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ABSTRACT
Classifying URLs is essential for different applications, such
as parental control, URL filtering and Ads/tracking pro-
tection. Such systems historically identify URLs by means
of regular expressions, even if machine learning alternatives
have been proposed to overcome the time-consuming main-
tenance of classification rules. Classical machine learning
algorithms, however, require large samples of URLs to train
the models, covering the diverse classes of URLs (i.e., a
ground truth), which somehow limits the applicability of
the approach. We here give a first step towards the use of
Generative Adversarial Neural Networks (GANs) to classify
URLs. GANs are attractive for this problem for two rea-
sons. First, GANs can produce samples of URLs belonging
to specific classes even if exposed to a limited training set,
outputting both synthetic traces and a robust discrimina-
tor. Second, a GAN can be trained to discriminate a class of
URLs without being exposed to all other URLs classes – i.e.,
GANs are robust even if not exposed to uninteresting URL
classes during training. Experiments on real data show that
not only the generated synthetic traces are somehow realis-
tic, but also the URL classification is accurate with GANs.
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1. INTRODUCTION
URL classification is an important problem with practical

applications in different domains. Examples include the fil-
tering of URLs in firewalls and intrusion detection systems,
the monitoring of web browsing in parental control systems,
the protection against malware or viruses, and the blocking
of Ads and/or trackers. Given the URL strings, such sys-
tems associate labels to the URLs, e.g., malicious or benign,
tracker or non-tracker etc.
Depending on the nature of the application, URL classi-

fication can be solved with simple pattern matching. For
example, Ad blocking systems normally rely on lists of reg-
ular expressions that match all domains serving Ads, which
are then blocked in users’ browsers. Yet, such lists of reg-
ular expressions are long, with hundreds of thousand of ex-
pressions, and must be constantly monitored for keeping the
pace with new services. Similarly, some other applications
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require more advanced URL classification schemes, since the
URLs to be classified do not follow well-defined structures
or are constantly mutated to evade the detection (e.g., as in
fast flux attacks).

Machine learning has already been used for URL classi-
fication. Previous works about URL classification typically
rely on features extracted using domain knowledge. Ma et
al. [5] use a combination of lexical analysis and host-based
features to train online machine learning algorithms, while
Kan et al. [3] fragment URLs into chunks and use them for
building features and training regression models. Zarras et
al. [10] train classifiers exploiting headers of both malicious
and benign HTTP transactions to identify malware. These
works build classical two-class models, requiring large sam-
ples of both benign/malicious or normal/abnormal classes
to train the models.

More recently, Generative Adversarial Neural Networks
(GANs) have been proposed for unsupervised learning. In-
troduced in 2014 [2], GANs are used for image generation [1]
and recognition [7] and text-to-photo synthesis [11]. GANs
could be used for URL classification too, promising to learn
patterns of specific URL classes from limited training sets.

In this paper we propose to use GANs [2] for the classifi-
cation of URLs. Our system builds a GAN for each class of
URLs without the need of observing samples of other classes
during training. The final classification is done by evaluating
the output of the several trained discriminator models. Our
experimental results, using URLs from a type of malware, a
CDN delivering video, a firewall and OS updates, show that
the GAN-based approach not only provides promising ac-
curacy, but also generates artificial examples that resemble
well the real data. As such, our GAN-based approach can
be used to produce synthetic traces, reducing the need for
real training data for learning models.

Finally, we release as open source the code for training
the models, as it can be of interest for other researchers to
reproduce results.1.

2. SYSTEM ARCHITECTURE
The system builds several GANs, each composed of a gen-

erator and a discriminator model, as depicted in Figure 1a.
Provided with random noise and feedback from the discrim-
inator, the generator task is to produce URLs that are simi-
lar to the real data, trying to make up artificial samples that
cannot be distinguished by the discriminator. The discrim-
inator task instead is to distinguish between real URLs in

1https://github.com/marty90/URL-generator
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(a) Training: we train a model for each URL class.
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Figure 1: System architecture.

the training set and the artificial ones produced by the gen-
erator. As the two models compete to win their adversar-
ial tasks, artificial samples become more and more realistic,
whereas the discriminator becomes robust to noise.

