
Rp

) =
P@n(r, JRp) − P@n(r, JRp\{r})

k̄P (r, JRp\{r})

We observe empirically that the distribution of this quantity is log-normal. Indicating
with X this distribution and with Y its log-transformation Y = log(X), Y is normally
distributed. In the Q-Q plot in Figure 7.1 on the right side, we observe how the theoretical
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Figure 7.1: Q-Q Plots of a normal distribution against, on the left, the distribution of
differences P@n(r′, JRp) − P@n(r′, JRp\{r′}), on the right, the log transformation of the
distribution of the probability of providing new relevant documents to the pool, for the
test collection Ad Hoc 8.

normal distribution correlates with the sample distribution. To calculate a meaningful
mean prior, we compute the mean of the distribution Y and then transform it back to
the domain of the distribution X, which leads to the geometric mean of the X.

This leads to redefining the normalisation constants with respect to the previous definition
as:

Ar = k̄@n(r, JRp) ar′ = k̄@n(r′, JRp\{r′})

Substituting these two last equations into Eq. (7.18), and using the geometric mean, we
obtain:

βP @n(r) = k̄@n(r, JRp) GM’
r′∈Rp

(
P@n(r′, JRp) − P@n(r′, JRp\{r′})

k̄@n(r′, JRp\{r′})

)
(7.19)

where GM’ is a slightly modified version of the geometric mean:

GM’(V ) = GM({v ∈ V : v 6= 0}) (7.20)

This is done because in order to have a well defined formulation, we need to remove the
cases when the difference is null. This is reasonable because: first, if this difference is
zero it can be shown that k̄r = 0 and consequently the fraction in Eq. (7.19) is undefined.
Second, such zero values bring no information to our estimate of the contribution of the
run. In fact, one could generate an unbounded number of runs with difference equal to
zero.
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Comparing Eq. (7.18) and Eq. (7.19) we notice that the numerator is the same and
that with respect to the second equation the difference is that now, every difference in
P@n gets divided by the number of uniquely identified documents provided to the pool,
and then multiplied by the same but for r.

This estimator solves the two limitations of the previous estimator. The first limitation
was about the fact that the correction may make the score of the run exceed the upper
limit of the P@n codomain. This is no longer possible because the maximum value the
estimator can output is equal to k̄@n. The second limitation was about the fact that the
estimator computes a coefficient that is constant for any run. This is also no longer true
since it is multiplied by Ar, which is a value computed on the non pooled run. Therefore
it no longer corrects based on a constant prior probability of the run to find relevant
documents among its unjudged ones.

Estimating Pool Bias for Recall at Cut-off

In this section we present three simulation-based estimators for R@n. The first estimator
is based on the estimator presented by Webber and Park [WP09], like in the previous
section called basic simulation estimator. We will observe that also in this case, for R@n,
the assumption of normality for the distribution of the difference is not hold. From this
observation we develop the second estimator, named geometric simulation estimator.
However, these estimators are independent of the target run, i.e., any run would be
corrected with the same value. We present a third estimator, the k̄-normalised simulation
estimator, which overcomes this limitation.

Basic Simulation (BS). Similarly to what done for the BS estimator for P@n, to correct
the bias of a run for R@n we redefine C as follows:

C(r′, r, JRp) = R@n(r′, JRp) − R@n(r′, JRp\{r′})

where Ar and ar′ are defined as in Eq. (7.16) and Eq. (7.17). Then, substituting these
elements into Eq. (7.11) we obtain the following basic simulation estimator:

βR@n(r) = AM
r′∈Rp

[
R@n(r′, JRp) − R@n(r′, JRp\{r′})

]
This estimator suffers of the same limitations listed for P@n: the estimation is constant
for every unpooled run, and this estimation being unbounded can lead to a value outside
the codomain of R@n, which is [0, 1].

Geometric Simulation (GS). In the previous estimator, it is assumed that the distri-
bution of the differences is normal. However, analysing this distribution shows that
this assumption is again groundless. This results in a behaviour similar to the previous
observed for the k̄NS– the distribution of the differences is log-normal. However, these
differences computed on R@n can be negative therefore these values cannot be directly
log-transformed. We perform instead a similar transformation by first translating the
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Figure 7.2: Q-Q Plots of a normal distribution against, on the left, the distribution of
differences R@n(r′, JRp) − R@n(r′, JRp\{r′}), on the right, the log transformation of the
same quantities, for the test collection Ad Hoc 8.

distribution by a quantity equal to the minimum of the distribution, this in order to
avoid the presence of negative values, and then log-transform. This observation is made
in Figure 7.2. Therefore, we redefine this estimator as follows:

βR@n(r) = GM’
r′∈Rp

[
R@n(r′, JRp) − R@n(r′, JRp\{r′})

]
This definition of GM’ is different to the definition in Eq. (7.20). However this new
definition generalises the previous one and can be used also in that case. The new version
of GM’ is defined as follows:

GM’(V ) = GM({v ∈ V : v 6= min(V )} − min(V )) + min(V )

This formula translates the distribution by a constant value equal to the min value of V,
computes the geometric mean and translates back by the same quantity.

k̄-Normalised Simulation (k̄NS). Following the same idea in the definition of k̄NSfor
P@n, we define a similar estimator for R@n. To do this we define Ar and ar′ based on
the maximum value obtainable by R@n, as defined when explaining R@n.

Ar = (1 − R@n(r, JRp))
k̄@n(r, JRp)

1 + k̄@n(r, JRp)
and,

ar′ = (1 − R@n(r′, JRp\{r′}))
k̄@n(r′, JRp\{r′})

1 + k̄@n(r′, JRp\{r′})
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Substituting this into Eq. (7.18) we obtain:

βR@n(r) = (1 − R@n(r, JRp))
k̄@n(r, JRp)

1 + k̄@n(r, JRp) ·

· AM
r′∈Rp

[
R@n(r′, JRp) − R@n(r′, JRp\{r′})

1 − R@n(r, JRp\{r′})
1 + k̄@n(r, JRp\{r′})

k̄@n(r, JRp\{r′})

]

This solves the limitations listed for the two previous estimators: this estimation is
bounded between 0 and the maximum obtainable value for R@n, and the estimation is
no longer constant for every unpooled run.

In addition to these R@n estimators presented above we also include all the estimators
defined for P@n but combined as in Eq. 7.15. These are indicated as follows, BSP and
k̄NSP .

7.3.2 Perturbation-based Estimators
The intuition at the base of such estimators is that we can observe how a new, unpooled
run impacts the existing, pooled runs. Given such an existing run, we can imagine to
perturb it based on the ranks of its documents in the unpooled run. A “bad” new run will
tend to bring down known relevant documents and push up irrelevant ones. Quantifying
these changes we create a measure of the potential quality of the new run.

Before going on to the details of the perturbation-based estimators, let us perform an
imagination exercise in order to better understand the information content of a partially
judged run. As in a deck of cards, a shuffling changes the order of the documents of a
run and produces a new run that we will indicate as r′. This run has the same set of
documents as before. We want to observe the variation in score the run obtains in the
two states, original and shuffled. Therefore, it is necessary to use an evaluation measure
sensitive to document rank change, i.e., P would not be suitable in this case. Now, let us
define f to be an evaluation measure with this property. Given a run r and its shuffled
version r′ we define:

δf(r′) = f(r′) − f(r)

δf is the variation of the measure f after a shuffle of the run r′. The measure f increases
with the increase in number of relevant documents at higher positions, and decreases
vice versa, as mostly IR measures do. An increase in value of δf is the result of the
combination of the following two related effects: the shuffle moved up relevant documents,
or moved down irrelevant or unjudged documents (with the consequential moving up of
potential relevant documents in the run). It decreases if the opposite happens. We can
also define δf as following:

δf(r′) = f(r′) − f(r)

δf is the variation of the anti-measure f of the run after a shuffle. Its increase in value
is the result of the combination of the following two related effects: the shuffle moved
up irrelevant documents, or moved down relevant or unjudged documents (with the
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consequential moving up of potential irrelevant documents in the run). It decreases if
the opposite happens.

After measuring the variation of relevant documents with δf , and irrelevant documents
with δf , we conclude with measuring the variation of unjudged documents with δk̄ for f :

δk̄(r′) = k̄(r′) − k̄(r)
δk̄ is the variation of unjudged documents on a given run. Its increase in value is the result
of the combination of the following effects: the shuffle moved up unjudged documents or
moved down relevant and irrelevant documents (with the consequential moving up of
potential unjudged documents in the run).

To summarise this imaginary exercise, when a run changes the order of its documents,
δf , δf , and δk̄ are indicators of the direction of the judged relevant, judged irrelevant,
and unjudged documents in the run.

Now let us make a step further and consider not the relationship between a run and a
random shuffle of itself, but between a run and another run. In the particular case where
each run ranks completely the entire collection, this is the same as above. In general
however, the systems only provide runs down to a certain limit (say 1000). To study this
effect, we need to define a perturbation function between the two runs. The unpooled
run will have an effect on the pooled run, measured by the quantities described above.
In the next paragraphs we analyse the meaning of perturbing a run, understanding what
the previous introduced measures express in this context.

Such a perturbing function can simply be based on the rank of the documents in the run.
The aim here is not to add or remove documents from a run, we must keep in mind that
all we need to do here is transfer only the information about the rank of the documents.
We do this by combining the ranks if the two runs share the same document.

In the following formula, by r we denote the new, previously unseen and unpooled run,
whose effect on r′, an existing run, we want to study. This effect we represent as a
new, synthetic run r′′, which consists exclusively of documents present in r′, potentially
re-ordered.

r′′ = r′ ◦ r

where the perturbing function ◦ is defined by the perturbing estimator. As any functional
composition operator, our perturbing operator ◦ is not commutative and always represents
the effect of its right member on its left member.

Estimating Pool Bias for Precision at Cut-off

In this section we apply to P@n the concepts discussed previously, and interpret their
meaning in this context. After this, we present two bias estimators that make use of
these concepts.

As we have seen, if we would use P to compute the δ functions, since there is no
information about the position of the documents in the formula, we would measure a
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change of 0. However, P@n does not suffer from this issue because it preserves ranking
information given by the cut-off, which distinguishes between what happens before and
after it. Given a run r′ and its shuffled version r′′ we can therefore define:

δP@n(r′′) = P@n(r′′) − P@n(r′)

where δP@n has domain [−1, 1].

We also define δP@n as following:

δP@n(r′′) = P@n(r′′) − P@n(r′)

δP@n has domain [−1, 1].

Finally, δk̄ for P@n that can be derived as following:

δk̄@n(r′′) = k̄@n(r′′) − k̄@n(r′) =
= 1 − (P@n(r′′) + P@n(r′′)) − [1 − (P@n(r′) + P@n(r′))] =

= −δP@n(r′′) − δP@n(r′) (7.21)

δk̄@n has domain [−1, 1]. An interesting property of this function, which is possible
to prove, is that if r′ has been judged to depth K : K ≥ n, then the domain of the
function δk̄@n is [0, 1]. This property always holds for pooled runs because they verify
the condition (provided of course that no mistakes occurred in the pooling process).

We now present two estimators of this class. The first is a relaxation of the second.

k̄-Linear Perturbation (k̄LP). This estimator defines the simplest perturbing operator
◦ as a linear combination of ranks, as follows:

r′′ = r′ ◦ r = {d ∈ r′ : ρ(d, r′′) = µ(d, r′, r)} (7.22)

where µ is defined by the following linear combination of ranks:

µ(d, r′, r) =
{

ρ(d, r′) · (1 − α) + ρ(d, r) · α if d ∈ r
ρ(d, r′) otherwise

µ is the weighted arithmetic mean between the rank of the document in r′ and the rank
of the document in r, with 0 ≤ α ≤ 1. When the same rank is assigned by µ to two
different documents, which can happen in some cases for a pair of documents of which
one is also in r and the other one is not, the common document is inserted after the
r′-exclusive document. In other words, the original run rank has priority.

Now that we have an understanding of which runs are suffering from pool bias, with
respect to precision at cut-off, we proceed by presenting the estimator to adjust the score.

To correct the pool bias we want to add a quantity that stays within its uncertainty limit
k̄r. In other words, our growth potential in terms of P@n is bounded by k̄r. We are
interested in estimating the missing precision of the unjudged documents in the run r.
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The adjustment is based on the average effect of this run r on the existing runs, in terms
of k̄. We do this by computing the δk̄r′ produced by r on a pooled run r′ via the run
perturbing function defined in Eq. 7.22. This measures the aggregated change in precision
and anti-precision, as described by Eq. 7.21. Therefore, we define C as:

C(r′, r, JRp) = k̄@n(r′ ◦ r, JRp) − k̄@n(r, JRp)

ar, and Ar as follows:

ar′ = 1 Ar = k̄@n(r, JRp)

Substituting these into Eq. (7.11) we obtain the following estimator:

βP @n(r) = k̄@n(r, JRp) AM
r′∈Rp

[
k̄@n(r′ ◦ r, JRp) − k̄@n(r, JRp)

]
The average in this estimator, if the runs have been pooled using a fixed-depth at cut-off
K pooling strategy and n ≤ K, is always positive and it acts as a maximum likelihood
estimator for the position in [0,k̄r]. Therefore, the correction quantity is the product
between ∆k̄r and k̄r. However, if the pooling strategy allows to have unjudged documents
at ranks lower than K or the cut-off of the measure n is too large, we constrain this
average to positive values by taking the maximum between the average and 0, like this:

βP @n(r) = k̄@n(r, JRp) max
(

AM
r′∈Rp

[
k̄@n(r′ ◦ r, JRp) − k̄@n(r, JRp)

]
, 0
)

λ-Triggered k̄-Linear Perturbation (λTk̄LP). This estimator is an extension of the
previous estimator. This estimator arises by the observation that the δ computed on
the perturbed run can be used to develop an indicator that can be used to trigger its
correction.

δP @n and δP @n can be used to analyse the quality of an unpooled run against a pooled
one. An increase in δP@n is the result of two forces, one direct and one indirect: 1)
direct, if the relevant documents in the top n of r are the same documents found at the
bottom of r′, they will be pushed up; 2) indirect, if the r has irrelevant or unjudged
documents in the bottom that are in the top n documents of r′, they will be pushed down.
The contribution decreases if the contrary happens. For δP@n as well, the contribution
is: 1) direct, if the irrelevant documents in the top n of r are shared with documents in
the bottom of r′; 2) indirect, if the r has relevant or unjudged documents in the bottom
that are in the top n documents of r′. If the run r′ would be judged in its totality, these
two effects would be perfectly correlated and it would be possible to calculate one just
knowing the other from the following equation:

δP@n + δP@n = 0

However, when r′ contains unjudged documents at ranks below n, their sum becomes
−δk̄@n, as shown in Eq. 7.21.
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Table 7.1: Measures computed for the run sab05ror1 when it is not part of the pool

P@10 k̄@10 ∆P@10 ∆P@10
0.4220 0.444 0.0065 -0.1053

As explained above, δk̄@n represents the ratio of unjudged documents brought to the
top n of the run r′ by the run r. Moreover, it is possible to prove that δP@n = 0 and
δP@n = 0 if and only if one of the following two conditions occurs: 1) the two runs r′

and r do not share any documents with each other in their top n documents, or 2) the
two runs are identical in the top n. These are the two cases where our method will not
say anything about the new run r just by using the existing run r′ (but this method
might be based on other pooled runs).

Let us now take an example to illustrate how this indicator could be useful to understand
the behaviour of a run and predict its quality. We use the test collection Robust 2005
and in particular we focus our attention on a special run that presents an unusual effect,
the routing run sab05ror1. It has the peculiarity of being strongly discounted when it
is not in the pool. Buckley et al. [Buc+07] studied it at length, pointing out that the
reason for its behaviour was related to the size of the test collection. For this run let us
calculate P @10 and k̄@10. Let us also consider the average of δP @10 and δP @10, which
we denote as follows:

∆P@10(r) = AM
r′∈Rp

[
δP@10(r′ ◦ r)

]
∆P@10(r) = AM

r′∈Rp

[
δP@10(r′ ◦ r)

]
where Rp is the set of runs used in the creation of the test collection.

