
This item is the archived preprint of:

Global attraction of ODE-based mean field models with hyperexponential job sizes

Reference:
Van Houdt Benny.- Global attraction of ODE-based mean f ield models w ith hyperexponential job sizes
Proceedings of the ACM on Measurement and Analysis of Computing Systems - 3:2(2019), 23 
Full text (Publisher's DOI): https://doi.org/10.1145/3341617.3326137

Institutional repository IRUA

https://repository.uantwerpen.be


ar
X

iv
:1

81
1.

05
23

9v
2 

 [
cs

.P
F]

  1
7 

A
pr

 2
01

9

Global a�raction of ODE-based mean field models with
hyperexponential job sizes

Benny Van Houdt
Dept. Mathematics and Computer Science

University of Antwerp, Belgium

ABSTRACT

Mean field modeling is a popular approach to assess the perfor-

mance of large scale computer systems. �e evolution of many

mean field models is characterized by a set of ordinary differential

equations that have a unique fixed point. In order to prove that this

unique fixed point corresponds to the limit of the stationary mea-

sures of the finite systems, the unique fixed point must be a global

a�ractor. While global a�raction was established for various sys-

tems in case of exponential job sizes, it is o�en unclear whether

these proof techniques can be generalized to non-exponential job

sizes.

In this paper we show how simple monotonicity arguments can

be used to prove global a�raction for a broad class of ordinary dif-

ferential equations that capture the evolution of mean field models

with hyperexponential job sizes. �is class includes both existing

as well as previously unstudied load balancing schemes and can be

used for systems with either finite or infinite buffers.

�e main novelty of the approach exists in using a Coxian rep-

resentation for the hyperexponential job sizes and a partial order

that is stronger than the componentwise partial order used in the

exponential case.
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1 INTRODUCTION

Mean field models are a popular technique to assess the perfor-

mance of large scale (computer) systems. �ey have been applied

in various areas such as load balancing [1, 5, 19, 22, 34, 38], work

stealing [14, 21], caching [15], garbage collection [30, 31], CSMA

networks [7], bin packing [36], file swarming systems [18], coupon

collector problems [20], etc. In many cases the evolution of the

mean field model is described by a simple set of ordinary differ-

ential equations (ODEs) and one can show that this set of ODEs
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has a unique fixed point (that may even have a closed form). �e

main idea behind a mean field approximation is that the stationary

distribution of a single component in the network should (weakly)

converge to (the Dirac measure of) the fixed point of the ODEs as

the number of components N tends to infinity. �erefore the fixed

point approximates the stationary behavior of any component in

a large finite system.

Different approaches exist to prove the convergence of the sta-

tionary distributions to the fixed point of the mean field limit as

N tends to infinity. �e traditional indirect method exists in first

proving convergence of the stochastic processes over finite time

scales, that is, for any fixedT , one shows that the sample paths of

the stochastic processes on [0,T ] converge towards the solution of

the ODEs on [0,T ] (with the appropriate initial condition). For this

step, one can o�en rely on Kurtz’s theorem [9, 22] or the conver-

gence of transition semigroups of Markov processes [1, 34]. �e

second step exists in showing that the stochastic systems with fi-

nite N each have a stationary measure and that this sequence of

stationarymeasures has a limit point (which follows from the tight-

ness of the stationarymeasures). �e final step then exists in show-

ing that the fixed point is a global a�ractor and that the limit point

of the stationary measures must be the Dirac measure associated

with the fixed point. It is fair to state that, given existing mean

field theory, proving global a�raction of the fixed point is o�en

the most demanding step (especially if the state space is a subset

of Rn , see Corollary 1 in Section 6).

A recent directmethod to prove convergence is to rely on�eo-

rem 1 of [37] or�eorem 3.2 of [13] that were both obtained using

Stein’s method [6]. �is approach does not require proving con-

vergence over finite time scales [0,T ]. Instead it makes use of the

solution of the so-called Poisson equation. �e solution of this

equation is expressed as an integral that is only properly defined

if the fixed point is a global a�ractor (that is locally exponentially

stable). �us, Stein’s method, when applied to ODE-based mean

field models, also requires global a�raction of the fixed point. In

fact the main challenge in verifying the conditions needed to apply

�eorem 1 of [37] or�eorem 3.2 of [13] exists in showing that the

fixed point is a global a�ractor.

