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ABSTRACT
We study delay of jobs that consist of multiple parallel tasks, which

is a critical performance metric in a wide range of applications

such as data file retrieval in coded storage systems and parallel

computing. In this problem, each job is completed only when all
of its tasks are completed, so the delay of a job is the maximum of

the delays of its tasks. Despite the wide attention this problem has

received, tight analysis is still largely unknown since analyzing job

delay requires characterizing the complicated correlation among

task delays, which is hard to do.

We first consider an asymptotic regime where the number of

servers, n, goes to infinity, and the number of tasks in a job, k(n), is
allowed to increase with n. We establish the asymptotic indepen-

dence of any k(n) queues under the condition k(n) = o(n1/4). This
greatly generalizes the asymptotic-independence type of results

in the literature where asymptotic independence is shown only

for a fixed constant number of queues. As a consequence of our

independence result, the job delay converges to the maximum of

independent task delays.

We next consider the non-asymptotic regime. Here we prove

that independence yields a stochastic upper bound on job delay

for any n and any k(n) with k(n) ≤ n. The key component of our

proof is a new technique we develop, called “Poisson oversampling”.

Our approach converts the job delay problem into a corresponding

balls-and-bins problem. However, in contrast with typical balls-and-

bins problems where there is a negative correlation among bins,

we prove that our variant exhibits positive correlation.

1 INTRODUCTION
The problem
We consider a system with n servers, each with its own queue.

Jobs arrive over time according to a Poisson process, and each job

consists of some number of tasks, k , where k ≤ n. Upon arrival,

each job chooses k distinct servers uniformly at random and sends

one task to each server. Each server serves the tasks in its queue

in a First-In, First-Out (FIFO) manner. A job is considered to be

completed only when all of its tasks are completed. Our goal is to

compute the distribution of job delay, namely the time from when a

job arrives until the whole job completes. If a job’s tasks experienced

independent delays, then computing the distribution of job delay

would be easy: take the maximum of the independent task delays.

Unfortunately, the task delays are not independent in general.

Our model is a generalization on the classic fork-join model,

which is identical to our model except that it assumes that k = n:
every job is forked to all n servers. In contrast, in our model, the

fork is limited to k servers with k ≤ n. So we will refer to our model

as the limited fork-join model. Obtaining tight analytical job delay

characterizations for fork-join systems is known to be notoriously

difficult: exact analysis of fork-join remains an open problem except

for the two-server case [1, 9].

Motivation
Delay of jobs, rather than delay of individual tasks, is a more critical

performance metric in systems with parallelism, yet a fundamental

understanding of job delay is still lacking. One example application

is data file retrieval in coded storage systems [17, 19, 20, 30, 31].

Here a job is the retrieval of a data file, which is stored as multiple

data chunks. The data chunks are in a coded form such that any

k-sized subset of them is enough to reconstruct the file. Coded file

retrieval can be modeled via the so-called (n, r ,k)model [30] where

a job can request r data chunks with r ≥ k and the job is completed

as long as k of them are completed. Existing analysis of the (n, r ,k)
model is usually not tight except for the light load regime [17, 20].

The special case where r = d and k = 1, called the Redundancy-d

model, is also highly non-trivial and was solved just last year [13].

Job delay in general (n, r ,k) models remains wide open. Within

the coded file retrieval setting, our limited fork-join model can be

viewed as the (n,k,k) problem.

Another application is parallel computing systems such as the

“map” phase of the popular MapReduce framework [7], where a job

is divided into tasks that can run in parallel. A few papers have

been written to analytically approximate the delay of MapReduce

jobs. Please see Section 2 for more details of related work.

In the above applications, load-balancing policies (see, e.g., [19,

20, 31, 37, 40] are usually used for assigning tasks to servers. For

scenarios where either low-overhead is desired or information ac-

cessibility is constrained (such as in a distributed setting), workload
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agnostic assignment policies [19, 31, 37] can be preferred. Our lim-

ited fork-join model assumes a random task assignment policy,

which is suitable for such application scenarios.

Our approach and what makes this problem hard
The root of the hardness of analyzing job delay in our model is the

complicated correlation among queues, which leads to the corre-

lation among the delays of a job’s tasks. If the task delays were

independent, then the probability distribution of job delay would

have a simple form. In this paper, we are interested in develop-

ing conditions and quantifying in what sense the job delay can be

approximated by the job delay under the independence assumption.

Asymptotic Regime. We first study a regime where we prove

that a job’s tasks can be viewed as being independent: We focus

on the asymptotic regime where the number of servers, n, goes
to infinity. Here we are specifically interested in developing con-

ditions under which the delays of a job’s tasks are asymptotically
independent, i.e., their joint distribution converges to the product

distribution of their marginals.

Asymptotic independence of a number of queues in large systems

is often called “chaoticity” and studied under the name “propagation

of chaos.” In many papers [11, 12, 35, 38], asymptotic independence

is simply assumed to simplify analysis. In some load-balancing

settings, asymptotic independence has been proven (e.g., [3, 40]).

One strong restriction of the existing proofs is that only a constant
number of queues are proven to be asymptotically independent. In

contrast, our goal is to establish asymptotic independence for any

k queues where k may grow with n; we write k as k(n) to explicitly

indicate its dependence on n. The asymptotic independence of any

k(n) queues implies the asymptotic independence of the delays of

a job’s tasks since they are sent to k(n) queues. Allowing k(n) to
grow with n captures the trends that data files get larger and that

jobs are processing larger and larger data sets [4].

When proving asymptotic independence of a constant number of

queues in steady state, it is typical to start by showing asymptotic

independence over a constant time interval [0, t], where t is long
enough for these queues to be close to steady state. Unfortunately,

since k(n) grows with n in our model, to reach steady state, the

system needs a time interval [0,τ (n)], growing with n. This further
complicates the analysis since asymptotic independence then needs

to be established over this longer, non-constant, time interval.

Non-asymptotic regime. Next, we study the non-asymptotic

regime. We show that for any n and any k(n) = k with k(n) ≤ n,
the distribution of job delay is stochastically upper bounded by

the distribution given by independent task delays, which we call

the independence upper bound. Therefore, independence not only
characterizes the limiting behavior of job delay in the asymptotic

regime where n → ∞, but also yields an upper bound for any n.
I.e., the independence upper bound is asymptotically tight. An
illustration of the tightness is provided in Figure 2 generated from

simulations. The independence upper bound is also tighter than all

the existing upper bounds in prior work [19, 28].

We prove the independence upper bound using the theory of

associated random variables [8]. Association (also called positive

association) is a form of positive correlation, and it has the property

that if a set of random variables are associated, then the maxi-

mum of them is stochastically upper bounded by the maximum of

independent versions of them. To show the independence upper

bound, it thus suffices to show that the delays of a job’s tasks are

associated. Such an association result is known for the classical

fork-join model with k(n) = n, but not for the limited fork-join

model when k(n) < n. When proving association, a commonly used

idea is to observe the system at each job arrival time, and show

that the numbers of tasks sent to different queues are associated

[18, 26, 31]. This corresponds to a balls-and-bins problem where

k(n) balls are thrown into n bins in the same way that the tasks

are sent to the queues. What is needed is that the numbers of balls

thrown in different bins are associated, which is obviously true for

k(n) = n since they are all equal to one, but not true when k(n) < n.
In fact, they are actually negatively associated by a classical result

[16]. However, this does not mean that the steady-state queues are
negatively associated, leaving the association problem for k(n) < n
unsolved in the literature. As pointed out in [19], it was not known

if independence yielded a bound, either lower or upper.

We develop a novel technique that we call “Poisson oversam-

pling,” where we observe the system not only when jobs arrive but

also at the jump times of a Poisson process that is independent of

everything else. This oversampling does not change the dynamics

in the system since it is only a way to observe the system state.

But now at each observation time, there could be one or zero job

arrivals. So in the corresponding balls-and-bins problem, there is

certain probability that there are no balls at all. By properly choos-

ing the observation rate, this extra randomness surprisingly makes

the numbers of balls thrown in any k(n) bins (positively) associ-
ated, and further implies that the steady-state queues are associated.

With this technique, we are able to prove the independence upper

bound for any k(n) ≤ n for the first time.

