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Abstract 

We propose a gradual approach to teach recursion. Our main 
assumption is that the difficulty in learning recursion does not 
come from the recursion concept itself, but from its 
interaction with other mechanisms of imperative 
programming. We use this basic idea to propose a new 
pedagogical approach. On the one hand, recursion is 
introduced in a gradual way by means of three fields 
(grammars, functional programming and imperative 
programming). On the other hand, each instance of recursion 
is explained so that all of its accompanying mechanisms are 
clearly identified. 

The approach has three main advantages. First, the teaching 
of recursion is simplified because it is taught in a gradual 
way. Second, the concept of recursion is isolated and 
differentiated from other concepts or mechanisms associated 
to particular instances of recursion. Last, the student perceives 
recursion as a recurrent concept in the discipline of computer 
science. 

1 Introduction 

Recursion is well-known as one of the most difficult topics in 
computer science education. Being more precise, the 
difficulty is in the teaching of recursion in imperative 
languages. The main problem is the great complexity caused 
by its accompanying programming constructs and 
mechanisms. Sometimes the consequence is a 
misunderstanding of imperative recursion itself, and others, a 
misunderstanding of recursion usage. 

Many approaches to teaching recursion in imperative 
languages have been adopted, but none seems to be 
satisfactory because they do not separate proper recursion 
from such accompanying features. Some approaches 
introduce models of recursion for imperative languages while 
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others introduce general models of recursion [5]. Some 
researchers think that recursion must be explained using 
abstract models [4], whereas others argue for concrete models 
[20]. In any case, there is a general consensus in considering 
recursion a fundamental concept in computer science [15]. 
Although (paradoxically!) not cataloged in the Computing 
Curricula 1991 as a recurrent concept, we think that it is. As 
such, many computer scientists think that it should not be 
taught as an advanced topic, but it should be taught early 
[1,71. 

We do not ignore the inherent difficulty of the topic, and 
therefore the difficulty of learning it. However, such a 
problem has not been identified in other computer science 
fields where recursion also appears. For instance, non-trivial 
grammars are recursive, and it does not seem to be a problem 
for students. Analogously, declarative programming 
paradigms, such as functional or logic programming, rely 
heavily on recursion and again it is not perceived as a 
problem [12,14]. 

We think that this disparity of difficulties in learning 
recursion often comes from a confusion of many educators 
between recursion and imperative recursion. It is not clearly 
explained that recursion in imperative languages is recursion 
plus several mechanisms, such as parameter passing, control 
stack, etc. We argue for an approach to the teaching of 
recursion where all of the mechanisms and concepts involved 
are clearly identified and isolated from the concept of 
recursion. 

Another source of difficulty for teaching recursion is the 
complexity of mechanisms that appear in imperative 
recursion. We argue that the learning curve is smoother if 
recursion is not explained directly in imperative languages, 
but in other fields. As a consequence, we adopt a gradual 
approach, where several instances of recursion are introduced 
in increasing level of difficulty by studying it in three fields: 
grammars, functional programming and imperative 
programming. 

In summary, our proposal is two-fold. On Me oae hand, 
recursion is introduced in a gradual way by means of its 
instances in three fields. On the other hand, each instance of 
recursion is explained so that all of its accompanying 
mechanisms are clearly identified. 
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The paper has the following structure. The second section 
gives a global view to what we call a "gradual approach," by 
showing examples of its successful application in other 
computer science fields. The third section describes our 
gradual approach to teaching recursion, with three subsections 
corresponding to the three fields we propose to study 
recursion. Section 4 contains a discussion on our proposal, 
andin section 5 we summarize our conclusions. 

2 Gradual Approaches in Computer Science 

There are many topics in computer science which are better 
addressed with a gradual approach. When we want to 
design (or analyze) a product, we perform several relatively 
simple steps. If the problem is difficult and the steps are 
well chosen, the effort required to make sequentially these 
steps is qualitatively smaller than solving it in one large 
step. 

The best known representative of this idea is stepwise 
refinement [19]. This methodology advocates making a 
program by following a sequence of steps. Initially, a vague 
program is designed. At each of the following steps, the 
programmer faces one design decision about program 
construction. Finally, an executable program is obtained. 
Notice that not only stepwise refinement has been used for 
sequential programs, but for concurrent programs as well 
[17]. 