In a first phase, we train a set of GANs in isolation, one for
each class of interest. Then, the trained discriminators are
used to pinpoint the target URLs in datasets of unknown
URLs. The attractiveness of such an approach is that no
samples of other URL classes are needed to train each GAN.
Training is done using one class at a time – i.e., we train a
generator and a discriminator model for each type of URL.
Both the generator and the discriminator consist of simple
feedforward multilayer perceptron networks.2

The neural network models URLs as tensors as follows.
Each character of a URL is encoded in a one-hot vector,
with an alphabet including the 26 lower-case letters plus 11
characters allowed in URLs (e.g., /, & and =). The encoded
letters compose the input tensor, which has a fixed length
of 200 characters. A special value indicates the absence of
a character, and is used to handle URLs shorter than 200
characters. Training is done in batches of 256 elements,
using an Adam optimizer with low learning rate and dropout
layers to prevent overfitting [8]. At each step, the generator
and the discriminator are trained separately.

The system uses the trained discriminators to classify un-
known URLs, as sketched in Figure 1b. Each URL, once
encoded in a tensor, is provided as input to the discrimi-
nators, and the resulting output scores are evaluated. By
design, discriminators’ output are in the [0− 1] interval. In-
tuitively, a high value for a specific class suggests that the
URL might belong to it. Thus, one could select the classes
of a URL based on thresholds.

Fixing thresholds requires ingenuity though. The system
calculates thresholds directly from the training data. Sep-
arately for each class, the system computes the empirical
cumulative distribution function for the scores obtained by
the discriminator when run on the training data. At classi-
fication time, URLs producing output scores that are likely
samples from the distribution obtained during training are
classified as belonging the given class. To this end, we ap-
ply the well-known boxplot rule to identify confidence in-
tervals [4]. We compute them from the scores obtained at

2Testing other architectures such as recurrent, convolutional
or locally-connected networks is left for future work.

Table 1: Datasets of URL categories.

Name #URLs Description
Video 8 620 Video Streaming chunks
Checkpoint 17 451 CheckPoint firewall updates
Windows 5 277 Windows update archives
Tidserv 227 TidServ malware
Others 24 667 Other URLs

training time, and employ obtained thresholds at classifica-
tion time. We will show later that values for such thresholds
do not play a critical role in classification – i.e., the system
is not sensitive to such values (see Section 4.2).

3. DATASETS
We rely on a real-world dataset of URLs observed in an

operational network. The dataset has been collected by
Tstat [9], a passive sniffer that, beside per-flow statistics,
registers (anonymized) summaries of the URLs requested in
plain-text HTTP requests.

From log files collected during May 2018, we have manu-
ally selected sets of URLs related to specific services, which
are classified based on our domain knowledge. Details of the
datasets are reported in Table 1, while some examples are
included in Table 2. The datasets include more than 50 k
unique URLs. Three classes of URLs refer to benign activity,
i.e., OS updates, updates from a specific firewall software,
and URLs used by a CDN that streams video. Tidserv in-
cludes URLs generated by a malware that exploits a fast-
flux technique to avoid blacklist-based blocking.3. For these
four URL classes, we have randomly split the datasets into
a training set and a test set before starting the experiments.
The former is used for training our GANs, whereas the lat-
ter is used for evaluating classification performance.

Others include around 25 k unique URLs picked at ran-
dom. They represent other types of URLs that are not of
interest for the classification. Thus, they are not exposed to
the GANs during the training phase, but are mixed with the
interesting classes during the performance evaluation. Our

3https://www.symantec.com/security-center/writeup/
2008-091809-0911-99
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Table 2: Examples of real (top) and generated (bottom) URLs in our datasets.

