
Recursion in Gradual Steps
(Is Recursion Really that Difficult?)

J..A.ngel Veldzquez-lturbide
Escuela Superior de CC. Experimentales y Tecnolog[a, Universidad Rey Juan Carlos

C/Tulipdn s/n, 28933 M6stoles, Madrid, Spain
a.velazquez@ escet.urjc.es

Abstract

We propose a gradual approach to teach recursion. Our main
assumption is that the difficulty in learning recursion does not
come from the recursion concept itself, but from its
interaction with other mechanisms of imperative
programming. We use this basic idea to propose a new
pedagogical approach. On the one hand, recursion is
introduced in a gradual way by means of three fields
(grammars, functional programming and imperative
programming). On the other hand, each instance of recursion
is explained so that all of its accompanying mechanisms are
clearly identified.

The approach has three main advantages. First, the teaching
of recursion is simplified because it is taught in a gradual
way. Second, the concept of recursion is isolated and
differentiated from other concepts or mechanisms associated
to particular instances of recursion. Last, the student perceives
recursion as a recurrent concept in the discipline of computer
science.

1 Introduction

Recursion is well-known as one of the most difficult topics in
computer science education. Being more precise, the
difficulty is in the teaching of recursion in imperative
languages. The main problem is the great complexity caused
by its accompanying programming constructs and
mechanisms. Sometimes the consequence is a
misunderstanding of imperative recursion itself, and others, a
misunderstanding of recursion usage.

Many approaches to teaching recursion in imperative
languages have been adopted, but none seems to be
satisfactory because they do not separate proper recursion
from such accompanying features. Some approaches
introduce models of recursion for imperative languages while

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advent
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3/00 Austin, TX, USA
@ 2000 ACM 1-58113-213-1/00/0003.. . $5.00

others introduce general models of recursion [5]. Some
researchers think that recursion must be explained using
abstract models [4], whereas others argue for concrete models
[20]. In any case, there is a general consensus in considering
recursion a fundamental concept in computer science [15].
Although (paradoxically!) not cataloged in the Computing
Curricula 1991 as a recurrent concept, we think that it is. As
such, many computer scientists think that it should not be
taught as an advanced topic, but it should be taught early
[1,71.

We do not ignore the inherent difficulty of the topic, and
therefore the difficulty of learning it. However, such a
problem has not been identified in other computer science
fields where recursion also appears. For instance, non-trivial
grammars are recursive, and it does not seem to be a problem
for students. Analogously, declarative programming
paradigms, such as functional or logic programming, rely
heavily on recursion and again it is not perceived as a
problem [12,14].

We think that this disparity of difficulties in learning
recursion often comes from a confusion of many educators
between recursion and imperative recursion. It is not clearly
explained that recursion in imperative languages is recursion
plus several mechanisms, such as parameter passing, control
stack, etc. We argue for an approach to the teaching of
recursion where all of the mechanisms and concepts involved
are clearly identified and isolated from the concept of
recursion.

Another source of difficulty for teaching recursion is the
complexity of mechanisms that appear in imperative
recursion. We argue that the learning curve is smoother if
recursion is not explained directly in imperative languages,
but in other fields. As a consequence, we adopt a gradual
approach, where several instances of recursion are introduced
in increasing level of difficulty by studying it in three fields:
grammars, functional programming and imperative
programming.

In summary, our proposal is two-fold. On Me oae hand,
recursion is introduced in a gradual way by means of its
instances in three fields. On the other hand, each instance of
recursion is explained so that all of its accompanying
mechanisms are clearly identified.

310

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330908.331876&domain=pdf&date_stamp=2000-03-01

The paper has the following structure. The second section
gives a global view to what we call a "gradual approach," by
showing examples of its successful application in other
computer science fields. The third section describes our
gradual approach to teaching recursion, with three subsections
corresponding to the three fields we propose to study
recursion. Section 4 contains a discussion on our proposal,
andin section 5 we summarize our conclusions.

