
Do Visualizations Improve Program Comprehensibility?
Experiments With Control Structure Diagrams for Java

T. Dean Hendrix, James H. Cross II, Saeed Maghsoodloo*,
and Matthew L. McKinney

Computer Science and Software Engineering
(*Industrial and Systems Engineering)

Auburn University, AL 36849
{hendrix, cross, maghsood, mckinml}@eng.auburn.edu

Abstract
Recently, the first in a series of planned comprehension
experiments was performed to measure the effect of the
control structure diagram (CSD) on program
comprehensibility. Upper-division computer science
students were asked to respond to questions regarding the
structure and execution of a source code module written in
Java. Statistical analysis of the data collected from this
experiment revealed that the CSD was highly significant in
enhancing the subjects' performance in this program
comprehension task. The results of this initial experiment
along with the planned follow-on experiments promise to
shed light on fundamental questions regarding the effect of
software visualizations on program comprehensibility.

1 Introduction

Representing objects, processes, and ideas with pictures
rather than words is intuitively appealing. The intuition is
that a visual representation will be more readily understood
than its textual counterpart. If one accepts such a premise,
it is quite natural to investigate ways of applying visual
representations to tasks in which comprehension plays a
central role. Such tasks are abundant in the everyday world:
For example, reading parts-assembly manuals to
understand the structure of a machine, or reading operation
manuals to understand how a machine works. In these
particular domains, the utility of visual representations is
accepted without question.

Applying visualization, techniques to represent program
structure and behavior is the central theme and focus of
software visualization research. Although this area of
research is quite active and graphical representations and
visualizations for software abound, the effectiveness of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGCSE 2000 3•00 Austin, TX, USA
© 2000 ACM 1-58113-213-1/00•0003... $5.00

software visualization is still an open question and is
certainly not universally accepted.

Many experimental evaluations of software visualizations
reported in the literature have indicated mixed results with
perhaps a majority in the negative [2,3,4,5,6]. Although
empirical studies of the usefulness of software
visualizations generally show mixed results, other studies
comparing the cognitive processing of simple pictures and
text favor the efficiency of pictures. Numerous studies
indicate that semantic analysis is performed faster for
pictures than for text, and that graphical information is
more easily and efficiently remembered than textual
information [5,6]. These studies suggest that graphical
representations of software are inherently useful, though
particular representations may not be.

2 The Control Structure Diagram

The control structure diagram (CSD) is a graphical
representation that visually depicts the control structure and
module-level organization of source code [3]. A major
objective in the philosophy that guided the development of
the CSD was that the graphical constructs should
supplement the source code without disrupting its familiar
appearance. That is, the CSD should appear to be a natural
extension of the source code and, similarly, the source code
should appear to be a natural extension of the diagram. This
has resulted in a concise, compact graphical notation that
attempts to combine the best features of diagramming with
those of well-indented source code. Figure 1 illustrates the
CSD with Java source code.

A comparison of the CSD with plain text source code is
shown in Figure 2 and Figure 3. Figure 2 contains very
"control-dense" Ada 95 source code adapted from [1].
Figure 3 contains that same source code rendered with a
CSD. While the same structural and control information is
available in both figures, the CSD makes the control
structures and control flow more visually apparent than
does the plain text alone, and it does so without disrupting
the conventional layout of the source code.

382

http://crossmark.crossref.org/dialog/?doi=10.1145%2F330908.331890&domain=pdf&date_stamp=2000-03-01

The power of the CSD is perhaps more evident in larger
and/or more complex source code. For example in large
programs, especially those which are a part of legacy
systems or even those that upper-division computer science
students create as part of their course work, it is not
uncommon for complex control structures to span hundreds
of lines. The physical separation of sequential components
within these large control structures becomes a significant
obstacle to comprehension. The CSD clearly delineates
each control structure and provides context and continuity
for the sequential components nested inside, thus
potentially increasing comprehension efficiency. With
additional levels of nesting and increased physical
separation of sequential components, the visibility of
control constructs and control paths becomes increasingly
obscure, and the effort required of the reader can increase
in the absence of the CSD.