One approach to prove global a�raction of a set of ODEs to-

wards its fixed point relies on defining a Lyapunov function as

in [22]. However in general coming up with a suitable Lyapunov

function, even in case of exponential job sizes, is highly challeng-

ing. A somewhat more flexible approach, that was applied in [1, 19,

34] for systems with exponential job sizes, relies on monotonicity.

It is composed of the following three steps. First, one defines the

state space Ω in such a way that the set of ODEs maintains the

componentwise partial order ≤ over time. In other words, if h ≤ h̃

http://arxiv.org/abs/1811.05239v2
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in the componentwise ordering, then h(t) ≤ h̃(t) where h(t) and

h̃(t) are the unique solutions to the set of ODEs with h(0) = h and

h̃(0) = h̃. Next, one shows that for any fixed point π and h ∈ Ω

there exists an h(l ),h(u) ∈ Ω such that h(l ) ≤ h,π ≤ h(u) in the

componentwise ordering. Finally, global a�raction on Ω follows

by proving a�raction for any initial point h ∈ Ω for which either

h ≤ π or π ≤ h in the componentwise ordering.

Although it is easy to generalize ODE-based mean field models

with exponential job sizes to hyperexponential job sizes (or even

phase-type distributed job sizes), generalizing this monotonicity

approach to establish global a�raction appears problematic. In this

paper we nevertheless demonstrate that for a broad class of ODE-

based mean field models with hyperexponential jobs sizes, one can

still rely on such amonotonicity argument. In order to do so, we in-

troduce two novel key ideas. First, we set up the ODE-based mean

field model using a Coxian representation of the hyperexponential

distribution. By using this Coxian representation all jobs necessar-

ily start service in phase one, the service phase can only increase

by one at a time and the service completion rate decreases as the

phase increases (see Section 2). �ese three features are essential

to find a partial ordering on Ω that is preserved by the set of ODEs

over time. Second, we rely on a partial ordering that is stronger

than the componentwise ordering used in the exponential case as

the set of ODEs does not preserve the usual componentwise order

over time (see Section 5).

Hyperexponential distributions are o�en used to model highly

variable workloads [10]. Efficient algorithms to fit a hyperexpo-

nential distribution to heavy tailed distributions can be found in

[11, 16, 25, 27]. �e class of hyperexponential distributions is also

dense in the set of all distributions with a completely monotone

probability density function (pdf) [11, �eorem 3.2], such as the

Pareto and Weibull distribution. A pdf f is completely monotone

if all its derivatives exist and (−1)n f (n)(t) ≥ 0 for all t > 0 and

n ≥ 1.

Although various mean field models with non-exponential job

sizes have been introduced, e.g., [33], most of these papers only fo-

cus on the convergence over finite time scales and the uniqueness

of the fixed point. One notable exception is [5] which establishes

the convergence of the stationary regime for the classic power-of-d

load balancing scheme under FIFO service and any job size distri-

bution with decreasing hazard rate. �eir proof is highly technical,

while the approach taken in this paper is much more elementary.

Instead of focusing on a single mean field model, we identify a

set of sufficient conditions such that our result applies to any mean

field model satisfying these conditions. We demonstrate that these

conditions are satisfied by various mean field models, such as the

classic power-of-d load balancing [22, 34], the pull/push strategies

studied in [21] and the power-of-d choices load balancing with

batch sampling. Further, we introduce a class of probability dis-

tributions C0, show that the set of hyperexponential distributions

is a strict subclass of C0 and establish global a�raction under these

sufficient conditions for any job size distribution belonging to the

class C0. In other words, the main result also holds for some job

size distributions that are not hyperexponential distributions. We

also theoretically characterize the first three moments that can be

matched with a distribution belonging to C0.