2 Gradual Approaches in Computer Science

There are many topics in computer science which are better
addressed with a gradual approach. When we want to
design (or analyze) a product, we perform several relatively
simple steps. If the problem is difficult and the steps are
well chosen, the effort required to make sequentially these
steps is qualitatively smaller than solving it in one large
step.

The best known representative of this idea is stepwise
refinement [19]. This methodology advocates making a
program by following a sequence of steps. Initially, a vague
program is designed. At each of the following steps, the
programmer faces one design decision about program
construction. Finally, an executable program is obtained.
Notice that not only stepwise refinement has been used for
sequential programs, but for concurrent programs as well
[17].

A similar idea underlies the methodology of program
transformation [9]. The programmer designs a first but
usually inefficient version, which after a sequence of
transformations is converted into more efficient versions.
Each step allows improving the program in a particular
concern. Program transformation, together with a collection
of "tactics," allows producing non-trivial algorithms in a
systematic way, e.g. dynamic programming [3]. The main
difference between transformation and stepwise refinement of
programs is the number of executable programs produced:
with program transformation many equivalent (but not
equally efficien0 programs are produced, whereas with
stepwise refinement only one program is produced (the final
one).

In all of these methodologies a central idea lies: complex
products are developed more easily in a sequence of small
steps than in a single large step. Gradual methods are also
being used in computer science education. For instance, there
are experiences (e.g. [6]) in programming projects where
students are urged to develop programs in gradual steps.

In the paper, we advocate this approach to explain a difficult
concept: recursion. We think that recursion is not too difficult
by itself. The problem comes from trying to introduce
recursion as it is instantiated in imperative programming
languages. This particular instance of recursion is difficult
because of its interaction with other mechanisms specific to
imperative languages.

A gradual approach can aid in teaching recursion by
following several steps. We start with the concept of
recursion and later show its occurrence in three fields of
computer science. They are introduced in increasing level of
difficulty, making explicit the mechanisms which make each
instance of recursion more difficult than the previous one.
When recursion in imperative languages is explained, the
student already has experience with recursion and is prepared
to understand it properly.

3 A Gradual Approach to Recursion

We include in this section a gradual approach to learning
recursion by means of its instances in three different fields.
For each field, we briefly describe the representation of
information which is handled recursively, the particular
recursive definition and an associated operational model,
which explains how recursion is used to perform certain
repetitive process. We also make explicit the mechanisms
associated to that recursive definition, which are different
from recursion itself.

Of course, a previous and simple definition of recursion is
in place: a recursive definition defines something in terms
of itself.

3.1 Recursion in Grammars

We can affirm that "pure" recursion arises in formal
grammars. Well-known examples of recursive grammars
describe arithmetic expressions and programming language
constructs. Probably the simplest recursive grammar is:

S : : = a l a S

that defines the language {a ~, for n_>i }.

This simple case of recursion allows illustrating most of the
components of well-designed recursive definitions (base
case, recursive case), and their problems (non-termination).
Let us examine the main concepts involved.

Representation of information. Sentences are strings of
terminal symbols. More generally, sentential forms are
strings of terminal and non-terminal symbols.

Definition. A grammar rule is recursive if the non-terminal
symbol at the left-hand side also appears at the right-hand
side.

Operational model. It consists in a form of rewriting,
called derivation, that allows proving that a sentence
belongs to the language defined by a grammar. We start
from the initial symbol and successively apply grammar
rules until the target sentence is obtained. For each
rewriting, we select a grammar rule and substitute in the
last sentential form an occurrence of the rule left-hand side
(a non-terminal symbol) by its right-hand side (a'sequence
of arbitrary symbols).

For instance, the sentence a a a is derived from the previous
grammar as follows:

311

_s
---> a S

a a S)
aaa

Notice that there are very few mechanisms associated to
rewriting in sentence derivations:

• Selection. For each rewriting step, a nonterminal
symbol a in the sentential form and a rule with a in its
left hand side are selected. In the previous derivation,
we have underlined the nonterminal selected in every
sentential form (notice that in this example only one
nonterminal can be selected at each step!).