Results
Our goal is to characterize the tail probability of the job delay

distribution in steady state, since it is commonly used to quantify

the quality of service. We study a system with n servers in which

each job consists of k(n) tasks.
Our first result is that under the condition k(n) = o(n1/4), the

queues at any k(n) servers are asymptotically independent in steady

state as n → ∞, and thus the delays of a job’s tasks are also asymp-

totically independent. It then follows that the job delay converges

to the job delay given by the independence assumption. This result

is established in Theorem 4.1 for generally distributed service times,

and some explicit forms are given in Corollary 4.2 for exponentially

distributed service times. One might wonder where the order of

o(n1/4) comes from or whether it can be increased; we discuss this

in Section 5.5. This is the first asymptotically tight characterization

of job delay in the limited fork-join model.

Our next result is that for any n and any k(n) with k(n) ≤ n, the
job delay is stochastically upper bounded by the job delay given

by the independence assumption. We refer to this upper bound

as the independence upper bound. It is a new upper bound on job

delay that is tighter than existing upper bounds. The technique we

develop for the proof, named “Poisson oversampling”, may be of

independent interest for other related problems.

2



Organization of the paper
The rest of this paper is organized as follows. Section 2 discusses

the related work. We introduce our model and notation in Section 3.

We summarize our main results in Section 4. In Section 5 we give

proofs of the asymptotic independence results and the convergence

of job delay. In Section 6 we prove the independence upper bound.

In Section 7 we provide simulation evaluation of our analysis. We

conclude our paper in Section 8.

2 RELATEDWORK
In this section we discuss prior work on the limited fork-join model

and some other related models. Prior work on the limited fork-

join model [19, 28] has focused on the non-asymptotic regime and

derived bounds on job delay. However, the bounds in [19, 28] do not

have tightness guarantees. In particular, the upper bounds there are

generally looser than the independence upper bound. Furthermore,

none of the prior work has studied the asymptotic regime of the

limited fork-join model. Below we give detailed discussions.

Limited fork-join model. Rizk et al. [28] give upper bounds

on the tail probabilities of job delay in various settings. For Poisson

arrivals and exponentially distributed service times, their upper

bound is looser than the independence upper bound. For general

service time distributions, their upper bound needs to be computed

by numerically solving a non-linear equation. In contrast, we show

that the independence upper bound holds and we also further es-

tablish asymptotic tightness of the independence upper bound.

Lee et al. [19] give upper and lower bounds on themean job delay,
not on the tail probabilities, assuming that service times follow an

exponential distribution. Their upper bound is in general looser

than the expectation of the independence upper bound, although

the difference disappears as n → ∞ when k(n) = o(n). Compared

to this, we prove that the independence upper bound is indeed an

upper bound for any n and k(n) with k(n) ≤ n. Besides, we prove
it for very general service time distributions and in a stochastic

dominance sense, which is stronger than the expectation sense. Also,

there is a gap between their upper and lower bounds and there is

no tightness analysis. Again, we establish asymptotic tightness of

the independence upper bound.

There has also been work on variants of the limited fork-join

model where each job consists of a random number of tasks. For

example, Shah et al. [31] simply assume that the number of tasks in

each job has a distribution such that the numbers of tasks sent to

different queues are associated, thus obtaining the independence

upper bound for their model. They further investigate different

policies for assigning the tasks of a newly arrived job to servers,

and show that the job delay under the two studied policies is shorter

(in a proper sense) than the job delay under the random assignment

in the limited fork-join model. Nelson et al. [27] consider a model

where tasks wait in a central queue until some server becomes

available. They show that the mean job delay is given by a set of

recurrence equations, but no analytical form is derived. Kumar and

Shorey [18] obtain upper and lower bounds on the mean delay

when tasks are assigned to servers independently. But still, there

are gaps between the upper and lower bounds.

Classic fork-join model. The classic fork-join model, where

the number of tasks in a job is equal to the number of servers, n, has

n number of servers

superscript
(n)

quantities in the n-server system

k(n) number of tasks in a job

Λ(n)
job arrival rate

λ task arrival rate to each queue

1/µ mean of service time

ρ load at each queue

W
(n)
i (t) workload of server i’s queue at time t

T (n)
job delay

T̂ (n)
job delay given by independent task delays

Hm m-th harmonic number: Hm =
∑m
j=1

1

j

Table 1: Notation Table

been widely studied in the literature. Similar to the limited fork-join

model, tight characterizations of job delay are generally unknown

except when n = 2. See [34] for a detailed survey. Here we just

sample several most relevant papers. For general n, it has been
proven that the mean delay of a job scales as Θ(ln(n)) as n → ∞
under proper assumptions [2, 26]. Besides studying the limited fork-

join model, Rizk et al. [28] also derive an upper bound on the tail

distribution of the job delay for the classic fork-join model. Again,

the tightness of the bound is not addressed.

MapReduce.Modeling MapReduce systems is challenging since

the systems have many complex characteristics such as parallel

servers, data locality, communication networks, etc. Most theoreti-

cal work on MapReduce does not provide analytical form bounds

on the job delay. Papers such as [25, 41] and [32] design scheduling

algorithms such that the job delay is guaranteed to be within a

constant factor of the optimal, but do not provide analytical bounds.

Tan et al. [33] quantifies the distribution tail of job delay when the

map phase is abstracted as a single-server queue, resulting in a

system with much higher efficiency, especially when the number

of tasks in a job is large.

Asymptotic task delay. One component of the job delay in

MapReduce is the task delay. Wang et al. [36] and Xie and Lu

[39] bound the mean task delay, taking into consideration data

locality; however they do not deal with the job delay. Bounding
job delay would require characterizations of the correlation among

queues. Ying et al. [40] study the task delay in a model where a

load-balancing policy called batch-filling is used. They establish

asymptotic independence for a constant number of queues, which

is insufficient for models with jobs with a growing number of tasks.

3 MODEL AND NOTATION
Basic Notation. The symbols R+ and Z+ denote the set of non-

negative real numbers and nonnegative integers, respectively. We

denote random variables by capital letters and vectors by bold let-

ters. When a Markov chain (X (t), t ≥ 0) has a unique stationary
3



distribution, we denote by X (∞) a random element whose distribu-

tion is the stationary distribution.

We denote by⇒ convergence in distribution (weak convergence)

for random elements. We denote by dTV (π1,π2) the total variation
distance between two probability measures π1 and π2 on a sigma-

algebra σ of some sample space, i.e.,

dTV (π1,π2) = sup

S∈σ
|π1(S) − π2(S)|. (1)

Limited fork-join model. Our notation is summarized in Ta-

ble 1. Recall that we consider a system with n servers, each with its

own FIFO queue. We append the superscript
(n)

to related quanti-

ties to indicate that they are for the n-server system. We say that a

quantity is a constant if it does not scale with n.
Jobs and tasks. Jobs arrive over time according to a Poisson

process with rate Λ(n)
, and each job consists of k(n) tasks with

k(n) ≤ n. Upon arrival, each job picksk(n) distinct servers uniformly

at random from the n servers and sends one task to each server. We

assume that Λ(n) = nλ/k(n) for a constant λ, where the constant
λ is the task arrival rate to each individual queue. Since different

jobs choose servers independently, the task arrival process to each

queue is also a Poisson process, and the rate is λ. The service times

of tasks are i.i.d. following a cdfG with expectation 1/µ and a finite

second moment. We think of the service time of each task as being

generated upon arrival: each task brings a required service time

with it, but the length of the required service time is revealed to the

system only when the task is completed. The load of each queue,

ρ = λ/µ, is then a constant and we assume that ρ < 1.

Queueing dynamics. It is not hard to see that each queue is an

M/G/1 queue. But the queues are not independent in general since

k(n) tasks arrive to the system at the same time. LetW
(n)
i (t) denote

the workload of server i’s queue at time t , i.e., the total remaining

service time of all the tasks in the queue, including the partially

served task in service. So theworkload of a queue is the waiting time

of an incoming task to the queue before the server starts serving it.

LetW (n)(t) =
(
W

(n)
1

(t),W (n)
2

(t), . . . ,W (n)
n (t)

)
. Then the workload

process, (W (n)(t), t ≥ 0), is Markovian and ergodic. The ergodicity

can be proven using the rather standard Foster-Lyapunov criteria

[24], so we omit it here. Therefore, the workload process has a

unique stationary distribution andW (n)(t) ⇒W (n)(∞) as t → ∞.