~ task body TASKNAME is

--q

begin
-- loop

-- for p in PRIORITY loop
::.~s~ect

i~
accept REQUEST(p) (D : DATA) d

!I ~ACTION (D);

i l [end;
~_ ~L--_ exit;

null;
- end select;

end loop;
,end loop;

.end TASK_NAME;

Figure 3. Ada 95 source code rendered as a CSD

int Fibonaccl (int N)

(
9= int i, Last, NextToLast, Answer ;

i~f ((N==0) I [(N==I))

Answer = i;

else
(

-- Last = I;
--NextToLast = I;
-- l ~ f ° r (i = 2 ; i < = N ; i + +)

Answer = Last + NextToLast;
NextToLast = Last;
Last = Answer;

-)

return (Answer) ;

Figure 1. CSD with Java source code

task body TASK_NAME is
begin

loop
for p in PRIORITY loop

select
accept REQUEST(p) (D : DATA) do

ACTION (D);
end;
exit;

else
null;

end select;
end loop;

end loop;
end TASK_NAME;

Figure 2. Ada 95 source code

It is clear from experience and from reports in the literature
that a relationship exists between the syntactic form of
source code and the ability of human readers to construct
useful mental abstractions from that source code [2,6].
Source code that is well structured and visually appealing
facilitates the comprehension process. The CSD, displayed
as a companion to well-indented, pretty-printed source
code should thus provide enhanced support for program
comprehension.

3 Comprehension Experiment

Although the CSD was specifically designed to leverage
the perceived advantages of a graphical representation
together with the familiarity of pretty-printed source code,
the success of this approach can only be determined by
thorough, systematic evaluation procedures. Fundamental
evaluative questions that must be addressed include: Do
users perceive a utility or benefit in using the CSD? To
what extent and in what manner do users employ the CSD
in real tasks? Does the CSD provide statistically significant
gains in program comprehensibility? These and other open
questions are currently being addressed by the GRASP
Research Project at Auburn University with funding from
the National Science Foundation (EIA-9806777),

To measure the effect, if any, that the CSD has on program
comprehensibility, a repeatable, controlled comprehension-
based experiment was designed and implemented.
Although a more detailed statistical analysis of the data
remains to be completed, the initial results are quite
promising and demonstrate that the CSD can provide
statistically significant benefits in program comprehension
tasks.

3.1 Procedure

In the experiment, subjects were presented with source
code and asked questions relating to its structure and
execution. The subjects were divided equally into two

383

• , .,~ ; • J~, . ~ = - . ~ ¢ ~ 4 ; ~ . ~ - ~ , , , ,, ~ - ~ , . ~ ~=7~.~a.-~z i ~ ~ ~ • ' ~ • ,,.

groups. Both groups were presented with the same source
code and asked to respond to the same series of 12
questions concerning the code. One group (the control) was
given the source code in plain text only (as in Figure 2),
while the other group was given the source code rendered
with the CSD (as in Figure 3). Thus the independent
variable is source code presentation (CSD or plain text).
The task of each subject was to answer each question
correctly in the shortest time possible.

The operational hypothesis is as follows:

H~: The CSD will have a positive effect on program
comprehensibility.

Thus, the null hypothesis that was tested is stated as:

H0: The CSD will not have a positive effect on
program comprehensibility.

Response time and response correctness are the two
dependent variables. It is reasonable to assume that any
effects of a visualization on comprehensibility would be
manifested in at least one of these two measures. This
assumption is also supported in the literature [4].

Both groups were given identical instructions concerning
the completion of the experimental task prior to the
beginning the experiment. In a 10 minute orientation
session, subjects were provided with an overview of the
task that they were being asked to perform. Each subject
was presented with a short example program in laser-
printed hardcopy form. They were then verbally provided
with sample questions concerning the example program
and informed of how they would be asked to record their
response during the actual experiment. The group using the
CSD had an additional 5-10 minute portion of the
orientation session in which the basic symbols of the CSD
were introduced and explained.

Both groups were told that the experimental task was to
some extent designed to mimic elements of a software
inspection or debugging activity, and thus were provided a
motivational context for the experiment. Finally, each
subject was given the fundamental instruction for the
experiment: Without sacrificing accuracy, they were to
answer each question as quickly as possible.

3.2 Participants

Students in an intensive upper-division object oriented
programming course were asked to volunteer as subjects in
the experiment. Volunteers were rewarded with extra credit
points in the course. Using students from this course
ensured that all the subjects were relatively expert at the
experimental task: Each student had either senior standing
or was a graduate student, and the course required each
student to develop and debug non-trivial Java applications.