A similar idea underlies the methodology of program 
transformation [9]. The programmer designs a first but 
usually inefficient version, which after a sequence of 
transformations is converted into more efficient versions. 
Each step allows improving the program in a particular 
concern. Program transformation, together with a collection 
of "tactics," allows producing non-trivial algorithms in a 
systematic way, e.g. dynamic programming [3]. The main 
difference between transformation and stepwise refinement of 
programs is the number of executable programs produced: 
with program transformation many equivalent (but not 
equally efficien0 programs are produced, whereas with 
stepwise refinement only one program is produced (the final 
one). 

In all of these methodologies a central idea lies: complex 
products are developed more easily in a sequence of small 
steps than in a single large step. Gradual methods are also 
being used in computer science education. For instance, there 
are experiences (e.g. [6]) in programming projects where 
students are urged to develop programs in gradual steps. 

In the paper, we advocate this approach to explain a difficult 
concept: recursion. We think that recursion is not too difficult 
by itself. The problem comes from trying to introduce 
recursion as it is instantiated in imperative programming 
languages. This particular instance of recursion is difficult 
because of its interaction with other mechanisms specific to 
imperative languages. 

A gradual approach can aid in teaching recursion by 
following several steps. We start with the concept of 
recursion and later show its occurrence in three fields of 
computer science. They are introduced in increasing level of 
difficulty, making explicit the mechanisms which make each 
instance of recursion more difficult than the previous one. 
When recursion in imperative languages is explained, the 
student already has experience with recursion and is prepared 
to understand it properly. 

3 A Gradual Approach to Recursion 

We include in this section a gradual approach to learning 
recursion by means of its instances in three different fields. 
For each field, we briefly describe the representation of 
information which is handled recursively, the particular 
recursive definition and an associated operational model, 
which explains how recursion is used to perform certain 
repetitive process. We also make explicit the mechanisms 
associated to that recursive definition, which are different 
from recursion itself. 

Of course, a previous and simple definition of recursion is 
in place: a recursive definition defines something in terms 
of itself. 

3.1 Recursion in Grammars 

We can affirm that "pure" recursion arises in formal 
grammars. Well-known examples of recursive grammars 
describe arithmetic expressions and programming language 
constructs. Probably the simplest recursive grammar is: 

S : : = a l a S  

that defines the language {a ~, for n_>i }. 

This simple case of recursion allows illustrating most of the 
components of well-designed recursive definitions (base 
case, recursive case), and their problems (non-termination). 
Let us examine the main concepts involved. 

Representation of information. Sentences are strings of 
terminal symbols. More generally, sentential forms are 
strings of terminal and non-terminal symbols. 

Definition. A grammar rule is recursive if the non-terminal 
symbol at the left-hand side also appears at the right-hand 
side. 

Operational model. It consists in a form of rewriting, 
called derivation, that allows proving that a sentence 
belongs to the language defined by a grammar. We start 
from the initial symbol and successively apply grammar 
rules until the target sentence is obtained. For each 
rewriting, we select a grammar rule and substitute in the 
last sentential form an occurrence of the rule left-hand side 
(a non-terminal symbol) by its right-hand side (a'sequence 
of arbitrary symbols). 

For instance, the sentence a a a  is derived from the previous 
grammar as follows: 
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_s 
---> a S  

a a S  ) 
aaa  

Notice that there are very few mechanisms associated to 
rewriting in sentence derivations: 

• Selection. For each rewriting step, a nonterminal 
symbol a in the sentential form and a rule with a in its 
left hand side are selected. In the previous derivation, 
we have underlined the nonterminal selected in every 
sentential form (notice that in this example only one 
nonterminal can be selected at each step!). 

• Substitution. The sentential form is rewritten by simply 
replacing an occurrence of the nonterminal symbol by 
the right hand side of the selected rule. 

3.2 Recursion in Functional Programming 

We also find recursion in functional programming, where it 
is usually the only mechanism to perform repetitive 
computations. The factorial function is the typical example 
with (again) a base and a recursive case. In ML: 

- fun fact n = 

if n=O then 1 else n'fact(n-l); 
val fact = fn : int -> int 

Representation of information. Expressions are syntactic 
structures of different classes: values, function applications, 
conditional expressions, etc. 