Job delay. We are interested in the distribution of job delay in

steady state, i.e., the delay a job would experience if it arrives to

the system and finds the system in steady state. Let a random

variable T (n)
represent this steady-state job delay. Specifically, the

distribution of T (n)
is determined by the workloadW (n)(∞) in the

following way. When a job comes into the system, its tasks are sent

to k(n) queues and experience the delays in these queues. Since

the queueing processes are symmetric over the indices of queues,

without loss of generality, we can assume that the tasks are sent to

the first k(n) queues for the purpose of computing the distribution

ofT (n)
. The delay of a task is the sum of its waiting time and service

time. So the task delay in queue i , denoted by T
(n)
i , can be written

as T
(n)
i =W

(n)
i (∞) + Xi with Xi being the service time. Recall that

the Xi ’s are i.i.d.∼ G and independent of everything else. Since the

job is completed only when all its tasks are completed,

T (n) = max

{
T
(n)
1
,T

(n)
2
, . . . ,T

(n)
k (n)

}
. (2)

We will study the relation between T (n)
and T̂ (n)

with T̂ (n)
de-

fined as the job delay given by independent task delays. Specifically,
T̂ (n)

can be expressed as:

T̂ (n) = max

{
T̂
(n)
1
, T̂

(n)
2
, . . . , T̂

(n)
k (n)

}
, (3)

where T̂
(n)
1
, T̂

(n)
2
, . . . , T̂

(n)
k (n) are i.i.d. and each T̂

(n)
i has the same

distribution as T
(n)
i . Again, due to symmetry, all the T

(n)
i ’s have

the same distribution. Let F denote the cdf of T
(n)
i , whose form

is known from the queueing theory literature. Then, we have the

following explicit form for T̂ (n)
:

P
(
T̂ (n) ≤ τ

)
= (F (τ ))k

(n)
, τ ≥ 0. (4)

4 MAIN RESULTS
In Theorem 4.1, we establish asymptotic independence of any k(n)

queues under the condition k(n) = o(n1/4) as the number of servers

n → ∞. The asymptotic independence is in the sense that the total

variation distance between the distribution of the workloads of

these queues and the distribution of k(n) independent queues goes
to 0 as n → ∞. Consequently, the distance between the distribution

of job delay, T (n)
, and the distribution of the job delay given by

independent task delays, T̂ (n)
, goes to 0. This result indicates that

assuming independence among the delays of a job’s tasks gives a

good approximation of job delay when the system is large. Again,

due to symmetry, we can focus on the first k(n) queues without loss
of generality.

Theorem 4.1. Consider an n-server system in the limited fork-join
model with k(n) = o(n1/4). Let π (n,k (n)) denote the joint distribution
of the steady-state workloadsW (n)

1
(∞),W (n)

2
(∞), . . . ,W (n)

k (n) (∞), and
π̂ (k (n)) denote the product distribution of k(n) i.i.d. random variables,
each of which follows a distribution that is the same as the distribution
ofW (n)

1
(∞). Then

lim

n→∞
dTV

(
π (n,k (n)), π̂ (k (n))

)
= 0. (5)

Consequently, the steady-state job delay,T (n), and the job delay given
by independent task delays as defined in (3), T̂ (n), satisfy

lim

n→∞
sup

τ ≥0

���P(T (n) ≤ τ
)
− P

(
T̂ (n) ≤ τ

) ��� = 0. (6)

For the special case where the service times are exponentially

distributed, the job delay asymptotics have explicit forms presented

in Corollary 4.2 below.

Corollary 4.2. Consider an n-server system in the limited fork-
join model with k(n) = o(n1/4), job arrival rate Λ(n) = nλ/k(n),
and exponentially distributed service times with mean 1/µ. Then the
steady-state job delay, T (n), converges as:

lim

n→∞
sup

τ ≥0

����P(T (n) ≤ τ
)
−

(
1 − e−(µ−λ)τ

)k (n) ���� = 0, (7)

4



π̂ (n,k (n)) π (n,k (n)) π
(n,k (n))
τ (n)

π̃ (n,k (n)) π̃
(n,k (n))
τ (n)

Theorem 4.1

Lemma 5.3

Lemma 5.2

Lemma 5.1

Lemma 5.2

Figure 1: Distances in the proof of Theorem 4.1

Specifically, if k(n) → ∞ as n → ∞, then

T (n)

Hk (n)/(µ − λ) ⇒ 1, as n → ∞, (8)

where Hk (n) is the k(n)-th harmonic number, and further,

lim

n→∞
E
[
T (n)]

Hk (n)/(µ − λ) = 1. (9)

The results above characterize job delay in the asymptotic regime

where n goes to infinity. In Theorem 4.3 below, we study the non-

asymptotic regime for any n and any k(n) with k(n) = k ≤ n, and
we establish the independence upper bound on job delay.

Theorem 4.3. Consider an n-server system in the limited fork-join
model with k(n) = k ≤ n. Then the steady-state job delay, T (n), is
stochastically upper bounded by the job delay given by independent
task delays as defined in (3), T̂ (n), i.e.,

T (n) ≤st T̂ (n), (10)

where “≤st ” denotes stochastic dominance. Specifically, for any τ ≥ 0,

P
(
T (n) > τ

)
≤ P

(
T̂ (n) > τ

)
= 1 − (F (τ ))k

(n)
. (11)

5 PROOFS OF ASYMPTOTIC INDEPENDENCE
AND JOB DELAY ASYMPTOTICS

In this section, we prove the asymptotic independence and job delay

asymptotics in Theorem 4.1 and Corollary 4.2.

Proof Sketch. To prove Theorem 4.1, we couple each n-server
system in the limited fork-join model, which we refer to as sys-

tem S(n)
, with a system S̃(n)

in which the first k(n) queues are

independent. We will specify S̃(n)
below. Let W̃

(n)
i (t) denote the

workload of server i at time t in system S̃(n)
. Let W̃ (n,k (n))(t) =(

W̃
(n)
1

(t), . . . ,W̃ (n)
k (n) (t)

)
andW (n,k (n))(t) =

(
W

(n)
1

(t), . . . ,W (n)
k (n) (t)

)
.

Then the proof will proceed in the following three steps, where

we break down the distance dTV

(
π (n,k (n)), π̂ (k (n))

)
in Theorem 4.1

into three parts, illustrated in Figure 1.

(i) We carefully choose a finite time τ (n) and consider systems

S(n)
and S̃(n)

at time τ (n). We show in Lemma 5.1 that the dis-

tribution ofW (n,k (n))(τ (n)), denoted by π
(n,k (n))
τ (n) , approaches the

distribution of W̃ (n,k (n))(τ (n)), denoted by π̃
(n,k (n))
τ (n) , as n → ∞.

(ii) We show in Lemma 5.2 that in both systems S(n)
and S̃(n)

,

the finite-time distributions π
(n,k (n))
τ (n) and π̃

(n,k (n))
τ (n) are close to the

stationary distributions, π (n,k (n))
and π̃ (n,k (n))

, respectively.

(iii) We show in Lemma 5.3 that the stationary distribution

π̃ (n,k (n))
in system S̃(n)

is close to the product distribution π̂ (k (n))

in Theorem 4.1. Note that both π̃ (n,k (n))
and π̂ (k (n))

are for k(n) in-
dependent workloads, but we will see that their loads are different.

Coupling. Now we specify the coupling between S(n)
and S̃(n)

.

Both systems have n servers and the queues are all empty at time

0, i.e., W
(n)
i (0) = W̃

(n)
i (0) = 0 for all i = 1, . . . ,n. When there

is a job arrival to system S(n)
, we let a job also arrive to system

S̃(n)
. Recall that the job arrival in S(n)

selects k(n) distinct queues
uniformly at random and sends one task to each queue. If it selects

at most one queue from the set

{
1, 2, . . . ,k(n)

}
, then we let the job

arrival in S̃(n)
send its tasks to queues with the same indices as

those in S(n)
. Otherwise, suppose it selects queues i1, i2, . . . , im

from

{
1, 2, . . . ,k(n)

}
with 2 ≤ m ≤ k(n). Then we let the job arrival

in S̃(n)
send one task to a queue chosen uniformly at random from

i1, i2, . . . , im , kill the other m − 1 tasks, and send the remaining

k(n) −m tasks to queues with the same indices as those in S(n)
. For

each pair of tasks in S(n)
and S̃(n)

that are sent to queues with the

same indices, we let them have the same service time.