Checkpoint

cws.checkpoint.com:80/malware/malware/6.0?resource=ew5rnhlvdS5jb20=&key=123456

cws.checkpoint.com:80/malware/malware/6.0?resource=ew91xyjlchjpb3iuy29t&key=123456

cws.checkpoint.com:80/malware/malware/6.0?resource=1mq4lcktllu41;hpkiquy254bvrbqrz 22

cws.checkpoint.com:80/malware/malware/6.0?resource=mgyu/oiuz25o-z0lr=2yf2=bw1u0ij

Video

hsslive.pcdn.any.sky.it/21920/sport1.isml/qualitylevels(850000)/fragments(video=926861730399413)

hsslive.pcdn.any.sky.it/22362/tg24go.isml/qualitylevels(918000)/fragments(video=2367722273934346)

hsslive.pcdn.any.sky.it/21920/sport1.isml/qualitylevels(69000)0frag7gmjsta(dio.o=a=626ig6030266t)

hsslive.pcdn.any.sky.it/21920/sport1.isml/qualitylevels(140000/frfgmentn(auvid ot9=6868v7f3090b0))

Windows

download.windowsupdate.com/d/msdownload/update/others/2017/12/25977383 ec7aee1613760fa7e455d31063bc36cbc0f9f669.cab

download.windowsupdate.com/c/msdownload/update/others/2018/01/25995591 4009a2614eae0d1c66a5bc25fd4b70e0e338bd19.cab

download.windowsupdate.com/c/msdownload/update/others/2017/0q/2r?a7497 2f.db16087cb9r1i919516y6z9a7e1h5cvci75.cab

download.windowsupdate.com/d/msdownload/update/others/2017/08/2ay0-440 57f75ua73907afw18fbbndczc681d88e2f6edfi.cab

Tidserv

wuptywcj.cn/6zl0fomx7k5qpas5dmvyptuumczzptam [...] wmjg3jnnpzd0wjmvuzz13d3cuz29vz2xllml0jne9oikmedg2ptmy07k

wuptywcj.cn/hvv1yqbx6y6jfko7dmvyptuumczzptam [...] mwmjg3jnnpzd0wjmvuzz13d3cuz29vz2xllml0jne9zm90byz4ody9mzi=35x

wuptywcj.cnocom/jke17l5j5vs5dmvyptvypcqzmia [...] tcmc2lkzdamjmm9zczlbmcud3d3lvdlb2lszs59zczxpwzwcwbhb2iwb2lng

wwuptywcj.cn.mom/jkb06l8j5v74dmvmpmvyptqumi [...] cmc2nkpd0mjmquzc1lb9c9d3dvz2xvlmlsjn5pzczxpwfwdhbhymiyb2lhbgq

system has to identify only the URLs of the given classes in
the test set, marking all other URLs as Others.

4. RESULTS
We now report results for both the generation and classi-

fication steps. Experiments are run on a commodity server
equipped with 2 Intel Xeon® CPUs with 20 cores each, and
128 GB of RAM. All experiments lasted less than 45 min-
utes. Training is 5 000-epochs long, but we notice that after
2 000 epochs on average the GANs start to converge – i.e.,
generated URLs look like real ones, and the discriminator
stops spotting differences among synthetic and real traces.

4.1 Generated URLs
We first analyze the generated URLs, i.e., the output of

the generator models trained using the training sets. In Ta-
ble 2, we provide examples of original (top) and generated
(bottom) URLs for all datasets. We can see that our net-
works correctly catch the common structure of URLs, such
as hostname, shared parts of the path etc. Some details
of the URLs, however, are not completely understood and
still contain semantically wrong information. See, for ex-
ample, the first generated URL for the Windows dataset,
where /2017/0q/ clearly breaks the year/month-based URL
schema used by the Windows update service. This may be a
consequence of the dropout of neurons used to prevent over-
fitting, and potentially would be overcome by using larger
training sets. As we will show later, the discriminator still
successfully identifies URLs despite those glitches.