Table 7.1 shows these values for this particular run. When the run is not part of the pool,
P @10 assigns it the 11th position in 18th runs. k̄@10 says that there are many documents
that are unjudged and that therefore there is a high potential to grow. ∆P @10 indicates
a low average positive contribution to the pooled runs, and shows that among the relevant
documents there is little intersection. ∆P@10 instead is negative which suggests that
many irrelevant documents have been ranked lower than before, therefore suggesting a
good ability of this special run to discriminate relevant documents from irrelevant ones.

In Figure 7.3 we show the resulting ∆P@10, ∆P@10 against the residual error (ε̂, the
difference between the true score and the unpooled score), generated with a leave-one
organisation-out approach. Here we can observe that just using ∆P@10 is not enough
because it takes into account only one of the two positive contributions of the run, the
other one being the reduction in ∆P@10.

Let us now return to the general case. When the average negative contribution of
the unpooled run to other runs is reduced (i.e., ∆P < 0) and the run has a positive
contribution (i.e., ∆P > 0), the run suffers from pool bias and its score should be
adjusted. More problematic is the case when ∆P and ∆P have the same sign (i.e., the
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Figure 7.3: Plot of ∆P@10, ∆P@10 and λ against the residual (ε̂) in a leave-one
organisation-out experiment, for the Robust 2005 test collection. The run indicated as N
is the unusual run sab05ror1.

run has both a negative and a positive contribution, on average). Indeed, on one hand,
if we have ∆P > 0 and ∆P > 0 we would improve the P@n score of the run only if
their ratio is greater than the ratio of P to P , because it means that there is a chance
to improve the existing score. On the other hand, if we have ∆P < 0 and ∆P < 0 we
would improve only if their ratio is lower than the ratio of P to P because it means that
the contribution of the run is more able to discriminate the irrelevant documents.

From these observations we derived a single value indicator that merges the information
of all the indicators defined:

λr = ∆P@n(r) · P@n(r) − ∆P@n(r) · P@n(r)

For all runs where λr > 0 we apply our correction method.

Returning briefly to the example of the sab05ror1 run, we can now see in Figure 7.3
that λr clearly distinguishes this run from the rest.

Before delving into the definition of this indicator, let us recall the definition of the step
function1 χ that will be used in the formalisation of the estimator.

χA(x) =
{

1 if x ∈ A,

0 if x /∈ A.
= [x ∈ A]

This function returns 1 if the argument belongs to the set defined by A, and 0 otherwise.
In the right-hand side we have the same but using the Iverson bracket notation.

We now have all the components to define this bias estimator. This indicator with respect
to the previous one changes only the definition of Ar:

Ar = [λr > 0] · k̄@n(r, JRp)
1This function is also called the indicator function, but for sake of clarity we call it step function in

order to not confuse the reader with the indicator functions we have previously defined.
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Thereby, the final indicator is:

βP @n(r) = [λr > 0] · k̄@n(r, JRp) max
(

AM
r′∈Rp

[
k̄@n(r′ ◦ r, JRp) − k̄@n(r′, JRp)

]
, 0
)

This estimator is similar to the definition of the previous estimator except for the
component Ar that now works as a trigger based on the value provided by the indicator
function λr.

Estimating Pool Bias for Recall at Cut-off

To estimate the bias for R@n we use all the estimators defined above but combined as in
Eq. 7.13. These are indicated as follows, k̄LPP and λTk̄LPP .

7.4 Experiments and Results
To test the performance in terms of pool bias of the bias estimators developed in the
previous section we perform a large-scale experimentation using 15 test collections. In
Table 7.2 we show a summary of the estimators introduced in the previous section. This
material and the experimental setup are presented in the next section. Next, we introduce
the measures of bias. Finally, we present the results.

7.4.1 Material and Experimental Setup
To test the pool bias estimators developed in the previous section we used 15 test
collections sampled from TREC [VH99b]: 7 test collections from the Ad Hoc track, 3
from the Web track, and 5 from more domain specific IR tracks: Genomics, Robust, Legal,
Medical and Microblog. Details about the test collections are presented in Table 7.3.

To test all the estimators against each other we could perform a leave-one run-out
approach. As baseline we could consider the traditional evaluation against the reduced
pool. We call this the reduced pool to distinguish it from the ground truth pool —
the one also containing documents exclusively contributed by the removed runs. This
would be the leave-one run-out experiment as firstly described by Zobel [Zob98], one
run at a time is exited from the pool. This is done by removing all the documents
uniquely identified by it from the relevance assessments. However, to avoid potential
run dependencies across runs submitted by the same organisation we perform instead a
leave-one organisation-out instead as introduced by Büttcher et al. [Büt+07]. This is
similar to the leave-one run-out, with the difference that not only is one run removed
from the pool, but also all the runs generated by the same organisation. This is done
by removing all the documents uniquely identified by the organisation’s runs from the
relevance assessments. This second approach simulates better the testing of a new run,
since in most cases it has been observed that the runs produced by the same organisation
come from the same system, with only some parameter variation. Therefore, they often
bring to the pool the same relevant documents.

143



7. Selection Bias: Evaluation Measures

Table
7.2:

List
ofpoolbias

estim
ators

for
P@

n
and

R
@

n
w

ith
their

defining
equations

to
be

substituted
into

the
generalised

definition
ofa

poolbias
estim

ator
in

Eq.(7.11).

B
ias

Estim
ators

for
P@

n
N

am
e

A
bbr.

A
R

a
r ′

C
E

B
asic

S
B

S
1

1
P

@
n(r ′,J

R
p )−

P
@

n(r ′,J
R

p \{
r ′} )

A
M

k̄-N
orm

alised
S

k̄N
S

k̄@
n(r,J

R
p )

k̄@
n(r ′,J

R
p \

r ′)
P

@
n(r ′,J

R
p )−

P
@

n(r ′,J
R

p \{
r ′} )

G
M

k̄-Linear
P

k̄LP
k̄@

n(r,J
R

p )
1

k̄@
n(r ′◦

r,J
R

p )−
k̄@

n(r ′,J
R

p )
A

M
λ-Triggered

k̄-Linear
P

λT
k̄LP

[λ
r

>
0]·

k̄@
n(r,J

R
p )

1
k̄@

n(r ′◦
r,J

R
p )−

k̄@
n(r ′,J

R
p )

A
M

B
ias

Estim
ators

for
R

@
n

B
asic

S
B

S
1

1
R

@
n(r ′,J

R
p )−

R
@

n(r ′,J
R

p \{
r ′} )

A
M

G
eom

etric
S

G
S

1
1

R
@

n(r ′,J
R

p )−
R

@
n(r ′,J

R
p \{

r ′} )
G

M
k̄-N

orm
alised

S
k̄N

S
(1

−
R

@
n(r,J

R
p )

k̄@
n(r,J

R
p )

1+
k̄@

n(r,J
R

p )
(1

−
R

@
n(r,J

R
p \{

r ′} ))
k̄@

n(r,J
R

p
\{

r ′} )
1+

k̄@
n(r,J

R
p

\{
r ′} )

R
@

n(r ′,J
R

p )−
R

@
n(r ′,J

R
p \{

r ′} )
A

M

144



7.4. Experiments and Results

Table 7.3: Pool properties of test collections, for the original pool, and the synthesized
“cleaned” pool. The cleaned pool is equivalent to a Depth@K with K equal to the one
used to build the original pool.

Test Collection Properties
Ad Hoc 2 Ad Hoc 3 Ad Hoc 4

|R| 38 40 33
|Rp| 36 23 32
|O| 22 22 19
|Q| 50 50 50
K 100 200 100

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 62,620 49,381 97,319 75,378 87,069 55,949

|J +| 11,645 10,224 9,805 9,287 6,503 5,457
Ad Hoc 5 Ad Hoc 6 Ad Hoc 7

|R| 61 74 103
|Rp| 60 28 76
|O| 21 29 42
|Q| 50 50 50
K 100 100 100

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 133,681 78,505 72,270 57,257 80,345 79,133

|J +| 5,524 5,022 4,611 3,931 4,674 4,584
Ad Hoc 8 Web 9 Web 2001

|R| 130 104 97
|Rp| 74 62 59
|O| 41 23 29
|Q| 50 50 50
K 100 100 100

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 86,830 86,830 70,070 70,030 70,400 70,400

|J +| 4,728 4,728 2,617 2,616 3,363 3,363
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Table 7.4: Continuation of Table 7.3 for the rest of the test collections.

Test Collection Properties
Web 2002 Legal 2006 Microblog 2011

|R| 69 34 184
|Rp| 69 31 98
|O| 16 8 58
|Q| 50 38 49
K 50 10 30

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 56,650 55,798 31,041 5,693 60,129 26,371

|J +| 1,574 1,554 3,931 906 2,965 2,548
Medical 2011 Genomics 2005 Robust 2005

|R| 127 62 74
|Rp| 41 55 18
|O| 29 32 17
|Q| 34 49 50
K 10 60 55

Original → Cleaned Original → Cleaned Original → Cleaned
|J | 8,865 5,049 39,958 38,604 37,798 22,173

|J +| 1,765 1,437 4,584 4,387 6,561 4,563

Finally, as in previous studies [BL07; SZ05; SZ05; UMM13; Voo09; VB02] to avoid buggy
implementations of some of the systems that took part in the challenges, we also tested
again with only the top 75% of best performing runs of each test collection.

7.4.2 Measures of Pool Bias

These measures of bias are the same as to the ones presented in Section 6.3.3, but because
their use is slightly different, it is worth presenting them again here.

The measures of bias take as input an IR evaluation measure f . The first measure we
present is Mean Absolute Error (MAE). This measure estimates the expected observed
bias of a test collection. This is computed by averaging over the runs Rp the absolute
difference in score between a run r when it is pooled and not pooled. Given a pooling
strategy J , which has been used to build the ground truth G = JRp , f an IR evaluation
measure, and f̂ its estimation, we define MAE as:

MAE(JRp) = 1
|Rp|

∑
r∈Rp

∣∣∣f̂(r, JRp\{r′∈Rp:or′ =or}) − f (r, G)
∣∣∣

A low MAE means that the score obtained by the estimator is close to the score obtained
by the runs when pooled.
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7.4. Experiments and Results

The second measure we present is System Rank Error (SRE). This measure counts the
number of rank positions lost or gained by the runs among the other pooled runs R when
it is pooled and not pooled. Given f an IR evaluation measure, and f̂ its estimation, we
define SRE as:

SRE(JRp) =
∑

r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

: f̂(r, JRp\{r′′∈Rp:or′′ =or}) ≤ f(r′, G) < f(r, G)∨

∨ f(r, G) < f(r′, G) ≤ f̂(r, JRp\{r′′∈Rp:or′′ =or})
}∣∣∣

A low SRE means that the rank position of the runs when not pooled is close to the rank
position of the runs when pooled.

In IR, when comparing ranking of runs, it is common practice to evaluate their significance.
We implemented this in the next bias measure named System Rank Error with Statistical
Significance. Its difference is that instead of counting all the runs gaining or losing rank
positions against the runs, it counts them only if significant according to a paired t-test
with p < 0.05. SRE∗ is defined as follows:

SRE∗(J , R) =
∑

r∈Rp

∣∣∣{r′ ∈ Rp \ {r′′ ∈ Rp : or′′ = or} :

:
(
f̂(r, JRp\{r′′∈Rp:or′′ =or}) ≤ f(r′, G) < f(r, G)∨

∨ f(r, G) < f(r′, G) ≤ f̂(r, JRp\{r′′∈Rp:or′′ =or})
)
∧

∧ t-testpaired(r, r′, G) < 0.05
}∣∣∣

Juxtaposing the measures of bias, we observe that a zero MAE value implies that SRE
and SRE∗ are equal to zero too. However, the contrary is not true. Moreover, a zero
SRE implies a zero SRE∗, but not vice versa.

7.4.3 Results
The results presented in this chapter are divided into two sets: results regarding the
evaluation of the estimators for P@n, and the evaluation of the estimators for R@n.
Moreover, the latter is subdivided into two subsets, the estimator originally developed
for R@n, and adapted P@n estimators for R@n as shown in Eq. (7.13).

We start with P@n by comparing, in Tables 7.5 and 7.6, the results of all P@n estimators
against the baseline, the ‘reduced pool’. In Table 7.7 and 7.8 we present the same but
only using the 75% best performing runs. These results are also presented in Figure 7.4
for MAE, and 7.5 for SRE.

Continuing with R@n we compare, in Tables 7.9 and 7.10, the results of all R@n estimators
against the baseline, the ‘reduced pool’. In Table 7.11 and 7.12 we present the same but
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Table 7.5: Summary of the results for P@n of the Reduced Pool and its four presented
estimators. These are generated through a leave-one organisation-out approach using all
the pooled runs. The dotted lines represent the point when n ≤ K becomes false, where
K is the depth of the Depth@K strategy used to build the test collection.

C n Pool BS k̄NS k̄LP λTk̄LP
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0071 16 0 0.0071 17 0 0.0090 14 0 0.0056 13 0 0.0068 16 0
10 0.0087 32 0 0.0084 27 0 0.0089 16 0 0.0071 30 0 0.0084 32 0
15 0.0099 39 0 0.0092 24 0 0.0088 23 0 0.0083 33 0 0.0095 35 0
20 0.0113 50 0 0.0096 45 0 0.0097 32 0 0.0092 49 0 0.0108 49 0
30 0.0130 42 0 0.0102 38 0 0.0097 28 0 0.0101 38 0 0.0123 39 0
100 0.0239 113 8 0.0137 58 2 0.0143 48 1 0.0146 80 2 0.0191 86 4

A
d

H
oc

3

5 0.0023 3 0 0.0038 3 0 0.0083 5 0 0.0022 2 0 0.0023 3 0
10 0.0023 0 0 0.0032 0 0 0.0052 1 0 0.0023 0 0 0.0023 0 0
15 0.0031 3 0 0.0039 4 0 0.0045 2 0 0.0030 3 0 0.0030 3 0
20 0.0036 2 0 0.0042 3 0 0.0046 3 0 0.0035 2 0 0.0035 2 0
30 0.0046 9 0 0.0052 8 0 0.0043 5 0 0.0040 8 0 0.0043 8 0
100 0.0071 14 0 0.0067 17 0 0.0051 6 0 0.0056 11 0 0.0061 11 0

A
d

H
oc

4

5 0.0052 17 0 0.0059 20 0 0.0115 20 0 0.0051 16 0 0.0051 16 0
10 0.0064 23 0 0.0063 20 0 0.0091 19 0 0.0062 22 0 0.0059 23 0
15 0.0072 26 0 0.0066 23 0 0.0073 19 0 0.0068 23 0 0.0062 26 0
20 0.0082 33 0 0.0075 32 0 0.0079 31 0 0.0076 33 0 0.0069 31 0
30 0.0084 35 0 0.0076 31 0 0.0074 28 0 0.0078 28 0 0.0067 31 0
100 0.0129 51 0 0.0093 33 0 0.0091 34 0 0.0112 25 0 0.0078 27 0

A
d

H
oc

5

5 0.0053 38 0 0.0057 38 0 0.0137 49 3 0.0053 37 0 0.0051 38 0
10 0.0056 50 0 0.0056 50 0 0.0080 45 1 0.0056 51 0 0.0053 50 0
15 0.0059 59 0 0.0059 61 0 0.0082 52 1 0.0058 55 0 0.0054 56 0
20 0.0060 66 0 0.0057 65 0 0.0075 69 2 0.0057 63 0 0.0052 60 0
30 0.0064 72 0 0.0061 76 0 0.0071 70 1 0.0057 65 0 0.0054 61 0
100 0.0079 138 0 0.0068 123 0 0.0068 109 1 0.0068 117 0 0.0044 92 0

A
d

H
oc

6

5 0.0077 13 0 0.0093 15 0 0.0088 5 0 0.0071 12 0 0.0070 11 0
10 0.0064 8 0 0.0076 9 0 0.0072 8 0 0.0061 8 0 0.0055 8 0
15 0.0065 6 0 0.0073 8 0 0.0064 5 0 0.0060 7 0 0.0054 6 0
20 0.0069 8 0 0.0076 8 0 0.0066 4 1 0.0062 4 1 0.0055 4 0
30 0.0069 6 0 0.0068 8 0 0.0057 5 1 0.0059 6 1 0.0051 5 0
100 0.0090 25 0 0.0066 17 0 0.0059 14 2 0.0073 20 2 0.0040 15 0

A
d

H
oc

7

5 0.0010 3 0 0.0015 3 0 0.0156 81 7 0.0011 3 0 0.0010 3 0
10 0.0014 7 0 0.0019 7 0 0.0050 26 0 0.0015 7 0 0.0013 7 0
15 0.0017 10 0 0.0022 11 0 0.0057 30 0 0.0019 10 0 0.0016 10 0
20 0.0018 11 0 0.0022 21 0 0.0048 30 1 0.0021 12 0 0.0017 11 0
30 0.0020 25 0 0.0024 31 0 0.0038 20 0 0.0023 19 0 0.0018 21 0
100 0.0029 45 0 0.0029 45 0 0.0027 38 1 0.0050 68 1 0.0025 48 0

A
d

H
oc

8

5 0.0033 9 1 0.0040 9 1 0.0058 16 1 0.0042 10 1 0.0033 9 1
10 0.0031 5 1 0.0036 5 1 0.0050 13 2 0.0040 10 2 0.0030 5 1
15 0.0031 3 1 0.0036 3 1 0.0040 6 2 0.0039 6 2 0.0029 3 1
20 0.0032 6 1 0.0036 12 1 0.0037 8 1 0.0041 10 1 0.0030 6 1
30 0.0031 5 1 0.0034 12 1 0.0035 10 1 0.0043 8 1 0.0030 4 1
100 0.0036 33 2 0.0038 36 2 0.0033 21 3 0.0069 47 6 0.0031 29 2
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Table 7.6: Continuation of Table 7.5 for the rest of the test collections.

