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ABSTRACT
MarkDuplicate is typically one of the most time-consuming
operations in the whole genome sequencing pipeline. Pi-
card tool, which is widely used by biologists to sort reads
in genome data and mark duplicate reads in sorted genome
data, has relatively low performance on MarkDuplicate due
to its single-thread sequential Java implementation, which
has caused serious impact on nowadays bioinformatic re-
searches. To accelerate MarkDuplicate in Picard, we present
our two-stage optimization solution as a preliminary study
on next generation bioinformatic software tools to better
serve bioinformatic researches. In the first stage, we improve
the original algorithm of tracking optical duplicate reads by
eliminating large redundant operations. As a consequence,
we achieve up to 50X speedup for the second step only and
9.57X overall process speedup. At the next stage, we re-
design the I/O processing mechanism of MarkDuplicate as
transforming between on-disk genome file and in-memory
genome data by using ADAM format instead of previous
SAM format, and implement cloud-scale MarkDuplicate ap-
plication by Scala. Our evaluation is performed on top of
Spark cluster with 25 worker nodes and Hadoop distributed
file system. According to the evaluation results, our cloud-
scale MarkDuplicate can provide not only the same out-
put but also better performance compared with the origi-
nal Picard tool and other existing similar tools. Specifically,
among the 13 sets of real whole genome data we used for
evaluation at both stages, the best improvement we gain is
reducing runtime by 92 hours in total. Average improvement
reaches 48.69 decreasing hours.

CCS Concepts
•Applied computing → Bioinformatics; •Computer
systems organization → Cloud computing;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICBRA ’18, December 27–29, 2018, Hong Kong, Hong Kong
c© 2018 ACM. ISBN 978-1-4503-6611-3/18/12. . . $15.00

DOI: https://doi.org/10.1145/3309129.3309134

Keywords
MarkDuplicate; Picard; ADAM; Spark; HDFS

1. INTRODUCTION
DNA sequence [1] represents a single format onto which

a broad range of biological phenomena can be projected for
high-throughput data collection. DNA sequencing, as shown
in Figure 1, is the process of determining the precise order of
nucleotides within a DNA molecule. It includes any method
or technology that is used to determine the order of the four
bases - adenine, guanine, cytosine, and thymine - in a strand
of DNA. There are three major steps [2] within the pipeline
as the three parts shown from left to right in Figure 1.

Figure 1: DNA Sequencing Pipeline. [2]

As rapid DNA sequencing methods will greatly acceler-
ate biological and medical research and discovery, the speed
of processing the pipeline is important to both biology re-
searchers and medical development. With the help of high-
speed processing, we are able to provide more precise medi-
cal therapy and in-time clinical diagnosis. However, current
DNA sequencing pipeline takes several days to finish only
the first step, data pre-processing, on one whole genome
data. Therefore, there is a big opportunity to improve the
performance of data pre-processing.

There are five major steps [3] in data pre-processing. Ac-
cording to the processing sequence shown in Figure 1, they
are BWA-MEM, Sort, MarkDuplicate, IndelRealignment,
and BaseRecalibration. BWA-MEM aligns reads to the ref-
erence genome by using BWA tool [4]. Sort sorts the align-
ments by positions on the reference genome by using Sam-
tools. MarkDuplicate distinguishes the duplicate reads and
removes them from input by using Picard tool [5]. Indel-
Realignment performs local realignment to remove the mis-
alignment and BaseRecalibration performs recalibration and
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prints reads as well. The last two steps use GATK tool [2].
In order to figure out the which step consumes more time,
we break down the runtime as Figure 2 shows.

BWA-MEM
14%

samView
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samSort
4%
samIndex
1%

MarkDuplicate
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duplicateIndex
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RealignerTarget
Creator
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IndelRealigner
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printReads
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samIndex3
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1%

Figure 2: Runtime breakdown of data pre-
processing step. [3]

According to Figure 2, the first step, BWA-MEM, con-
sumes 14% time. But it has been well studied by Yu-Ting
[3] at 2015. Then we turn to the third step, MarkDupli-
cate, which consumes the second longest time. The func-
tion of MarkDuplicate is to examine aligned reads in the in-
put SAM/BAM file to locate duplicate molecules. All reads
are then written to the output file with the duplicate reads
flagged or removed. Duplicate reads are non-independent
measurements of a sequence sampled from the exact same
template of DNA so that they have the same start position.
Therefore, we identify duplicate reads based on start posi-
tion. Duplicate read has to be marked or removed due to
it violates assumptions of variant calling and can introduce
bias in variant calling. Meanwhile, errors coming from the
sample could get propagated to all the duplicate reads as
shown in Figure 3. Thus, it will be risky to obtain over-
representation in our sequence of areas preferentially ampli-
fied. MarkDuplicate does not have a detrimental effect on
our overall depth of coverage but increases the quality and
reliability of the areas we have covered [2].

