
C U P V - A Visualization Tool for Generated Parsers

Alan Kaplan and Denise Shoup
Department of Computer Science

Clemson University
Clemson, SC 29634-0974

{kaplan,shoup}@cs.clemson.edu

Abstract

Compiler projects frequently use parser generators to
help students design and construct non-trivial transla-
tors. Unfortunately, the code and data structures pro-
duced by such generators, and hence the overall parser,
can be difficult to understand and debug. In this paper,
we present an extendible and flexible tool for visualizing
the operation of generated parsers. The objective of this
tool is to provide students with a deeper understanding
of parsing algorithms, data structures and techniques.

1 Introduction

Compiler courses are among the most challenging, yet
rewarding, courses in computer science curriculums,
since they integrate techniques from almost every area
in computer science, including language theory, data
structures, operating systems and software engineer-
ing. Central to most compiler courses is a substan-
tial project that requires the design and development
of a non-trivial compiler. This project typically plays
a significant role in helping students understand both
compiler theory and practice.

To help students build a compiler, projects frequently
use parser generator tools. In general, parser genera-
tor technology is extremely useful for rapidly creating
reliable parsers for non-trivial programming language
compilers. Tools based on this technology automatically
generate parsers by translating a simple input specifica-
tion of a programming language, based on a context-free
grammar and associated semantic actions, into program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3•00 Austin, TX, USA
@ 2000 ACM 1-58113-213-1/00/0003.. .$5.00

source code (such as Java or C++) . Parser genera-
tor tools exist for both LL 1 and LALR 2 class grammars
and support development in a variety of programming
languages including Ada, C, C-t-+ and Java. Promi-
nent examples include Yacc [7], Bison [5], AYacc [2] and
CUP [6].

Al though parser generators are valuable teaching and
software development tools, understanding and debug-
ging parsers produced by them can be very difficult for
students. One reason is that the input specification used
by a parser generator is not readily accessible inside the
generated parser. In order to debug a generated parser,
for example, students must resort to ad hoc techniques,
such as manually inserting trace statements into the se-
mantic actions of a grammar specification. Clearly, such
techniques can be tedious and frustrating for students,
and as a result, hinder rather than enable students' abil-
ity to learn about compiler construction. Another rea-
son that parser generators can pose problems for stu-
dents is that various internal data structures, such as
state transition tables and symbol stacks, are typically
hidden in generated parsers. This is unfortunate since
being able to view these data structures can better help
students understand their importance and role in the
operation of modern compilers. Finally, many students
find parsing algorithms, especially LALR parsing algo-
rithms, to be nonintuitive. For example, the order in
which productions in a grammar are selected and ap-
plied is implicit in the input specification: Students are
not given the opportunity to actually see the dynamic
properties of a generated parser as it executes.

As a step toward addressing some these shortcomings,
we are developing an approach to support visualization
of compilers. Our overall objective is to develop tech-
niques and tools that allow students to view all aspects
of a compiler as they implement and test their com-
piler project. In this paper, we describe a tool, called
CUPV, 3 for visualizing the operation of LALR gener-

1Left-to-right parse, Leftmost-derivation
2Look-ahead Left-to-right parse, Rightmost-derivation
3Clemson University Parser Visualizer

11

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330908.331801&domain=pdf&date_stamp=2000-03-01

ated parsers. Specifically, CUPV provides a graphical
user interface (GUI) to a parser, which shows the parser
stack, along with various other key data structures that
are used in the parser. CUPV can optionally depict
reductions as well as individual item sets. The CUPV
visualization tool has been developed as an extension to
CUP [6] - a Java-based parser generator tool.

The remainder of the paper is organized as follows. In
Section 2, we describe various features of the CUPV
visualization tool by applying it to a simple, though
illustrative example. In Section 3, we outline how
CUPV parsers can be customized for individual com-
piler projects. Section 4 provides an evaluation our ap-
proach. We conclude with a discussion of related work
in Section 5 and a summary in Section 6.

2 The CUPV Tool

The CUPV visualization tool is designed as an exten-
sion to CUP (Constructor of Useful Parsers) [6], a Java-
based parser generator. CUP translates a context-free
grammar specification of a language into a set of parsing
tables, which are then used to drive an LALR parsing
algorithm. In addition, semantic actions can be asso-
ciated with grammar productions by embedding Java
code in the input specification. This allows semantic
information, such as abstract syntax trees, to be calcu-
lated during a parse.