�e paper is structured as follows. In Section 2 we derive a Cox-

ian representation of a hyperexponential distribution, define the

class of distributions C0, prove that all hyperexponential distribu-

tions belong to C0 and characterize the first three moments. In

Section 3 we introduce the general form of the set of ODEs charac-

terizing the mean field model. Examples are presented in Section 4.

�e state space and partial order that enable us to usemonotonicity

arguments are outlined in Section 5. �e set of sufficient conditions

and the global a�raction theorem are discussed in Section 6, where

we also show that convergence of the stationary measures then

follows from existing results for systems with finite buffers. �ese

conditions are verified in Section 7 for the examples presented in

Section 4. �e proof of the global a�raction theorem is detailed in

Section 8. Conclusions are drawn in Section 9.

2 COXIAN REPRESENTATIONS

A cumulative distribution function (cdf) F is a hyperexponential

distribution if there exists a set of probabilities p̃1, . . . , p̃n such that∑n
k=1

p̃k = 1 and real numbers µ1, . . . , µn > 0 such that F (t) = 1−∑n
k=1

p̃ke
−µk t . Further, a cdf F is a phase-type distribution if there

exists a non-negative vector α = (α1, . . . ,αn ) with
∑n
i=1 αi = 1

and a matrix S with negative diagonal entries, non-negative off-

diagonal entries and non-positive row sums such that F (t) = 1 −

αeSt 1, where 1 is a column vector of ones. In which case (α , S)

is called a phase-type representation of F . It is well known that

the representation (α , S) of a phase-type distribution is not unique

[23].

�e most natural phase-type representation of a hyperexponen-

tial distributions is clearly given by se�ing α = (p̃1, . . . , p̃n) and

S =



−µ1
−µ2

. . .

−µn


.

�us, it is very natural to use this phase-type representation to

define an ODE-based mean field model for systems with hyperex-

ponential job sizes. However, by doing so it appears hard (if not

impossible) to introduce a partial ordering on the state space that

is preserved by the set of ODEs over time. We therefore propose to

use a different phase-type representation, being the Coxian repre-

sentation introduced below. Note that the choice of the phase-type

representation does not affect the main performance measures of

the system, such as the queue length or response time distribution.

It obviously does affect measures such as the joint distribution of

the queue length and service phase as different representations of

the same distributions do not even require to have the same num-

ber of phases n.

A cdf F is a Coxian distribution if and only if it has a phase-

type representation with α = (1, 0, . . . , 0) and a matrix S of the
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following form

S =



−µ1 p1µ1
−µ2 p2µ2

. . .
. . .

−µn−1 pn−1µn−1
−µn


, (1)

with µi > 0 and 0 < pi < 1. �us, F (t) = 1 − (1, 0, . . . , 0)eSt 1. For

ease of presentation we define pn = 0.

Cumani [8] showed that any distribution that has a phase type

representation (α , S) with S triangular is a Coxian distribution (of

at most the same order n). Further, as mixtures of Erlang distri-

butions with common scale parameter are triangular, the class of

Coxian distributions is dense on the space of distributions on R+

[29, p. 163-164]. We now introduce a subclass of the set of all Cox-

ian distributions.

Definition 1. �e class C0 of distributions onR
+ is defined as the

class of distributionswith a Coxian representation such that µi (1−pi )

is decreasing in i .

In this paper we prove global a�raction for a class of ODE-based

mean field models where the service time distribution belongs to

C0. Let CCox be the set of all Coxian distributions and Chexp the

set of all hyperexponential distributions, then clearly C0 ⊂ CCox
and Chexp ⊂ CCox (the la�er due to Cumani). We now prove

that Chexp is a strict subclass of C0. We first derive a simple ex-

plicit expression for the parameters of a Coxian representation of

a hyperexponential distribution. To do so we start with a technical

lemma.

Lemma 1. For any ℓ > k ≥ 1 and µ j , µk for j > k , we have

ℓ∑
i=k+1

∏i−1
v=k

(µv − µℓ)∏i
j=k+1

(µ j − µk )
= −1.