Since differences in ability among individual subjects in
the groups could be a threat to experimental validity, the
groups were balanced with respect to student performance

in the course. At the time when the experiment was
administered, the only graded item remaining in the course
was the final exam. Thus, the performance balancing was
done with almost complete grade information, thereby
ensuring that the balancing was as accurate as possible.
Figure 4 shows the performance balance between the two
experimental groups. (A letter grade of 'X' indicates a
graduate student taking the course on a non-letter grade
basis.)

,,t l 12

1 0

8 '

6"

4"

2" IIIImlm

A B C D F X

Letter Grade

Figure 4. Performance Balance of Groups Prior to
Experiment

Originally, 44 students volunteered to participate in the
experiment. These 44 students were divided into two equal
sized groups and performance balanced as discussed above.
When the experiment was administered, however, some of
the volunteers were absent. This made the two groups
unbalanced both in number and in performance.
Specifically, the CSD group had twice as many A students
as the control group (4 versus 2) and the control group had
an F student where the CSD group had none. To bring the
two groups back into balance, data from the two A students
in the CSD group who had the best performances in the
experiment and the F student from the control group were
eliminated before the data were analyzed. Thus, data from
only 39 subjects (with group balancing as shown in Figure
4) were made available for analysis.

3.3 Questions and Presentation

In the interest of making the experimental task as realistic
and practical as possible, a module from a public domain
graphics package was selected to be the source code under
inspection. The package was written in Java and the
selected module was a function containing 183 source lines
of code with several levels of control. The function had a
small number of control constructs added for the purposes
of the experiment, but was otherwise unchanged. Both
groups were made aware during the orientation session that
they were inspecting "real" code and not something that
had been manufactured for the experiment.

To eliminate the effect that individual familiarity with a
particular program editor might have on the experimental
results, both groups were given the source code in laser-
printed hardcopy torm.

384

To facilitate accurate and efficient recording of responses
and response times, the questions were presented to the
subjects in a sequence of web pages. Each web page
contained a single question along with a text field and a
submit button. To respond to a question, a subject simply
typed in their answer in the text field and clicked on the
submit button. A script associated with each web page
automatically recorded the subject's response as well as the
response time for that question. The response time was
calculated as the amount of elapsed time from when the
question was displayed to when the subject submitted a
response.

The questions were designed according to several criteria:
(1) The questions should be relevant to completing real
comprehension tasks such as those found in inspection,
testing, maintenance, and debugging activities. The
experimental questions should be similar if not identical to
real, practical questions concerning the source code. (2)
The questions should be universal, or as generally
applicable as possible. That is, the questions should be
drawn from a set that would have to be answered, either
explicitly or implicitly, in most program comprehension
tasks regardless of the task context or program
functionality. For example, questions concerning the
syntactical boundaries of constructs and questions
concerning transfer of control after a certain point in
execution fall into this category. (3) The questions should
have single, objective answers. The questions were
designed to be answered in terms of line numbers in the
source code, and are thus unambiguous and easily scored.

Representative questions from the experiment include:

1. Where does the loop that begins on line 91 end?
2. How many variables and object instances are declared?
3. How many ways are there to exit the loop that begins

on line 91 ?
4. To what line would control be transferred immediately

after executing line 144?
5. How many syntactic levels deep is the most deeply

nested statement?
6. How many conditions must be evaluated in order for

line 152 to be executed?

3.4 Results

Analysis of the data strongly rejected the null hypothesis
that the CSD had no positive effect on subject performance
in answering the 12 questions. Indeed, the effect of the
CSD on both the speed and correctness of responses was
significant.

An initial analysis of differences in pertormance between
the two groups was done using average time taken to
respond to each question (T1), average time taken to
respond correctly to each question (T2), and number of
correct responses across all questions (T3).

Figure 5 graphs the average response time without regard
to correctness (Ti). There is only one question (number 12)
for which the control group performs better. But this must
be understood in light of the tact that there were no correct
responses from the plain text control group for question 12.
The positive effect of the CSD on overall response time
(T1) is significant at the 0.06 level.

Figure 6 graphs the average response time tbr correct
responses (T2). Here, the control group never outperforms
the CSD group and the positive effect of the CSD is highly
significant at the 0.0013 level. It should be noted that this
result is strengthened by the fact that for three questions (6,
7, and 12) there were no correct responses from the control
group. The graph in Figure 6 selects the average response
time for the control group on those questions.