C n Pool BS k̄NS k̄LP λTk̄LP
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0017 15 0 0.0023 15 0 0.0122 63 7 0.0030 17 0 0.0015 15 0
10 0.0019 17 0 0.0021 17 0 0.0059 28 1 0.0034 24 0 0.0016 14 0
15 0.0020 14 0 0.0019 14 0 0.0032 17 0 0.0038 21 1 0.0017 9 0
20 0.0023 26 0 0.0020 20 0 0.0049 38 1 0.0042 28 0 0.0018 16 0
30 0.0028 42 0 0.0020 35 0 0.0032 34 1 0.0049 60 4 0.0024 38 0
100 0.0043 142 0 0.0030 109 0 0.0032 101 0 0.0114 268 77 0.0055 155 53

W
eb

20
01

5 0.0014 4 0 0.0021 4 0 0.0057 18 1 0.0024 5 0 0.0014 3 0
10 0.0015 3 0 0.0020 3 0 0.0034 9 0 0.0026 4 0 0.0014 3 0
15 0.0018 11 0 0.0020 11 0 0.0042 21 0 0.0030 15 0 0.0017 10 0
20 0.0018 12 0 0.0019 12 0 0.0035 26 0 0.0030 17 0 0.0017 12 0
30 0.0021 18 0 0.0019 11 0 0.0023 13 0 0.0031 22 0 0.0019 15 0
100 0.0037 92 0 0.0025 65 0 0.0023 57 0 0.0065 136 3 0.0038 112 0

W
eb

20
02

5 0.0043 80 1 0.0042 80 1 0.0073 116 0 0.0048 83 0 0.0041 75 1
10 0.0049 113 0 0.0044 113 0 0.0036 87 0 0.0055 116 1 0.0046 112 0
15 0.0052 125 1 0.0043 111 1 0.0035 84 0 0.0061 135 3 0.0049 110 1
20 0.0050 128 0 0.0039 112 0 0.0036 90 0 0.0071 192 7 0.0047 126 0
30 0.0050 164 1 0.0035 119 0 0.0036 120 3 0.0088 284 44 0.0045 162 1
100 0.0027 151 3 0.0017 96 3 0.0016 99 2 0.0111 519 258 0.0030 150 3

Le
ga

l2
00

6

5 0.1044 336 35 0.0774 283 9 0.0445 195 1 0.0433 162 11 0.0482 170 15
10 0.1138 358 88 0.0747 265 37 0.0471 177 12 0.0703 260 35 0.0703 260 35
15 0.0758 293 41 0.0498 235 13 0.0397 195 8 0.0557 238 23 0.0535 223 17
20 0.0569 266 24 0.0373 227 6 0.0342 211 4 0.0490 225 29 0.0441 186 9
30 0.0379 239 18 0.0249 200 8 0.0251 198 7 0.0388 215 32 0.0352 182 13
100 0.0114 161 13 0.0075 122 8 0.0083 138 9 0.0156 188 29 0.0134 167 13

M
ic

ro
bl

og
20

11 5 0.0047 110 0 0.0052 110 0 0.0061 92 0 0.0047 110 0 0.0047 110 0
10 0.0054 134 2 0.0056 134 2 0.0059 121 2 0.0054 134 1 0.0054 134 2
15 0.0062 157 2 0.0060 154 2 0.0056 143 0 0.0059 157 2 0.0061 157 2
20 0.0068 169 2 0.0064 165 1 0.0051 138 1 0.0064 167 2 0.0066 169 2
30 0.0075 227 3 0.0069 214 3 0.0054 164 1 0.0069 221 3 0.0072 226 3
100 0.0023 192 2 0.0021 188 2 0.0020 182 2 0.0023 192 2 0.0023 192 2

M
ed

ic
al

20
11

5 0.0496 173 1 0.0313 101 0 0.0296 66 0 0.0258 89 0 0.0301 90 0
10 0.0595 229 10 0.0345 126 2 0.0331 89 0 0.0314 112 9 0.0289 100 0
15 0.0396 176 3 0.0230 96 0 0.0215 80 0 0.0261 101 19 0.0203 78 0
20 0.0297 132 1 0.0172 67 1 0.0165 58 1 0.0265 116 23 0.0221 103 3
30 0.0198 107 0 0.0115 61 0 0.0113 59 0 0.0250 130 36 0.0161 86 0
100 0.0059 81 0 0.0034 43 0 0.0035 40 0 0.0138 155 45 0.0071 101 7

G
en

om
ic

s
20

05 5 0.0060 64 0 0.0059 64 0 0.0065 52 0 0.0043 57 0 0.0055 62 0
10 0.0066 123 0 0.0058 114 0 0.0054 104 0 0.0046 111 0 0.0057 120 0
15 0.0067 96 0 0.0053 81 0 0.0051 65 0 0.0046 79 0 0.0057 86 0
20 0.0070 100 0 0.0053 83 0 0.0053 67 0 0.0048 85 0 0.0059 86 0
30 0.0082 139 0 0.0056 96 0 0.0055 76 0 0.0053 96 0 0.0064 107 0
100 0.0071 158 0 0.0039 96 0 0.0034 93 0 0.0044 81 0 0.0043 82 0

R
ob

us
t

20
05

5 0.0209 19 3 0.0238 23 3 0.0247 16 0 0.0163 15 1 0.0170 16 1
10 0.0240 20 10 0.0275 22 7 0.0281 13 6 0.0187 14 6 0.0204 16 6
15 0.0265 26 9 0.0281 29 10 0.0303 14 5 0.0202 16 4 0.0221 19 4
20 0.0288 27 9 0.0282 28 9 0.0299 14 5 0.0209 19 5 0.0236 20 5
30 0.0326 27 11 0.0293 31 10 0.0302 21 8 0.0225 21 7 0.0253 21 7
100 0.0231 36 5 0.0160 30 5 0.0159 25 4 0.0155 27 1 0.0145 27 1
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Table 7.7: Summary of the results for P@n of the Reduced Pool and its four presented
estimators. These are generated through a leave-one organisation-out approach using
the top 75% best performing pooled runs. The dotted lines represent the point when
n ≤ K becomes false, where K is the depth of the Depth@K strategy used to build the
test collection.

C n Pool BS k̄NS k̄LP λTk̄LP
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0065 19 0 0.0071 18 0 0.0043 15 0 0.0055 19 0 0.0063 19 0
10 0.0085 32 0 0.0086 27 0 0.0043 18 0 0.0071 31 0 0.0082 32 0
15 0.0120 44 1 0.0108 32 0 0.0058 14 0 0.0090 35 0 0.0116 42 1
20 0.0138 52 0 0.0119 48 0 0.0051 27 0 0.0102 49 0 0.0132 50 0
30 0.0164 56 1 0.0129 42 0 0.0073 26 0 0.0121 51 0 0.0148 51 0
100 0.0293 122 10 0.0168 62 3 0.0091 29 0 0.0170 81 4 0.0214 87 4

A
d

H
oc

3

5 0.0028 2 0 0.0043 2 0 0.0046 2 0 0.0027 2 0 0.0027 2 0
10 0.0026 2 0 0.0032 0 0 0.0041 3 0 0.0025 2 0 0.0025 2 0
15 0.0035 3 0 0.0041 5 0 0.0033 2 0 0.0032 3 0 0.0033 3 0
20 0.0043 5 0 0.0049 4 0 0.0038 3 0 0.0039 4 0 0.0041 4 0
30 0.0050 10 0 0.0057 11 0 0.0039 8 0 0.0043 9 0 0.0045 9 0
100 0.0089 19 0 0.0077 20 0 0.0046 11 0 0.0062 12 0 0.0069 14 0

A
d

H
oc

4

5 0.0073 18 0 0.0070 20 0 0.0081 21 0 0.0057 16 0 0.0065 17 0
10 0.0093 25 0 0.0082 21 0 0.0075 18 0 0.0068 23 0 0.0081 23 0
15 0.0095 28 0 0.0088 23 0 0.0068 16 0 0.0072 22 0 0.0079 25 0
20 0.0107 33 0 0.0099 32 0 0.0075 25 0 0.0080 29 0 0.0088 29 0
30 0.0117 32 0 0.0100 31 0 0.0077 23 0 0.0077 24 0 0.0086 27 0
100 0.0161 52 0 0.0117 36 1 0.0089 22 0 0.0098 24 0 0.0083 26 0

A
d

H
oc

5

5 0.0069 39 0 0.0073 39 0 0.0096 50 0 0.0064 37 0 0.0067 39 0
10 0.0075 50 0 0.0072 49 0 0.0057 42 0 0.0066 49 0 0.0070 50 0
15 0.0077 57 0 0.0077 59 0 0.0055 46 0 0.0066 46 0 0.0071 52 0
20 0.0079 65 0 0.0077 57 0 0.0055 49 0 0.0063 55 0 0.0068 57 0
30 0.0086 74 0 0.0081 69 0 0.0056 59 0 0.0064 59 0 0.0069 58 0
100 0.0106 133 0 0.0086 114 0 0.0068 97 0 0.0059 108 0 0.0051 74 0

A
d

H
oc

6

5 0.0097 12 0 0.0112 14 0 0.0061 8 0 0.0082 10 0 0.0086 11 0
10 0.0091 6 0 0.0112 7 0 0.0048 8 0 0.0071 5 0 0.0075 6 0
15 0.0064 6 0 0.0070 9 0 0.0042 4 0 0.0053 5 0 0.0056 5 0
20 0.0072 9 0 0.0074 8 0 0.0047 1 0 0.0057 5 0 0.0057 5 0
30 0.0076 6 0 0.0068 11 0 0.0041 2 0 0.0052 4 0 0.0054 4 0
100 0.0109 23 0 0.0071 19 0 0.0043 11 0 0.0072 16 0 0.0058 18 0

A
d

H
oc

7

5 0.0012 4 0 0.0019 4 0 0.0060 42 0 0.0013 4 0 0.0012 4 0
10 0.0018 8 0 0.0024 8 0 0.0028 18 0 0.0017 7 0 0.0017 8 0
15 0.0021 10 0 0.0028 19 0 0.0033 28 0 0.0020 10 0 0.0020 10 0
20 0.0023 12 0 0.0029 19 0 0.0030 28 0 0.0022 12 0 0.0022 12 0
30 0.0026 27 0 0.0031 32 0 0.0027 25 0 0.0022 20 0 0.0023 25 0
100 0.0038 40 0 0.0038 47 0 0.0027 32 0 0.0043 71 0 0.0030 45 0

A
d

H
oc

8

5 0.0043 11 4 0.0048 11 4 0.0045 15 0 0.0041 11 4 0.0041 11 4
10 0.0042 11 6 0.0048 11 6 0.0047 16 0 0.0041 9 4 0.0040 9 4
15 0.0039 3 2 0.0044 2 1 0.0042 15 1 0.0037 2 1 0.0036 2 1
20 0.0041 7 2 0.0046 13 2 0.0042 11 1 0.0039 7 1 0.0038 6 1
30 0.0042 6 2 0.0046 8 1 0.0040 9 1 0.0039 8 1 0.0038 5 1
100 0.0048 35 3 0.0053 40 3 0.0035 17 2 0.0046 28 2 0.0033 26 2
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Table 7.8: Continuation of Table 7.7 for the rest of the test collections.

C n Pool BS k̄NS k̄LP λTk̄LP
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0022 15 0 0.0030 15 0 0.0162 109 0 0.0024 21 0 0.0022 15 0
10 0.0025 19 0 0.0028 19 0 0.0048 27 0 0.0023 16 0 0.0022 16 0
15 0.0026 18 0 0.0025 11 0 0.0031 12 0 0.0025 19 0 0.0025 16 0
20 0.0030 26 0 0.0027 21 0 0.0033 24 0 0.0025 14 0 0.0028 25 0
30 0.0035 42 0 0.0026 34 0 0.0029 38 2 0.0027 43 0 0.0028 39 0
100 0.0053 141 0 0.0036 104 0 0.0028 67 0 0.0077 190 11 0.0045 106 0

W
eb

20
01

5 0.0010 5 0 0.0015 5 0 0.0073 54 0 0.0015 4 0 0.0010 5 0
10 0.0016 7 0 0.0022 7 0 0.0028 14 0 0.0018 8 0 0.0016 7 0
15 0.0021 12 0 0.0023 12 0 0.0030 19 0 0.0023 16 0 0.0020 12 0
20 0.0019 13 0 0.0022 15 0 0.0029 29 0 0.0023 18 0 0.0017 13 0
30 0.0022 26 0 0.0021 13 0 0.0027 41 0 0.0022 33 0 0.0019 25 0
100 0.0043 83 0 0.0026 57 0 0.0020 32 0 0.0054 130 2 0.0044 102 2

W
eb

20
02

5 0.0038 54 0 0.0039 54 0 0.0040 52 0 0.0038 55 0 0.0039 54 0
10 0.0049 82 0 0.0039 81 0 0.0024 52 0 0.0046 88 0 0.0044 78 0
15 0.0049 88 0 0.0038 68 0 0.0029 47 0 0.0055 83 2 0.0046 83 0
20 0.0050 90 0 0.0036 76 0 0.0028 53 0 0.0067 121 4 0.0039 76 0
30 0.0052 126 1 0.0034 80 1 0.0032 77 0 0.0092 168 34 0.0042 108 1
100 0.0032 128 1 0.0018 75 1 0.0015 67 0 0.0135 380 167 0.0039 142 2

Le
ga

l2
00

6

5 0.1211 254 16 0.0868 222 4 0.0493 171 1 0.0612 170 8 0.0648 172 8
10 0.1301 256 55 0.0831 201 32 0.0547 164 5 0.0992 229 40 0.0992 229 40
15 0.0867 234 35 0.0554 184 7 0.0454 170 7 0.0823 213 36 0.0787 186 34
20 0.0650 208 13 0.0416 174 2 0.0391 172 2 0.0716 199 42 0.0680 168 42
30 0.0434 185 8 0.0277 156 2 0.0288 157 2 0.0554 191 40 0.0516 166 23
100 0.0130 122 9 0.0083 103 5 0.0095 109 6 0.0210 158 36 0.0204 144 20