To gauge more information about the quality of synthetic
traces, we compute high-level statistics about the generated
URLs. After the training phase, we use the generator to
get 500 URLs per class, and analyze how similar the syn-
thetic and original URLs are. We employ a modified version
of the Levenshtein distance where the metric is normalized
over the length of input URLs [6], with 0 meaning that a
couple is exactly the same, and 1 meaning that the couple is
completely dissimilar. We compute the Cumulative Distri-
bution Function (CDF) for the similarity between couples of
URLs. Separate CDFs are computed for all pairs in the orig-
inal training sets, only among URLs in the generated sets,
and pairs of generated/original URLs. Figure 2 shows the
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Figure 2: Distance of original and generated URLs.

results for Checkpoint , Video, with similar figures obtained
for the other classes. Distances for the generated vs origi-
nal pairs are slightly larger than distances calculated using
pairs of URLs in the original sets – see how green lines are
shifted to the right. Yet, the three distributions have sim-
ilar values and shapes, showing that generated URLs look
like the real ones on average.

4.2 Classification Performance
We now analyze the classification performance – i.e., the

capacity of the system in distinguishing URLs belonging to
the target classes from other unknown URLs. Remind that
we mix the test sets with the Others dataset, and then we
give URLs to the trained discriminator models. Their out-
puts, ranging in the [0 − 1] interval, are compared to the
thresholds derived at training time. A URL is classified as
belonging to the class with maximum GAN output, among
the GANs outputting numbers larger than the respective
thresholds. If no threshold is reached, the URL is marked
as Others.

We first evaluate the absolute values provided by the dis-
criminator models. Intuitively we want the GANs to provide
high scores for URLs belonging to their target classes and
low scores for all other URLs. Figure 3 illustrates the scores
for two classes. The picture shows that the discriminators
have learned how to recognize samples of the given classes,
giving them always high scores. Other samples receive in-
deed low scores. The plots also mark in gray the calculated
values for the thresholds of these classes.
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Table 3: Confusion matrix and performance indicators.

Dataset Predicted Recall AUC

R
ea

l

Checkpoint Video Tidserv Windows Others
Checkpoint 6,031 0 0 0 67 0.98 0.99
Video 0 2,944 0 0 74 0.97 0.99
Tidserv 0 0 59 0 5 0.92 0.97
Windows 0 5 0 1,829 19 0.98 0.99
Others 6 0 46 58 24,557 0.93 -
Precision 0.99 0.99 0.56 0.96 0.99
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Figure 3: Scores of target URLs versus Others URLs.
Thresholds derived from training data are marked in gray.

We then analyze the classification performance of the
overall system when identifying URLs. We report in Ta-
ble 3 the confusion matrix over all elements in the test set,
along with recall and precision per class. Recall is very high
for all classes, meaning that almost all URLs of the studied
classes are identified among the Others URLs. In terms of
precision, we find high values for all classes, but Tidserv ,
where precision is 0.56. Remind that Tidserv is a fast-flux
attack that produces high variance in the URLs. The sam-
ples in the training set (only around 110 URLs) are likely
insufficient for allowing the GAN to build a reliable model
for the class. Studying such trade-offs is among our future
works, and will help to better understand the applicability
and limits of the GAN-based approach.

Overall, our preliminary results are very promising, show-
ing large potential for the application of GANs to URL gen-
eration and classification.

5. CONCLUSION AND FUTURE WORK
We presented a system that given samples of particular

URL classes learns (i) how to generate synthetic samples of
the URLs, and (ii) how to identify the URLs among other
(uninteresting) URLs. The goals are achieved using Gener-
ative Adversarial Neural Networks, which combine a gener-
ator and a discriminator model. To the best of our knowl-
edge, this is the first attempt to use GANs in this context.

Our system works without knowledge of every URL cat-
egory, learning patterns of target URL classes without re-
quiring large samples of other URLs. Results show that the
generator is able to catch and learn URL structures, whereas
the discriminator presents good classification performance.

This work is our preliminary effort in applying deep learn-
ing and generative neural networks for network security. Fu-
ture work will include not only the application of other net-
work setups for both the generator and discriminator mod-
els, but also the extension of the experiments to millions of
URLs belonging to hundreds of URL classes.
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