Mapped Reads

Reference

MarkDuplicate

Reference

Figure 3: Duplicate reads and MarkDuplicate. [2]

Current application for MarkDuplicate is called Picard,
which is developed by Broad Institute for years. Our work

first inspects the original MarkDuplicate in Picard and im-
proves one algorithm to reduce the execution time. Then
we further profile MarkDuplicate with revised algorithm and
narrow the performance bottleneck down to deflate, inflate
and I/O operations. Hence, we design a parallel MarkDu-
plicate at the cloud scale, which eliminates the bottleneck
with the ADAM format. Our parallel MarkDuplicate can
not only produce the same output as Picard tool, but also
be integrated into CS-BWAMEM [3] in the future to scale
out the whole data pre-processing.

Our main contributions are the following: 1) We optimize
the original MarkDuplicate in Picard, improving the perfor-
mance of processing whole genome data with the maximal
speedup of 9.57X; 2) We design and implement the cloud
scale parallel MarkDuplicate with ADAM format. We shrink
the time of I/O processing in MarkDuplicate from 9 hours
to 3 hours; 3) We show how ADAM format can be used to
scale out and accelerate operations in data pre-processing.
With CS-BWAMEM, the whole data pre-processing could
be unified to parallel processing.

This paper is organized as follows: Section 2 discusses
the algorithm with the problem in detail and our solution
as well. Section 3 describes the design of new MarkDupli-
cate application with supporting parallel I/O processing by
applying ADAM format. Each section evaluates the imple-
mentation respectively. Section 4 provides the related work
of whole genome sequencing and Section 5 presents the con-
clusions of this paper.

2. PICARD OPTIMIZATION

2.1 MarkDuplicate in Picard
MarkDuplicate in Picard tool is a Java application and it

only uses one single thread to process data. It takes sorted
BAM file as input and generates new BAM file with du-
plicate reads marked as output. In addition, the user can
customize the configuration to remove duplicate reads in the
final output as well. MarkDuplicate is a memory intensive
program, which is required in order to detect interchromoso-
mal duplication. To pursue optimization for MarkDuplicate,
we should identify the program workflow and the algorithm
within it to further understand the implementation of cur-
rent MarkDuplicate. The high-level processing procedure
is identifying duplicate sets first and then finding out the
representative read within each duplicate set based on the
quality score of each read. A duplicate set is a set of reads in
which only one of them is non-duplicate and the rest of them
are all duplicate. Quality score is the sum of base qualities
for each read, which is already stored in each read as an at-
tribute. The score is pre-calculated before MarkDuplicate.
After that, marking all the rest of reads in each duplicate
set as duplicate reads by assigning one specific flag in each
read. In Picard tool implementation, there are three main
steps in total: 1) Load sorted BAM file and iterate each read
in order; 2) Go through each input list and build duplicate
set; 3) Mark duplicate reads and write non-duplicate reads
to output BAM file.

According to Broad Institute, they test MarkDuplicate
with 2GB Java heap and 10GB hard memory limit. It takes
about 1 hour to process a 8.6GB input data, which contains
63 million reads and 2.5 hours to a 20GB input data, which
contains 133 million reads. In order to explore the accelera-
tion opportunity, we test MarkDuplicate in Picard tool with
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8GB Java heap and 8GB hard memory limit on a single ma-
chine and we use the real whole genome data as well. The
result is shown as Table 1.

Table 1: Runtime profiling results.