M
ic

ro
bl

og
20

11 5 0.0065 101 0 0.0070 101 0 0.0067 137 0 0.0065 101 0 0.0065 101 0
10 0.0074 152 1 0.0076 149 1 0.0062 139 1 0.0073 152 1 0.0074 152 1
15 0.0077 170 0 0.0076 166 0 0.0056 148 0 0.0076 170 0 0.0076 170 0
20 0.0083 167 0 0.0081 173 0 0.0059 141 0 0.0081 167 0 0.0082 167 0
30 0.0093 217 0 0.0088 210 0 0.0062 153 0 0.0089 214 0 0.0091 217 0
100 0.0029 194 0 0.0027 176 0 0.0026 167 0 0.0028 187 0 0.0029 194 0

M
ed

ic
al

20
11

5 0.0537 156 2 0.0322 90 0 0.0179 52 0 0.0226 69 0 0.0291 72 0
10 0.0700 223 10 0.0391 121 1 0.0238 80 0 0.0226 59 1 0.0238 62 1
15 0.0467 160 1 0.0260 81 1 0.0176 70 0 0.0179 56 0 0.0233 75 0
20 0.0350 118 1 0.0195 62 1 0.0144 49 0 0.0173 54 0 0.0221 74 0
30 0.0233 93 0 0.0130 69 0 0.0105 52 0 0.0158 65 0 0.0168 78 0
100 0.0067 90 0 0.0037 64 0 0.0034 63 0 0.0081 85 6 0.0068 82 0

G
en

om
ic

s
20

05 5 0.0063 69 0 0.0057 69 0 0.0060 49 0 0.0051 61 0 0.0059 64 0
10 0.0072 123 0 0.0060 111 0 0.0040 73 0 0.0054 112 0 0.0064 118 0
15 0.0078 103 0 0.0057 82 0 0.0033 36 0 0.0055 89 0 0.0071 98 0
20 0.0089 102 0 0.0068 79 0 0.0031 49 0 0.0056 76 0 0.0081 91 0
30 0.0100 137 0 0.0069 94 0 0.0032 56 0 0.0053 89 0 0.0082 105 0
100 0.0089 171 0 0.0050 92 0 0.0046 84 0 0.0043 81 0 0.0056 80 0

R
ob

us
t

20
05

5 0.0243 18 3 0.0310 26 3 0.0138 8 0 0.0177 15 1 0.0189 15 1
10 0.0291 19 10 0.0353 25 7 0.0156 10 2 0.0213 14 6 0.0233 14 6
15 0.0318 26 9 0.0350 29 10 0.0156 5 1 0.0227 16 4 0.0255 19 4
20 0.0345 28 9 0.0351 31 9 0.0149 8 0 0.0236 16 4 0.0268 16 4
30 0.0396 30 12 0.0363 32 10 0.0167 9 3 0.0240 18 5 0.0279 18 5
100 0.0283 35 5 0.0196 32 5 0.0138 30 4 0.0128 19 0 0.0141 21 0

151



7. Selection Bias: Evaluation Measures
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Figure 7.4: Plots per test collection of the Mean Absolute Error against the P@n of the
Reduced Pool and the four presented approaches to correct pool bias. Generated using a
leave-one organisation-out, using all the pooled runs for the continuous lines and only
the top 75% best performing pooled runs for the dashed lines.
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Figure 7.5: Plots per test collection of the System Rank Error against the P@n of the
Reduced Pool and the four presented approaches to correct pool bias. Generated using a
leave-one organisation-out, using all the pooled runs for the continuous lines and only
the top 75% best performing pooled runs for the dashed lines.
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7. Selection Bias: Evaluation Measures

Table 7.9: Summary of the results for R@n of the Reduced Pool and its three presented
estimators. These are generated through a leave-one organisation-out approach using
the top 75% best performing pooled runs. The dotted lines represent the point when
n ≤ K becomes false, where K is the depth of the Depth@K strategy used to build the
test collection.

C n Pool BS GS k̄NS
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0001 10 1 0.0001 9 1 0.0001 8 1 0.0001 10 1
10 0.0003 10 1 0.0003 10 1 0.0003 9 1 0.0003 10 1
15 0.0004 10 1 0.0005 10 1 0.0004 9 1 0.0004 11 1
20 0.0006 5 1 0.0007 6 1 0.0006 6 1 0.0006 5 1
30 0.0011 14 0 0.0011 18 0 0.0010 13 0 0.0009 14 0
100 0.0084 70 1 0.0049 32 0 0.0058 41 0 0.0048 25 0

A
d

H
oc

3

5 0.0002 4 0 0.0002 3 0 0.0002 3 0 0.0002 4 0
10 0.0004 0 0 0.0004 1 0 0.0004 1 0 0.0004 1 0
15 0.0005 3 0 0.0005 2 0 0.0005 2 0 0.0005 3 0
20 0.0006 3 0 0.0005 3 0 0.0005 3 0 0.0006 3 0
30 0.0007 1 0 0.0006 1 0 0.0006 2 0 0.0008 3 0
100 0.0014 2 0 0.0017 4 0 0.0015 2 0 0.0019 3 0

A
d

H
oc

4

5 0.0002 5 0 0.0002 4 0 0.0002 4 0 0.0002 6 0
10 0.0003 6 0 0.0003 7 0 0.0003 9 0 0.0004 6 0
15 0.0005 6 0 0.0005 5 0 0.0005 6 0 0.0006 4 0
20 0.0007 6 0 0.0007 3 0 0.0007 4 0 0.0008 4 0
30 0.0011 8 0 0.0011 9 0 0.0011 9 0 0.0012 8 0
100 0.0068 23 0 0.0044 10 0 0.0049 19 0 0.0054 17 0

A
d

H
oc

5

5 0.0001 14 0 0.0001 14 0 0.0001 14 0 0.0001 13 0
10 0.0002 8 0 0.0002 8 0 0.0002 7 0 0.0002 9 0
15 0.0003 10 0 0.0004 10 0 0.0004 12 0 0.0003 11 0
20 0.0005 14 0 0.0005 14 0 0.0005 15 0 0.0005 13 0
30 0.0008 17 0 0.0008 17 0 0.0008 17 0 0.0007 18 0
100 0.0038 58 0 0.0032 52 0 0.0033 50 0 0.0034 40 0

A
d

H
oc

6

5 0.0003 3 0 0.0004 3 0 0.0003 3 0 0.0003 2 0
10 0.0004 2 0 0.0005 3 0 0.0004 2 0 0.0004 1 0
15 0.0007 1 0 0.0007 1 0 0.0007 1 0 0.0007 1 0
20 0.0008 1 0 0.0008 1 0 0.0008 1 0 0.0008 1 0
30 0.0011 5 0 0.0012 7 0 0.0012 6 0 0.0010 4 0
100 0.0055 8 0 0.0041 5 0 0.0036 7 0 0.0042 4 1

A
d

H
oc

7

5 0.0001 7 0 0.0001 8 0 0.0001 8 0 0.0001 7 0
10 0.0001 5 0 0.0001 6 0 0.0001 6 0 0.0001 6 0
15 0.0002 6 0 0.0002 7 0 0.0002 7 0 0.0002 6 0
20 0.0002 2 0 0.0002 2 0 0.0002 2 0 0.0002 5 0
30 0.0003 9 0 0.0003 11 0 0.0003 10 0 0.0003 13 0
100 0.0016 23 0 0.0015 17 0 0.0014 18 0 0.0019 20 0

A
d

H
oc

8

5 0.0001 3 0 0.0001 8 0 0.0001 3 0 0.0001 3 0
10 0.0002 2 0 0.0002 3 0 0.0002 2 0 0.0002 2 0
15 0.0003 2 0 0.0003 1 0 0.0003 1 0 0.0003 1 0
20 0.0004 2 0 0.0004 3 0 0.0004 4 0 0.0004 2 0
30 0.0005 2 0 0.0006 4 0 0.0006 4 0 0.0005 1 0
100 0.0021 15 0 0.0021 19 0 0.0018 13 0 0.0019 13 0
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Table 7.10: Continuation of Table 7.9 for the rest of the test collections.

C n Pool BS GS k̄NS
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0005 14 0 0.0005 21 0 0.0005 20 0 0.0005 15 0
10 0.0006 20 0 0.0006 20 0 0.0006 20 0 0.0006 21 0
15 0.0006 22 0 0.0006 21 0 0.0006 20 0 0.0006 24 0
20 0.0006 22 0 0.0006 23 0 0.0006 23 0 0.0007 23 0
30 0.0008 21 0 0.0008 21 0 0.0008 21 0 0.0008 19 0
100 0.0027 36 0 0.0018 23 0 0.0020 24 0 0.0018 11 0

W
eb

20
01

5 0.0002 6 0 0.0001 4 0 0.0002 4 0 0.0002 6 0
10 0.0003 9 0 0.0003 8 0 0.0003 8 0 0.0003 11 0
15 0.0004 6 0 0.0004 6 0 0.0004 6 0 0.0004 6 0
20 0.0005 11 0 0.0005 11 0 0.0005 10 0 0.0005 11 0
30 0.0006 6 0 0.0006 6 0 0.0006 6 0 0.0006 7 0
100 0.0026 31 0 0.0018 17 0 0.0020 20 0 0.0019 18 0

W
eb

20
02

5 0.0006 32 0 0.0006 32 0 0.0006 32 0 0.0006 32 0
10 0.0013 46 0 0.0013 39 0 0.0013 46 0 0.0012 36 0
15 0.0018 56 0 0.0017 51 0 0.0018 52 0 0.0015 43 0
20 0.0022 50 0 0.0020 40 0 0.0021 45 0 0.0016 35 0
30 0.0032 66 0 0.0025 53 0 0.0028 61 0 0.0018 31 0
100 0.0054 71 0 0.0037 52 0 0.0043 59 0 0.0030 44 0

Le
ga

l2
00

6

5 0.0237 253 3 0.0190 223 2 0.0218 242 2 0.0182 215 2
10 0.0514 274 10 0.0358 208 0 0.0411 234 2 0.0310 179 0
15 0.0502 259 8 0.0351 190 0 0.0403 215 0 0.0314 182 0
20 0.0494 226 1 0.0345 175 0 0.0396 196 0 0.0316 169 0
30 0.0483 203 3 0.0338 151 3 0.0389 170 3 0.0316 147 3
100 0.0448 153 7 0.0317 117 7 0.0363 129 7 0.0305 114 7

M
ic

ro
bl

og
20

11 5 0.0003 21 0 0.0003 17 0 0.0003 31 0 0.0003 19 0
10 0.0006 36 0 0.0006 36 0 0.0006 38 0 0.0005 33 0
15 0.0011 62 0 0.0011 68 0 0.0011 63 0 0.0009 56 0
20 0.0015 56 0 0.0015 57 0 0.0015 52 0 0.0013 53 0
30 0.0027 95 0 0.0025 91 0 0.0025 90 0 0.0019 65 0
100 0.0027 82 0 0.0024 74 0 0.0024 76 0 0.0024 72 0

M
ed

ic
al

20
11

5 0.0040 77 0 0.0027 41 0 0.0031 51 0 0.0027 41 0
10 0.0104 93 0 0.0062 65 0 0.0064 63 0 0.0060 58 0
15 0.0099 75 0 0.0059 37 0 0.0060 39 0 0.0056 36 0
20 0.0095 64 0 0.0057 40 0 0.0058 43 0 0.0054 37 0
30 0.0088 55 0 0.0053 28 0 0.0054 28 0 0.0051 21 0
100 0.0064 38 0 0.0040 18 0 0.0040 22 0 0.0039 18 0

G
en

om
ic

s
20

05 5 0.0003 21 0 0.0003 23 0 0.0003 21 0 0.0003 23 0
10 0.0006 27 0 0.0006 29 0 0.0006 27 0 0.0006 30 0
15 0.0010 26 0 0.0010 24 0 0.0010 26 0 0.0010 23 0
20 0.0011 29 0 0.0011 32 0 0.0011 34 0 0.0010 28 0
30 0.0016 35 0 0.0015 32 0 0.0015 36 0 0.0012 31 0
100 0.0047 64 0 0.0029 48 0 0.0034 46 0 0.0025 35 0

R
ob

us
t

20
05

5 0.0008 10 0 0.0009 11 0 0.0009 10 0 0.0008 8 0
10 0.0018 8 0 0.0019 10 0 0.0020 11 0 0.0021 8 0
15 0.0028 16 0 0.0031 15 0 0.0031 14 0 0.0031 12 0
20 0.0037 12 0 0.0043 17 0 0.0039 16 0 0.0040 11 0
30 0.0058 16 0 0.0062 15 0 0.0046 13 0 0.0056 8 0
100 0.0150 20 1 0.0112 16 0 0.0093 11 0 0.0108 7 0
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Table 7.11: Summary of the results for R@n of the Reduced Pool and its three presented
estimators. These are generated through a leave-one organisation-out approach using all
the pooled runs. The dotted lines represent the point when n ≤ K becomes false, where
K is the depth of the Depth@K strategy used to build the test collection.

C n Pool BS GS k̄NS
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0002 13 1 0.0001 10 1 0.0001 8 0 0.0001 12 1
10 0.0003 11 1 0.0003 11 1 0.0003 11 1 0.0003 12 1
15 0.0006 8 1 0.0006 9 1 0.0005 9 1 0.0005 13 1
20 0.0008 7 1 0.0009 6 1 0.0009 7 1 0.0008 6 1
30 0.0014 16 0 0.0014 17 0 0.0014 15 0 0.0011 10 0
100 0.0112 77 1 0.0063 41 0 0.0074 45 1 0.0032 21 0

A
d

H
oc

3

5 0.0003 3 0 0.0003 5 0 0.0003 3 0 0.0003 3 0
10 0.0006 3 0 0.0006 2 0 0.0005 2 0 0.0006 4 0
15 0.0007 5 0 0.0006 4 0 0.0006 5 0 0.0008 5 0
20 0.0008 1 0 0.0008 4 0 0.0007 3 0 0.0009 3 0
30 0.0009 2 0 0.0008 1 0 0.0008 0 0 0.0010 2 0
100 0.0015 1 0 0.0020 3 0 0.0017 3 0 0.0020 2 0

A
d

H
oc

4

5 0.0003 7 0 0.0003 7 0 0.0003 6 0 0.0003 8 0
10 0.0005 8 0 0.0005 8 0 0.0005 8 0 0.0005 6 0
15 0.0007 5 0 0.0008 5 0 0.0007 5 0 0.0007 4 0
20 0.0009 7 0 0.0010 8 0 0.0009 7 0 0.0009 9 0
30 0.0015 6 0 0.0014 7 0 0.0015 6 0 0.0012 4 0
100 0.0085 18 0 0.0054 11 0 0.0057 14 0 0.0045 11 0

A
d

H
oc

5

5 0.0001 5 0 0.0001 5 0 0.0002 5 0 0.0001 7 0
10 0.0003 7 0 0.0003 6 0 0.0004 8 0 0.0003 7 0
15 0.0005 15 0 0.0005 16 0 0.0005 17 0 0.0005 15 0
20 0.0007 13 0 0.0007 12 0 0.0007 13 0 0.0006 9 0
30 0.0011 17 0 0.0011 21 0 0.0011 18 0 0.0009 18 0
100 0.0053 63 0 0.0041 51 0 0.0044 50 0 0.0033 39 0

A
d

H
oc

6

5 0.0004 1 0 0.0005 4 0 0.0004 2 0 0.0004 2 0
10 0.0004 3 0 0.0004 3 0 0.0004 3 0 0.0004 2 0
15 0.0008 1 0 0.0008 1 0 0.0008 1 0 0.0007 1 0
20 0.0008 2 0 0.0008 2 0 0.0009 2 0 0.0008 0 0
30 0.0011 6 0 0.0012 7 0 0.0012 8 0 0.0010 7 0
100 0.0070 11 0 0.0047 11 0 0.0041 9 0 0.0034 5 0

A
d

H
oc

7

5 0.0001 8 0 0.0001 10 0 0.0001 8 0 0.0001 9 0
10 0.0002 4 0 0.0002 9 0 0.0002 8 0 0.0002 4 0
15 0.0003 8 0 0.0003 8 0 0.0003 8 0 0.0003 10 0
20 0.0003 7 0 0.0003 7 0 0.0003 6 0 0.0003 8 0
30 0.0004 13 0 0.0004 14 0 0.0004 13 0 0.0004 14 0
100 0.0023 25 0 0.0020 20 0 0.0018 26 0 0.0017 21 0

A
d

H
oc

8

5 0.0002 5 0 0.0002 10 0 0.0002 6 0 0.0002 5 0
10 0.0003 3 0 0.0003 8 0 0.0003 5 0 0.0003 3 0
15 0.0003 2 0 0.0003 3 0 0.0003 3 0 0.0003 2 0
20 0.0005 3 0 0.0005 4 0 0.0004 2 0 0.0005 3 0
30 0.0007 2 0 0.0007 2 0 0.0007 1 0 0.0007 2 0
100 0.0027 12 0 0.0030 17 0 0.0024 10 0 0.0022 7 0
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Table 7.12: Continuation of Table 7.11, for the rest of the test collections.