For example, Figure 1 shows a fragment of a typical
CUP input specification, in this case for a simple cal-
culator. The grammar has three productions, which
can recognize legal calculations (e.g., addition, subtrac-
tion, etc.) The specification includes declarations for
the various terminals and non-terminals defined by the
grammar. The types of semantic values associated with
terminals and non-terminals are also included. For in-
stance, a Java Integer is associated with the nontermi-
nal expr and terminal NUHBER. The semantic actions in
Figure 1 actually compute the value of an arithmetic
expression. Using this specification, CUP can create a
parser that recognizes and evaluates expressions.

CUPV extends CUP by producing a parser with
a graphical user interface (GUI). To help illustrate
CUPV, we will use the calculator example in Figure 1.
When a CUPV-generated parser is run, a GUI for the
parser will appear. Figure 2 shows the GUI when ap-
plied to the input string

3 * (5 % 2) - ((1 6 / 4) - 2) ;

The primary focus of the parser GUI is the parse stack
(left hand portion of Figure 1). Each element in the
parse stack is a button, which is labeled with a symbol
(terminal or nonterminal) and a parse state. As will be
discussed in in Section 2.2, clicking a stack button will

I* Terminal= (tolums z*turn*d by th* *ce~,u*=). *I
teTmlnal SDqI, PLUS, NIINS, TINES, DIVlDE, 1401);
t,lwmtaal tlKIIl~, LIP.AlL.IF, RPJLN~i(;
t ~ a . . 1 . I n t e g ~ IIT.n, mE~.;
I* Woa cend.aats *I
am= t ~ ' i . t aa l ObJe¢¢ ,xlmr_lts'¢ , *xpc.pex't;
=.oa tentf.tle.1 ZItegeyc ex[0¢;

/ * The J r * /
e:lt~r.11st : : - ex ' ~_ l t s t e:rjp.~_pa.t't:

1'
*xpr_part ;

,:xFr_part : : - * xFr : * SEmi
{ : System.out..X~rintlu (" - " + *) ; :) ;

*:x'pr : : - , x F r : , l PLl.IS *xFr : *2
{ : R ~ L T • new I i~teger(el. intV.It l t teO + e2.:lJ~tVa].tleO); : }
I
e x i t : e l NZ l~ ex'pr:e2
{ : RESULT " now lntegez.(el.tatYa].ueO - O2.:LntYLtue()); :}

Figure 1: Simple Calculator Specification

Figure 2: The Viewer Interface

display the semantic value associated with that symbol.
The GUI also can display other parser data structures
including the current state of the parser, the current
token in the input string, a log of actions performed
and details about reductions. In Figure 2, for instance,
the parser is currently in state 21, and the last action
performed was the reduction

<expr> ;:= <expr> MOD <expr>

2.1 Controlling Parser Execution

Parser execution is controlled with a slider bar (lower
right hand portion of Figure 2) that allows a user to
specify the number of steps the parser should execute
before waiting for interaction by a user. The Start-
/Continue/Stop button (shown as a Continue button in
Figure 2) is used to initiate a parse, and, subsequently,
to interrupt and continue the execution of the parser.

12

Figure 3: Display of a Semantic Value

For example, if the step increment is set to 4 when the
user clicks the Start button, the parser will execute four
steps and then stop until the user clicks the Continue
button. If the slider bar is set to a value of 0, then the
parse will continue to completion. At any time when
the parser is executing, the Stop button may be clicked
to interrupt execution. The parser will stop when it
completes the currently executing step and wait for the
Continue button to be clicked.

For example, in Figure 2, the parser is at a point where
it has processed the input string up to the first ')' char-
acter (token RPAREN). The <NUMBER> token with
value 3 has been read, shifted, and reduced to a <expr>
nonterminal with the same value. The <TIMES> and
<LPAREN> tokens have been read and shifted onto the
stack. The substring "5 % 2" has been read, shifted,
and reduced to the <expr> nonterminal with value 1.

2.2 Display of Semantic Values

As noted above, symbols are displayed by a CUPV
parser in the form of buttons on the stack. A sym-
bol that has an associated value is displayed with a la-
bel colored in pink, signifying that the button may be
clicked to display its semantic value. Figure 3 shows the
display for the <expr> symbol, whose value is 16. This
particular display can be customized to view arbitrary
semantic values. For example, in practical situations,
an abstract syntax subtree is often used as a seman-
tic value during parsing. This is feature is discussed in
greater detail in Section 4.

2.3 Displaying Reductions

The View-Reductions option can be used to warn users
when a reduction is about to occur. Sequences of sym-
bols that appear on the top of the stack will be high-
lighted (by changing their label color to green) when
the sequence matches a right-hand side of a production.
A status message "Getting ready to reduce" will also
appear. When the user clicks the Continue button, a
new window will appear containing a graphical display
of the reduction. Figure 4 shows the reduction

<expr> DIVIDE <expr> ::= <expr>.