Data1 Size2 Time3 Time Breakdown
Step 1 Step 2 Step 3

798 65G 9.1 3.27 0.10 5.73
799 75G 29.1 3.73 19.1 6.27
800 77G 43.2 3.67 33.2 6.33
801 78G 28.2 3.57 18.2 6.43
802 69G 34.2 3.35 25.12 5.73
803 74G 88.1 3.59 78.43 6.08
804 77G 97.4 3.36 88.4 5.64
805 78G 103.3 3.45 94.13 5.72
806 76G 51.0 3.39 42.67 4.94
807 77G 97.9 3.33 89.4 5.17
808 76G 80.8 3.41 71.1 6.29
809 68G 8.0 3.18 0.25 4.57
810 73G 90.7 3.22 82.7 4.78

1 The data number 798 is short for WGC033798D as ex-
ample. The 13 30X coverage paired-end whole genomes
are collected from an autism study. These data are
150bp paired-end reads. This set of data is used by us
for all the profiling and evaluation through the paper.

2 The file storage format of this set of data is BAM for-
mat, which is the compressed format of SAM format.

3 The unit of the time in this table is hour.

From the table, we can see that the average time for
MarkDuplicate is more than 50 hours except for data 798
and 809. The longest execution time is 103 hours and 20
minutes for data 805. To further profile MarkDuplicate ap-
plication, we break down the execution to the three steps
that we discussed before. The detail is shown as the right
part of Table 1. Therefore, we realize that the second step
might have the opportunity to improve since it clearly costs
more than 50% of the total execution time.

2.2 Problem Analysis
In biology, optical duplicates are sequences from one clus-

ter in fact but identified by software from multiple adjacent
clusters. [6] MarkDuplicate collects the number of the op-
tical duplicates and reports the number to the user in the
end. We trace the algorithm code and abstract the workflow
in Figure 4. Algorithm 1 is the pseudocode. P in Algorithm
1 is the same as the P in Figure 4. In general, there are
two nested for loops. The outer loop’s count i starts from
the first read to the end while the inner loop’s count j starts
from (i+1) to the end. Inside the inner loop, the logic is
comparing the abstract difference between the Y value of
read i and j. If it is larger than the value of opticalDupli-
catePixelDistance, read j will be identified as optical dupli-
cate. Otherwise, continue the algorithm. Finally the algo-
rithm will return the number of optical duplicates, which is
stored in the list called opticalDuplicateFlags.

Based on the algorithm, once one read is identified as op-
tical duplicate, it will never be changed again. Therefore,
from the algorithm perspective, there are several redundan-
cies within the algorithm that could be eliminated to im-
prove the performance.

i = 0

List[i].getTile < 0 True

False

j = i+1

j++
True

False

Mark List[j] true

i < List.size

True

False

j < List.size

True

Return optical duplicate

False

Pj++

P: |List[i].getY() – List[j].getY()|< opticalDuplicatePixelDistance

i++

Figure 4: Tracking optical duplicate read.

Algorithm 1 Track optical duplicate

1: for each i ∈ List.size do
2: if List[i].getT ile >= 0 then
3: for each j ∈ [i + 1, List.size] do
4: if P == True then
5: List[j]← OpticalDuplicate
6: end if
7: end for
8: end if
9: end for

2.2.1 Inner Loop Redundancy
As we mentioned, once one read is identified as optical

duplicate, it will never be changed again. Thus one possible
redundancy could be described as Figure 5. When the cur-
rent outer loop is at i and current inner loop is at j, which
is (i+1) according to the algorithm, all the reads in the red
area A do not need to compare if they are all optical dupli-
cates already. Under this circumstances, inner loop should
start from the position S instead of (i+1).

Outer Loop (i)

S

List of Reads

Inner Loop (j = i+1)

A

Figure 5: The first redundancy.

2.2.2 Outer Loop Redundancy
The second possible redundancy is shown as Figure 6. P

is the criteria for deciding optical duplicate. The meaning
of the red and blue arrows are shown in the figure. The
term of “false reads” means those reads that are not yet
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marked as optical duplicate. Therefore, for one iteration
of the outer loop, if all the P in the corresponding inner
loop are false, which means all the reads in this inner loop
are not optical duplicate, there will be only three situations
in total. Noted that the red round brackets indicate the
smallest value of the left side of P, which is still larger than
opticalDuplicatePixelDistance.