C n Pool BS GS k̄NS
MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0006 12 0 0.0007 16 0 0.0006 16 0 0.0007 12 0
10 0.0007 18 0 0.0008 17 0 0.0007 17 0 0.0008 20 0
15 0.0007 18 0 0.0007 18 0 0.0007 18 0 0.0008 18 0
20 0.0008 25 0 0.0008 25 0 0.0008 25 0 0.0009 27 0
30 0.0009 21 0 0.0010 21 0 0.0010 21 0 0.0009 18 0
100 0.0031 38 0 0.0020 22 0 0.0023 25 0 0.0019 14 0

W
eb

20
01

5 0.0002 6 0 0.0002 8 0 0.0002 7 0 0.0002 7 0
10 0.0003 6 0 0.0003 5 0 0.0003 5 0 0.0004 7 0
15 0.0004 6 0 0.0004 6 0 0.0004 5 0 0.0005 9 0
20 0.0005 5 0 0.0005 5 0 0.0005 4 0 0.0006 9 0
30 0.0006 8 0 0.0006 9 0 0.0006 9 0 0.0007 9 0
100 0.0030 28 0 0.0020 19 0 0.0023 24 0 0.0019 19 0

W
eb

20
02

5 0.0007 24 0 0.0007 24 0 0.0007 22 0 0.0007 22 0
10 0.0013 28 0 0.0013 25 0 0.0013 27 0 0.0011 23 0
15 0.0017 39 0 0.0016 35 0 0.0017 38 0 0.0013 27 0
20 0.0022 36 0 0.0020 28 0 0.0021 31 0 0.0014 17 0
30 0.0032 42 1 0.0026 37 1 0.0028 39 1 0.0018 30 0
100 0.0072 63 0 0.0049 46 0 0.0058 50 0 0.0039 37 0

Le
ga

l2
00

6

5 0.0314 225 1 0.0239 185 1 0.0280 213 1 0.0231 179 1
10 0.0688 219 10 0.0455 158 2 0.0527 169 3 0.0397 139 0
15 0.0673 198 3 0.0467 143 0 0.0540 160 0 0.0426 138 0
20 0.0634 178 1 0.0427 136 0 0.0499 147 0 0.0396 129 0
30 0.0620 158 3 0.0413 114 3 0.0490 125 3 0.0392 112 3
100 0.0563 121 7 0.0379 98 7 0.0456 110 7 0.0371 101 7

M
ic

ro
bl

og
20

11 5 0.0004 26 0 0.0004 26 0 0.0004 26 0 0.0004 26 0
10 0.0008 57 0 0.0008 58 0 0.0008 53 0 0.0008 50 0
15 0.0014 82 0 0.0014 75 0 0.0014 79 0 0.0013 68 0
20 0.0021 68 0 0.0021 74 0 0.0020 68 0 0.0019 61 0
30 0.0037 113 0 0.0035 107 0 0.0035 105 0 0.0028 80 0
100 0.0034 77 0 0.0032 73 0 0.0032 75 0 0.0032 71 0

M
ed

ic
al

20
11

5 0.0054 79 0 0.0033 50 0 0.0043 64 0 0.0031 38 0
10 0.0141 100 0 0.0075 65 0 0.0073 66 0 0.0062 52 0
15 0.0133 76 0 0.0071 48 0 0.0070 48 0 0.0057 31 0
20 0.0129 75 0 0.0071 48 0 0.0069 49 0 0.0060 35 0
30 0.0118 60 0 0.0065 31 0 0.0064 31 0 0.0056 27 0
100 0.0077 41 0 0.0046 21 0 0.0046 21 0 0.0042 18 0

G
en

om
ic

s
20

05 5 0.0005 30 0 0.0005 33 0 0.0005 29 0 0.0006 31 0
10 0.0009 41 0 0.0011 40 0 0.0009 38 0 0.0010 39 0
15 0.0011 31 0 0.0011 31 0 0.0011 31 0 0.0010 31 0
20 0.0013 24 0 0.0013 30 0 0.0013 28 0 0.0011 23 0
30 0.0019 36 0 0.0020 38 0 0.0019 35 0 0.0016 35 0
100 0.0061 87 0 0.0039 58 0 0.0046 62 0 0.0032 53 0

R
ob

us
t

20
05

5 0.0011 8 0 0.0011 7 0 0.0012 9 0 0.0011 9 0
10 0.0023 7 0 0.0025 9 0 0.0026 9 0 0.0024 8 0
15 0.0036 11 0 0.0042 15 0 0.0041 12 0 0.0033 11 0
20 0.0045 11 0 0.0058 14 0 0.0053 15 0 0.0039 8 0
30 0.0070 17 0 0.0084 17 0 0.0063 15 0 0.0046 7 0
100 0.0185 22 1 0.0141 20 0 0.0114 16 0 0.0094 9 0
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Figure 7.6: Plots per test collection of the Mean Absolute Error against the R@n of the
Reduced Pool and the three presented approaches to correct pool bias. Generated using
a leave-one organisation-out, using all the pooled runs for the continuous lines and only
the top 75% best performing pooled runs for the dashed lines.
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Figure 7.7: Plots per test collection of the System Rank Error against the R@n of the
Reduced Pool and the three presented approaches to correct pool bias. Generated using
a leave-one organisation-out, using all the pooled runs for the continuous lines and only
the top 75% best performing pooled runs for the dashed lines.
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only using the 75% best performing runs. These results are also presented in Figure 7.6
for MAE, and 7.7 for SRE.

Finally, for R@n estimators derived from the estimators presented for P@n, we compare,
in Tables 7.13 and 7.14, the results of all R@n estimators against the baseline, the
‘reduced pool’. In Table 7.15 and 7.16 we present the same but only using the 75% best
performing runs. These results are also presented in Figure 7.8 for MAE, and 7.9 for
SRE.

7.5 Discussion
Our empirical analysis has shown that the extent of the bias is very different across
test collections. In particular we can divide these test collections into three categories
based on the order of magnitude of the average bias observed in the reduced pool. The
categories are: least biased, biased, and very biased. The least biased test collections are
Ad Hoc 3, 5, 8 and 7, Web 9 and 2001. The biased are Ad Hoc 2, 4 and 6, Genomics 2005,
Web 2002, and Microblog 2011. Very biased are Robust 2005, Legal 2006, Medical 2011.
This is due to a combination of two factors: depth of pool and number of submitted runs
(which we assume to be proportional to the variety of submitted runs).

In what follows, we start by discussing the bias estimators for P@n. We then move onto
discuss the bias estimators for R@n. For the latter we divide the discussion into two
parts: we begin with the estimators designed for R@n, then move to the estimators
derived from P@n (see Eq. (7.13)). Finally we compare them against each other.

7.5.1 Bias Estimators for Precision at Cut-off

We start discussing the two simulation-based estimators, BS and k̄NS. We observe that
on average BS performs better when considering all the pooled runs, while it is only
better than the reduced pool when considering the 75% of the best performing runs. This
can be observed in particular for Ad Hoc 3, 6, 7, 8, Web 2001, and Robust 2005. For
k̄NS, it is evident that this estimator behaves extremely differently when applied to a
pool built using all pooled runs with respect to a pool built using just the top 75% of
best performing runs. In the former case k̄NS is usually worse than the reduced pool,
while in the latter case it is almost always the best estimator. The best examples where
we can observe this worsening behaviour are for Ad Hoc 2, 3, 4, and 5, and Robust
2005. While for Ad Hoc 6, Web 2002, Legal 2006, Medical 2011, the performance of this
estimator does not degrade as much when using all the pooled runs. However, for Ad
Hoc 7, Web 9 and 2001, k̄NS is the worst performing estimator in both cases. Moreover,
k̄NS is not a stable estimator: when k̄NS is not the best performing estimator, it is likely
to be the worst. This can be observed for Ad Hoc 3, 4, 5, and 7, Web 9 and 2001. In
particular this happens always at low precision cut-offs, and it decreases in severity when
the cut-offs are increased. This instability is accentuated when using all the pooled runs.
Here, after an empirical analysis, we have two hypotheses for why this happens, and
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7.5. Discussion

Table 7.13: Summary of the results for R@n of the Reduced Pool and four estimators
developed for P@n and used in combination with Eq. (7.15). These are generated
through a leave-one organisation-out approach using all the pooled runs. The dotted lines
represent the point when n ≤ K becomes false, where K is the depth of the Depth@K
strategy used to build the test collection.

C n Pool BSP k̄NSP k̄LPP λTk̄LPP

MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0001 10 1 0.0001 10 1 0.0004 23 1 0.0002 13 1 0.0001 7 1
10 0.0003 10 1 0.0003 10 1 0.0011 35 2 0.0003 7 0 0.0002 6 0
15 0.0004 10 1 0.0005 14 1 0.0018 41 5 0.0004 5 0 0.0004 10 0
20 0.0006 5 1 0.0007 5 1 0.0038 69 10 0.0006 2 0 0.0006 2 0
30 0.0011 14 0 0.0011 17 0 0.0048 57 7 0.0009 12 0 0.0009 14 0
100 0.0084 70 1 0.0049 32 0 0.0125 49 4 0.0060 35 0 0.0046 31 0

A
d

H
oc

3

5 0.0002 4 0 0.0001 2 0 0.0004 4 0 0.0004 4 0 0.0003 4 0
10 0.0004 0 0 0.0003 0 0 0.0007 2 0 0.0007 4 0 0.0006 3 0
15 0.0005 3 0 0.0004 1 0 0.0011 2 0 0.0010 3 0 0.0008 3 0
20 0.0006 3 0 0.0004 1 0 0.0019 7 0 0.0012 10 0 0.0010 7 0
30 0.0007 1 0 0.0006 1 0 0.0034 5 0 0.0015 3 0 0.0013 3 0
100 0.0014 2 0 0.0023 4 0 0.0095 15 1 0.0021 3 0 0.0019 5 0

A
d

H
oc

4

5 0.0002 5 0 0.0002 4 0 0.0010 11 0 0.0025 62 0 0.0021 56 0
10 0.0003 6 0 0.0003 7 0 0.0017 11 0 0.0032 66 0 0.0027 60 0
15 0.0005 6 0 0.0006 5 0 0.0057 39 2 0.0037 36 0 0.0033 38 0
20 0.0007 6 0 0.0008 4 0 0.0081 53 2 0.0040 32 0 0.0036 35 0
30 0.0011 8 0 0.0012 9 0 0.0108 41 2 0.0043 22 0 0.0039 24 0
100 0.0068 23 0 0.0045 10 0 0.0206 48 2 0.0190 48 1 0.0054 18 0

A
d

H
oc

5

5 0.0001 14 0 0.0001 14 0 0.0004 15 0 0.0048 222 2 0.0045 221 2
10 0.0002 8 0 0.0002 9 0 0.0009 18 0 0.0062 217 1 0.0062 212 1
15 0.0003 10 0 0.0004 11 0 0.0019 36 0 0.0065 183 0 0.0066 197 0
20 0.0005 14 0 0.0005 14 0 0.0029 37 0 0.0067 182 0 0.0070 200 1
30 0.0008 17 0 0.0008 17 0 0.0086 146 2 0.0060 135 0 0.0070 164 0
100 0.0038 58 0 0.0032 51 0 0.0232 238 8 0.0268 332 5 0.0039 44 0

A
d

H
oc

6

5 0.0003 3 0 0.0005 2 0 0.0015 8 0 0.0051 38 0 0.0045 34 0
10 0.0004 2 0 0.0006 3 0 0.0025 8 1 0.0067 32 0 0.0058 28 0
15 0.0007 1 0 0.0009 1 0 0.0046 8 2 0.0072 24 0 0.0065 21 0
20 0.0008 1 0 0.0011 2 0 0.0053 8 3 0.0073 24 1 0.0069 23 1
30 0.0011 5 0 0.0015 7 0 0.0088 17 3 0.0070 20 1 0.0068 20 0
100 0.0055 8 0 0.0047 7 0 0.0257 32 4 0.0321 44 4 0.0078 12 1

A
d

H
oc

7

5 0.0001 7 0 0.0001 6 0 0.0010 73 0 0.0009 76 0 0.0006 51 0
10 0.0001 5 0 0.0001 6 0 0.0018 53 1 0.0014 70 0 0.0009 42 0
15 0.0002 6 0 0.0002 7 0 0.0025 47 4 0.0017 56 0 0.0012 38 0
20 0.0002 2 0 0.0003 5 0 0.0032 43 5 0.0019 52 0 0.0013 40 0
30 0.0003 9 0 0.0004 17 0 0.0066 105 10 0.0019 39 0 0.0013 30 0
100 0.0016 23 0 0.0017 20 0 0.0182 226 19 0.0101 134 8 0.0027 39 0

A
d

H
oc

8

5 0.0001 3 0 0.0001 3 0 0.0007 27 0 0.0012 88 0 0.0009 69 0
10 0.0002 2 0 0.0002 4 0 0.0013 26 0 0.0019 82 0 0.0014 70 0
15 0.0003 2 0 0.0003 4 0 0.0020 25 1 0.0023 67 0 0.0016 53 0
20 0.0004 2 0 0.0004 7 0 0.0038 42 2 0.0025 45 0 0.0018 43 0
30 0.0005 2 0 0.0006 8 0 0.0046 43 3 0.0027 44 1 0.0020 40 0
100 0.0021 15 0 0.0022 22 0 0.0109 102 4 0.0114 100 3 0.0032 32 0
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Table 7.14: Continuation of Table 7.13 for the rest of the test collections.