It can be verified that in system S̃(n)
, the queues 1, 2, . . . ,k(n)

are independent M/G/1 queues with arrival rate λ̃(n) and mean

service time 1/µ, where

λ̃(n) =
Λ(n)

k(n)

(
1 −

(n−k (n)

k (n)
)( n

k (n)
) )
. (12)

Let ρ̃(n) = λ̃(n)
µ denote the load of each queue. Note that λ̃(n) < λ

but λ̃(n) → λ as n → ∞. Specifically,

λ − λ̃(n) = O
(
(k(n))2

n

)
.

5.1 Lemmas Needed for Theorem 4.1
We first show in Lemma 5.1 that, over a finite time interval with

proper length, any k(n) queues in the n-server system S(n)
are

asymptotically independent as the number of servers n → ∞.

Lemma 5.1. For any time τ (n) with τ (n) = O
(
n1/2

k (n)

)
,

dTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
= O

((
k(n)

n1/4

)
2

)
, (13)

which goes to 0 as n → ∞.

Lemma 5.2 states that the time interval τ (n) in Lemma 5.1 is long

enough for the systems S(n)
and S̃(n)

to be close to steady state.

Lemma 5.2. For any time τ (n) with τ (n) = O
(
n1/2

k (n)

)
,

dTV

(
π
(n,k (n))
τ (n) ,π (n,k (n))

)
= O

((
k(n)

n1/4

)
2

)
, (14)

and

dTV

(
π̃
(n,k (n))
τ (n) , π̃ (n,k (n))

)
= O

((
k(n)

n1/4

)
2

)
. (15)

The distribution π̃ (n,k (n))
is the joint distribution of the steady-

state workloads of k(n) independent queues, each with arrival rate

λ̃(n) and mean service time 1/µ. Since λ̃(n) → λ as n → ∞, π̃ (n,k (n))
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approaches the product distribution π̂ (k (n))
in Theorem 4.1, which

is for k(n) independent queues each with arrival rate λ and mean

service time 1/µ. This is formally stated in Lemma 5.3.

Lemma 5.3.

dTV

(
π̃ (n,k (n)), π̂ (k (n))

)
= O

((
k(n)

n1/4

)
2

)
. (16)

5.2 Proof of Theorem 4.1 Given Lemmas
Proof. The proof of the asymptotic independence in (5) in The-

orem 4.1 is straightforward given the lemmas. Pick any τ (n) with

τ (n) = O
(
n1/2

k (n)

)
. Then

dTV

(
π (n,k (n)), π̂ (k (n))

)
≤ dTV

(
π (n,k (n)),π (n,k (n))

τ (n)

)
+ dTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
+ dTV

(
π̃
(n,k (n))
τ (n) , π̃ (n,k (n))

)
+ dTV

(
π̃ (n,k (n)), π̂ (k (n))

)
= O

((
k(n)

n1/4

)
2

)
.

Therefore, under the condition that k(n) = o(n1/4), there holds

lim

n→∞
dTV

(
π (n,k (n)), π̂ (k (n))

)
= 0.

Next we prove the job delay asymptotics in (6) in Theorem 4.1.

Recall that π (n,k (n))
and π̂ (k (n))

are distributions of workloads. Be-

low we compute the distributions of T (n)
and T̂ (n)

using π (n,k (n))

and π̂ (k (n))
, which allows us to bound the distance between the

distributions of T (n)
and T̂ (n)

using dTV

(
π (n,k (n)), π̂ (k (n))

)
. By the

representations ofT (n)
and T̂ (n)

in (2) and (3), we have that for any

τ ≥ 0,��P(T (n) ≤ τ
)
− P

(
T̂ (n) ≤ τ

) ��
=

�����∫w ∈Rk (n)+

(k (n)∏
i=1
P(wi + Xi ≤ τ )

)
dπ (n,k (n))(w)

−
∫
w ∈Rk (n)+

(k (n)∏
i=1
P(wi + Xi ≤ τ )

)
dπ̂ (k (n))(w)

�����
≤

∫
w ∈Rk (n)+

(k (n)∏
i=1
P(wi + Xi ≤ τ )

)
·
��dπ (n,k (n))(w) − dπ̂ (k (n))(w)

��
≤

∫
w ∈Rk (n)+

��dπ (n,k (n))(w) − dπ̂ (k (n))(w)
��

= 2dTV

(
π (n,k (n)), π̂ (k (n))

)
.

Therefore,

lim

n→∞
sup

τ ≥0

���P(T (n) ≤ τ ) − P
(
T̂ (n) ≤ τ

) ���
≤ lim

n→∞
2dTV

(
π (n,k (n)), π̂ (k (n))

)
= 0.

□

5.3 Proof of Lemmas
Proof of Lemma 5.1

Proof. In order to bounddTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
, we first write

dTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
≤ P

(
W (n,k (n))(τ (n)) , W̃ (n,k (n))(τ (n))

)
≤ P

(
W (n,k (n))(t) , W̃ (n,k (n))(t) for some t ∈ [0,τ (n)]

)
,

where the first inequality follows from a standard property of

total variation distance. By the coupling between S(n)
and S̃(n)

,

W (n,k (n))(t) andW̃ (n,k (n))(t) are different for some time t ∈ [0,τ (n)]
only when at least one job arrival during [0,τ (n)] selects more than

one queue from

{
1, . . . ,k(n)

}
in system S(n)

. We denote this event

by E. Then

dTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
≤ P(E).

So it suffices to prove that

P(E) = O
((

k(n)

n1/4

)
2

)
for τ (n) with τ (n) = O

(
n1/2

k (n)

)
. The remainder of this proof is dedi-

cated to bounding P(E).
Let p(n) denote the probability for a job arrival to select less than

or equal to 1 queue from queues 1, 2, . . . ,k(n) in system S(n)
. Then

p(n) =

(n−k (n)

k (n)
)( n

k (n)
) + k(n)

(n−k (n)

k (n)−1
)( n

k (n)
) .

Let A be the number of job arrivals during [0,τ (n)]. Then

P(E) =
∞∑
j=0
P(A = j)P(E | A = j)

=

∞∑
j=0

(Λ(n)τ (n))je−Λ(n)τ (n)

j!

(
1 −

(
p(n)

) j )
= 1 − e−Λ

(n)τ (n)(1−p(n)), (17)

where (17) follows from the definition of the Poisson generating

function. We calculate p(n) as follows:

p(n) =

(n−k (n)

k (n)
)( n

k (n)
) + k(n)

(n−k (n)

k (n)−1
)( n

k (n)
)

=
(n − k(n))!
(n − 2k(n))!

(n − k(n))!
n!

(
1 +

(k(n))2

n − 2k(n) + 1

)
=

(
1 − k(n)

n

) (
1 − k(n)

n − 1

)
. . .

(
1 − k(n)

n − k(n) + 1

)
·
(
1 +

(k(n))2

n − 2k(n) + 1

)
≥

(
1 − k(n)

n − k(n) + 1

)k (n) (
1 +

(k(n))2

n − k(n) + 1

)
.
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Since (
1 − k(n)

n − k(n) + 1

)k (n)

= e
k (n)

ln

(
1− k (n)

n−k (n)+1

)
= e

− (k (n))2

n−k (n)+1
+O

( (k (n))3

(n−k (n)+1)2
)

= 1 − (k(n))2

n − k(n) + 1
+O

(
(k(n))4

(n − k(n) + 1)2

)
,

we have

1 − p(n) ≤ 1 −
(
1 − k(n)

n − k(n) + 1

)k (n) (
1 +

(k(n))2

n − k(n) + 1

)
= O

(
(k(n))4

(n − k(n) + 1)2

)
.

Recall that

Λ(n)k(n) = nλ, τ (n) = O

(
n1/2

k(n)

)
.

Thus,

Λ(n)τ (n)(1 − p(n)) = O
((

k(n)

n1/4

)
2

)
.

Consequently, inserting this to (17) yields

P(E) = O
((

k(n)

n1/4

)
2

)
,

which completes the proof of Lemma 5.1. □

Proof of Lemma 5.2
Proof. We first prove (14). For system S(n)

, we consider the

following coupling between two copies of the workload process.

In one copy, the system starts from empty queues, i.e., this is the

workload process (W (n)(t), t ≥ 0) we have introduced. The other
copy, which we denote by (W (n)(t), t ≥ 0), starts from its station-

ary distribution, i.e., the distribution ofW
(n)(0) is π (n)

. Then the

distribution ofW
(n)(t) is π (n)

for any t . We let these two copies

have the same arrival processes, and each arriving task has the

same service time under both queueing processes.