As a consequence, we might skip next iteration of the
outer loop at (i+1) only if the smallest value of the left side
of P at (i+1) is larger than opticalDuplicatePixelDistance.
This redundancy should be avoided to gain improvement
towards more efficient execution.

Figure 6: The second redundancy.

2.2.3 Tail Redundancy
One more redundancy that we found exists when all the

rest of the non-optical duplicate reads are identified as opti-
cal duplicate at one iteration of inner loop. Figure 7 shows
the detail of this situation. The red area B contains all the
reads for inner loop starting from index j. After this itera-
tion, if all the reads in B are optical duplicate, there will be
meaningless to continue algorithm.

Outer Loop (i)
List of Reads

Inner Loop (j) B

Figure 7: The third redundancy.

We should exit the algorithm and return the optical du-
plicate list immediately when B are all optical duplicates to
remove this redundancy.

2.3 Optimization Design
In general, we create an separate Arrylist R to help deter-

mining whether there is any of the three kinds of redundancy
or not. R stores the index of all the non-optical duplicate
reads and R will remove the index when the corresponding
read is identified as optical duplicate. For the three redun-
dancy introduced above, we have respective design and im-
plementation. In the end, we update the algorithm as shown
in Figure 8 and Algorithm 2.

1. For inner loop redundancy, we will start the inner loop
from the larger one between R[0] and (i+1). R[0] is
the smallest index of all non-optical duplicates, which
is the position S in Figure 5.

2. For outer loop redundancy, we need to record a check
point, which is the Y value of the closest non-optical
duplicate to current read i. In Figure 6, it would be

i=0

List[i].getTile <0 True

Find n in R

j++

False

i<List.size
True

False

j<List.size
True

False

P

i++

j=n

Remove j in R

Check Y 
check point

True

Update Y 
check point

Return optical duplicate

False

False

j++ True
Mark List[j] true

P: |List[i].getY() – List[j].getY()|< opticalDuplicatePixelDistance

Figure 8: Optimized algorithm work flow.

the Y value of A and B in (1), C in (2) or D in (3).
Therefore, we will be able to check whether we need
to enter into iteration i+1 or not. Note that once
entering into the inner loop, this check point should
be updated while looping.

3. For tail redundancy, we will just simply check whether
the R is an empty list or not. If it is empty, return and
exit immediately. Otherwise, continue algorithm.

Algorithm 2 Optimized tracking optical duplicate

1: for each i ∈ List.size do
2: if List[i].getT ile >= 0 then
3: s← min{i + 1, R[0]}
4: for each j ∈ [s, List.size] do
5: if P == True then
6: List[j]← OpticalDuplicate
7: Delete j in R
8: end if
9: end for

10: if R == Null then
11: return OpticalDuplicate
12: end if
13: end if
14: end for

2.4 Evaluation
We perform our evaluation for optimized MarkDuplicate

on a single machine, which is equipped with Intel Xeon E5-
2640 CPU and 128 GB DRAM. We run both the original
MarkDuplicate and the optimized version with 8GB Java
heap and 8GB hard memory limit. First of all, we take data
807 as an example to perform the evaluation. 807 has more
than 1.2 billion reads in total and it costs nearly 3 days to
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finish the second step in MarkDuplicate. For our optimized
algorithm, it only takes 1.5 hours, which brings us over 50X
speedup. Figure 9 shows all the evaluation results of all the
13 sets of whole genome data that we used. All the data
listed in the figure have the similar size with 807.

In Figure 9, we show four time for each data. The descrip-
tion of each time is listed on the bottom. Comparing the
first two time we see the improvement on the step 2 only.
From the figure, we achieve significant improvement for the
second step of MarkDuplicate in Picard tool except for data
798 and 809. The best case we have is reducing the execu-
tion time from 94.05 hours to 1.45 hours. The speedup is
64.86X. Even for the worst case, the execution time is still
reduced by 17.5 hours and the speedup is 35.31X. The av-
erage execution time is reduced to less than 1 hour. The
reason for data 798 and 809 is there is no super big list for
tracking optical duplicate so that there is no such redun-
dancy to optimize. Since only 2 out of 13 data do not have
such redundancy, it is reasonable to assume that this kind
of redundancy commonly exists in raw genome data. Com-
paring the last two time we can see the improvement on
the whole MarkDuplicate. Except for data 798 and 809, the
minimal time is 29.1 hours while the maximal time is 103.3
hours. After optimization, all the data can be done within
around 10 hours. The maximal speedup we gain is 9.65X.