C n Pool BSP k̄NSP k̄LPP λTk̄LPP

MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0005 14 0 0.0005 15 0 0.0014 46 0 0.0061 188 1 0.0055 168 1
10 0.0006 20 0 0.0006 21 0 0.0033 59 0 0.0081 188 1 0.0074 182 1
15 0.0006 22 0 0.0007 26 0 0.0048 87 0 0.0088 185 4 0.0079 176 4
20 0.0006 22 0 0.0007 24 0 0.0074 102 0 0.0090 174 1 0.0081 165 1
30 0.0008 21 0 0.0008 22 0 0.0106 126 3 0.0091 162 2 0.0081 179 2
100 0.0027 36 0 0.0016 20 0 0.0387 297 17 0.0535 436 118 0.0135 113 0

W
eb

20
01

5 0.0002 6 0 0.0002 6 0 0.0009 20 1 0.0036 120 0 0.0032 108 0
10 0.0003 9 0 0.0004 14 0 0.0026 44 0 0.0052 131 0 0.0046 125 0
15 0.0004 6 0 0.0005 10 0 0.0042 57 1 0.0057 115 0 0.0052 118 0
20 0.0005 11 0 0.0006 15 0 0.0073 101 3 0.0056 88 1 0.0052 87 1
30 0.0006 6 0 0.0007 10 0 0.0092 117 2 0.0052 59 1 0.0047 76 1
100 0.0026 31 0 0.0018 18 0 0.0327 352 16 0.0251 290 13 0.0074 91 0

W
eb

20
02

5 0.0006 32 0 0.0006 31 0 0.0036 163 0 0.0032 136 0 0.0029 124 1
10 0.0013 46 0 0.0012 39 0 0.0073 279 20 0.0041 144 2 0.0033 107 1
15 0.0018 56 0 0.0017 51 0 0.0127 394 42 0.0070 204 4 0.0033 106 1
20 0.0022 50 0 0.0019 40 0 0.0222 577 112 0.0102 291 13 0.0034 89 0
30 0.0032 66 0 0.0024 47 0 0.0333 678 165 0.0194 434 51 0.0033 77 0
100 0.0054 71 0 0.0035 48 0 0.0502 705 192 0.0598 709 305 0.0166 235 26

Le
ga

l2
00

6

5 0.0237 253 3 0.0184 219 2 0.0383 357 80 0.0411 389 61 0.0203 236 4
10 0.0514 274 10 0.0355 207 0 0.0821 421 115 0.1044 423 128 0.0336 182 0
15 0.0502 259 8 0.0345 190 0 0.0734 413 86 0.1046 393 89 0.0340 184 0
20 0.0494 226 1 0.0339 177 0 0.0666 343 50 0.1080 378 88 0.0277 144 0
30 0.0483 203 3 0.0331 151 3 0.0606 260 25 0.1105 331 74 0.0254 110 0
100 0.0448 153 7 0.0308 115 7 0.0515 178 14 0.1075 232 45 0.0228 93 0

M
ic

ro
bl

og
20

11 5 0.0003 21 0 0.0003 17 0 0.0016 121 0 0.0005 47 0 0.0005 53 0
10 0.0006 36 0 0.0006 34 0 0.0047 284 0 0.0007 39 0 0.0008 46 0
15 0.0011 62 0 0.0011 69 0 0.0127 584 3 0.0011 62 0 0.0012 69 0
20 0.0015 56 0 0.0015 62 0 0.0116 461 4 0.0015 56 0 0.0016 64 0
30 0.0027 95 0 0.0025 91 0 0.0192 632 9 0.0025 97 0 0.0025 95 0
100 0.0027 82 0 0.0024 72 0 0.0174 547 1 0.0028 80 0 0.0026 78 0

M
ed

ic
al

20
11

5 0.0040 77 0 0.0027 39 0 0.0155 182 19 0.0059 70 2 0.0022 47 0
10 0.0104 93 0 0.0062 65 0 0.0292 240 19 0.0149 123 12 0.0049 44 0
15 0.0099 75 0 0.0059 37 0 0.0304 197 12 0.0185 109 16 0.0048 31 0
20 0.0095 64 0 0.0056 42 0 0.0313 162 4 0.0226 127 20 0.0054 32 0
30 0.0088 55 0 0.0052 24 0 0.0305 140 3 0.0280 140 18 0.0066 27 0
100 0.0064 38 0 0.0039 17 0 0.0208 88 0 0.0347 134 12 0.0087 26 0

G
en

om
ic

s
20

05 5 0.0003 21 0 0.0003 23 0 0.0012 55 0 0.0015 62 0 0.0014 60 0
10 0.0006 27 0 0.0007 35 0 0.0028 101 0 0.0021 72 0 0.0018 78 0
15 0.0010 26 0 0.0010 23 0 0.0053 116 0 0.0027 84 0 0.0021 80 0
20 0.0011 29 0 0.0012 31 0 0.0076 128 4 0.0034 75 0 0.0023 77 0
30 0.0016 35 0 0.0015 33 0 0.0108 180 3 0.0060 109 1 0.0022 59 0
100 0.0047 64 0 0.0028 48 0 0.0233 278 6 0.0319 492 36 0.0079 146 0

R
ob

us
t

20
05

5 0.0008 10 0 0.0010 9 0 0.0031 20 0 0.0006 8 0 0.0007 14 0
10 0.0018 8 0 0.0025 12 0 0.0078 14 1 0.0013 6 0 0.0013 9 0
15 0.0028 16 0 0.0040 15 0 0.0126 23 6 0.0021 10 0 0.0019 12 0
20 0.0037 12 0 0.0053 20 0 0.0152 18 5 0.0028 9 0 0.0028 13 0
30 0.0058 16 0 0.0075 16 0 0.0212 20 5 0.0048 5 0 0.0043 10 0
100 0.0150 20 1 0.0122 17 0 0.0233 16 1 0.0166 7 0 0.0063 5 0
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Table 7.15: Summary of the results for R@n of the Reduced Pool and four estimators
developed for P@n and used in combination with Eq. (7.15). These are generated through
a leave-one organisation-out approach using the top 75% best pooled runs. The dotted
lines represent the point when n ≤ K becomes false, where K is the depth of the
Depth@K strategy used to build the test collection.

C n Pool BSP k̄NSP k̄LPP λTk̄LPP

MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

A
d

H
oc

2

5 0.0002 13 1 0.0001 11 1 0.0002 19 1 0.0001 12 1 0.0001 7 1
10 0.0003 11 1 0.0003 11 1 0.0006 24 1 0.0002 9 1 0.0002 7 0
15 0.0006 8 1 0.0006 11 1 0.0018 60 2 0.0005 8 0 0.0003 7 0
20 0.0008 7 1 0.0009 10 1 0.0028 74 3 0.0006 7 0 0.0007 4 0
30 0.0014 16 0 0.0014 18 0 0.0031 51 1 0.0009 11 0 0.0013 15 0
100 0.0112 77 1 0.0063 40 0 0.0083 56 3 0.0045 29 0 0.0064 38 0

A
d

H
oc

3

5 0.0003 3 0 0.0002 2 0 0.0006 4 0 0.0008 8 0 0.0005 6 0
10 0.0006 3 0 0.0004 2 0 0.0008 5 0 0.0013 7 0 0.0009 4 0
15 0.0007 5 0 0.0005 4 0 0.0010 6 0 0.0017 9 0 0.0012 9 0
20 0.0008 1 0 0.0006 1 0 0.0011 6 0 0.0021 10 0 0.0015 6 0
30 0.0009 2 0 0.0007 0 0 0.0017 7 0 0.0026 8 0 0.0019 6 0
100 0.0015 1 0 0.0027 4 0 0.0072 14 0 0.0020 2 0 0.0028 5 0

A
d

H
oc

4

5 0.0003 7 0 0.0003 7 0 0.0007 15 0 0.0039 77 1 0.0035 72 1
10 0.0005 8 0 0.0005 7 0 0.0011 12 0 0.0046 76 0 0.0044 73 0
15 0.0007 5 0 0.0007 5 0 0.0053 49 0 0.0049 43 0 0.0055 49 1
20 0.0009 7 0 0.0010 9 0 0.0068 53 0 0.0047 36 0 0.0056 38 0
30 0.0015 6 0 0.0015 8 0 0.0086 47 1 0.0040 26 0 0.0061 33 0
100 0.0085 18 0 0.0056 12 0 0.0138 28 1 0.0182 39 1 0.0060 14 0

A
d

H
oc

5

5 0.0001 5 0 0.0001 3 0 0.0012 37 0 0.0075 287 2 0.0070 277 2
10 0.0003 7 0 0.0004 6 0 0.0020 44 0 0.0098 274 3 0.0097 260 2
15 0.0005 15 0 0.0005 15 0 0.0022 48 0 0.0102 263 2 0.0103 247 2
20 0.0007 13 0 0.0007 10 0 0.0023 30 0 0.0103 219 1 0.0112 235 3
30 0.0011 17 0 0.0011 21 0 0.0040 81 0 0.0085 147 0 0.0108 180 0
100 0.0053 63 0 0.0041 50 0 0.0216 242 1 0.0280 314 8 0.0044 46 0

A
d

H
oc

6

5 0.0004 1 0 0.0006 4 0 0.0010 4 0 0.0075 42 0 0.0067 39 0
10 0.0004 3 0 0.0005 2 0 0.0013 5 0 0.0096 38 0 0.0084 33 0
15 0.0008 1 0 0.0009 1 0 0.0017 1 0 0.0101 28 0 0.0095 30 0
20 0.0008 2 0 0.0010 1 0 0.0022 6 0 0.0101 28 0 0.0099 29 0
30 0.0011 6 0 0.0016 9 0 0.0041 11 0 0.0090 20 0 0.0099 25 0
100 0.0070 11 0 0.0052 12 0 0.0191 26 0 0.0314 46 4 0.0090 14 0

A
d

H
oc

7

5 0.0001 8 0 0.0001 7 0 0.0009 64 0 0.0014 104 0 0.0010 60 0
10 0.0002 4 0 0.0002 4 0 0.0022 72 0 0.0019 70 0 0.0014 55 0
15 0.0003 8 0 0.0003 9 0 0.0024 62 0 0.0023 65 0 0.0018 47 0
20 0.0003 7 0 0.0004 11 0 0.0022 53 0 0.0024 60 0 0.0020 46 0
30 0.0004 13 0 0.0006 18 0 0.0029 72 0 0.0022 42 0 0.0020 41 0
100 0.0023 25 0 0.0021 24 0 0.0128 184 4 0.0090 134 1 0.0032 51 0

A
d

H
oc

8

5 0.0002 5 0 0.0002 5 0 0.0005 21 0 0.0017 108 0 0.0013 84 0
10 0.0003 3 0 0.0003 3 0 0.0007 19 0 0.0025 100 0 0.0020 86 0
15 0.0003 2 0 0.0004 2 0 0.0008 7 0 0.0030 93 0 0.0024 85 0
20 0.0005 3 0 0.0005 4 0 0.0012 19 0 0.0031 70 0 0.0026 58 0
30 0.0007 2 0 0.0008 8 0 0.0027 47 0 0.0030 51 0 0.0027 52 0
100 0.0027 12 0 0.0032 20 0 0.0071 97 0 0.0073 76 0 0.0027 20 0
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Table 7.16: Continuation of Table 7.15 for the rest of the test collections.

C n Pool BSP k̄NSP k̄LPP λTk̄LPP

MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE* MAE SRE SRE*

W
eb

9

5 0.0006 12 0 0.0007 12 0 0.0016 36 0 0.0078 191 2 0.0068 175 1
10 0.0007 18 0 0.0008 20 0 0.0023 48 0 0.0105 225 3 0.0095 189 1
15 0.0007 18 0 0.0009 21 0 0.0024 45 0 0.0108 201 5 0.0098 190 4
20 0.0008 25 0 0.0010 28 0 0.0037 75 0 0.0106 178 1 0.0104 169 1
30 0.0009 21 0 0.0010 21 0 0.0058 106 2 0.0089 158 2 0.0101 175 2
100 0.0031 38 0 0.0017 19 0 0.0302 245 2 0.0411 329 31 0.0140 126 0

W
eb

20
01

5 0.0002 6 0 0.0002 5 0 0.0006 16 0 0.0060 161 0 0.0057 149 0
10 0.0003 6 0 0.0004 8 0 0.0018 38 0 0.0083 169 0 0.0078 156 0
15 0.0004 6 0 0.0005 9 0 0.0024 36 0 0.0088 131 0 0.0084 124 0
20 0.0005 5 0 0.0007 11 0 0.0041 65 1 0.0080 106 1 0.0082 104 1
30 0.0006 8 0 0.0008 12 0 0.0059 114 1 0.0069 80 1 0.0074 95 1
100 0.0030 28 0 0.0021 24 0 0.0237 231 0 0.0234 238 8 0.0090 88 0

W
eb

20
02

5 0.0007 24 0 0.0007 22 0 0.0030 76 0 0.0053 138 0 0.0057 133 0
10 0.0013 28 0 0.0012 25 0 0.0062 142 0 0.0055 108 0 0.0059 118 0
15 0.0017 39 0 0.0016 35 0 0.0139 217 4 0.0072 139 0 0.0061 117 0
20 0.0022 36 0 0.0019 27 0 0.0227 314 20 0.0094 153 0 0.0058 94 0
30 0.0032 42 1 0.0024 38 1 0.0312 351 30 0.0187 214 17 0.0048 72 0
100 0.0072 63 0 0.0047 46 0 0.0426 365 31 0.0657 501 204 0.0183 154 13

Le
ga

l2
00

6

5 0.0314 225 1 0.0233 185 1 0.0322 191 3 0.0450 229 4 0.0266 202 3
10 0.0688 219 10 0.0456 157 2 0.0640 215 15 0.1096 228 26 0.0453 154 2
15 0.0673 198 3 0.0463 145 0 0.0571 202 16 0.1188 226 25 0.0402 135 0
20 0.0634 178 1 0.0422 133 0 0.0500 172 7 0.1273 228 28 0.0335 106 0
30 0.0620 158 3 0.0410 113 3 0.0503 140 3 0.1347 206 22 0.0287 66 0
100 0.0563 121 7 0.0373 101 7 0.0473 128 7 0.1300 155 9 0.0274 61 1

M
ic

ro
bl

og
20

11 5 0.0004 26 0 0.0004 25 0 0.0022 129 0 0.0007 52 0 0.0007 59 0
10 0.0008 57 0 0.0008 58 0 0.0038 252 0 0.0010 75 0 0.0011 80 0
15 0.0014 82 0 0.0015 76 0 0.0069 378 0 0.0015 83 0 0.0016 92 0
20 0.0021 68 0 0.0021 75 0 0.0084 408 0 0.0020 66 0 0.0022 74 0
30 0.0037 113 0 0.0035 107 0 0.0168 560 1 0.0035 110 0 0.0035 108 0
100 0.0034 77 0 0.0032 73 0 0.0168 432 1 0.0033 75 0 0.0033 74 0

M
ed

ic
al

20
11

5 0.0054 79 0 0.0032 48 0 0.0112 153 0 0.0053 63 0 0.0024 48 0
10 0.0141 100 0 0.0074 64 0 0.0248 218 0 0.0130 124 0 0.0059 47 0
15 0.0133 76 0 0.0069 42 0 0.0269 172 0 0.0163 109 0 0.0051 31 0
20 0.0129 75 0 0.0068 43 0 0.0290 151 0 0.0204 115 3 0.0055 37 0
30 0.0118 60 0 0.0062 31 0 0.0275 128 0 0.0245 119 0 0.0064 27 0
100 0.0077 41 0 0.0043 18 0 0.0199 92 0 0.0282 152 0 0.0083 30 0

G
en

om
ic

s
20

05 5 0.0005 30 0 0.0006 34 0 0.0016 74 0 0.0022 83 0 0.0022 79 0
10 0.0009 41 0 0.0012 44 0 0.0025 79 0 0.0025 85 0 0.0027 91 0
15 0.0011 31 0 0.0012 32 0 0.0020 48 0 0.0025 67 0 0.0031 76 0
20 0.0013 24 0 0.0014 31 0 0.0029 70 0 0.0032 72 0 0.0033 75 0
30 0.0019 36 0 0.0020 39 0 0.0070 151 0 0.0048 97 0 0.0029 55 0
100 0.0061 87 0 0.0039 58 0 0.0212 302 2 0.0372 478 17 0.0101 164 0

R
ob

us
t

20
05

5 0.0011 8 0 0.0013 10 0 0.0015 14 0 0.0004 6 0 0.0008 9 0
10 0.0023 7 0 0.0032 12 0 0.0035 10 0 0.0011 4 0 0.0017 11 0
15 0.0036 11 0 0.0051 17 0 0.0056 16 0 0.0016 7 0 0.0024 10 0
20 0.0045 11 0 0.0069 21 0 0.0068 15 0 0.0023 5 0 0.0035 12 0
30 0.0070 17 0 0.0096 20 0 0.0110 19 0 0.0038 4 0 0.0055 9 0
100 0.0185 22 1 0.0147 19 0 0.0152 17 0 0.0154 13 0 0.0066 8 0
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Figure 7.8: Plots per test collection of the Mean Absolute Error against the R@n of the
Reduced Pool and the four presented approaches to correct pool bias for P@n. Generated
using a leave-one organisation-out, using all the pooled runs for the continuous lines and
only the top 75% best performing pooled runs for the dashed lines.

165



7. Selection Bias: Evaluation Measures
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Figure 7.9: Plots per test collection of the System Rank Error against the R@n of the
Reduced Pool and the four presented approaches to correct pool bias for P@n. Generated
using a leave-one organisation-out, using all the pooled runs for the continuous lines and
only the top 75% best performing pooled runs for the dashed lines.

