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Remark on “Algorithm 680: evaluation of the complex error function”: Cause and 
Remedy for the Loss of Accuracy Near the Real Axis  

 
MOFREH R. ZAGHLOUL, United Arab Emirates University1 

 
In this remark we identify the cause of the loss of accuracy in the computation of the 

Faddeyeva function, w(z), near the real axis when using Algorithm 680. We provide a simple 
correction to this problem which allows us to restore this code as one of the important reference 
routines for accuracy comparisons. 
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1. INTRODUCTION 
 

By modifying the tuning of Algorithm 363 [Gautschi 69, 70], using a different 
approximation near the origin and testing the relative rather than the absolute error, 
Algorithm 680 [Poppe and Wijers. 1990a,b] calculates the Faddeyeva function to 14 
significant digits (in the first quadrant) with a significant increase in speed over Algorithm 
363. The major modification made was in the choice of the contour G used to tune the 
algorithm from the region R to the outer region Q, as depicted in Fig. 1,   where the nth 
convergent of the Laplace continued fraction is used to approximate the Faddeyeva 
function asymptotically to a prescribed accuracy of d significant digits.  
 
 

Figure 1: Regions and contours used in Algorithm 680 

 
 
The contour G  in Algorithm 680 was defined by the condition  
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where z=x+iy is the complex argument of the Faddeyeva function w(z), x0=6.3 and y0=4.4. In 
the region Q between 3 and 16 convergents of the continued fraction are used to approximate 
the function to obtain a claimed accuracy of 14 significant figures. In the region R, the 
Faddeyeva function is evaluated by a truncated “downward” Taylor expansion where the 
Laplace continued fraction is used to calculate the derivatives of w(z). In the innermost region, 
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S, constrained by the contour S defined by 0§r(z)≤0.292, the function is evaluated using a 
power-series [Abramowitz and Stegun (7.1.5)]. 
 

2. Cause and Remedy  
 
As pointed out by [Zaghloul and Ali 2011; Fig. 1(a)] Algorithm 680 loses its accuracy near 

the real axis. This loss of accuracy is in the regions R and Q and is most prominent in the 
neighborhood of the tuning contour G or around x=6.3. In a recent work [Zaghloul 2018], the 
region of application for the asymptotic approximation of the Faddeyeva function using 
Laplace continued fraction has been assessed through a systematic comparison with Algorithm 
916 as a reference. For a targeted accuracy of 13 significant-digits, the region of applicability 
of the asymptotic approximation from Laplace continued fraction, for very small y, is found 
to be x≥ 20. This explains the cause behind the loss of accuracy of Algorithm 680 near the real 
axis where the Laplace continued fraction is used directly down to x=6.3 and indirectly in 
region R in the calculation of derivatives used in the “downward” truncated Taylor series.   
The fix to this problem appears to be simple since, for the region 1.8396≤x≤20 and y≤0.031623, 
we may use “upward” truncated Taylor series (Taylor expansion about z0=x) to evaluate the 
function. Only 7 terms from the “upward” Taylor series are required to attain 13 significant-
digits accuracy in this region. However, the use of upward Taylor series expansion necessitates 
the computation of w(x) which in turn depends on Dawson’s integral for a real argument, 
F(x), according to the relation  
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The expansion coefficients are calculated recursively [Armstrong 1967, Shippony and Read 
1993], where 
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Here we use Algorithm 715 [Cody 1993] to calculate Dawson’s function of a real argument, 
F(x), to the required accuracy.  
 
These simple modifications were implemented in the Fortran code of Algorithm 680, tested 
using Algorithm 916 as a reference and were found to restore the accuracy to its required level 
for arguments near the real axis.  In addition, the present correction significantly improves the 
efficiency of the code in the region of interest. 

 
It has to be mentioned that Gautschi [Gautschi 1970] highlighted the problem of 

calculating w(z) when y is relatively small. He presented the possibility of using the Dawson 
integral and Taylor expansion to calculate w(z); however, he rejected it based on the 
expectation that it would increase the execution time for computing w(z) due to the necessity 
of computing F(x) and that the recursive computation of the expansion coefficients is subject 
to considerable loss of accuracy, particularly for large x>0. The availability of Algorithm 715 
[Cody 1993] to compute F(x) efficiently and the restriction of the implementation of the 
correction to x20 remove Gauschi’s concerns and clearly provides a suitable correction. 
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3. CONCLUSIONS 
 

The cause of the loss-of-accuracy problem experienced when using Algorithm 680 to evaluate 
the Faddeyeva function near the real axis has been identified and a remedy for the problem is 
described and implemented.  
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