3. CLOUD SCALE MARKDUPLICATE
To explore more optimization, we should consider adopt-

ing parallelism to accelerate the processing speed and reduce
the execution time as well.

3.1 Motivation
We have successfully reduced the execution time of MarkDu-

plicate to around 10 hours. Meanwhile, the second step now
only costs around 1 hour, which means the rest two steps
costs nearly 90% of the total execution time based on the
evaluation results shown in Figure 9. The first step is to
read all the reads and build two lists for the second step,
and the third step is to mark duplicate read and write all
reads back to disk file. They are all I/O related operations
and become the performance bottleneck in current stage.

The most straightforward solution for parallelizing I/O
operation would be partitioning the input data and after-
wards processing each partition in parallel. However, it can
be implemented unless we eliminate the dependency within
the input BAM file data of MarkDuplicate. As we men-
tioned in the previous section, one of the output lists of the
first step, pairSort, contains all the paired reads from the
input data. There are two kinds of read. One is called frag-
ment read and the other is called paired read. Fragment
read is just one single read in the input data. Every read
in the input data is fragment read. Nevertheless, some of
the reads among fragment read are paired read. They and
their pair read form an complete read, which is called paired
read. The two pair reads in one paired read are stored in the
input data separately. Therefore, while we build pairSort,
we need to temporarily store all the reads that are paired
read if they do not find their pair yet.

As a consequence, we cannot partition the input data di-
rectly. Otherwise we will never be able to create the tem-
porary list for the paired read who do not find their pair
yet. Without this temporary list, we cannot build pairSort
and then find out the duplicates. Despite the dependency

that we found cannot be removed, we still can design an-
other solution to bypass this dependency and accelerate the
I/O processing. Although building two list in the first step
cannot be parallelized, reading reads from the input data
can be parallelized instead. Mark duplicate read and write
reads back to file in the third step can be parallelized as well
since there is no dependency found yet. In that way, we are
able to accelerate these two steps.

What we need to do is to design a method to handle par-
titioning the input BAM file data and all the related oper-
ations with the partition, including read, write, deflate and
inflate. Designing and implementing this framework could
be years while we can leverage ADAM [7] to achieve our
goal. ADAM is an on-going project leading by AMPLab
in University of California, Berkeley. It is a set of formats,
APIs, and programming framework for cloud scale genomic
processing. It scales efficiently to modern cloud computing
performance, which allows us to parallelize genomic data
processing. ADAM is implemented on top of Spark [8], Avro
[9] and and Parquet [10]. Avro provides explicit data schema
access in C/C++/C#, Java/Scala, Python, php and Ruby.
Parquet allows access by database systems like Impala and
Shark. Spark, a high performance in-memory map-reduce
system, improves performance through in-memory caching
and reducing disk I/O.

3.2 Algorithm Design
Based on our discussion of acceleration method to re-

duce the execution time of I/O operation in MarkDuplicate,
we design the algorithm shown as Figure 10. Instead of
SAM/BAM file format to be the input data file format, now
we are using ADAM format as the input data file format. For
the single step of MarkDuplicate in the genome sequencing
processing pipeline, the execution time should include the
data format transforming from SAM/BAM to ADAM when
evaluation. However, the trend in this field and our goal
are moving towards scaling out data processing to modern
cluster and cloud computing in the long term. Thus we will
just evaluate our algorithm with ADAM format file as in-
put. Our focus is on whether we can accelerate the process
by using another file format.

Our algorithm design is following the processing logic of
MarkDuplicate in Picard with using ADAM format file as
input and output. The purpose of obeying the processing
logic of MarkDuplicate in Picard is to guarantee the validity
of the algorithm and the completeness of the output. In
Figure 10, operation before “Build two lists” is the first step
in Picard. The two operations in the dotted rectangle are
the second step in Picard and the rest operations are the
third step in Picard. Except for the operations in the dotted
rectangle will execute on Driver node of Spark locally, all the
other operations will perform parallel processing on cluster.

