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ABSTRACT
Modern vehicles contain a few controller area networks (CANs),
which allow scores of on-board electronic control units (ECUs)
to communicate messages critical to vehicle functions and driver
safety. CAN provides a lightweight and reliable broadcast protocol
but is bereft of security features. As evidenced by many recent
research works, CAN exploits are possible both remotely and with
direct access, fueling a growing CAN intrusion detection system
(IDS) body of research. A challenge for pioneering vehicle-agnostic
IDSs is that passenger vehicles’ CAN message encodings are propri-
etary, defined and held secret by original equipment manufacturers
(OEMs). Targeting detection of next-generation attacks, in which
messages are sent from the expected ECU at the expected time but
with malicious content, researchers are now seeking to leverage
“CAN data models”, which predict future CAN messages and use
prediction error to identify anomalous, hopefully malicious CAN
messages. Yet, current works model CAN signals post-translation,
i.e., after applying OEM-donated or reverse-engineered translations
from raw data. We present initial IDS results testing deep neural
networks used to predict CAN data at the bit level, targeting IDS ca-
pabilities that avoiding reverse engineering proprietary encodings.
Our results suggest the method is promising for data with signals
exhibiting dependence on previous or concurrent inputs.
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1 INTRODUCTION & BACKGROUND
Modern vehicles are increasingly “drive-by-wire” meaning once-
mechanical interfaces of subsystems have been replaced by com-
munication of electronic control units (ECUs), or small computers
orchestrating the subsystems. Rather than using dedicated con-
nections for each ECU pair, a few controller area networks (CANs)
allow broadcast communications of all ECUs. In particular, we focus
on the high-speed (250Kbs-500Kbs) controller area network (CAN)
bus, as it is used for much of critical vehicle communications.

Figure 1: CAN 2.0 data frame depicted. Image from Cho &
Shin [4] of. There are two important fields, the Arbitration
ID (AID) used for indexing and prioritizing frames and the
data field containing up to 64 bits of message contents.

CAN 2.0 provides a protocol defining the physical and data link
layers [1] (Figure 1). Each packet’s information is contained in two
fields, the Arbitration ID (AID) used for indexing and prioritizing
frames and the data field containing up to 64 bits of message con-
tents. The mapping of the data field’s bits to the signals it encodes
is a proprietary secret, defined by the original equipment manufac-
turers (OEMs, e.g., Ford, GM), and the encodings change depending
on make, model, year, and even vehicle specifications. This poses
an obstacle for producing vehicle-agnostic solutions for automotive
CANs, in particular, defensive and offensive cyber security, which
are desirable for many applications, in particular to existing vehi-
cles. See recent work of Verma et al. [24], and Nolan et al. [19] on
discovering the syntax and semantics of automotive CAN data.

CAN is a reliable and lightweight protocol, but it has few se-
curity features, e.g., no encryption nor authentication, and has
been proven to be exploitable with direct access [2, 9, 15, 17] or
even remotely [16, 25]. The attack surface for in-vehicle CANs is
growing as cars become increasingly exposed e.g. via USB, cellular,
bluetooth and the advent of vehicle-to-vehicle and -infrastructure
networking. Providing effective intrusion detection for automotive
CANs is a burgeoning research topic [14].

1.1 Related CAN IDS Works
Initial automotive CAN IDS research has been rule-based [9, 18],
which pushes security to OEMs, as rules are dependent on CAN
encodings (model-specific) and may require knowledge of specific
attacks. Multiple works [7, 17, 21] exploit message frequency anom-
alies for vehicle-agnostic detection of message injection attacks. In
response to the infamous Miller and Valesek remote Jeep hack [16]
(which used a masquerade attack in which one ECU sent malicious
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braking signals while the brake ECU was silenced), multiple efforts
have proposed data-driven efforts for ECU identification to detect
AIDs originating from the wrong transmitter [4, 5, 11].

The logical next-generation attack involves a reprogrammed
ECU sending appropriate AIDs with appropriate timing, but with
augmented, potentially malicious, data field contents. After-market
“chipping” kits exhibit this capability by reprogramming ECUs,
although in practice these are used for performance-tuning, not
malicious purposes.

Works are emerging that test supervised deep learners trained
on specific attacks with labeled data [10, 13]. We seek anomaly
detection to avoid training towards a specific attack.

CAN IDS research into unsupervised learning methodologies
for detecting malicious messages has begun modeling correlations
inherent to the CAN data that are broken by attacks. Tyree et al.
[23] propose a manifold learning technique to identify relationships
in CAN data that are broken during attacks that do not coordinate
related signals. Their technique requires at least the ability to tok-
enize (partition) the up-to 64-bit CAN data fields into signal-sized
messages but not fully translate the CAN data. The other three
works seeking to exploit correlations of signals in the CAN data
and, thus, require complete knowledge of the modeled signals’ en-
codings: Ganesan et al. [6] learn correlation of value pairs (e.g.,
speed, accelerator pedal position) using both CAN and sensor data
to detect injection attacks. IDS research of Li [12] and of Testud
[22] propose a three-step process to model CAN packets and detect
unexpected packets: (1) reverse engineer or partner with an OEM
to obtain many signals in the CAN data, (2) train deep learning,
neural network regressor(s) to predict the next signal value(s) from
the history of observations, (3) use the error in predicted values
from observed as an online anomaly detector.

