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ABSTRACT
Mobile base stations mounted on unmanned aerial vehicles
(UAVs) provide viable wireless coverage solutions in chal-
lenging landscapes and conditions, where cellular/WiFi in-
frastructure is unavailable. Operating multiple such air-
borne base stations, to ensure reliable user connectivity, de-
mands intelligent control of UAV movements, as poor signal
strength and user outage can be catastrophic to mission crit-
ical scenarios. In this paper, we propose a deep reinforce-
ment learning based solution to tackle the challenges of base
stations mobility control. We design an Asynchronous Ad-
vantage Actor-Critic (A3C) algorithm that employs a cus-
tom reward function, which incorporates SINR and outage
events information, and seeks to provide mobile user cover-
age with the highest possible signal quality. Preliminary re-
sults reveal that our solution converges after 4×105 steps of
training, after which it outperforms a benchmark gradient-
based alternative, as we attain 5dB higher median SINR
during an entire test mission of 10,000 steps.

Keywords
Emergency networks, mobility control, airborne base sta-
tions, deep reinforcement learning, AI in networks.

1. INTRODUCTION
Public safety and civilian operations intrinsically require

stable wireless connectivity for both rescue services and post-
disaster recovery. Contemporary military activities such as
territorial search and emergency response also rely heavily
on reliable data connections. Certain areas under extreme
conditions, e.g. following earthquakes, floods, fire, and nu-
clear plant emergencies, are hardly accessible with legacy
emergency cellular infrastructure carried on vans (i.e. cells-
on-wheels). Meanwhile, following recent hardware/software
advances, commercially available unmanned aerial vehicles
(UAVs) are increasingly used for various applications, in-
cluding aerial imaging and asset inspection. As a result, reg-
ulatory bodies, such as the Federal Aviation Administration
(FAA), defined rules to enforce the safe operation of com-
mercial UAVs [14]. The telecom industry also shows growing
interest in deploying UAV-mounted base stations (BSs) for
sporadic cellular services, with an emphasis on challenging
use cases. For instance, following hurricane Marie’s dev-
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astation of Puerto Rico, AT&T obtained FAA approval to
fly UAVs for temporary cellular coverage [3]. Similarly, Al-
taeros rolled out SoftTower, an UAV carrying multi-sector
LTE BS to provide connectivity to hard-to-reach areas [2].

Providing wireless connectivity in a large area to a sizeable
group of users, including citizens and rescue teams (e.g. po-
lice force, medical personnel, or firefighters), often requires
more than one airborne vehicle with networking capabilities.
In contrast to cellular networks, where the BS deployment
is carefully planed and conducted, BSs mounted on UAVs
are mobile themselves. Coordination among flying BSs and
movement control, to set up a core network, provide the
needed coverage, and ensure sufficient and stable user data
rates, is of paramount importance, whilst any signal failure
can be catastrophic to critical missions. Stochastic wire-
less channels and user equipment (UE) movement uncer-
tainty, however, render the BS mobility management task
complex, involving an exponentially growing action space as
the number of BSs increases. Traditional solutions, such as
optimal control, require precise environment models, which
are hardly obtainable in real-time and require strong as-
sumptions that can compromise their usefulness. Heuristic
alternatives only produce sub-optimal results.

In this paper, we tackle these challenges facing UAV mo-
bility control with a deep reinforcement learning (DRL) ap-
proach. We devise a domain-specific reward function that
encourages the UAV mobility control agent to provide high
quality signal coverage to users, and we leverage an Asyn-
chronous Advantage Actor-Critic (A3C) scheme to learn the
optimal action policy via interaction with the wireless envi-
ronment. Our design is motivated by the rapid convergence
requirements specific to emergency settings. Simulation re-
sults demonstrate that our solution converges rapidly, and
once trained, it makes accurate movement control decisions,
outperforming a benchmark gradient-based scheme that has
perfect knowledge of the stochastic channel. More precisely,
we obtain a 5dB median SINR improvement, while only re-
quiring current location and association information.