Figure 7 graphs the total number of correct responses per
question for each group (T3). Again, the performance gain
of the CSD group is significant: 45% of the CSD group's
responses were correct while only 26% of the control
group' s responses were correct.

180,000
160,000

~, 140,000
.e 120,000
• =~ 100,000

80,000
60,000

i T. 40,000
20,000

0 I I I I I I I I I I

3 5 7 9 11

Q u e s t i o n

CSD

" NoCSD

Figure 5. Time Taken to Respond

200,000
180,000

A 160,000
g 14o,ooo

120,000
too,ooo

"g 8o,ooo
60,000
40,000
20,000

0 ,
3 5 7 9 11

Q u e s t i o n

' CSD

~ N o C S D

Figure 6. Time Taken to Respond Correctly

385

i
0:

Z

1 2 3 4 5 6 7 8 9 10 11 12

Quut ion

Figure 7. Number of Correct Responses

A rigorous statistical analysis of the data has just begun and
will be reported in a subsequent publication. These initial
results, however, are quite promising. Follow-on
experiments are planned that will build on these results and
will further explore the human performance benfits offered
by certain software visualizations.

4 GRASP

Benefits notwithstanding, unless a visualization can be
efficiently rendered in a program editing environment, it is
highly unlikely that the visualization will be used in
practice. GRASP (Graphical Representation of Algorithms,
Structures, and Processes) is a software engineering tool
that automatically generates the CSD for multiple
languages with sufficient speed for use even in production
environments. Currently, GRASP processes Java, C++, C,
Ada, and VHDL, producing the CSD for each language at
approximately 20,000 lines of code per second.

GRASP executables are freely available for multiple
platforms (currently Windows 95/98/NT, Linux, Solaris,
SunOS, IRIX, AIX, and various other flavors of UNIX) at
the URL http://www.eng.auburn.edu/grasp. There is also a
pure Java implementation of GRASP that runs on the JVM
(see Figure 8). Each binary distribution of GRASP offers
automatic generation of the CSD for all the supported
languages as well as automatic generation of other
visualizations, such as the complexity profile graph, in
some cases. In addition to generating the visualizations,
GRASP also offers a fully-functional program text editor
with syntax coloring, syntax templates, and construct
folding. When combined with an appropriate compilation
system (such as gcc for C/C++/Ada, or Sun's JDK),
GRASP becomes a complete program development
environment with support for program editing,
visualization, compilation, and runtime execution
monitoring.

Figure 8, GRASP for the JVM

5 Summary

Effective software visualizations can provide measurable
benefits in program comprehension tasks. Since such tasks
occur both in practice and in the classroom, tools that
efficiently generate such visualizations can be valuable aids
to both software professionals and students alike.

The CSD is a graphical representation designed to be a
companion to rather than a replacement for source code.
The results of a controlled experiment indicate that the
CSD can have a highly significant positive effect on human
performance in program comprehension tasks. These
results together with the results from planned follow-on
experiments promise to address important open questions
in both software visualization and software engineering
research.

References

[1] Barnes, J. G. P. (1984) Programming in Ada, Second
Edition, Menlo Park, CA: Addison-Wesley.

[2] Cant, S.N., Jeffery, D.R., and Henderson-Sellers, B.
(1995). A Conceptual Model of Cognitive Complexity of
Elements of the Programming Process. Information and
Software Technology, 37 (7), pp. 351-362.

[3] Cross, J.H., Maghsoodloo, S., and Hendrix, T.D. (1998).
The Control Structure Diagram: An Initial Evaluation.
Empirical Software Engineering, Vol. 3, No. 2, pp. 131-
156.
Curtis, B., Sheppard, S., Kruesi-Bailey, E., Bailey, J, and
Boehm-Davis, D.A. (1989). Experimental Evaluation of
Software Documentation Formats. The Journal of Systems
and Software, Vol. 9, pp. 167-207.
Goolkasian, Paula (1996). Picture-Word Differences in a
Sentence Verification Task. Memory & Cognition, 24,
584-594.
Hendrix, T.D., Cross, J.H., Barowski, L.A., and Mathias,
K.S. (1998). Visual Support for Incremental Abstraction
and Refinement in Ada 95. Proceedings of SIGAcla '98,
Washington, D.C., November 10-12, 1998.

[4]

[5]

[6]

386