• Substitution. The sentential form is rewritten by simply
replacing an occurrence of the nonterminal symbol by
the right hand side of the selected rule.

3.2 Recursion in Functional Programming

We also find recursion in functional programming, where it
is usually the only mechanism to perform repetitive
computations. The factorial function is the typical example
with (again) a base and a recursive case. In ML:

- fun fact n =

if n=O then 1 else n'fact(n-l);
val fact = fn : int -> int

Representation of information. Expressions are syntactic
structures of different classes: values, function applications,
conditional expressions, etc.

Definition. In a recursive function, the application at the
left-hand side of its equation occurs again at the right-hand
side, but applied to different arguments,

Some elements of this recursive definition require some
attention: •

• Parameters . The definition of recursive functions
involves the use of formal parameters, which are
abstract names that represent future actual values. The
example contains the formal parameter n representing
an arbitrary natural number.

• Wel l - founded ordering. A recursive computation must
necessarily terminate, imposing restrictions on the form
of recursion. Recursive function applications at the
right-hand side of the equation must operate on
parameters "smaller" than formal parameters at the left-
hand side; technically, termination depends on the
existence of a well-founded ordering defined over the
parameters. In the factorial example, the only recursive
application contains the natural number n decremented
by one.

Operational model. Expression rewriting is the
operational model of computation for evaluating functional
expressions. An expression is evaluated by successively

rewriting it into other expressions until an expression that
cannot be further simplified is obtained. The final
expression is called the value of the original one. Rules are
defined to evaluate each class of expression allowed in the
language (function application, conditional expression, etc.)

For instance, the step-by-step evaluation of the factorial of
4 is given by the following sequence of expressions:

fact 4
$
if 4=0 then 1 else 4*fact(4-1)

if false then 1 else 4*fact(4-1)
$
4" fact (4-1)

4" fact (3)
$
. . o

$
4*(3*(2*(l'fact 0)))
$
. . .

24

Rewriting in expression evaluation has associated a few
mechanisms, including selection and substitution again:

• Selection. Given an expression to evaluate, the next
subexpression to rewrite (the "redex") is selected, and
its associated evaluation rule is applied. In the case of
function application, it must be taken into account that
functions can be defined by several equations, so the
equation to be applied must also be selected.

In the previous evaluation, we have underlined every
redex. In the factorial function there is only one rule,
but in functions defined with several equations, a more
elaborate selection mechanism, called pat tern matching,
is provided. For brevity, we do not explain it here.

• P a r a m e t e r binding. Before performing substitution,
binding is established between formal parameters and
actual parameters. In the example, n is bound to 4. In
more complex functions, binding is a side effect of
selecting the adequate equation by pattern matching.

• Substitution. T h e redex is replaced by a new expression.
In the ease of function application, it is replaced by the
right-hand side of the selected equation, where formal
parameters have been previously substituted by actual
parameters. Thus, in the previous example,

fact 4

was replaced by

if 4=0 then 1 else 4*fact(4-1)

312

3.3 Recursion in Imperative Programming

Finally, recursion in imperative programming is taught as a
mechanism complementary to loops in order to perform
repetitive computations. We show its use by means of a
procedure that computes the factorial function (we use a
procedure rather than a function for generality). In Pascal:

procedure fact (n: integer;
vat f: integer) ;

begin
if n=O then

f := 1
else begin

fact (n-l, f);
f := n*f

end
end;

Representation of information. Information is stored in
abstractions of memory cells called variables. Pointer
variables are especially remarkable because they do not
contain values, but memory addresses (of other variables).
Most memory cells are declared explicitly by the
programmer (variables), but others exist in run time
without declaring them (the control stack).

Definition. A recursive procedure contains some call of
itself in its body, but applied to different arguments.