By this coupling,W
(n)
i (t) ≤W

(n)
i (t) for any time t and any i . For

each i = 1, 2, . . . ,k(n), let τ (n)i be the earliest time that the workload

W
(n)
i is 0, i.e.,

τ
(n)
i = min

{
t :W

(n)
i (u) = 0 for some u ∈ [0, t]

}
.

Let

τ
(n)
0
= max

{
τ
(n)
1
, . . . ,τ

(n)
k (n)

}
.

ThenW
(n)
i (t) =W (n)

i (t) for any t ≥ τ
(n)
0

and any i = 1, 2, . . . ,k(n).
To show (14) in Lemma 5.2, which we restate here for reference

dTV

(
π
(n,k (n))
τ (n) ,π (n,k (n))

)
= O

((
k(n)

n1/4

)
2

)
, (14) (Restated)

it suffices to prove that

P(τ (n)
0
> τ (n)) = O

((
k(n)

n1/4

)
2

)
. (18)

To see that this is sufficient, we first note that

dTV

(
π
(n,k (n))
τ (n) ,π (n,k (n))

)
≤ P

(
W (n,k (n))(τ (n)) ,W (n,k (n))(τ (n))

)
. (19)

By the definition of τ
(n)
0

,W (n,k (n))(τ (n)) ,W
(n,k (n))(τ (n)) if and

only if τ
(n)
0
> τ (n). So (19) further implies

dTV

(
π
(n,k (n))
τ (n) ,π (n,k (n))

)
≤ P(τ (n)

0
> τ (n)), (20)

and thus (18) implies (14).

Now we prove (18). Note that the distribution of τ
(n)
i does not

depend on n since each individual (W (n)
i (t), t ≥ 0) evolves as an

M/G/1 queue with arrival rate λ and service time distribution G,

and τ
(n)
i is a busy period started by the amount of work in steady

state. Thus, by standard results on busy periods (see, e.g., [14]),

E[τ (n)i ] = λд2

2(1 − ρ)2
, (21)

where д2 is the second moment of G, which is a constant. By

Markov’s inequality,

P(τ (n)i > τ (n)) ≤
E[τ (n)i ]
τ (n)

. (22)

Since τ
(n)
0
= max{τ (n)

1
,τ

(n)
2
, . . . ,τ

(n)
k (n) }, by the union boundwe have

P(τ (n)
0
> τ (n)) ≤

k (n)∑
i=1
P(τ (n)i > τ (n))

≤ k(n)

τ (n)
λд2

2(1 − ρ)2

= O

((
k(n)

n1/4

)
2

)
.

This is (18) and thus it completes the proof of (14).

The proof of (15) in Lemma 5.2 is very much similar to the proof

of (14). We obtain (15) by noting that each (W̃ (n)
i (t), t ≥ 0) with

i = 1, 2, . . . ,k(n) is an M/G/1 queue with arrival rate λ̃(n) < λ and

following arguments similar to those in the proof of (14). □

Proof of Lemma 5.3
Proof. This proof has a similar flavor to the proofs of Lem-

mas 5.1 and 5.2. Recall that

(
W̃ (n,k (n))(t), t ≥ 0

)
, the workload

processes of the first k(n) queues in system S̃(n)
, are k(n) inde-

pendent M/G/1 queues each with arrival rate λ̃(n) and service

time distribution G . We couple this with

(
ˆW (k (n))(t), t ≥ 0

)
, where

ˆW (k (n))(t) =
(
Ŵ1(t), . . . ,Ŵk (n) (t)

)
is the workload vector of k(n)

independent M/G/1 queues each with arrival rate λ and service

time distributionG. Then π̂ (k (n))
is its stationary distribution. We
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will prove the bound on dTV
(
π̃ (n,k (n)), π̂ (k (n)))

by showing that(
W̃ (n,k (n))(t), t ≥ 0

)
and

(
ˆW (k (n))(t), t ≥ 0

)
are close.

Now we specify the coupling. All the queues start from empty,

i.e., Ŵi (0) = W̃ (n)
i (0) = 0 for all i = 1, 2, . . . ,k(n). When there is a

task arrival to some queue of
ˆW (k (n))

, we let a task arrive to the

corresponding queue of W̃ (n,k (n))
with probability

λ̃(n)
λ , and let

these two tasks require the same service time. So with probability

1 − λ̃(n)
λ there is no task arrival to W̃ (n,k (n))

.

We pick a time τ (n) = O
(
n1/2

k (n)

)
. Let π̂

(k (n))
τ (n) denote the distribution

of
ˆW (k (n))(τ (n)). Then

dTV

(
π̃ (n,k (n)), π̂ (k (n))

)
≤ dTV

(
π̃
(n,k (n))
τ (n) , π̂

(k (n))
τ (n)

)
+ dTV

(
π̃
(n,k (n))
τ (n) , π̃ (n,k (n))

)
+ dTV

(
π̂
(k (n))
τ (n) , π̂

(k (n))
)
.

Noting Lemma 5.2, we have

dTV

(
π̃
(n,k (n))
τ (n) , π̃ (n,k (n))

)
= O

((
k(n)

n1/4

)
2

)
, (23)

dTV

(
π̂
(k (n))
τ (n) , π̂

(k (n))
)
= O

((
k(n)

n1/4

)
2

)
. (24)

Next we bound dTV

(
π̃
(n,k (n))
τ (n) , π̂

(k (n))
τ (n)

)
using arguments similar to

those in the proof of Lemma 5.1. By the coupling,
ˆW (k (n))(t) and

W̃ (n,k (n))(t) are different for some t ∈ [0,τ (n)] only when some

task arrives to
ˆW (k (n))

but not to W̃ (n,k (n))
. We denote this event

by E. Then

dTV

(
π̃
(n,k (n))
τ (n) , π̂

(k (n))
τ (n)

)
≤ P(E).

So the remainder of this proof is dedicated to bounding P(E).
Consider the time interval [0,τ (n)]. Let A be the number of task

arrivals to
ˆW (k (n))

during this time interval. Then

P(E) =
∞∑
j=0
P(A = j)P(E | A = j)

≤
∞∑
j=0

(λk(n)τ (n))je−k (n)λτ (n)

j!
j

(
1 − λ̃(n)

λ

)
(25)

= k(n)τ (n)(λ − λ̃(n)),

where we have used a union bound for (25). By definition,

λ̃(n) =
Λ(n)

k(n)

(
1 −

(n−k (n)

k (n)
)( n

k (n)
) )

≥ Λ(n)

k(n)

(
1 −

(
1 − k(n)

n

)k (n) )
=

Λ(n)

k(n)

(
(k(n))2

n
+O

(
(k(n))4
n2

))
= λ +O

(
(k(n))2

n

)
.

Therefore,

P(E) = O
((

k(n)

n1/4

)
2

)
,

which completes the proof. □

5.4 Proof of Corollary 4.2
Corollary 4.2 (Restated). Consider an n-server system in the

limited fork-join model with k(n) = o(n1/4), job arrival rate Λ(n) =
nλ/k(n), and exponentially distributed service times with mean 1/µ.
Then the steady-state job delay, T (n), converges as:

lim

n→∞
sup

τ ≥0

����P(T (n) ≤ τ
)
−

(
1 − e−(µ−λ)τ

)k (n) ���� = 0, (7) (Restated)

Specifically, if k(n) → ∞ as n → ∞, then

T (n)

Hk (n)/(µ − λ) ⇒ 1, as n → ∞, (8) (Restated)

where Hk (n) is the k(n)-th harmonic number, and further,

lim

n→∞
E
[
T (n)]

Hk (n)/(µ − λ) = 1. (9) (Restated)

Proof. When the service times are exponentially distributed,

each queue is an M/M/1 queue and thus the cdf of the task delay at

each queue, F , is given by

F (τ ) = 1 − e−(µ−λ)τ .

Then the convergence in (7) directly follows from Theorem 4.1.

To prove the weak convergence of
T (n)

Hk (n)/(µ−λ)
in (8), we first

note that

T̂ (n)

Hk (n)/(µ − λ) ⇒ 1, as n → ∞,

which is a direct implication of the standard result in the asymptotic

theory of extremes (see, e.g., Theorem 8.12 in [6]). Combining this

with (7) yields (8).

To prove the convergence of the expectation in (9), we actu-

ally need the stochastic dominance shown in Theorem 4.3. The

expectation in (9) can be written as

E
[
T (n)]

Hk (n)/(µ − λ) =
∫ ∞

0

P

(
T (n)

Hk (n)/(µ − λ) > τ

)
dτ .