We present initial results for a CAN prediction model without
step (1). That is, previous work translated the 64-bit data field into
the signals it encodes (requiring OEM knowledge or tedious reverse
engineering) and built models of the signals. Rather, our approach
models an AID’s 64-bit data field. Hence, we commence prediction
and detection (steps (2) and (3)) without requiring any translation
of the CAN message bits to signals.

1.2 Contributions
Our long-term goal is to provide an after-market IDS for ideally all
passenger vehicles. This means we cannot rely on OEM-defined
CAN mappings. En route to this goal we adopt the neural network

Figure 2: Neural Network architecture diagram depicted. Di-
mensions of the vector passed between layers given. Batch
size was set to 32. Dropout between dense layers set to ran-
domly ignore 20% of neurons in the first Dense layer.

CAN prediction model; specifically, from a history of CAN data
our regressors predict the next CAN data field, and we too use
prediction error to detect anomalous messages. Unlike the previous
two similar works [12, 22], we do not translate CAN data fields
to signals, as we do not have the OEM’s proprietary mappings.
Instead, we train a deep neural network for each AID to predict
its next 64-bit data field. The primary contribution of this work
is presentation of initial results showing efficacy of the bit-level
CAN models for attack detection. The benefit of this approach is
straight-forward—it extends the general CANmodeling frameworks
for anomaly detection (which relies critically on OEM-proprietary
CANmappings) to a vehicle-agnostic detector, as no CANmappings
are assumed. Although our focus is CAN IDS, CAN models can be
used for other applications, e.g. CAN simulators.

2 CAN PREDICTION MODEL

Figure 3: Training
data example, on the
left, ten consecutive
signals are labeled by
11th (right).

The essential hypothesis of CAN
prediction models is that there ex-
ists a dependency of future mes-
sages on recently passed or other
concurrent messages. Hence, such
an IDS will be blind to any attack
manipulating data who’s values are
impervious to these dependencies
or simply do not manipulating val-
ues, e.g., DOS by spamming, bus-off
attacks [3].

While our overall IDS is un-
supervised—i.e., we do not re-
quire labeled attack and non-attack
data—we exploit supervised learn-
ing to build a CAN prediction
model. Specifically, we create la-
beled data by taking a fixed AID’s
most recently observed ten data fields and try to predict next (11th).
Hence, we model each AID independently.

Let X = {xi }Ni=1 be the set of training examples and Y = {yi }Ni=1
be the set of labels. Our training data is a tuple (xi ,yi ) where
xi ∈ {0, 1}10×64 and yi ∈ {0, 1}64 as shown in Figure 3.

Recurrent neural networks (RNNs) model temporal/sequential
dependence by including the previous prediction’s hidden state as
well as given inputs into the current prediction [20]. Long Short-
Term Memory (LSTM) layers provide a particular architecture for
portions of an RNN that seek to leverage dependence in modeling
better than “vanilla” RNNs, as they are crafted to avoid vanish-
ing gradient problems common in RNN training [8]. Hence, this
statistical machinery is a natural choice for our model.

We build the model using Keras (www.keras.io), a Python deep
learning module. See Figure 2. The model consists of three LSTM
layers, a dropout layer, and two dense layers. The last layer having
64 nodes (one per predicted bit of the next data field) as the output
and softmax as an activation function. Between the two dense
layers, we include a dropout layer to prevent overfitting of our
model. We set the layer’s drop rate to 0.2; i.e., 20% of neurons in the
first dense layer are dropped during training). To train the model
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we used batch size of 32. Out of several tested architectures, where
we varied the number/sizes of layers, this one was most accurate.

For each desired AID, we use the described LSTM on ambient
CAN data collected during normal driving conditions. We denote
such a model M = M(X,Y,AID) , where X is the set of training
examples and Y is the set of labels for each example. For a given
input vector xi ∈ X (previous ten observed data fields), letM (xi ) =
ŷi denote the predicted next 64-bit data field, yi ∈ Y.

To build an anomaly score from the AID’s trained prediction
model, we consider the error of each prediction, ei := ∥yi − ŷi ∥2.
To create the anomaly detector, after training, apply the model
on the training data and compute the mean and variance of the
observed prediction errors. Specifically, µ =

∑
X ei/N , and σ 2 =∑

X (ei − µ )2/(N − 1). Finally, we compute the Gaussian z-score
of newly observed error zi = (ei − µ )/σ and use the one-sided
p-value for our anomaly score, p-value(z) = 1 − CDF(z), where
CDF is the Gaussian normal cumulative distribution function. Note
that if the error is less than expected (z < 0 ) p-value(z) > 0.5
and p-value(z) → 1 as z → −∞. Similarly, if the error is greater
than expected (z > 0) p-value(z) < .5, and p-value(z) → 0 as
z → ∞. Hence, a small p-values occurs if and only if the error is
large relative to observations in training.