Proof. �e sum can be wri�en as

µk − µℓ

µk+1 − µk

(
1 +

µk+1 − µℓ

µk+2 − µk

(
1 + . . .

µℓ−2 − µℓ

µℓ−1 − µk

(
1 +

µℓ−1 − µℓ

µℓ − µk

)))
.

As (µi−1−µℓ)/(µi −µk )[1+ (µi −µℓ)/(µℓ −µk )] = (µi−1−µℓ)/(µℓ −

µk ) this expression collapses to −1. �

Proposition 1. Let F (t) = 1 −
∑n
k=1

p̃ke
−µk t be a hyperexpo-

nential distribution and assume without loss of generality that µ1 >

µ2 > . . . > µn > 0. �en, F (t) has a Coxian representation with

parameters µi and

pi =

∑n
k=i+1

p̃k
∏i

j=1(1 −
µk
µ j
)∑n

k=i
p̃k

∏i−1
j=1(1 −

µk
µ j
)
. (2)

Proof. We show that both the hyperexponential and Coxian

representations are equivalent by showing that both distributions

have the same Laplace Stieltjes transform F̃ (s) (LST). �ese trans-

forms are given by

F̃hexp (s) =

n∑
k=1

p̃k
µk

s + µk
,

and

F̃Cox (s) =

n∑
i=1

(1 − pi )
©­
«
i−1∏
j=1

pj
ª®
¬

i∏
j=1

µ j

s + µ j
,

as with probability (1 − pi )
∏i−1

j=1 pj we visit the first i phases for

the Coxian representation. Using a partial fraction expansion for

1/
∏i

j=1(s + µ j ), we get

F̃Cox (s) =

n∑
k=1

©­
«
n∑
i=k

(1 − pi )
©­
«
i−1∏
j=1

pj
ª®¬

i∏
j=1, j,k

µ j

µ j − µk

ª®¬
µk

s + µk
.

Hence, F̃hexp (s) = F̃Cox (s) if

p̃k =

n∑
i=k

(1 − pi )
©­
«
i−1∏
j=1

pj
ª®¬

i∏
j=1, j,k

µ j

µ j − µk
. (3)

�is is a linear system in the unknowns (1 − pi )
∏i−1

j=1 pj and we

now show that its solution can be expressed as

(1 − pi )

i−1∏
j=1

pj =

n∑
ℓ=i

p̃ℓ
µℓ
µi

i−1∏
v=1

(1 −
µℓ
µv

). (4)

For i = n this is immediate from (3) with k = n (as pn = 0). We

now apply backward induction on i . Assume the result holds for

i = k + 1, . . . ,n. From (3) we find

p̃k

k−1∏
j=1

(1 −
µk
µ j

) = (1 − pk )

k−1∏
j=1

pj

+

n∑
i=k+1

(1 − pi )
©­
«
i−1∏
j=1

pj
ª®¬

i∏
j=k+1

µ j

µ j − µk︸                                          ︷︷                                          ︸
(a)

. (5)

Applying induction and switching sums yields that (a) equals

n∑
ℓ=k+1

p̃ℓ
µℓ

µk

ℓ∑
i=k+1

(
i−1∏
v=1

(1 −
µℓ

µv
)

) ©­«
i∏

j=k+1

µ j

µ j − µk

ª®
¬
µk
µi

=

n∑
ℓ=k+1

p̃ℓ
µℓ

µk

k−1∏
v=1

(1 −
µv

µ j
)

·
©­
«

ℓ∑
i=k+1

(
i−1∏
v=k

µv − µℓ

µv

) ©­
«

i∏
j=k+1

µ j

µ j − µk

ª®¬
µk
µi

ª®¬︸                                                     ︷︷                                                     ︸
(b )

.