Following the work flow shown in Figure 10, at first our
algorithm abstracts the input ADAM file to an RDD [11],
which is resilient distributed dataset in Spark. Then we
map this RDD to a new RDD which contains all the reads
of the input. The difference is the read in this new RDD
only stores the necessary information for marking duplicate.
After that, we collect this new RDD back to driver and it-
erate the reads on driver machine to build that two lists.
Also we generate the duplicate indexes on the driver. Once
we obtain the duplicate index, we map original input RDD
to another new RDD and mark the duplicate reads at the
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Figure 9: Optimized algorithm performance for whole genome data.
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Figure 10: Overview of algorithm design.

same time. At last, we write back the RDD to distributed
stored ADAM file. Notice that except for the building frag-
Sort that we discussed in section 3.2, all the rest operations
are designed as parallel processing and the related data is
distributed in its storage. Moreover, All transformations on
RDD are lazy, in that they do not compute the results right
away. Instead, they just remember the transformations ap-
plied to dataset. The transformations are only computed
when an action requires a result to be returned to the driver
program. This design enables algorithm to be more efficient
because we will return only the final result of a chain of
transformations, rather than the larger intermedia dataset.

3.3 Implementation
We use Scala [12] to implement our algorithm. For the

second step, we directly call the function in Picard while we
rewrite the code for the entire first and third step, which
deals with distributed data in parallel. During the imple-
mentation, we encountered several problems.

3.3.1 Serializable Object
All the objects in Spark have to be serializable. Therefore,

we create a new object called CSAlignmentRecord. We use
this object to store the information of each read for building

two lists. However, there is another problem during trans-
forming the read in ADAM to CSAlignmentRecord. Some
fields do not have the direct corresponding filed in ADAM
file. In order to keep the correctness of the transforma-
tion, we have to make sure all the data transformed from
ADAM format to CSAlignmentRecord is exactly matched
on biologic meaning. Unfortunately, ADAM does not supply
enough detail description on the biologic meaning of those
fields. Instead, ADAM do provide a function called con-
vertADAMtoSam to support converting one read in ADAM
format to SAM/BAM format. Therefore, this problem is
solved since all the needed fields can be clearly identified
from SAM/BAM format read. The only problem remaining
is function convertADAMtoSam requires SAM/BAM header
as argument. We extract the header from SAM/BAM file
and broadcast it to all the worker so that every worker now
obtains the header to finish convertADAMtoSam.

3.3.2 Memory Limitation
Before iterating reads to build two lists, we have to collect

all the reads to driver node in Spark and maintain it with
the temporary list containing un-matched pair reads in the
memory during the whole iteration. Since the whole genome
data used to have more than 1 billion reads, it approxi-
mately requires extremely large DRAM, which is unrealistic
in practice. One solution can be spill part of the data to
disk when memory is insufficient but this will increase huge
amount of I/O operation between DRAM and disk. It will
harm the performance significantly. Thus, we can leverage
the lazy evaluation feature of Spark RDD to collect partial
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Figure 11: Tuning result for partial RDD size.
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reads back to driver’s local memory to perform iteration.
The idea is that all the reads are distributed stored in

workers’ local disk. The RDD of all the reads is abstract
presented as a complete and consecutive dataset. Each time,
we map and filter out partial set of reads to a new RDD. The
order of the partial set of reads is maintained by Spark and
we can control the data based on the index of the reads. At
last, we just collect the partial set of reads to the memory of
driver machine and iterate the reads in memory. Therefore,
we tune the partial RDD size for our implementation. We
test from 100 million to 350 million reads with using data
800 and get the result in Figure 11, where the y-axis is time
in hours and the x-axis is partial RDD size in million. From
the figure we notice that the shortest time shows up at 150
million and 200 million. For the following implementation,
we use 150 million as the partial RDD size.