2. SYSTEM MODEL
We consider a fleet of B UAVs, each carrying one BS. The

BSs run LTE protocol stacks with simplified functionality,
e.g. disabled MME authentication, to simplify the overall
architecture and prolong network lifetime. Each BS serves
a number of UEs and is connected wirelessly (via satellite
or µ-/mm-wave links) to a central controller. The controller
hosts a DRL agent that learns to make optimal decisions



about the BSs mobility control.
Wireless Channel: We consider BSs share the same

frequency band, i.e. reuse factor 1. We focus on the down-
link communication, assuming the SINR is directly related
to the quality of service received by UEs. The transmit
power employed by BS b to a user is Pb and we denote
Gb,u the channel gain between BS b and user u, which is a
linear combination of the free-space path-loss lb,u, shadow
fading, and antenna gain Ga. The log-distance path-loss
lb,u can be computed following the 3GPP model for urban
cellular scenarios with standard coefficients α and β, i.e.
lb,u = α+ β log(Db,u), where Db,u is the Euclidean distance
between b and u. Given Ib ⊂B\b the set of BSs that inter-
fere with b and N0, the power of per-channel additive white
noise, the SINR observed by UE u is:

SINRb,u =
PbGb,u

N0 +
∑

b′∈Ib
Pb′Gb′,u

(1)

UE Mobility and LTE Handovers: We assume a ref-
erence group mobility model, by which users cluster around
group centres that move along random way points [6]. The
motivation for employing this mobility model is that, in the
envisioned emergency scenario, rescue and medical teams,
or fire fighters, rush towards a target scene while the pop-
ulation may be moving away from that location. Further,
as both UEs and BSs continuously change their position,
we follow the standard LTE handover policy, i.e. employ
hysteresis and time-to-trigger to avoid ping-pong effects.
Specifically, when the received signal strength is below a
certain threshold SINRth for a duration of ttrigger, the user
can be handed off to adjacent cells, if a new BS provides an
SINR higher by σ than the value currently measured.

3. REINFORCEMENT LEARNING FOR
AIRBORNE BS CONTROL

We address mobility control of airborne BSs in emergency
settings, considering stochastic wireless channels and user
mobility, as modelled in Sec. 2. While this is a challenging
problem, deep reinforcement learning (DRL) has achieved
promising results in similarly complex tasks, such as Atari
game play [10] and adaptive video streaming [9]. This mo-
tivates us to take a DRL approach, formulating our task
as Markov Decision Process (MDP), and designing an A3C
based solution tailored to our target networking scenario.

Markov Decision Process (MDP): The BSs mobility
control can be modelled as a 5-tuple MDP,< S,A,P,R, γ >,
where S is the state of the environment including BSs lo-
cations, LB(t), UEs locations, LU (t), and their associations,
αB,U (t). A is the action taken by each agent, i.e. the move-
ment direction of each BS, Mb(t), and P is the state tran-
sition matrix. Precisely, the system moves from state s to
s′ following action a according to Pa

ss′ = P[St+1 = s′|St =
s,At = a]. R is the reward function, which quantifies the
system performance following an action, i.e. Ra

s = E[Rt+1|
St = s,At = a]. In our problem, this will depend on the
SINR experienced by the UEs, as we detail next. γ ∈ [0, 1]
is the discount factor, which dictates the importance of fu-
ture rewards.

A policy π is the probability distribution of taking an
action a in a given state s, i.e. π(a|s) = P[At = a|St = s].
To attain an optimal policy π∗, we employ a DRL method
and give an overview of the learning procedure in Fig. 1.

UAV	Fleet	Agent	->	Policy	πEnvironment	i.e.	LTE	
Wireless	channel

States	st

Action	at

Reward	rt

Location	and	association	
of	UEs	and	BSs

Average UE	SINR;
Number	of	UE	outage

Each	UAV’s	
movement	at	time	t

st+1 rt+1

Figure 1: Overview of the learning loop for the proposed
intelligent UAV mobility management agent.

As shown in the figure, the agent updates a policy π. By
this, at time step t, given state st including UEs and BSs
locations and their associations, the agent takes an action at,
according to which each drone b ∈ B moves from (xb, yb, zb)
to (x′b, y

′
b, zb). The agent thereby receives a reward rt, and

the system enters a new state st+1. This process is repeated
until the episodic return, i.e. the sum of future discounted
rewards, converges. This indicates that an optimal policy
was found.