166



7.5. Discussion

we claim that it happens for a combination of both hypotheses. The first hypothesis
relies on the observation that for such test collections, the ratio between the number of
pooled runs and the number of organisations is much greater than 1. This means that
multiple runs from the same organisation have been pooled and therefore contribute a
very similar set of documents to the pool. Thereby, it nullifies the leave-one run-out
approach embedded in these simulation-based estimators, as shown in Eq. (7.18) and
(7.19), looking inside the expectations, when the run r′, originally in the pool is removed
from the pool. This leave-one run-out happens inside the estimator and is different from
the leave-one organisation-out testing procedure that happens before the estimator is
run. However, for Legal 2006 and Medical 2011, although the ratio is also big, we do not
observe the same affect due the more shallow pool depths. The second hypothesis is that
when we want to count the top number of relevant documents of a run and we have a
large number of relevance judgements, there is a high likelihood that the top documents
of every run have been already pooled by other runs. This means that, as for the first
hypothesis, the effect of the leave-one run-out embedded in the method is nullified. We
split these two hypotheses because they have a different nature, although they have the
same effect that can be mitigated by the same solution.

In general, these two hypotheses cause a significant error due to the fact that the number
of points collected in order to compute a meaningful estimation of the expectations
|{r′ ∈ Rp : P@n(r′, JRp) − P@n(r′, JRp\{r′}) 6= 0 ∧ k̄@n(r′, JRp) 6= 0}| for k̄NS and,
|{r′ ∈ Rp : P @n(r′, JRp)−P @n(r′, JRp\{r′}) 6= 0}| for BS, is insufficient. When these sets
are small, it means that either there are no unjudged documents, or the ones that exist
bring no new information in terms of being or not being in the pool. Thereby, the error
introduced is bigger than the one we would have observed if we had not corrected the run
at all. In fact we can observe that the second best result, excluding the simulation-based
approaches, is obtained by the reduced pool. Therefore to mitigate this effect, it is
necessary to introduce a trigger that checks if the number of data points collected are
sufficient, to compute the estimate and perform the correction, and if not, to fall back to
the reduced pool error.

We now move to the analysis of the two perturbation-based estimators, k̄LP and λTk̄LP.
k̄LP is on average better than λTk̄LP when applied to the pool built using the 75% of
best performing runs. However, this estimator performance is worse than the reduced
pool for Ad Hoc 7, and 8, Web 9, Web 2001, Web 2002, while λTk̄LP performs at least
better than the reduced pool. We observe that λTk̄LP outperforms the reduced pool and
the simulation-based estimators. This happens in the majority of the cases when using
all the pooled runs, less often when using only the top 75% of best performing pooled
runs. Moreover λTk̄LP is shown to be stable.

In summary, the best simulation-based estimator is k̄NS, and perturbation-based estimator
λTk̄LP. We have also seen that the perturbation-based estimators are more stable than
the simulation-based ones, therefore these should be preferred. This because they rarely
get worse than the reduced pool, although sometimes they are not the absolute best.
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7.5.2 Bias Estimators for Recall at Cut-off

Here we present the bias estimators for R@n. This section is divided into two subsections.
In the first subsection, we discuss the performance of the estimators designed for R@n.
In the second subsection, we discuss the performance of the P@n estimators when used
to estimate R@n, as shown in Eq. (7.13). This is possible thanks to a property of the
analysed test collections (built using a Depth@K pooling strategy) and to a mathematical
property of P@n.

R@n Estimators

We first juxtapose the results obtained by first including all the pooled runs, and then
only the top 75% best performing runs. Here, we observe that on average there is no
difference in quality among the estimators, as previously seen for P@n. On average, the
best performing estimators are k̄NS and BS. However, between these k̄NS is much more
effective than BS when only the 75% of pooled runs is used.

The relative good quality of the Ad Hoc test collections produces pools that are difficult
to beat for R@n. This happens for Ad Hoc 2 to 8, but also for Web 9 and 2001, and
Robust 2005. For these test collections all the estimators perform similarly to the reduced
pool. However, for the rest of the test collections we can observe a clear distinction in
performance among the estimators. We hypothesise that this is linked to the large pool
depths (� 50) of the Depth@K used to build the abovementioned test collections. We
observe that for Web 2002, Genomics 2005, Legal 2006, Medical 2011, and Microblog
2011, k̄NS is the best performing estimator, while BS and GS are still better than the
pool but not as much as k̄NS.

R@n Derived Estimators from P@n Estimators

We start by observing that the best estimator is BSP . Juxtaposing the two results, the
first one obtained using all the pooled runs, and the second one using only the top 75%
best performing runs, there is no important difference among the estimators. Although,
on average, it is clear that the BSP is less affected by this additional absence of relevant
information.

On a per test collection basis, we observe that for Ad Hoc 2, Legal 2006, and Medical
2011, the λTk̄LPP estimator is the best estimator, and for Robust 2005 it performs
better than the reduced pool. We hypothesise that the good performance observed for
Ad Hoc 2 is related to the over-estimation of the P@100 case when predicting P@n,
which makes this estimator produce smaller bias corrections, therefore being a more
conservative estimator. This is also confirmed by the fact that, for low recall cut-off
values, this estimator is as good as the reduced pool. In the case of Legal 2006 and
Medical 2011, we cannot say much due to the shallow pool depths (10) of the Depth@K
strategy used to build these test collections. However, it is surprising that the λTk̄LPP

estimator performs better than the other estimators.
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The BSP estimator is the best performing estimator for Ad Hoc 3, Web 2002. Moreover,
we also observe that this estimator is better than the reduced pool for Legal 2006 and
Medical 2011, and it demonstrates a stable behaviour even when the reduced pool is not
among the worst estimations, like for Ad Hoc 4, 5, 6, 7 and 8, Web 9 and 2001, Genomics
2005 and Microblog 2011. This makes this estimator the best of this category. However,
it fails for Robust 2005. We hypothesise that the reason for this failure is due to the low
number of pooled runs and shallow pool depth of this test collection, which does not
allow this estimator to have enough samples to generate good estimates.

Summary

In the previous subsections, we have discussed the performances of the estimators
originally designed for R@n, and derived from the P@n estimators. As already pointed
out, while the former estimators are independent of the pooling strategy used to build
the test collection, the latter need to be built using a Depth@K pooling strategy (see
Eq. (7.13)). Juxtaposing the two classes of estimators we observe that the best estimator
belongs to the former class, k̄NS.

7.6 Summary
The primary focus of this chapter is an insight that information about the quality of
an unpooled run can be obtained by analysing how the pool has been built. We have
presented here a large array of bias estimators for P@n and R@n. We started presenting
how the pool bias manifests in these IR evaluation measures and how to estimate it. We
then continued formalizing the presented estimators in two big categories: simulation-
based estimators and the newly introduced perturbation-based estimators. While the
first infer the performance by simulating the absence of other runs, the latter extracts
this information by measuring the effect of the run on existing, pooled runs.

In this chapter we have improved over the baseline, the reduced pool, for both IR
evaluation measures, P@n and R@n. We have observed that for P@n, the best estimator
is the perturbation-based estimator, λTk̄LP; and for R@n the best estimator is the
simulation-based estimator k̄NS. However, for the latter case the results appear less clear
with respect to the former case. Moreover, we have observed that estimating recall using
precision based estimators provided promising results.

This chapter addresses a significant concern coming from research but also from practice:
the necessity to have valid, yet understandable measures, which we can communicate to
partners outside of our community. This last condition significantly restricts our possible
choices. P@n and R@n are by far the most easily understood quantities to communicate
and with this study we have shown that we can correct pool bias when considering a run
that has not participated in the creation of the pool.
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CHAPTER 8
Conclusion

In this thesis we explored some of the biases observed in IR, and learnt how to model,
quantify, and exploit model biases to improve retrieval effectiveness; how to model and
analytically quantify a particular model bias, the retrievability bias, for accessibility
evaluation; and how to model, quantify, and mitigate a selection bias, the pool bias, for
a more reliable test collection-based evaluation.

The exploitation of the analysed model biases has led, on the one hand to the improvement
of retrieval effectiveness. In Chapter 4, we improved retrieval effectiveness by quantifying
the model biases observed on the document verboseness and length, and embedded
these factors into several probabilistic IR models. On the other hand, it has led to
the development of a new theoretical perspective on the accessibility evaluation. In
Chapter 5, we analytically quantified the retrievability bias on Boolean models, making
this quantification much faster than it would have been with the standard empiric
methods.

The mitigation of the selection bias, the pool bias, has led to the building of less biased
test collections and less biased evaluations of new IR systems on existing test collections.
In Chapters 6 and 7, we mitigated the pool bias, which manifests when building test
collections using the pooling method. In particular, in Chapter 6 we developed new
pooling strategies and then identified the least biased one. In Chapter 7 we developed bias
estimators to correct IR evaluation measures when evaluating new systems on existing
test collections.

The remainder of this chapter goes as follows. We first comment on the interaction
of model and selection biases in IR. Next, we discuss the effort made to unify the
mathematical framework across the IR topics treated in this thesis. Then, before
concluding, we summarise the main findings and limitations of the chapters mentioned
above.
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8.1 Model and Selection Biases Interaction

We now make the interaction of the two studied types of bias explicit, i.e., model bias
and selection bias in the test collection-based evaluation of IR systems. In particular
we observe (a) instances of model bias interacting in test collection-based evaluation,
which we have observed to suffer from pool bias, a selection bias; and (b) instances of
selection bias interacting when evaluating IR models, which we have observed to suffer
from several model biases.

In this thesis we have seen in multiple occasions that a big advantage of the test collection-
based evaluation is the possibility to test newly developed IR systems without the need
to involve users into the evaluation loop. However, as we have seen, this evaluation
suffers from pool bias due to the way these test collections have been built, using the
pooling method. To understand where the pool bias (a selection bias) interacts with
model biases, we need to recall on what the pooling method relies, the output of a
set of retrieval systems. These systems, as we have seen, can potentially suffer from
several model biases. In other words, the pool bias observed when evaluating these newly
developed IR systems on an existing test collection is actually affected in turn by the
model biases of the set of the IR systems used to build this test collection. In this way,
causing a model-selection bias interaction. On the contrary, if this newly developed IR
model is affected by model biases, its test collection-based evalution would be an instance
of selection-model bias interaction, since this evaluation would suffer from pool bias
(a selection bias). Considering now both interactions, if we imagine that these newly
developed IR systems were used to build a new test collection using the pooling method,
we could in order concatenate these interactions forming a selection-model-selection bias
interaction, or going backward, a model-selection-model bias interaction. Moreover, by
reiterating the same reasoning we could generate longer bias interaction chains.

The quantification of the individual contributions of these two bias interactions is an
interesting research question that deserves to be explored. In fact, these long chains
of bias interaction seem to suggest that if the IR experimentation had been left in
isolation – i.e., no external factor participating into the building of test collections
(e.g. introducing manual runs) and the development of IR models (e.g. embedding into
them insights developed through users’ studies and language analysis) – this would have
guided this experimentation to reward more a specific set of pooling results and IR
models. Nonetheless, some instances of this effect have been observed in the literature:
no discernible upward trend has been observed in IR models in Ad Hoc tasks in IR papers
dating between 1998 and 2008 [Arm+09], and pooling results have been observed to be
biased towards longer documents [LAB08].

A trivial and unrealistic solution to analyse these interactions would be to fully judge
a collection of documents. This would, in fact, eliminate the selection bias caused by
the pooling method, and since no pooling method is involved, the selection-model bias
interaction mentioned above also disappears. However, even in this epic effort, other
selection biases, which we have neglected so far, could play an important role. For
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example, the topic selection bias and assessor selection bias, which are due to how topics
and assessors are selected. A more realistic solution could instead come from an hybrid
evaluation approach, i.e., an evaluation at the intersection between the on-line and the
test collection-based evaluation. If we were to imagine a test collection not as a static
entity but rather as a dynamic one – a test collection that changes overtime by requiring
document judging when needed – we would, like for the unrealistic solution presented
above, eliminate the selection bias and therefore also its selection-model bias interaction.
Moreover, if this test collection were to be on-line, e.g. usable by users, this dynamic test
collection would be free of topic selection bias and assessor selection bias. The former
because the topics would be provided by the users. The latter because the assessors
would be the actual users of the test collection. However, there are many other problems
with such an hybrid evaluation, most notably the use of indirected evidence for relevance
assessments.

8.2 Model Bias: Term Frequency Normalisation
In Chapter 4, we empirically demonstrated that normalisations based on the document
verboseness together with the document length provide higher retrieval quality than the
standard normalisations based only on the document length. Through an exhaustive
study of normalisation factors in several IR probabilistic models: several TF-IDF variants,
BM25 and D-LM, we made the case that different domains, having different text statistics,
can be directly factored into these existing IR models. This is done by embedding various
document and term statistics into one factor that balances multiple prior probabilities
that all these IR models, more or less explicitly, rely on.

We here studied a model bias that was causing retrieval models to retrieve more repetitive
documents. Moreover, the model bias observed in these retrieval models shown to not
only be language specific but also domain specific. The different use of modern English in
these studied domains i.e., News, Web, Legal, and Medical, affects retrieval effectiveness.
However, we saw that these domain differences can be compensated by statistics that at
first glance can come across as simple, but which are also very effective as demonstrated
by our experiments.

8.3 Model Bias: Retrievability
In Chapter 5, we demonstrated that the retrievability of Boolean models can be computed
analytically. Here, we learnt that this quantifies the a-priori probability of a document
to be retrieved, and as expected, we analytically observed that documents that contain
more terms are more likely to be retrieved. Moreover, we proved that the retrievability
of a Boolean model is the upper-bound of any best-match model.

The quantification of the retrievability bias with the Gini coefficient has led to the
discovery that: disjunctive queries are less biased than conjunctive queries as well as
when increasing the term-size of the queries. In particular, when increasing the term-size
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of the queries, for disjunctive queries, we observe a marginal decrement in bias, while
for conjunctive queries, we observe a rapid increase in bias. This behaviour has been
demonstrated to be the same also when changing the shape of the distribution of the
document-term size.

However, this analytical framework presents a major limitation. When developing the
formulae, no realistic assumptions about the likelihood of a query to be submitted to
the IR system are made. It has been, in fact, assumed that all the queries have equal
likelihood to be submitted. This assumption does not respect the behaviour of actual
users. For example, it is well-known that users of the Web search by keywords, which
define a subset of the queries used in our analysis. However, even if this assumption is not
realistic, this is commonly made when computing retrievability empirically by running
large experiments, making this analytical approach not dissimilar to the empirical one.
Nonetheless, we believe that this analytical perspective on the retrievability bias should
be extended in order to include more sophisticated assumptions.

8.4 Selection Bias: Pooling Method

In Chapter 6, we saw that the standard pooling method can be improved upon. We
did this by evaluating 22 pooling strategies on a large scale experiment including 9 test
collections sampled from multiple domains: News, Web, Genomics, Legal, Blog and
Microblog. We evaluated the selection bias by using three bias measures: MAE, SRE and
SRE∗ and observed it on three IR evaluation measures: AP, NDCG, and P@10. Every
strategy was evaluated at different numbers of judged documents N .

Under these empirical restrictions, we discovered that the best pooling strategy is
MABMaxMeanTake@N based on a multi-armed bandit approach. This strategy resulted
to be the best performing strategy over all the tested measures of bias and IR measures.
Moreover, it resulted also to be the strategy discovering the largest number of relevant
documents. MABMaxMeanTake@N consists in pooling the first document from a run
selected based on the judgements observed on the previous selections. Thus, it requires
the judgement of a document at every selection step, making it less operationable.
Furthermore, the need to make the assessors judge documents in order of relevance can
potentially introduce additional cognitive biases into the evaluation process. Hence, if the
lower operationability and the potential cognitive biases introduced by this strategy are
not a good trade-off for a less biased test collection, CombMAXTake@N is an alternative
strategy that does not have these issues. This, in fact, pools the documents in order of a
ranking formed based on the maximum normalised score assigned by the runs across the
runs. However, this is a less effective strategy than MABMaxMeanTake@N , but is still
better than the standard pooling strategy.
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8.5 Selection Bias: Evaluation measures

In Chapter 7 we demonstrated that it is possible to mitigate the pool bias of existing
test collections for two IR evaluation measures, P@n and R@n. To do this we developed
several pool bias estimators that output a value to be added to the biased scores of
non pooled runs. These estimators take as input: (1) the run to be corrected and (2)
information consumed and generated by the pooling method, which is the set of pooled
runs and relevance assessments. Based on the formalisation of the estimators, we classify
these estimators into two categories: simulation-based estimators and perturbation-based
estimators. The simulation-based ones estimate by simulating the absence of pooled runs
from the pool. These estimators exploit how the scores of pooled runs change when not
pooled. The idea behind simulation-based estimators is to quantify how much a pooled
run would have been biased if it had not been pooled. The perturbation-based ones
estimate by perturbing the pooled runs with the unpooled run. These estimators exploit
how the scores of pooled runs change when perturbed by the unpooled run. The idea
behind perturbation-based estimators is to quantify how important is the information
contained in the new run by measuring how much it would have contributed if their
document preference had been merged together with pooled runs.