We find again parameters and well-founded orderings in
recursive procedures. In addition, parameters have the
following feature:

• Parameter modes. Each formal parameter has
associated a passing mode, typically either by value or
by reference. Each of these modes determines the kind
of actual parameter that can be used. Thus, the actual
parameter for a parameter by value can be any
imperative expression, but for a parameter by reference,
it must be a variable.

Operational model. The operational model of procedure
call is associated to the operational model of imperative
programming defined as state transformation. The current
state of execution is given by the contents of variables plus
information about the next statement to execute (stored in
the program counter).

A procedure call is a control break with return. In addition,
the set of accessible variables changes. The main concepts
necessary to understand all of these changes are:

• Parameter binding. Depending on the mode of each
parameter, a different binding is established between
formal and actual parameters. For instance, a parameter
passed by value is an expression that is first evaluated,
then a new local variable is created and finally it is
assigned that value. However, for a parameter passed by
reference, a pointer is allocated to point to the actual
parameter variable.

Activation records and the control stack. An activation
record is a structure invisible to the programmer but
necessary to start and finish procedure calls. It keeps
information necessary to execute a procedure and later
restore execution in the statement following the
procedure call. This information is composed at least by
actual parameters, local variables and the return
address.

The control stack is the structure that contains activation
records during program execution. It is a complex
structure designed to store all of the information
necessary to make procedure calls, with some intricacies
to handle names collisions.

4 0 i s c u s s i o n and Related Work

In the academic year 1.997/98 we began to teach a course
on principles of programming languages for freshmen. The
course is atypical because similar courses are offered in
other universities to junior or, at least, sophomore students.
This timing forced us t o design a course with innovative
approaches to many topics, including the gradual approach
to recursion we have described in the paper.

The previous introduction to recursion was mostly driven
by computations. A different line of exposition can be
followed by focusing on data types. The similarity of
recursion in grammars, functional data types and
imperative data types is even greater than in recursive
control, so the exposition is easier. However, its main
drawback is the requirement to know pointers.

We do not know of people who use our method to teach
recursion, although there are similar, less ambitious
proposals. Richard Pattis [10] proposes to teach EBNF in
the first lecture of CS 1. EBNF is simple but rich enough to
illustrate a set of computer science concepts, including
recursion. Mary Shaw et al. [13, p.65] also had mentioned
this possibility. Both proposals introduce recursion using
EBNF, but they do not mention how to make use (not even if
they do) of this knowledge in order to teach recursion in
imperative languages.

Nowadays, there are many experiences in the use of
functional programming as a first language [1t14]. However,
the transition from functional programming to imperative
programming usually does not address explicitly the
similarities and differences of recursion in both paradigms.
Besides, they do not include the prologue about recursion in
grammars, which I find very convenient.

We are aware that our proposal is unrealistic for most CSI/
CS2 programs, but it can be adopted, limited to grammars and
imperative programming. From a pedagogical point of view,
even this restricted approach participates and benefits from
the sequencing, spacing and spiraling methods [11]. In effect,
we propose a particular sequencing of several instances of

313

recursion. Consequently, recursion is spaced out over several
months and it is revisited several times.

Notice that our approach only provides a framework to teach
recursion in a gradual way. However, the approach is
orthogonal to debates about how to teach certain instances of
recursion, most notably imperative recursion. We simply
require to identify key concepts and mechanisms, but they
can be taught in many different ways. However, we want to
make two recommendations from our experience:

• A problem with explaining recursion is that there are
many other concepts which can arise, although they are
not exclusive of recursion. Some examples are: scope
of identifiers, subprogram pre- and postconditions, etc.
We recommend the teacher to teach them first, so that
the subsequent explanation of recursion will not be
darkened by these details.

• The explanation of every instance of recursion can
benefit from visualization facilities, such as derivation
trees for grammars. Elsewhere can be found
visualizations of sentence derivations [2], evaluation of
functional expressions [18] and control stack issues
[8,16].