This display shows the symbols that form the right-hand
side of the production as they appear on the parse stack,

Figure 4: A Reduction Display

Figure 5: Display of the Item Set for a State

the left-hand side terminal that will replace them on the
stack, the production matching the reduction, and the
previous and current states of the parser. As with all
symbol displays, any of the symbols in the reduction
display may be clicked to view their semantic values.

2.4 Viewing Parser States

The current state of the parser is displayed by a CUPV
parser as a labeled button. For example, in Figure 2,
the current state of the parser is state number 21. This
button may be clicked to display the item set for the
current state. Figure 5 shows the item set for state
number 21 in the calculator example. Each production
in the item set, along with the current position in the
production, is depicted. The "(*)" in each production
in the item set shown in Figure 5 is used to indicate
the current position of the parse.. Any of the produc-
tions in the item set may be clicked to present a display
of the lookahead for that production. The lookahead
contains the set of symbols which may follow the asso-
ciated production in an acceptable string. In Figure 6,
the lookahead is shown for the production:

expr ::= expr (*) PLUS expr

If at the end of input, the only symbol on the stack is
the start symbol for the grammar, then the string is
accepted. This means that the entire input string must
be reduced to the start symbol. Any condition other
than this causes the parser to report a syntax error.
If the parser reports a syntax error during a parse, a

13

LetE~
i~p ,~p DecLIst
i ~ ~ TypeDec. arrb~e

BeqExp

array.t ig :

l e t
type arrtype = array of int

in

end

Figure 6: Display the Lookahead for a Production
Figure 7: Display of an Abstract Syntax Tree and the
Tiger Input

warning window will appear on the screen.

2.5 Summary

A CUPV parser allows users to visualize the execution
of a generated parser. Data structures that are nor-
mally hidden from users are made explicit and may be
manipulated. This makes it easier for students to un-
derstand the operation of a parser. It also provides a
useful debugging facility since users can step through
the execution of parser. Students can examine the se-
mantics values, item sets, and lookaheads to determine
where in a specification an error originated. This al-
lows the student to concentrate on specific productions
or actions in the specification, reducing the amount of
work that must be done to correct the problem.

3 Customizing Semantic Displays

As shown in the previous section, a CUPV parser can
display semantic values associated with symbols by
clicking a button on the parse stack. In the calcula-
tor example, the semantic values are relatively simple
- just integer values. In a more realistic parser, the se-
mantic values can be quite complex. As noted, many
compiler projects require the creation of abstract syn-
tax trees as an internal representation. The CUPV tool
is quite flexible since it allows users to create displays
for any semantic values.

The CUPV tool is actually based on a general frame-
work that can be used to define and customize visual-
ization capabilities for generated parsers [9]. Although
the details of the framework are beyond the scope of
this paper, customized displays for semantic values can
be created by simply extending a CUPV-defined class.
This class defines the behavior for the parse stack but-
tons. Specifically, the class defines a method, called
getDisplay that creates and returns a Java Swing frame
(i.e., a JFrame object). The CUPV GUI invokes this
method when a parse stack element is clicked. Thus, a
user can have any semantic value displayed as along as
it can be depicted in a Java Swing frame component.

4 Evaluation

In this section, we provide some preliminary evidence
that demonstrates the utility of our approach. The
compiler project described in [1] is intended for com-
piler courses. It relies on the use of the JLex [3] lex-
ical analyzer generator and the CUP parser generator
in the creation of a compiler for an Algol-like program-
ming language called Tiger. The Tiger grammar has
approximately 50 tokens and almost 100 productions.
Tiger serves as a useful basis for evaluation since it is
a non-trivial language with which useful programs can
be written, and it makes use of abstract syntax trees
to represent the structure of a program. To test our
approach, we created a CUPV parser for this project.

Creating a CUPV parser for Tiger involved defining a
class that displays abstract syntax trees. As discussed
in Section 3, this basically requires extending the class
that defines parse stack buttons. For Tiger, any parse
stack button with an associated abstract syntax tree can
be clicked to display the content of the tree. Figure 7
shows an example display, along with the corresponding
Tiger input program.

Semantic values in the Tiger language are defined by
an Absyn package, which contains classes describing the
abstract syntax trees for various symbol types. Each
of the classes within the Absyn package extends one of
three classes: Absyn, DecList, or ExpList. By adding a
getDisplay method to each of these base classes, we are
able to create abstract syntax tree displays. Specifically,
the getDisplay method returns a JFrame containing the
tree rooted at the object.

Symbols with vaIues that are abstract syntax trees are
displayed in the CUPV parser with the label "AST."
When the developer clicks on a parser stack button, a
window containing the abstract syntax tree is depicted.
Handles to the left of the nodes allow users to open
or close branches of the tree. In Figure 7, the entire
abstract syntax tree is displayed.