�e expression in (b) is equal to −1 due to Lemma 1, which al-

lows us to conclude that (4) holds due to (5). Using (4),
∏i−1

j=1 pj =∏i
j=1 pj + (1 − pi )

∏i−1
j=1 pj and backward induction on i , we may

conclude that F̃hexp (s) = F̃Cox (s) if

i∏
j=1

pj =

n∑
k=i

p̃k

i∏
j=1

(1 −
µk
µ j

) =

n∑
k=i+1

p̃k

i∏
j=1

(1 −
µk
µ j

). (6)

�e expression in (2) is now immediate, where we note that pi ∈

(0, 1) as p̃k > 0 and 0 < (1 − µk /µ j ) < 1 for j < k . �
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�e above result may be of separate interest. We now use it to

establish the following theorem:

Theorem 1. �e class of hyperexponential distributions Chexp is

a subclass of C0.

Proof. Given Proposition 1, it suffices to show that (1 − pi )µi
is decreasing in i . As

µi

n∑
k=i+1

p̃k

i∏
j=1

(1 −
µk
µ j

) =

n∑
k=i+1

p̃k µi

i−1∏
j=1

(1 −
µk
µ j

)

−

n∑
k=i+1

p̃k µk

i−1∏
j=1

(1 −
µk
µ j

),

one readily obtains from (2) that

(1 − pi )µi =

∑n
k=i

p̃k µk
∏i−1

j=1(1 −
µk
µ j
)∑n

k=i
p̃k

∏i−1
j=1(1 −

µk
µ j
)
. (7)

As (1−
µk
µi
) = 0 for k = i , we can start both sums in the expression

for (1 − pi+1)µi+1 in k = i . Further, as (1 −
µk
µ j
) > 0 for k > j, we

can rewrite (1 − pi )µi > (1 − pi+1)µi+1 as(
n∑
k=i

p̃k µk ξk,i−1

) (
n∑
k=i

p̃kξk,i−1 −

n∑
k=i

p̃k
µk
µi

ξk,i−1

)
>

(
n∑
k=i

p̃k ξk,i−1

) (
n∑
k=i

p̃k µk ξk,i−1 −

n∑
k=i

p̃k
µ2
k

µi
ξk,i−1

)
,

where we denoted
∏i−1

j=1(1 −
µk
µ j
) as ξk,i−1. �is can be restated as(

n∑
k=i

p̃k µk ξk,i−1

)2
<

(
n∑
k=i

p̃kξk,i−1

) (
n∑
k=i

p̃k µ
2
k
ξk,i−1

)
,

which is equivalent to(
n∑
k=i

µk
p̃k ξk,i−1∑n
k=i

p̃kξk,i−1

)2
<

n∑
k=i

µ2
k

p̃k ξk,i−1∑n
k=i

p̃kξk,i−1
.

By defining Xi such that P[Xi = µk ] = p̃k ξk,i−1/
∑n
k=i

p̃k ξk,i−1,

the above inequality holds as E[X ]2 < E[X 2] for any random vari-

able X (that is not deterministic). �

When n = 2 one can show that all Coxian distributions with

(1−p1)µ1 > (1−p2)µ2 = µ2 are also hyperexponential distributions.

However for n > 2 the example below shows that this is not the

case, so the set of hyperexponential distributions Chexp is a strict

subclass of the class C0. Consider the Coxian distribution with

parameters µ1 = 1, µ2 = 2, µ3 = 0.1, p1 = 0.1 and p2 = 0.8. �is

distribution belongs to the class C0. However using (3), we see that

its LST is given by

F̃Cox (s) =
83

90

1

s + 1
−

3

190

2

s + 2
+

16

171

0.1

s + 0.1
.

�is distribution is not a hyperexponential as p̃2 is negative.

Let Ri be the expected remaining service time of a job in phase

i . Clearly, Rn = 1/µn and Ri−1 = 1/µi−1 + pi−1Ri for i = 2, . . . ,n.

Without loss of generality we assume that the mean job size equals

one, which implies that R1 = 1 (as all jobs start in phase 1 and stay

there for an exponential amount of time). For later use, we rewrite

this as

Ripi−1µi−1 = µi−1Ri−1 − 1. (8)

Lemma 2. If µi (1 − pi ) is decreasing in i , we have Ri > Ri−1, for

i = 2, . . . ,n.