By Theorem 4.3, for any τ ≥ 0,

P

(
T (n)

Hk (n)/(µ − λ) > τ

)
≤ P

(
T̂ (n)

Hk (n)/(µ − λ) > τ

)
.

Since

T̂ (n)

Hk (n)/(µ − λ) ⇒ 1, as n → ∞,

and

E
[
T̂ (n)]

Hk (n)/(µ − λ) =
∫ ∞

0

P

(
T̂ (n)

Hk (n)/(µ − λ) > τ

)
dτ = 1,
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by the General Lebesgue Dominated Convergence Theorem (see,

e.g., Theorem 19 in [29]), we can take the limit inside the integral

and using (8), get

lim

n→∞
E
[
T (n)]

Hk (n)/(µ − λ) =
∫ ∞

0

lim

n→∞
P

(
T (n)

Hk (n)/(µ − λ) > τ

)
dτ

=

∫
1

0

1dτ

= 1,

which completes the proof. □

5.5 Explaining o(n1/4) and Possible Extensions
In this section we first explain in a bit more detail where the con-

dition k(n) = o(n1/4) comes from. Recall that in our proof of Theo-

rem 4.1, we choose a finite time instance τ (n) and decompose the

distance dTV

(
π (n,k (n)), π̂ (k (n))

)
in Theorem 4.1 into the four dis-

tances in Lemmas 5.1–5.3 accordingly. To understand the result, it

helps to return to these lemmas. Instead of directly choosing τ (n)

as O
(
n1/2

k (n)

)
, now we keep τ (n) as a variable.

• The distance in (13) of Lemma 5.1 becomes

dTV

(
π
(n,k (n))
τ (n) , π̃

(n,k (n))
τ (n)

)
= τ (n)O

(
(k(n))3

n

)
. (26)

This is the distance between the limited fork-join system, S(n)
,

and the system whose first k(n) queues are independent, S̃(n)
,

at time τ (n). Intuitively, the longer τ (n) is, the more jobs are ex-

pected to arrive during [0,τ (n)], and thus the more likely it is

that the first k(n) queues in S(n)
deviate from the independent

queues in S̃(n)
. Careful calculation yields that the distance be-

tween S(n)
and S̃(n)

at time τ (n) increases linearly with τ (n) as
shown in (26).

• The distances in (14) and (15) in Lemma 5.2 become

dTV

(
π
(n,k (n))
τ (n) ,π (n,k (n))

)
=

1

τ (n)
O(k(n)), (27)

and

dTV

(
π̃
(n,k (n))
τ (n) , π̃ (n,k (n))

)
=

1

τ (n)
O(k(n)). (28)

These are the distances between the system state at time τ (n)

and the steady state for systems S(n)
and S̃(n)

, respectively.

Intuitively, a long τ (n) brings the system close to steady state. So

as shown in (27) and (28), these distances decrease with τ (n).
• The distance in (16) of Lemma 5.3 becomes

dTV

(
π̃ (n,k (n)), π̂ (k (n))

)
= τ (n)O

(
(k(n))3

n

)
+

1

τ (n)
O(k(n)). (29)

This distance has this sum form since it is bounded in a similar

way to the distances in Lemma 5.1 and 5.2.

To make the sum of the distances in (26)–(29) as small as possible,

we should choose τ (n) such that these distances are equal, which

leads to the choice

τ (n) = O

(
n1/2

k(n)

)

and a total distance of

O
©«
(
k(n)

n1/4

)
2ª®¬ .

Therefore, for this distance to converge to zero, we need the condi-

tion that k(n) = o(n1/4).
We acknowledge that k(n) = o(n1/4) is not the optimal threshold

for asymptotic independence to hold. In fact, one can improve the

result to k(n) = o
(

n1/3

log
m n

)
for somem using more delicate bounding

techniques in Lemma 5.2. However, our main contribution is the

generalization from the asymptotic independence of a constant
number of queues to that of a growing number of queues. So we

choose to present the case k(n) = o(n1/4) to not obscure the main

idea with technical details.

As an interesting complement to the asymptotic independence

result, we also show that when k(n) = Θ(n) and the service times

are exponentially distributed, any number of queues are not asymp-

totically independent. The formal statement and its proof are given

in Theorem A.1 in Appendix A. It then remains an open problem

whether there exists a critical value for k(n), where smaller k(n)

yields asymptotic independence and larger k(n) does not.

6 NON-ASYMPTOTIC REGIME: PROOF OF
INDEPENDENCE UPPER BOUND

Theorem 4.3 (Restated). Consider an n-server system in the
limited fork-join model with k(n) ≤ n. Then the steady-state job
delay, T (n), is stochastically upper bounded by the job delay given by
independent task delays as defined in (3), T̂ (n), i.e.,

T (n) ≤st T̂ (n), (10) (Restated)

where “≤st ” denotes stochastic dominance. Specifically, for any τ ≥ 0,

P
(
T (n) > τ

)
≤ P

(
T̂ (n) > τ

)
= 1 − (F (τ ))k

(n)
. (11) (Restated)

Themain tool we will use is the theory of associated random vari-

ables. For convenience of reference, we give the formal definition of

association and some properties that we will use in Appendix B. We

refer interested readers to [8] for further details. Intuitively, associ-

ation is a form of positive correlation among random variables. If a

set of random variables are associated, then the maximum of them

is stochastically upper bounded by the maximum of independent

versions of them. Since the delay of a job is the maximum of its task

delays, to show Theorem 4.3, it thus suffices to show association

of the task delays. This further boils down to showing association

among the workloads of any k(n) queues in steady state since each

task delay is the workload of the queue that the task is sent to plus

the service time of the task.

Such an association result has been proven for the classical fork-

joinmodel [26] wherek(n) = n, but the approach of the proof breaks
down once we have k(n) < n. The proof idea there is to observe the
system at each job arrival time, and show that the numbers of tasks

sent to different queues are associated. This proof idea is widely

used in the literature to establish association (see, e.g., [18, 31]),

but it does not work in the limited fork-join model when k(n) < n.
We can think of the process of assigning a job’s tasks to queues as

a balls-and-bins problem, where the k(n) tasks correspond to k(n)

9



balls, the queues are the bins, and the number of balls thrown in

each bin is the number of tasks sent to each queue. When k(n) = n,
it is obvious that the numbers of balls in the bins are associated

since they are all exactly equal to one. But when k(n) < n, the
numbers of balls in the bins are actually negatively associated by a

classical result [16]! However, one should not be discouraged since

this does not mean that the steady-state workloads are negatively
associated.

In our proof, we develop a novel technique that we call “Pois-

son oversampling”, where we observe the system not only when

jobs arrive but also at the jump times of a Poisson process that is

independent of everything else. In the existing approach where the

system is observed only at job arrival times, there is always one

job arrival at each observation time. But with oversampling, there

could be one or zero job arrivals at each observation time. Recall

that jobs arrive with rate Λ(n)
. Let the additional Poisson process

have rate β (n). Then in the corresponding balls-and-bins problem,

with probability Λ(n)/(Λ(n) + β (n)), k(n) balls are thrown into k(n)

distinct bins chosen uniformly at random, and with probability

β (n)/(Λ(n) + β (n)), there are no balls at all. We will see in the proof

that, surprisingly, now the numbers of balls thrown into any k(n)

bins become associated with properly chosen β (n). This enables us
to show association of steady-state workloads.

Remark. Before we present the proof, we remark that it may be
possible to explore the monotonicity of the workload process to estab-
lish association [5, 15, 21].1 However, the results in [5, 15, 21] assume
either a finite or a compact state space. It may be possible to generalize
the results from a finite state space [5, 15] to a countable state space
for some Markov chains, which then can be applied to our problem
for certain phase-type service time distributions. To further deal with
more general service time distributions, we may be able to utilize the
existing results for a compact state space [21]. But there we need to
compactify the state space and verify a condition on the generator of
the workload process. We do not pursue such an approach here.

Proof. Recall that

T (n) = max

{
T
(n)
1
,T

(n)
2
, . . . ,T

(n)
k (n)

}
,

where T
(n)
i denotes the steady-state task delay at queue i . Then

to prove the stochastic dominance, it suffices to prove that T
(n)
1

,

T
(n)
2
, . . . ,T

(n)
k (n) are associated [8, Theorem 5.1].