We evaluated these estimators by running a large scale experiment including 15 test
collections selected from multiple domains: News, Web, Genomics, Legal, Medical, and
Microblog. We assessed the bias via three measures of bias, MAE, SRE, and SRE∗.
Under these experimental constraints, we discovered that for P@n, the best estimator is
among the perturbation-based estimators. Named as λTk̄LP, this estimator consists in
measuring the variation in precision and anti-precision of the score of the pooled runs
when perturbed by the unpooled run, where anti-precision is the proportion of irrelevant
documents among the retrieved ones. The averages of these quantities across the pooled
runs are used: (1) calculating the correction, and (2) an indicator function used to trigger,
if required, the application of this correction. For R@n , the best estimator is k̄NS. This
simulation-based estimator consists in computing the average difference between the
R@n of the run when pooled and not pooled, then normalises these values by the margin
of improvement each of these runs has if every unjudged document had been judged as
relevant.

The classification provided about the estimators suggests a naturally third category of
estimators yet unexplored, the hybrid class: perturbation simulation-based estimators.
Combining the ideas behind the two classes of estimators could potentially provide better
performing estimators.

8.6 Future Work

The research presented in this thesis opens different opportunities, which have been left
for future work. These are here listed per topic:
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Model Bias: Term Frequency Normalisation. A theoretical analysis of term frequency
normalisation components based on more complex statistics measured with word
similarities techniques, like: word embeddings via neural networks and dimension-
ality reduction techniques on the word co-occurrence matrix;

Model Bias: Retrievability. A further development of the retrievability theory, which is
still on its infancy;

Selection Bias: Pooling Method and Evaluation Measures. The exploration of pooling
strategies and evaluation measures that work in synergy to mitigate the pool bias.

8.7 Final Remarks
The analysis of biases in IR has led to new insights about the performance of IR systems.
We have found that IR models can be improved by embedding a document verboseness
component together with an (already present in most IR models) document length
component. We have also seen that document length affects the accessibility of collection
of documents, and potentially this is also true for the document verboseness, since both
can be interpreted as prior probabilities of a document to be retrieved. Also, when
evaluating IR systems on a test collection we should be aware of its pool bias, which
means that a more accurate analysis of the results is necessary, e.g. by using pool bias
estimators, if existing, to correct the IR measure used to evaluate the system, or by
building less biased test collections using less biased pooling strategies.

With this thesis, we have shown that verboseness plays a role in IR models, that
retrievability can be computed analytically, and that the pool bias can be mitigated at
test collection build time, and also for existing test collections at evaluation time. These
findings are important for different members of the IR community. Practitioners will
benefit from this work because, as pointed out in the introduction, they are interested in
having a reliable IR evaluation that is easy to interpret and translate into questions that
have a direct impact on their non-IR colleagues, e.g. how many relevant documents are
they reading? (precision) How many relevant documents are they missing? (recall) Is the
system making the documents accessible? (retrievability). The empirical IR researchers
will benefit from less biased IR evaluation measures, and in particular, among them,
the test collection builders will benefit from less biased pooling strategies. Finally, the
more theoretical IR researchers will benefit from a theoretical perspective on all the
topics treated in this thesis, but in particular on the initial theoretical exploration of
retrievability.
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APPENDIX A
Selection Bias: Pooling Method

A.1 Borda vs. Condorcet
In this section we analyse the relationships between the Borda and Condorcet counting
method employed in this paper. Here, we prove that a relaxation of the Condorcet
condition in the Copeland’s method leads to the Borda method. We start substituting to
the Copeland’s method function, as defined in Eq. 6.8, the definition of the Condorcet
criteria in Eq. 6.7 obtaining:

s(d, Rp) =
∑

d′∈D

{
1

∑
r∈Rp

sign(ρ(d′, r) − ρ(d, r)) > 0
0 otherwise

+ ε · µ(0, 1)

This equation is characterised by a condition that is calculated over all the pooled runs.
We now relax this condition counting the individual run contributions by inverting the
two summations as follows:

∑
d′∈D

{
1

∑
r∈Rp

sign(ρ(d′, r) − ρ(d, r)) > 0
0 otherwise

≈

≈
∑

r∈Rp

∑
d′∈D

{
1 sign(ρ(d′, r) − ρ(d, r)) > 0
0 otherwise

It is now possible to simplify the relaxation by observing that the condition is true for
every document d′ below document d and therefore can be written as a function of the
size of r and the rank of d as follows:

∑
r∈Rp

∑
d′∈D

{
1 sign(ρ(d′, r) − ρ(d, r)) > 0
0 otherwise

=

=
∑

r∈Rp

(|D| − ρ(d, r)) = |Rp| |D| −
∑

r∈Rp

ρ(d, r)
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The outcome of such a relaxation is a Borda counting shifted by a constant C = |Rp||D|.
Since C is a constant, it does not affect the order in which the documents are selected.
Indeed, by rank equivalence:

C +
∑

r∈Rp

−ρ(d, r) '
∑

r∈Rp

−ρ(d, r)

With the above, we have demonstrated that relaxing the Condorcet condition, the
Condorcet Copeland’s counting is equivalent to Borda counting. However this is not
exactly the Borda counting implemented in the paper because, while in this strategy when
d is not retrieved by r, ρ(d, r) returns −|D| (see the definition of ρ in Section 3.1), in our
presented version when d is not retrieved by r, the function B returns −(|D|+ |Dr|+1)/2.

A.2 Hedge Strategy’s Behaviour at its Extremes
In this section we show that the behaviour of the Hedge strategy when setting β to
the extremes 0, 1, and +∞ can be assimilated to: multi-armed bandit-based pooling
strategies when β = 0 and β = +∞, and to an IR evaluation measure-based pooling
strategy when β = 1.

A.2.1 Case β = 0
We now explore how the Hedge pooling strategy simplifies when β = 0. To do it we study
the limit of β → 0 for Eq. 6.24:

lim
β→0

L(r, Jn−1) = lim
β→0

βL(r,Jn−1)∑
r′∈Rp

βL(r′,Jn−1)

To solve this limit we distinguish two cases, when the r at the numerator scores the
minimum L(r, Jn−1) among the runs in Rp, and when it is not. To do it we first define
rmin = arg minr∈Rp

(L(r, Jn−1)). In the first case we have:

lim
β→0

βL(rmin,Jn−1)∑
r′∈Rp

βL(r′,Jn−1) = lim
β→0

1∑
r′∈Rp

βL(r′,Jn−1)−L(rmin,Jn−1) =

= lim
β→0

1∑
r′∈Rp\{rmin} βL(r′,Jn−1)−L(rmin,Jn−1) + β0 = 1

0 + 1 = 1

In the second case, dividing and multiplying by βL(rmin,Jn−1) we obtain:

lim
β→0

βL(r,Jn−1)∑
r′∈Rp

βL(r′,Jn−1) = lim
β→0

βL(r′,Jn−1)−L(rmin,Jn−1)∑
r′∈Rp

βL(r′,Jn−1)−L(rmin,Jn−1) =

= lim
β→0

βL(r′,Jn−1)−L(rmin,Jn−1)∑
r′∈Rp\{rmin} βL(r′,Jn−1)−L(rmin,Jn−1) + β0 = 0

0 + 1 = 0
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With these two limits we see that this normalisation when β = 0 is 0 for every run but 1
for the run that scores the lowest loss L(r, Jn−1). We substitute this result to Eq. 6.25
and simplify it as follows:

sJn−1(d, Rp) =
∑

r∈Rp

(
L(r, Jn−1) · G∗(d, r)

)
=

= L(rmin, Jn−1) · G∗(d, rmin) +
∑

r∈Rp\{rmin}

(
L(r, Jn−1) · G∗(d, r)

)
=

= G∗(d, rmin) ' −ρ(d, rmin)

This simplification shows that s is now rank equivalent to the definition of s for the run
allocation strategies (Eq. 6.22). With run allocation function defined as:

rn = rmin = arg max
r∈Rp

(−L(r, Jn−1))

We now simplify the function −L(r, Jn−1) as follows:

− L(r, Jn−1) = 1
2

∑
d∈J +

n−1

G∗(d, r) − 1
2

∑
d∈J −

n−1

G∗(d, r) =

1
2

∑
d∈J +

n−1:d∈Dr

log
( |D|

ρ(d, r)

)
+ 1

2
∑

d∈J +
n−1:d6∈Dr

 1
|D| − |Dr|

|D|∑
i=|r|

log
( |D|

ρ(d, r)

)−

− 1
2

∑
d∈J −

n−1:d∈Dr

log
( |D|

ρ(d, r)

)
− 1

2
∑

d∈J −
n−1:d6∈Dr

 1
|D| − |Dr|

|D|∑
i=|r|

log
( |D|

ρ(d, r)

) =

= 1
2(|J +

n−1| − |J −
n−1|) log(|D|)+

+ 1
2

∑
d∈J +

n−1:d∈Dr

log
( 1

ρ(d, r)

)
+ 1

2
∑

d∈J +
n−1:d6∈Dr

 1
|D| − |Dr|

|D|∑
i=|Dr|

log
( 1

ρ(d, r)

)−

− 1
2

∑
d∈J −

n−1:d∈Dr

log
( 1

ρ(d, r)

)
− 1

2
∑

d∈J −
n−1:d6∈Dr

 1
|D| − |Dr|

|D|∑
i=|r|

log
( 1

ρ(d, r)

) =

= 1
2(|J +

n−1| − |J −
n−1|) log(|D|)+

+ 1
2

∑
d∈J +

n−1:d∈Dr

log
( 1

ρ(d, r)

)
− 1

2
∑

d∈J −
n−1:d∈Dr

log
( 1

ρ(d, r)

)
+

+ 1
2

log(|D|!/|Dr|!)
|D| − |Dr|

(|J +
n−1 \ Dr| − |J −

n−1 \ Dr|)
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We observe that the right inside of the last equation is rank equivalent to:

−
∑

d∈J +
n−1:d∈Dr

log (ρ(d, r)) +
∑

d∈J −
n−1:d∈Dr

log (ρ(d, r)) +

+ log(|D|!/|Dr|!)
|D| − |Dr|

(|J +
n−1 \ r| − |J −

n−1 \ r|)

For the sake of clarity, let us define a constant Cr = log(|D|!/|Dr|!)/(|D| − |Dr|). This
constant when |D| � |Dr| can be approximated to Cr ≈ log(|D|!)/|D| = C. Thereby
obtaining the following allocation strategy:

rn = arg max
r∈Rp

C · (|J +
n−1 \ Dr| − |J −

n−1 \ Dr|) +
∑

d∈Jn−1∩Dr

{
− log (ρ(d, r)) d ∈ J +

n−1
+ log (ρ(d, r)) d ∈ J −

n−1


Following a more compact rank equivalent form of the same strategy:

rn = arg max
r∈Rp

 ∑
d∈Jn−1∩Dr

[(
log(ρ(d, r)) + log(|D|!)

|D|

)
·
{

−1 d ∈ J +
n−1

+1 d ∈ J −
n−1

]
In this run allocation strategy we can distinguish two addenda. On the left inside one
about documents in the relevance assessments but not in the run, and on the right inside
one about documents in the relevance assessments and in the run. With the former
addend r gains a positive gain if more non-relevant documents than relevant ones have
been discovered by r. With the latter addend r gains a gain for every non-relevant
document discovered by r, and negative otherwise.

A.2.2 Case β = 1
When β = 1, Eq. 6.24 can be simplified as follows:

L(r, Jn−1) = 1
|Rp|

and Eq. 6.25 becomes:

sJn−1(d, Rp) =
∑

r∈Rp

(
1

|Rp|
· G∗(d, r)

)
= 1

|Rp|
∑

r∈Rp

G∗(d, r)

We observe that, since there is no condition on n on the right inside of the equation, the
definition of sJn−1 is equivalent to its non sequential definition s. Therefore the strategy
is now a non-adaptive strategy defined by the following s:

s(d, Rp) = 1
|Rp|

∑
r∈Rp

G∗(d, r)
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A.2. Hedge Strategy’s Behaviour at its Extremes

To compare this strategy with the other pooling strategy presented in this paper we
perform the following simplifications.

s(d, Rp) = 1
|Rp|

∑
r∈Rp:d∈Dr

G(ρ(d, r)) + 1
|Rp|

∑
r∈Rp:d6∈Dr

1
|D| − |Dr|

|D|∑
n=|Dr|+1

G(i)

We now subtract from the right inside of this formula a constant. This can be done
because to sum a constant quantity is still rank equivalent to the previous one:

1
|Rp|

∑
r∈Rp:d∈Dr

G(ρ(d, r)) + 1
|Rp|

∑
r∈Rp:d6∈Dr

1
|D| − |Dr|

|D|∑
n=|Dr|+1

G(i)−

− 1
|Rp|

∑
r∈Rp

1
|D| − |Dr|

|D|∑
n=|Dr|+1

G(i) =

= 1
|Rp|

∑
r∈Rp:d∈Dr

G(ρ(d, r)) − 1
|D| − |Dr|

|D|∑
n=|Dr|+1

G(i)

 =

= 1
|Rp|

∑
r∈Rp:d∈Dr

log
( |D|

ρ(d, r)

)
− 1

|D| − |Dr|

|D|∑
n=|Dr|+1

log
( |D|

n

) =

= 1
|Rp|

∑
r∈Rp:d∈Dr

log
( 1

ρ(d, r)

)
+ 1

|D| − |Dr|

|D|∑
n=|Dr|+1

log (n)

 =

= 1
|Rp|

∑
r∈Rp:d∈Dr

(
log

( 1
ρ(d, r)

)
+ log(|D|!/|Dr|!)

|D| − |Dr|

)

We now define a constant, as done in the previous case, Cr = log(|D|!/|Dr|!)
|D|−|Dr| , and for

|D| � |Dr|, we approximate Cr to C = log(|D|!)
|D| . We then substitute this to the previous

formula:

s(d, Rp) = 1
|Rp|

∑
r∈Rp:d∈Dr

(
log

( 1
ρ(d, r)

)
+ C

)
Finally, by rank equivalence we obtain:

s(d, Rp) =
∑

r∈Rp:d∈Dr

(
log

( 1
ρ(d, r)

)
+ C

)
We now observe that this run allocation is equivalent to an evaluation measure-based
strategy with function gain G defined as:

G(ρ) = log
(1

ρ

)
+ C

The derivative of this function is shown in Figure 6.2 for comparison with the other
evaluation measure based-strategies.
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A. Selection Bias: Pooling Method

A.2.3 Case β = +∞

When β = +∞ we obtain a behaviour opposite to when β = 0. With run allocation
function equal to:

rn = arg max
r∈Rp

(L(r, Jn−1))

Performing similar simplifications to the case β = 0 we obtain:

rn = arg max
r∈Rp

C · (|J −
n−1 \ Dr| − |J +

n−1 \ Dr|) +
∑

d∈Jn−1∩Dr

{
+ log (ρ(d, r)) d ∈ J +

n−1
− log (ρ(d, r)) d ∈ J −

n−1


Following a more compact rank equivalent form of the same strategy:

rn = arg max
r∈Rp

 ∑
d∈Jn−1∩Dr

[(
log(ρ(d, r)) + log(|D|!)

|D|

)
·
{

+1 d ∈ J +
n−1

−1 d ∈ J −
n−1

]
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