This exercise illustrates that with minimal effort, a user
may expand the capabilities of CUPV. Any language
a t t r ibute for which a graphical display can be created

14

can be integrated into CUPV, allowing the developer
to visualize more effectively the execution of a parser
generated for that language.

5 Related Work

Several tools have been developed that provide graph-
ical depictions of an executing parser. Tools such as
Visual Yacc [10] and Gyacc [8] were created for the pur-
pose of visualizing parsers generated by Yacc. Other
tools, such as LRParse and LLParse [4], were developed
for the purpose of helping students understand parsing
techniques.

The Visual Yacc tool [10] was developed as a classroom
tool to assist in the teaching of grammar writing. It
does not focus on displaying the actions of a parser or
the content of parse tables. The developers of this sys-
tem did discover that the tool "could be used for debug-
ging as well as teaching," [10] but it was not developed
specifically for this purpose. A Yacc parser specification
must be modified by adding Motif calls before the visu-
alization tool may be used. This tool does not display
parser actions such as reductions; instead, the result of
the reduction is seen in its effect on the stack and parse
tree.

The GYacc tool [8] was created as an aid to the devel-
opment of valid grammars, but it can only be used with
Yacc-generated parsers. This tool is separate from the
generated parser; it displays a simulation of the parser
execution based on a Yacc specification and an input
string.

Ll~Parse [4] is a visualization tool developed for teach-
ing purposes. It graphically depicts the construction of
LR(1) parse tables from an input grammar and the use
of the tables to parse input strings. LLParse is a similar
tool for LL(1) parsers. These tools, however, can not
be used in conjunction with parser generators.

6 Summary

CUPV allows a user of the CUP parser generator to vi-
sualize the execution of a generated parser. This tool
was designed to make comprehending and debugging of
parser specification easier for students, by enabling the
visualization of several critical aspects of parser execu-
tion. Without such a tool, students are forced to rely
on more tedious and error-prone methods for compre-
hending and debugging generated parsers.

Anticipated future work includes the incorporation of
other visual aspects of compiler construction. The vi-
sualization could be expanded to include other phases
of compiler development, such as the creation of sym-
bol tables, the generation of intermediate code, and the
translation of intermediate code to actual code. Other

future directions include exploring ways of generaliza-
tion our framework so that visualization capabilities can
be incorporated into any parser generated tool.

References

[1] Appel, A. W. Modern Compiler Implementation
in Java. Cambridge University Press, Cambridge,
UK, 1998.

[2] Arcadia Environment Research Project, Depart-
ment of Information and Computer Science, Uni-
versity of California. Ayacc User's Manual, Arca-
dia Document UCI-94-01, version 1.1 ed. Irvine,
CA, Mar. 1994.

[3] Berk, E., and Dirichs, M. JLex: A lexical analyzer
generator for Java, 1998.

[4] Blythe, S. A., James, M. C., and Rodger, S. H.
Llparse and lrparse: Visual and interactive tools
for parsing. In Proceedings of the 25th Technical
Symposium on Computer Science Education (New
York, NY, USA, Mar. 1994), D. Joyce, Ed., vol. 261
of SIGCSE Bulletin, ACM Press, pp. 208-212.

[5] Donnelly, C., and StaUman, R. M. BISON - - the
YACC-compatible parser generator. Tech. rep.,
Free Software Foundation, 675 Mass Ave, Cam-
bridge, MA 02139, USA, Tel: (617) 876-3296, 1988.

I6] Hudson, S. E., Flannery, F., Ananian, C. S., Wang,
D., and Appel, A. W. CUP parser generator for
Java, Mar. 1998.

I7) Johnson, S. C. YACC - - Yet another compiler -
compiler. Computing Science Technical Report No.
32, Bell Laboratories, Murray Hill, N.J., 1975.

[8] Lovato, M. E., and Kleyn, M. F. Parser visualiza-
tions for developing grammars with yacc. In Pro-
ceedings of the 26th Technical Symposium on Com-
puter Science Education (New York, NY, USA,
Mar. 1995), vol. 27 of SIGCSE Bulletin, ACM
Press, pp. 345-349.

[9] Shoup, D. Visualizing lair generated parsers. Mas-
ters project report, Deparment of Computer Sci-
ence, Clemson-University, Clemson, SC, Aug. 1999.

[10] White, E., Deddens, L., and Ruby, J. Software vi-
sualization of LR parsing and synthesized attribute
evaluation. Technical Report TR98-01, George Ma-
son University, Computer Science, Apr. 6, 1998.

15