We start by noting that it is sufficient to prove that the steady-

state workloads,W
(n)
1

(∞),W (n)
2

(∞), . . . ,W (n)
k (n) (∞), are associated.

The sufficiency follows from the fact that eachT
(n)
i can be expressed

in the following form:

T
(n)
i =W

(n)
i (∞) + Xi ,

where X1,X2, . . . ,Xk (n) represent the service times of tasks so

they are i.i.d.∼ G and independent of everything else. Then

T
(n)
1
,T

(n)
2
, . . . ,T

(n)
k (n) are nondecreasing functions of W

(n)
1

(∞),
W

(n)
2

(∞), . . . ,W (n)
k (n) (∞),X1,X2, . . . ,Xk (n) . So by Properties (P1)

1
We thank Prof. XYZ for suggesting this possible approach.

and (P2) in Lemma B.2, T
(n)
1
,T

(n)
2
, . . . ,T

(n)
k (n) are associated when

W
(n)
1

(∞),W (n)
2

(∞), . . . ,W (n)
k (n) (∞) are associated.

All that remains is prove the claim thatW
(n)
1

(∞),W (n)
2

(∞), . . . ,
W

(n)
k (n) (∞) are associated. We will work with a discrete-time Markov

chain constructed from the continuous-time workload process

(W (n)(t), t ≥ 0). Specifically, we consider a Poisson process, de-

noted by (B(t), t ≥ 0), that is independent of everything else. Let

the rate of this Poisson process be β (n), which will be specified

later in (32). Then we sample the workload process (W (n)(t), t ≥ 0)
at time instances right before either a job arrival or an event of

the Poisson process (B(t), t ≥ 0). Let such time instances be de-

noted by {Us , s = 0, 1, . . . } with U0 = 0. This gives us a discrete-

time Markov chain, which we denote by (Φ(n)(s), s = 0, 1, . . . ), i.e.,
Φ
(n)
i (s) = W

(n)
i (U −

s ), whereW
(n)
i (U −

s ) is the workload of queue i

right before time Us . Since (Φ(n)(s), s = 0, 1, . . . ) is constructed
by sampling the workload process more often than the job arrival

process, we call this technique “Poisson oversampling”.

We first claim that (Φ(n)(s), s = 0, 1, . . . ) converges to a well-

defined steady state Φ(n)(∞) and that Φ(n)(∞) andW (n)(∞) are
identically distributed. This claim can be proven by showing that

(Φ(n)(s), s = 0, 1, . . . ) is aperiodic and positive Harris recurrent

and then appealing to the PASTA property [22]. We omit the proof

of this claim since the aperiodicity is straightforward to check

and the positive Harris recurrence follows from the rather stan-

dard Foster-Lyapunov criteria using the quadratic Lyapunov func-

tion [23]. With this claim, it then suffices to prove that Φ
(n)
1

(∞),
Φ
(n)
2

(∞), . . . ,Φ(n)
k (n) (∞) are associated.

We assume that Φ
(n)
i (0) = 0 for every i = 1, 2, . . . ,n. We will

prove that Φ
(n)
1

(s),Φ(n)
2

(s), . . . ,Φ(n)
k (n) (s) are associated for any s ≥ 0

by induction on s . Then Φ
(n)
1

(∞),Φ(n)
2

(∞), . . . ,Φ(n)
k (n) (∞) are associ-

ated since Φ(n)(s) ⇒ Φ(n)(∞) as s → ∞ [8].

Base Step: Φ(n)
1

(0),Φ(n)
2

(0), . . . ,Φ(n)
k (n) (0) are associated since they

are all zero.

Inductive Step: Assuming that Φ
(n)
1

(s),Φ(n)
2

(s), . . . ,Φ(n)
k (n) (s) are

associated for some s ≥ 0, we will show that Φ
(n)
1

(s + 1),Φ(n)
2

(s +
1), . . . ,Φ(n)

k (n) (s + 1) are associated. By Lindley equation,

Φ
(n)
i (s + 1) =

(
Φ
(n)
i (s) + Yi (s) − ∆U (s)

)+
, (30)

where Yi (s) is the service time needed by the task that arrives to

queue i at time Us , and ∆U (s) = Us+1 −Us . Note that at time Us ,
there may be no task arrival to queue i , either because there is no
job arrival or because there is a job arrival but it does not send any

tasks to queue i . So we can write Yi (s) as
Yi (s) = Ai (s) · Xi (s),

where Ai (s) equals to either 1 or 0, representing the number of

task arrivals to queue i at time Us , and Xi (s) is a r.v. with dis-

tribution G and is independent of everything else, representing

the service time. Then Φ
(n)
i (s + 1), i = 1, 2, . . . ,k(n) are nonde-

creasing functions of the Φ
(n)
i (s)’s,Ai (s)’s,Xi (s)’s and −∆U (s)with

i = 1, 2, . . . ,k(n). We can see that each of the following four sets
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n = 16384, k = 25

n = 1024, k = 10

n = 64, k = 4

n = 4, k = 1 n = 4, k = 2

n = 64, k = 8

n = 1024, k = 32

n = 16384, k = 128

n = 16384, k = 645

n = 1024, k = 101

n = 64, k = 12

n = 4, k = 2

n = 16384, k = 6208

n = 1024, k = 512

n = 64, k = 42

n = 4, k = 3

Figure 2: Tail distributions of job delays in the limited fork-join systems and the independence upper bounds.

of r.v.’s,

{
Φ
(n)
1

(s),Φ(n)
2

(s), . . . ,Φ(n)
k (n) (s)

}
, {A1(s),A2(s), . . . ,Ak (n) (s)},

{X1(s),X2(s), . . . ,Xk (n) (s)}, and {−∆U (s)}, is independent of the
union of others. So to show that Φ

(n)
i (s + 1), i = 1, 2, . . . ,k(n) are

associated, it suffices to show that each of these sets is a set of

associated r.v.’s.

(i) The Φ
(n)
i (s), i = 1, 2, . . . ,k(n) are associated by assumption.

(ii) The Xi (s), i = 1, 2, . . . ,k(n) are associated since they are

independent.

(iii) The r.v. −∆U (s) is associated since a single r.v. is associated.

(iv) We now prove that Ai (s), i = 1, 2, . . . ,k(n) are associated.
We note that here they do not satisfy the lattice condition in the

celebrated FKG inequality [10]. For conciseness of notation, letA =
(A1(s),A2(s), . . . ,Ak (n) (s)). To show association, it suffices to prove

that for all binary-valued, (entrywisely) nondecreasing functions f
and д [8],

E[f (A)д(A)] ≥ E[f (A)]E[д(A)]. (31)

By construction, it is clear that A ∈ {0, 1}k (n)
. If either f or д

always has constant value 0 or 1, then (31) trivially holds. So we

can focus on the case that neither f nor д is a constant function. In

this case, by the monotonicity of f and д, we have f
(
(0, . . . , 0)

)
=

д
(
(0, . . . , 0)

)
= 0 and f

(
(1, . . . , 1)

)
= д

(
(1, . . . , 1)

)
= 1. Note that at

each sample time Us , the probability that there is a job arrival is

Λ(n)/(Λ(n) + β (n)). Then

E[f (A)д(A)] ≥ P
(
A = (1, . . . , 1)

)
· f

(
(1, . . . , 1)

)
д
(
(1, . . . , 1)

)
=

Λ(n)

Λ(n) + β (n)
1( n

k (n)
) .

Since f (a) ≤ 1,д(a) ≤ 1 for any a ∈ {0, 1}k (n)
,

E[f (A)] =
∑

a∈{0,1}k (n) :
a,(0, ...,0)

P(A = a)f (a)

≤ P(A , (0, . . . , 0))

=
Λ(n)

Λ(n) + β (n)
p,

where p is the probability that a job arrival does not sent tasks to

queues 1, 2, . . . ,k(n), so p does not depend on β (n) and

p =


1 if k(n) > n/2,

1

( n
k (n))

( ( n
k (n)

)
−

(n−k (n)

k (n)
) )

if k(n) ≤ n/2.

Similarly,

E[д(A)] ≤ Λ(n)

Λ(n) + β (n)
p.