Proof. �e proof is presented in Appendix A. �

Remark: Coxian distributions are sometimes defined using an

alternate (α , S) representation given by α = (α1, . . . ,αn ) and

S =



−λ1 λ1
−λ2 λ2

. . .
. . .

−λn−1 λn−1
−λn


, (9)

with αn−i+1 = (1 − pi )
∏i−1

j=1 pj and λn−i+1 = µi .

2.1 Moment matching

In this section we study the range of the first three moments that

can be matched with a distribution belonging to class C0. We first

establish that any distribution in C0 has a decreasing hazard rate.

Proposition 2. Any distribution belonging to C0 has a decreas-

ing hazard rate.

Proof. Let τt be the service phase of a job at time t (given that

it started service at time 0) and Y the job size, then the hazard rate

h(t) at time t can be wri�en as

h(t) =

n∑
i=1

P[τt = i |Y > t]µi (1 − pi ). (10)

We need to show that h(s) ≥ h(t) for 0 ≤ s < t . As the hazard rate

h(t) defined in (10) can be rewri�en as

h(t) = P[τt ≥ 1|Y > t]︸             ︷︷             ︸
=1

µ1(1 − p1)

−

n∑
i=2

P[τt ≥ i |Y > t] (µi−1(1 − pi−1) − µi (1 − pi ))︸                               ︷︷                               ︸
>0

,

we find that h(s) ≥ h(t) if

P[τs ≥ i |Y > s] ≤ P[τt ≥ i |Y > t],

for s < t . �is inequality is immediate a�er noting that:

P[τt ≥ i,Y > t] ≥ P[τs ≥ i,Y > t]

= P[τs ≥ i,Y > s]P[τs ≥ i,Y > t |τs ≥ i,Y > s]

= P[τs ≥ i,Y > s]P[Y > t |τs ≥ i,Y > s]

≥ P[τs ≥ i,Y > s]P[Y > t |Y > s]

= P[τs ≥ i,Y > s]P[Y > t]/P[Y > s],

where the second inequality is due to the fact that the rate at which

a service completion can occur decreases as the phase increases.

�
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Letmi = E[Y i ] be the i-th moment of the job size distribution

Y . For any phase type distribution with representation (α , S) we

havemi = i!α(−S)−i1. In order to characterize the set of the first

three moments that can be matched by the distributions belonging

to C0, we focus on the second and third normalized moments:

n2 =
m2

m2
1

, n3 =
m3

m1m2
,

where n2,n3 ≥ 1 for any positive valued distribution [24]. �e

advantage of using the normalized moments is that we no longer

need to care about the first moment. Indeed, if (α , S) matches n2
and n3 and has mean 1, then (α , S/m1) still matches n2 and n3 and

has meanm1 (as dividing S bym1 changes the i-th moment by a

factormi
1, which implies thatn2 andn3 are not affected by dividing

S bym1). �us, if we found a distribution with mean 1 in C0 that

matches n2 and n3, we can simply multiply the rates µi by 1/m1 to

get any desired meanm1.

Let A
(n)
n2,n3

be the set of normalized second and third moments

that can be matched with a distribution belonging to C0 with at

most n phases.

Proposition 3. �e set A
(2)
n2,n3

= {(n2,n3)|n2 > 2,n3 >
3
2n2} ∪

{(2, 3)}

Proof. By Proposition 2 any distribution part of C0 has a de-

creasing hazard rate and therefore its squared coefficient of vari-

ation CX ≥ 1 [28, p. 16-19]. As n2 = 1 + CX , we have n2 ≥ 2.

Further if n2 = 2, the distribution is the exponential distribution

and n3 therefore equals 3. For n2 > 2 the value of n3 must exceed

3n2/2 as �eorem 3.1 in [4] indicates that this is the case for any

order 2 Coxian distribution with n2 > 2 (see also �eorem 1 in

[24]). �us it remains to show that C0 contains a distribution that

matches n2 and n3 for any n2 > 2 and n3 > 3n2/2.