Definition. In a recursive function, the application at the 
left-hand side of its equation occurs again at the right-hand 
side, but applied to different arguments, 

Some elements of this recursive definition require some 
attention: • 

• Parameters .  The definition of recursive functions 
involves the use of formal parameters, which are 
abstract names that represent future actual values. The 
example contains the formal parameter n representing 
an arbitrary natural number. 

• Wel l - founded ordering. A recursive computation must 
necessarily terminate, imposing restrictions on the form 
of recursion. Recursive function applications at the 
right-hand side of the equation must operate on 
parameters "smaller" than formal parameters at the left- 
hand side; technically, termination depends on the 
existence of a well-founded ordering defined over the 
parameters. In the factorial example, the only recursive 
application contains the natural number n decremented 
by one. 

Operational model. Expression rewriting is the 
operational model of computation for evaluating functional 
expressions. An expression is evaluated by successively 

rewriting it into other expressions until an expression that 
cannot be further simplified is obtained. The final 
expression is called the value of the original one. Rules are 
defined to evaluate each class of expression allowed in the 
language (function application, conditional expression, etc.) 

For instance, the step-by-step evaluation of the factorial of 
4 is given by the following sequence of expressions: 

fact 4 
$ 
if 4=0 then 1 else 4*fact(4-1) 

if false then 1 else 4*fact(4-1) 
$ 
4" fact (4-1) 

4" fact (3) 
$ 
. . o 

$ 
4*(3*(2*(l'fact 0))) 
$ 
. . . 

24 

Rewriting in expression evaluation has associated a few 
mechanisms, including selection and substitution again: 

• Selection. Given an expression to evaluate, the next 
subexpression to rewrite (the "redex") is selected, and 
its associated evaluation rule is applied. In the case of 
function application, it must be taken into account that 
functions can be defined by several equations, so the 
equation to be applied must also be selected. 

In the previous evaluation, we have underlined every 
redex. In the factorial function there is only one rule, 
but in functions defined with several equations, a more 
elaborate selection mechanism, called pat tern  matching,  
is provided. For brevity, we do not explain it here. 

• P a r a m e t e r  binding. Before performing substitution, 
binding is established between formal parameters and 
actual parameters. In the example, n is bound to 4. In 
more complex functions, binding is a side effect of 
selecting the adequate equation by pattern matching. 

• Substitution. T h e  redex is replaced by a new expression. 
In the ease of function application, it is replaced by the 
right-hand side of the selected equation, where formal 
parameters have been previously substituted by actual 
parameters. Thus, in the previous example, 

fact 4 

was replaced by 

if 4=0 then 1 else 4*fact(4-1) 
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3.3 Recursion in Imperative Programming 

Finally, recursion in imperative programming is taught as a 
mechanism complementary to loops in order to perform 
repetitive computations. We show its use by means of a 
procedure that computes the factorial function (we use a 
procedure rather than a function for generality). In Pascal: 

procedure fact (n: integer; 
vat f: integer) ; 

begin 
if n=O then 

f := 1 
else begin 

fact (n-l, f); 
f := n*f 

end 
end; 

Representation of information. Information is stored in 
abstractions of memory cells called variables. Pointer 
variables are especially remarkable because they do not 
contain values, but memory addresses (of other variables). 
Most memory cells are declared explicitly by the 
programmer (variables), but others exist in run time 
without declaring them (the control stack). 

Definition. A recursive procedure contains some call of 
itself in its body, but applied to different arguments. 

We find again parameters and well-founded orderings in 
recursive procedures. In addition, parameters have the 
following feature: 

• Parameter modes. Each formal parameter has 
associated a passing mode, typically either by value or 
by reference. Each of these modes determines the kind 
of actual parameter that can be used. Thus, the actual 
parameter for a parameter by value can be any 
imperative expression, but for a parameter by reference, 
it must be a variable. 

Operational model. The operational model of procedure 
call is associated to the operational model of imperative 
programming defined as state transformation. The current 
state of execution is given by the contents of variables plus 
information about the next statement to execute (stored in 
the program counter). 