We choose any β (n) such that

Λ(n)

Λ(n) + β (n)
1( n

k (n)
) ≥

(
Λ(n)

Λ(n) + β (n)

)
2

p2,

i.e., any β (n) such that

β (n) ≥ Λ(n)
((

n

k(n)

)
p2 − 1

)
. (32)

Then

E[f (A)д(A)] ≥ E[f (A)]E[д(A)],
which completes the induction, and thus completes the proof. □
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7 EVALUATION VIA SIMULATIONS
In this section we use simulation to explore the regimes of k(n) that
are not covered by our theoretical analysis. Specifically, our theo-

retical analysis has established that when k(n) = o(n1/4), any k(n)
queues are asymptotically independent and the job delay converges

to the independence upper bound; when k(n) = Θ(n), any number

of multiple queues are bounded away from being independent. We

therefore simulate the limited fork-join systems for the following

four settings between o(n1/4) and Θ(n): k(n) = n1/3, k(n) = n1/2,
k(n) = n2/3 and k(n) = n9/10. We simulate the n-server system for

n = 4, 64, 1024 and 16384 under each setting.

We compare the tail distribution (complementary cumulative

distribution function) of the job delay in each limited fork-join

system with the independence upper bound. Figure 2 shows the

results for systems with exponentially distributed service times and

load ρ = 2/3 on each individual queue. We see that for k(n) = n1/3,
the independence upper bound is strikingly accurate. For k(n) =
n1/2, the gap between the job delay and the independence upper

bound seems to be diminishing when n is large enough. But for

k(n) = n2/3, it is rather unclear if the job delay will converge to the

independence upper bound or not. Finally, when k(n) = n9/10, the
job delay evidently diverges from the independence upper bound.

We have also simulated systems for different loads (ρ = 1/3, 0.9)
and different service time distributions (deterministic, truncated

Pareto, hyperexponential), and similar phenomena are observed.

8 CONCLUSIONS
We study the limited fork-join model where there are n servers

in the system and each job consists of k(n) ≤ n tasks that are

sent to k(n) distinct servers chosen uniformly at random. A job is

considered complete only when all its tasks complete processing.

We characterize the delay of jobs both in an asymptotic regime

where n → ∞ and in the non-asymptotic regime for any n and any

k(n) = k .
For the asymptotic regime, we show that under the condition

k(n) = o(n1/4), the workloads of any k(n) queues in the n-server
system are asymptotically independent, and the delay of a job there-

fore converges to the maximum of independent task delays. For the

non-asymptotic regime, we show that the steady-state workloads

of any k(n) queues are associated, and therefore assuming indepen-

dent task delays yields an upper bound on the job delay. Our results

provide the first tight characterization of job delay in the limited

fork-join model, and the upper bound is tighter than other existing

upper bounds.

From a technical perspective, we make the following two con-

tributions: (1) Our asymptotic results open up new regimes for

asymptotic independence: k(n) queues are shown to be asymptot-

ically independent, where k(n) is allowed to grow with n instead

of being a constant, as was previously studied. (2) We develop new

proof techniques to establish association in steady state. We be-

lieve that the results and techniques in this paper will shed light

on related problems such as order statistics in coded data storage

systems, job redundancy, load-balancing algorithms.
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A NON-INDEPENDENCE RESULT FOR
K (N ) = Θ(N )

Theorem A.1. Consider an n-server system in the limited fork-
join model with k(n) = Θ(n), job arrival rate Λ(n) = nλ/k(n), and
exponentially distributed service times with rate µ. Let π (n,2) denote
the joint distribution of the steady-state queue lengths for any two
queues in the n-server system. Let π̂ (2) denote the joint distribution
of the steady-state queue lengths of two independent M/M/1 queues,
each with load ρ. Then there exists an ϵ > 0 and n0 > 0, such that
for any n > n0, dTV

(
π (n,2), π̂ (2)) > ϵ .

Proof. We assume that k(n) = pn for a constant p with 0 <

p ≤ 1. Then the job arrival rate is given by Λ(n) = λ/p, which is a

constant. So we rewrite Λ(n)
as Λ for conciseness.

Let ϵ =
pλ(1−ρ)2
2(11Λ+8µ) . We will specify n0 later. Suppose by contra-

diction that dTV
(
π (n,2), π̂ (2)) ≤ ϵ for all n > n0. We will show that

this assumption contradicts with the balance equations of the first

two queues in the limited fork-join system with n servers.

We first write out the balance equations for the Markov chain

formed by the queue lengths of the first two queues. Consider a

job arrival to this n-server system. Let p
(n)
0

be the probability that

no task arrives to the first two queues, and p
(n)
1

be the probability

that exactly one task arrives to the first two queues. Let p
(n)
2
=

1 − p
(n)
0

− p
(n)
1

be the probability that two tasks arrive to the first

two queues. We can compute these probabilities as follows:

p
(n)
0
=

(
n − 2

k

) / (
n

k

)
→ p0 := (1 − p)2 as n → ∞,

p
(n)
1
=

2

(n−2
k−1

)(n
k
) → p1 := 2p(1 − p) as n → ∞,

p
(n)
2
=

(n−2
k−2

)(n
k
) → p2 := p

2
as n → ∞.

Recall that the joint distribution of the steady-state queue lengths

of the first two queues is π (n,2)
. Then the balance equation of the

first two queues for the state (1, 1) can be written as

0 = π (n,2)(1, 1) · (p(n)
1

Λ + p
(n)
2

Λ + 2µ)

−
(
1

2

π (n,2)(0, 1)p(n)
1

Λ +
1

2

π (n,2)(1, 0)p(n)
1

Λ (33)

+ π (n,2)(0, 0)p(n)
2

Λ + π (n,2)(1, 2)µ + π (n,2)(2, 1)µ
)
.

Let the right-hand-side of (33) be denoted by R(π (n,2)). Let

a1 = (p(n)
1

− p1)Λ
(
π (n,2)(1, 1) − 1

2

π (n,2)(0, 1) − 1

2

π (n,2)(1, 0)
)

+ (p(n)
2

− p2)Λ
(
π (n,2)(1, 1) − 1

2

π (n,2)(0, 1)

− 1

2

π (n,2)(1, 0) − π (n,2)(0, 0)
)
,

a2 = (π (n,2)(1, 1) − π̂ (2)(1, 1))(p1Λ + p2Λ + 2µ)

− 1

2

(π (n,2)(0, 1) − π̂ (2)(0, 1) + π (n,2)(1, 0) − π̂ (2)(1, 0))p1Λ

− (π (n,2)(0, 0) − π̂ (2)(0, 0))p2Λ

− (π (n,2)(1, 2) − π̂ (2)(1, 2) + π (n,2)(2, 1) − π̂ (2)(2, 1))µ .

Then since π̂ (2)(q1,q2) = (1 − ρ)2ρq1+q2 for any (q1,q2) ∈ Z2+,

R(π (n,2)) = a1 + a2 + π̂
(2)(1, 1) · (p1Λ + p2Λ + 2µ)

−
(
1

2

π̂ (2)(0, 1)p1Λ +
1

2

π̂ (2)(1, 0)p1Λ

+ π̂ (2)(0, 0)p2Λ + π̂ (2)(1, 2)µ + π̂ (2)(2, 1)µ
)

= a1 + a2 − pλ(1 − ρ)4. (34)

We choose n0 such that for any n > n0, |p(n)
1

− p1 | ≤ ϵ and

|p(n)
2

− p2 | ≤ ϵ . Then it is not hard to see that |a1 | ≤ 3Λϵ . By

the assumption that dTV
(
π (n,2), π̂ (2)) ≤ ϵ , we have that |a2 | ≤

8(Λ+ µ)ϵ . By the choice of ϵ , |a1 +a2 | ≤ (11Λ+ 8µ)ϵ = 1

2
pλ(1− ρ)2.

Therefore,R(π (n,2)) < 0 by (34), which contradicts with the balance

equation (33). This completes the proof of Theorem A.1. □
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B DEFINITION AND SOME PROPERTIES OF
ASSOCIATION

Definition B.1 (Association [8]). We say random variables X1,

X2, . . . ,Xm are associated if for all (entrywisely) nondecreasing

functions f and д,

E[f (X1,X2, . . . ,Xm )д(X1,X2, . . . ,Xm )]
≥ E[f (X1,X2, . . . ,Xm )]E[д(X1,X2, . . . ,Xm )]. (35)

Lemma B.2 ([8]). Associated random variables have the following
properties:

(P1) Nondecreasing functions of associated random variables are
associated.

(P2) If two sets of associated random variables are independent of
one another, then their union is a set of associated random
variables.

(P3) If a sequence of random vectors X (u) ⇒ X as u → ∞ and
for each u, the entries of X (u) are associated, then the entries
of X are associated.
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