3 EXPERIMENT
We present two indicative experiments. The first is a model of an
AID that (we believe) communicates the four wheels’ speeds—four
signals that vary little between each other and individually all
move “continuously”, meaning limited variance from one message
to the next. The second AID includes a binary reverse light indicator,
which need not depend on its past values andwe cannot saywhether
it depends on other bits in the AID. Our understanding is from
manual reverse engineering.

For data collection we used the Vehicle Spy software, produced
by Intrepid Control Systems, Inc. (www.intrepidcs.com/products/
software/vehicle-spy) allowing passive monitoring of CAN data
via the OBD-II port. For training, we used a portion of CAN data
recorded during ambient driving lasting 141 seconds. See Figure 4.

To test the detector, we inject CAN frames with each AID, sep-
arately, to emulate attacks on the CAN. It is important to stress
that the anomaly detector does not consider the frequency nor the
timestamp of CAN frame, only the sequence of data fields; hence,
the high frequency injections emulate an ECU that is sending mes-
sages with false content. For each emulated attack (one per AID),
we used an Arduino board for injecting CAN frames as well as the
Vehicle Spy for recording CAN data, both connected to the vehicle

Figure 4: Time snippet of training data for two AIDs.

via an OBD-II port. Reverse engineering of the signals allowed for
physical verification that the attacks were effective. Note that our
reverse engineering of these signals is not necessary for the model,
but for understanding efficacy of the experiment/model.

3.1 Wheel Speed AID
The actual attack happened from 14s to 29s of the trip. During that
time the “attacker” repeatedly injected the same AID with the same
message in the 64-bit data field. As can be seen in Figure 5, the
p-value of the observed signals occurring between 14s to 29s is
extremely low.

Figure 5: (Top) Time snippet of wheel speed AID testing
data non-attack period (the left half) and the attack period
(the right half). (Middle) Plot depicts the model’s prediction.
(Bottom) P-value anomaly score depicted for wheel speed
AID. Attack period: 14-29s.

3.2 Reverse Lights AID
The actual attack happened from 14.5s until 29s of the capture.
During that time the “attacker” repeatedly injected the same AID
with the same message in the 64-bit data field. Referring to Figure
6, it is important to note that the p-value of the observed signals
is extremely low throughout the test set. However, it hits actual 0
during the attack period.

3.3 Results Discussion
Overall, we have a very strong difference in our anomaly score
between attack and non-attack periods, but finding an a priori
threshold seems problematic. We conjecture that the current ar-
chitecture is a better model for “continuous” signals with many
distinct 64-bit messages (as in Figure 5), that move in a a clear
pattern (e.g., as speed increases, the 20 place bit increases from 0 to
1, then the 21 place bit increases from 0 to 1, ... ). Presumably the
model is also learning co-variation between the four wheel speeds,
which are similar values except when under attack. The second AID
communicating seemingly binary signals is, unsurprisingly, harder
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Figure 6: (Top) Time snippet of wheel speedAID testing data.
Non-attack period occurs for roughly the first quarter and
the attack period in the other three quarters. Top plot de-
picts actual data. (Middle)Plot depicts the model’s predic-
tion. (Bottom) P-value anomaly score depicted for reverse
light AID. Attack period: 14.5-29s.

for the model to predict. Perhaps taking inputs from a variety of
other AIDs may enhance prediction accuracy.

4 CONCLUSIONS & FUTUREWORK
Recent approaches to build CAN IDSs train a “CAN language
model”, that is, a machine learning model that can accurately pre-
dict the next CAN message from previous or concurrent messages.
Previous works have trained models on reverse engineered signals,
requiring OEM-proprietary (secret) knowledge. In this paper we
build a CAN model at the bit level, eliminating the need for CAN
data translation and present initial results in use for an IDS. One
advantage of this approach is application to existing vehicles, and
could, with sufficient development, be deployed as an after-market
OBD-II plug-in. We model the 64-bit data field for each AID and
use prediction error to identify anomalies. Our results suggest that
AIDs encoding data signals that move “continuously” or in con-
junction with each other yield strong detection results for attacks
that manipulate these signals. The results are less compelling for
signals that exhibit less dependencies on their past and possibly on
other portions of the data frame.

For future work, we would like to refine the architecture of the
neural network to more accurately predict non-malicious messages.
We note that preliminary testing with alternate neural network
configurations yielded less accurate results, but lends credence to
future work aimed at optimizing the architecture for CAN model-
ing. Additionally, construction of a model that handles more than
just one AID at a time will presumably increase accuracy as CANs
communicate states of many different but physically related subsys-
tems. Finally, work is emerging to automatically discover encoded

signals in the CAN data fields (e.g, [19, 24]). The next step is to train
the CAN models conditioned on information from these works.
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