Proposed Solution: There exist two main approaches
to solving control problems through reinforcement learning
(RL): policy-gradient RL methods learn by ‘trial-and-error’
a policy, i.e. the probability distribution of actions to take
given the state of the environment; value-based methods
learn to estimate the value for each action. Combining these
two approaches, an actor-critic RL agent employs an ‘actor’
that performs actions to improve the policy, while a ‘critic’
makes judgements on the actor’s performance and learns to
estimate the action values.

To tackle the UAV mobility control problem, we propose
a custom asynchronous advantage actor-critic (A3C) algo-
rithm. A3C is a state-of-the-art actor-critic method that
exploits multi-threading to create several learning agents,
each exploring the state space in their own environment and
updating periodically a global neural network with learned
knowledge [11]. The key advantages of this approach are
that it can be trained on a CPU, it de-correlates past ex-
periences gained by each learning agent, and it converges
rapidly. Such paralleled learning is a viable alternative to
experience replay (i.e. Deep Q-Learning), as it removes large
memory requirements.

In our A3C-based solution, we employ two neural net-
works that have the most simple deep learning architecture,
i.e. the multi-layer perceptron (MLP). MLPs have fully con-
nected layers and the neurons in the hidden layers implement
non-linear activation functions of the output of the previous
layer. The parameters (weights and biases) of these func-
tions are obtained by training through backpropagation [7].
In our case, one of the MLPs acts as the actor and the other
as the critic. Both of them employ 2 hidden layers, each
consisting of 200 neurons.

We design a reward function that captures the specifics of
mobile users served by airborne BSs, aiming to ensure best
connectivity, i.e. highest SINR and lowest outage likelihood.
Hence, the proposed reward function is

R = θ ∗ SINR− Nout

NUE
, (2)



where SINR is the mean SINR computed across all the NUE

users, θ denotes a normalising factor, andNout is the number
of UEs whose SINR is below a minimum service requirement.

In what follows we discuss how we train the proposed algo-
rithm and present the results of the performance evaluation
campaign conducted.

4. EVALUATION
To evaluate the proposed A3C algorithm in UAV mobil-

ity control scenarios, we examine its convergence properties
and compare its performance with that of an SINR gradient
based benchmark.

4.1 Simulation Setup
We consider a 100×100 grid area, with a grid cell width

of 5m. Within this area, 40 users move in groups of 10 UEs,
following the group reference model [6], and are provided
with connectivity by BSs mounted on UAVs. For each user
we compute the SINR of the link to the serving BS, using the
model described in Sec. 2. A sample SINR heatmap and UE
locations are illustrated on the left in Fig. 2. The histogram
on the right shows the distribution of the SINR experienced
by users in this instance. The UAVs move at a fixed altitude,
i.e. 10m from the ground level. The movement of a BS at
each time step is chosen between 4 candidate directions (i.e.
N, S, W, E) towards adjacent points on the grid, or idling
(no move).

We train the DRL model with 10 random seeds, each
time with 1,000 training episodes. A single episode lasts
2,000 time steps and the locations the UAVs are reset to
the same coordinates at beginning of each episode. At each
discrete time step, the mobility control agent performs ac-
tions based on the current learning policy, and chooses from
54 = 625 possible actions to take (4 directions or movement
plus idling, 4 UAVs). The simulation parameters used are
summarised in Table 1.

Table 1: Simulation Parameters

Parameter Value

W
ir

el
es

s
C

h
a
n
n
el BS Transmit power 20 dBm

Antenna gain 2 dB
Log normal shadowing N (0, 2)
Gaussian noise -121 dBm
Handover time-to-trigger 3
Handover threshold 1 dB
Minimum SINR -5 dBm

L
ea

rn
in

g

Learning rate 0.0001
Discount factor 0.9
Number of A3C workers 4
Global update step 10
Normalising factor θ 0.05

The model is trained and tested on a 8-core desktop with
Intel Xeon W-2125 CPU clocked at 4.00GHz, and we em-
ploy Python libraries TensorFlow to implement the neural
networks [1].