3.4 Evaluation
We evaluate our cloud scale MarkDuplicate on our own in-

memory cluster. Our cluster uses Spark to perform compu-
tation and HDFS [13] as storage infrastructure. More specif-
ically, we deploy Spark 1.5.1 and Hadoop 2.5.2 for HDFS.
In our deployment, we deploy both HDFS master node and
Spark master node in the same server that we use for the
evaluation in section 2. It has two six-core, hyper-threading,
Intel Xeon Sandy Bridge processors running at 2.5GHz with
128 GB DRAM. In addition to the master node, we also need
slave nodes to store data and perform computation. Our
policy is to deploy one HDFS slave node together with one
Spark slave node on the same server. It improves the data
locality since the Spark slave node can directly fetch data
from its local HDFS slave node. For the slave nodes, each
server is equipped with two six-core, hyper-threading CPUs
and at least 64GB DRAM. Except for master and slave node
in Spark, we still need an additional type of node, which is
called “driver” node. The Spark driver is where we submit
and launch our Spark task. After that, the Spark master will
handle resource allocation and task monitoring. Until the
resource is sufficient, the launched task will be executed. In
our case, the more memory the better performance. There-
fore, we select the server with the largest DRAM in our
cluster to be our Spark driver. It also has two six-core,
hyper-threading Intel Xeon Sandy Bridge CPUs while the
DRAM is 256 GB.

In order to compare the performance with the original
MarkDuplicate in Picard tool, we keep using the same 13
sets of real whole genome data. For each data, we prepare
the sorted ADAM format version in advance and we set 150

million as the size of the partial RDD. The evaluation results
are shown in Figure 12.

We extract the performance data from the previous sec-
tion and put them together in Figure 12 to show the speedup
we achieve. The time listed in the table is the total execution
time for the first and third step in both Picard and our cloud
scale MarkDuplicate. From the figure, we can see that the
average time for Picard is around 9 hours. However, even
the worst case for our implementation is only 4.27 hours.
The best case is just as short as 2.31 hours. In average, it
took about 3 hours to finish both reading and writing reads.
In the other words, we gain speedup of 3.89X in maximal
and 2.7X in average. Theoretically speaking, we reduce the
total execution time of MarkDuplicate from roughly 3 days
down to less than 3 hours in best case, which saves huge
amount of precious time for biologists.

4. RELATED WORK
Picard comprises Java-based command-line utilities that

manipulate SAM files for data pre-processing in genome se-
quencing. Both SAM format and SAM binary (BAM) for-
mat are supported. According to [14], Picard MarkDupli-
cate performs better in removing duplicates than Illumina
[15]. There are several other applications performing dupli-
cate marking and removing such as Rmdup in the SAMtools
package [16], markdup in Sambamba [17], SAMBLASTER
[18] and SEAL [19]. Among them, SEAL is the only dis-
tributed tool, which removes duplicates according to the
same criteria employed by Picard MarkdDuplicate.

ADAM [7] is a new data storage format and processing
pipeline for genomics data. However, their implementa-
tion does not have all the output information that Picard
has. Thus we implement our own cloud scale MarkDupli-
cate based on Picard algorithm. Except for ADAM, there
are many other platform dealing with next generation se-
quencing (NGS) [20][21] data. GATK [22] is one of the
toolkit that provides MapReduce framework for analyzing
NGS data. It contains a small but rich set of data access
patterns that encompass the majority of analysis tool needs.
The Complete Genomics [23] achieves high accuracy and
scalability, which enable complete human genome sequenc-
ing in large-scale genetic studies. In [24], they compared the
performance of Illumina and Complete Genomics. However,
there is still a big development gay between sequencing out-
put and analysis results. Nevertheless, scaling out the NGS
is the current trend and faster and consistent platform is
needed by bioinformatic researches.

14



5. CONCLUSION
We propose our two stage optimization to improve the per-

formance of MarkDuplicate in Picard tool. At the first stage,
we successfully achieve 5.62X speedup on average for the
whole MarkDuplicate processing based on our evaluation.
To eliminate the performance bottleneck of our improved
MarkDuplicate, then we provide cloud-scale MarkDuplicate
with the ADAM format disk file instead of the SAM format.
Compared to the sequential I/O processing of MarkDupli-
cate in Picard, our MarkDuplicate finishes within around
3 hours instead of 10 hours. We also show the benefit
of using the ADAM format data instead of the SAM for-
mat. ADAM supports distributed storage and parallel pro-
cessing on genome data. Therefore, we obtain the perfor-
mance improvement by using ADAM as input and output
data format. Moreover, using the ADAM format instead of
the SAM format gives us the potential opportunity of inte-
grating our cloud-scale MarkDuplicate with other steps in
genome sequencing to establish the whole cloud-scale data
pre-processing in genome sequencing pipeline, which is the
next generation bioinformatic software tool.
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