5 Conclusions

We have proposed a gradual approach to simplify the
teaching of reeursion. It is introduced in increasing level of
difficulty by means of three occurrences of recursion in
different computer science fields, namely formal grammars,
functional programming and imperative programming. The
approach has three main advantages. First, the student
perceives recursion as a recurrent concept in the discipline of
computer science, not only existing in imperative
programming. Second, the concept of recursion is isolated
and differentiated from any other concept or mechanism
associated to a particular instance of recursion. Finally, the
teaching of recursion is simplified because it is taught in a
gradual way.

6 Acknowledgments

I want to thank the valuable comments of the anonymous
referees. This work was supported by the Comunidad
Aut6noma de Madrid under project no. 07T/0036/98.

References

[1] Astrachan, O., "Self-reference is an illustrative
essential," 25th SIGCSE Technical Symposium on
Computer Science Education, 1994, pp. 238-242

[2] Bilska, A. O., et al., "A collection of tools for making
automata theory and formal languages come alive,"
28th SIGCSE Technical Symposium on Computer
Science Education, 1997, pp. 15-19

[3] Bird, R., "Tabulation techniques for recursive
programs," ACM Computing Surveys, Vol. 12, No. 4,
December 1980, pp. 403-417

[4] Ginat, D., Shifroni, E., ''Teaching recursion in a
procedural environment- How much should we
emphasize the computing model?," 30th SIGCSE
Technical Symposium on Computer Science
Education, 1999, pp. 127-131

[5] Haynes, S.M., "Explaining recursion to the
unsophisticated," SIGCSE Bulletin, Vol. 27, No. 3, Sept.
1995, pp. 3-6 and 14

[6] Leeper, R., "Gradual project assignments in computer
courses", 20th SIGCSE Technical Symposium on
Computer Science Education, 1989, pp. 88-92

[7] McCracken, D.D., "Ruminations on computer science
curricula," Communications oftheACM, Vol. 30, No. 1,
January 1987, pp. 3-5

[8] Naps., T.L., Stenglein, J., ''Tools for visual exploration
of scope and parameter passing in a programming
languages course," 27th SIGCSE Technical Symposium
on Computer Science Education, 1996, pp. 305-309

[9] Partsch, H.A., Specification and Transformation of
Programs, Springer-Verlag, 1990

[10] Pattis, R.E., "Teaching EBNF first in CS 1," 25th
SIGCSE Technical Symposium on Computer Science
Education, 1994, pp. 300-303

[11] Powers, K.D., D.T. Powers, "Making sense of
teaching methods in computer science", 1999
Frontiers in Education Conference, session 1 lb3

[12] Reinfelds, J., "A three paradigm first course for CS
majors," 26th SIGCSE Technical Symposium on
Computer Science Education, 1995, pp. 223-227

[13] Shaw, M., et al. (eds.), The Carnegie-Mellon
Curriculum for Undergraduate Computer Science,
Springer-Verlag, 1985

[14] Thomson, S., Wadler, P. (eds.), monographic issue on
"Functional programming in education," Journal of
Functional Programming, vol. 3, n °. 1, January 1993

[15] Tucker, A., et al, Computing Curricula 1991, ACM
Press and IEEE Computer Society Press, 1991

[16] Veh~zquez-Iturbide, J.A., ''Formalization of the control
stack," SIGPLAN Notices, Vol. 24, No. 3, March 1989,
pp. 46-54

[17] Velfizquez-Iturbide, J.A., "A methodology for monitor
development in concurrent programs," SIGCSE
Bulletin, Vol. 26, No. 3, September 1994, pp. 22-28

[18] Velfizquez-Iturbide, J.A., A. Presa-V~zquez,
"Customization of visualizations in a functional
programming environment," 1999 Frontiers in
Education Conference, session 12b3

[19] Wirth, N., "Program development by stepwise
refinement," Communications of the ACM, Vol. 14, No.
4, April 1971, pp. 221-227

[20] Wu, C.-C., Dale, N.B., Bethel, LJ., ''Conceptual models
and cognitive learning styles in teaching recursion,"
29th SIGCSE Technical Symposium on Computer
Science Education, 1998, pp. 292-296

314