A procedure call is a control break with return. In addition, 
the set of accessible variables changes. The main concepts 
necessary to understand all of these changes are: 

• Parameter binding. Depending on the mode of each 
parameter, a different binding is established between 
formal and actual parameters. For instance, a parameter 
passed by value is an expression that is first evaluated, 
then a new local variable is created and finally it is 
assigned that value. However, for a parameter passed by 
reference, a pointer is allocated to point to the actual 
parameter variable. 

Activation records and the control stack. An activation 
record is a structure invisible to the programmer but 
necessary to start and finish procedure calls. It keeps 
information necessary to execute a procedure and later 
restore execution in the statement following the 
procedure call. This information is composed at least by 
actual parameters, local variables and the return 
address. 

The control stack is the structure that contains activation 
records during program execution. It is a complex 
structure designed to store all of the information 
necessary to make procedure calls, with some intricacies 
to handle names collisions. 

4 0 i s c u s s i o n  and Related Work 

In the academic year 1.997/98 we began to teach a course 
on principles of programming languages for freshmen. The 
course is atypical because similar courses are offered in 
other universities to junior or, at least, sophomore students. 
This timing forced us t o  design a course with innovative 
approaches to many topics, including the gradual approach 
to recursion we have described in the paper. 

The previous introduction to recursion was mostly driven 
by computations. A different line of exposition can be 
followed by focusing on data types. The similarity of 
recursion in grammars, functional data types and 
imperative data types is even greater than in recursive 
control, so the exposition is easier. However, its main 
drawback is the requirement to know pointers. 

We do not know of people who use our method to teach 
recursion, although there are similar, less ambitious 
proposals. Richard Pattis [10] proposes to teach EBNF in 
the first lecture of CS 1. EBNF is simple but rich enough to 
illustrate a set of computer science concepts, including 
recursion. Mary Shaw et al. [13, p.65] also had mentioned 
this possibility. Both proposals introduce recursion using 
EBNF, but they do not mention how to make use (not even if 
they do) of this knowledge in order to teach recursion in 
imperative languages. 

Nowadays, there are many experiences in the use of 
functional programming as a first language [1t14]. However, 
the transition from functional programming to imperative 
programming usually does not address explicitly the 
similarities and differences of recursion in both paradigms. 
Besides, they do not include the prologue about recursion in 
grammars, which I find very convenient. 

We are aware that our proposal is unrealistic for most CSI/ 
CS2 programs, but it can be adopted, limited to grammars and 
imperative programming. From a pedagogical point of view, 
even this restricted approach participates and benefits from 
the sequencing, spacing and spiraling methods [11]. In effect, 
we propose a particular sequencing of several instances of 
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recursion. Consequently, recursion is spaced out over several 
months and it is revisited several times. 

Notice that our approach only provides a framework to teach 
recursion in a gradual way. However, the approach is 
orthogonal to debates about how to teach certain instances of 
recursion, most notably imperative recursion. We simply 
require to identify key concepts and mechanisms, but they 
can be taught in many different ways. However, we want to 
make two recommendations from our experience: 

• A problem with explaining recursion is that there are 
many other concepts which can arise, although they are 
not exclusive of recursion. Some examples are: scope 
of identifiers, subprogram pre- and postconditions, etc. 
We recommend the teacher to teach them first, so that 
the subsequent explanation of recursion will not be 
darkened by these details. 

• The explanation of every instance of recursion can 
benefit from visualization facilities, such as derivation 
trees for grammars. Elsewhere can be found 
visualizations of sentence derivations [2], evaluation of 
functional expressions [18] and control stack issues 
[8,16]. 

5 Conclusions 

We have proposed a gradual approach to simplify the 
teaching of reeursion. It is introduced in increasing level of 
difficulty by means of three occurrences of recursion in 
different computer science fields, namely formal grammars, 
functional programming and imperative programming. The 
approach has three main advantages. First, the student 
perceives recursion as a recurrent concept in the discipline of 
computer science, not only existing in imperative 
programming. Second, the concept of recursion is isolated 
and differentiated from any other concept or mechanism 
associated to a particular instance of recursion. Finally, the 
teaching of recursion is simplified because it is taught in a 
gradual way. 
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