Benchmark: To assess the performance of the proposed
DRL solution, we devise a benchmark SINR gradient based
method, and test it with the same network settings as with
the proposed DRL approach. At each time step, this bench-
mark computes the average SINR at the associated UEs
along each of the possible directions of movement. It then
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Figure 2: Left: SINR heatmap and UEs location (grey dots).
Right: The corresponding distribution of UEs’ experienced
SINR.
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Figure 3: Moving average of the episodic return during 1,000
training episodes with different random seeds. Solid line rep-
resents the mean; shaded area represents the region between
maximum and minimum return.

moves that UAV in the direction of the lowest average SINR.
By this approach, the aim is to avoid outage while maintain-
ing good signal quality for all the UEs served.

4.2 Simulation Results
Training Convergence: At the end of each episode, we

compute the moving average of the episodic return R as:

R = 0.01 ∗ rep + 0.99R, (3)

where rep is the total reward of the episode. To examine
the learning convergence, in Fig. 3 we plot the evolution of
R. The training converges within 200 episodes (i.e. 4 ∗ 105

steps), corresponding to approximately 2.5 hrs of training
in real world. Such training can be performed once during
pre-deployment stage, after which the agent can be used for
multiple missions, given the wireless channel characteristics
remain largely similar. Observe that during this phase the
proposed A3C solution improves the average episodic return
from around -50 to 100, with the minimum value being im-
proved from -280 to 80. Once trained, the agent can be used
directly to make decisions about BSs movement, according
to the current conditions.

Performance: Ultimately, we are interested in quanti-
fying the performance gains our DRL approach can attain
over other solutions, such as the SINR gradient-based bench-
mark considered. To this end, we test the trained neural
network model over 10,000 steps, resetting the environment
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Figure 4: CDF of the SINR attained by all users with the
proposed DRL over 10,000 testing steps, after 100, 500,
1,000, and 2,000 training episodes (EPs), and respectively
with the benchmark gradient method.

every 2,000 steps, and examine the signal quality provided
by both approaches. Specifically, in Fig. 4 we plot the cu-
mulative distribution (CDF) of the SINR experienced by all
users with the benchmark scheme and the proposed DRL
algorithm, studying also the impact of the number of train-
ing episodes (i.e. 100, 500, 1,000, and 2,000 episodes) on the
performance achieved.

The results confirm that our DRL solution achieves a 5dB
improvement of the median SINR, over the gradient-based
benchmark. If considering -5dB as the signal outage level,
the proposed DRL scheme only experiences approximately
5% user outage, which is one forth of that experienced by the
benchmark gradient method, i.e. 20%. The results further
confirm that after convergence, our learning algorithm per-
forms stably. Specifically, the distribution of the SINR after
2,000 training episodes achieves a median value that is only
marginally better than that of an algorithm trained over
500 episodes. We conclude that the proposed DRL scheme
for mobility control of airborne BSs attains more than 3×
higher median SINR and 4× lower outage rate compared to
the gradient-based benchmark. Furthermore, our solution
performs stably after training.

5. RELATED WORK
Fotouhi et al. propose a mobility model to improve spec-

tral efficiency in drone-based BS scenarios, though consider
fixed user group coverage without UE handover [4]. In [13],
Oueis et al. provide technical overview of LTE operation
for public safety. Orsino et al. then highlight that drones
carrying radio transceivers improve network coverage and
bring higher data rates to challenging locations [12]. Gross-
glauser and Tse study the per-user throughput in mobile
ad-hoc networks and conclude that performance can be im-
proved dramatically when BSs are mobile [5].

Employing deep learning to solve complex networking prob-
lems is becoming a hot research area [15]. For instance, Li et
al. leveraged supervised learning to optimise utility in back-
haul networks [8] and Mao et al. employed a reinforcement
learning technique for adaptive video streaming [9]. Ad-
vances in deep reinforcement learning (DRL) such as the
asynchronous actor-critic method (A3C) achieved remark-

able performance in game-play applications, using only half
the training time on a multi-core CPU [11]. To our knowl-
edge, our work is the first to employ DRL for airborne BS
mobility control.

6. CONCLUSION
In this paper, we introduced a deep reinforcement learning

solution for the mobility control of a fleet of UAV-mounted
base stations, with the goal of providing reliable service cov-
erage in scenarios where wireless infrastructure is unavail-
able. We took a A3C approach and designed a reward
function that captures the specifics of such scenarios. By
means of simulation experiments of our study reveals that
the proposed DRL algorithm converges fast, and achieves
5dB higher median SINR and 4× lower outage range, as
compared to a gradient-based benchmark solution.
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