�e proposition in Section 3.1 of [35] shows that the set of nor-

malized moments n2 and n3 that can be matched by a hyperexpo-

nential distribution is exactly the set A
(2)
n2,n3

and in such case the

matching can be achieved with just 2 phases. In fact, the parame-

ters of a two phase hyperexponential distribution that matches n2
and n3 are given by (3.5) and (3.6) in [35]. As all hyperexponential

distributions belong to C0, this completes the proof.

�

We note that the proposition in Section 3.1 in [35] indicates that

we cannot match a larger range of (n2,n3) values by using more

than two phases in case we restrict ourselves to hyperexponential

distributions. If we consider Coxian distributions with n phases

and n2 > 2, then �eorem 3.1 in [4] indicates that we can match

any n3 > (n + 1)n2/n. �us, the larger n, the lower n3 can become,

contrary to the class of hyperexponential distributions.

�e next proposition shows that while class C0 lies somewhere

between the class of hyperexponential and Coxian distributions

with n2 ≥ 2, increasing the number of phases does not allow us to

match a larger range of n3 values. �us, as far as matching the first

three moments is concerned, the class C0 does not provide more

flexibility than the set of hyperexponential distributions.

Proposition 4. �e set A
(n)
n2,n3

= A
(2)
n2,n3

for any n ≥ 2.

Proof. We use induction on n and note that the result clearly

holds for n = 2. �e proof follows the same line of reasoning as

the proof of �eorem 3.1 in [4]. Let n̂2 and n̂3 be the normalized

moments of a distribution in C0 represented by (α , S). Denote the

matrix S as

S =

[
−µ1 p1µ1αn−1
0 A

]
,

where αn−1 is the first row of the size n − 1 identity matrix. Note

that (αn−1,A) is a phase type representation of a distribution with

n − 1 phases in C0. Let n2 and n3 be the normalized moments of

(αn−1,A) andm1 be its mean. By induction we know n3 > 3n2/2

for n2 > 2. Using exactly the same arguments as in the proof of

�eorem 3.1 in [4], we find

n̂3 =
3

д
+

(n̂2д − 2)2

(д − 1)дn̂2

n3

n2
,

with д = 1 + µ1m1p1 ≥ 1. By induction we know n3/n2 ≥ 3/2,

meaning

n̂3 ≥
3

д
+

(n̂2д − 2)2

(д − 1)дn̂2

3

2
. (11)

Further in the proof of �eorem 3.1 in [4] it is shown that (n̂2д −

2)2/((д − 1)дn̂2) is decreasing in д on (1,∞) whenever n̂2 ≥ (n +

4)/(n + 1). Since n̂2 ≥ 2 as any distribution in C0 has a decreasing

hazard rate, we obtain a lower bound for n̂3 by taking the limit ofд

to infinity in (11). �is limit clearly equals 3n̂2/2, which completes

the proof. �

3 THE FORM OF THE ODE

ODE-basedmean fieldmodels of systemswith exponential job sizes

(with mean 1) are o�en of the following form (see Section 4 for ex-

amples):

d

dt
hℓ,1(t) = fℓ,1(h(t)) − (hℓ,1(t) − hℓ+1,1(t)), (12)

where hℓ,1(t) represents the fraction of the servers with at least

ℓ jobs and fℓ,1(h(t)) captures events such as job arrivals and job

transfers (see Section 4.2). �e term −(hℓ,1(t) − hℓ+1,1(t)) reflects

the dri� due to the exponential service completions. �e assump-

tion that the mean job size equals 1 is made throughout the paper

(without loss of generality).

We now generalize this set of ODEs to the case where the job

sizes belong to class C0 given that the service discipline is first-

come-first-served (FCFS). Define hℓ,i (t), for ℓ > 0 and i = 1, . . . ,n,

as the fraction of the queues at time t with a queue length of at least

ℓ in service phase j ≥ i . �us, (hℓ,i (t) − hℓ,i+1(t)) is the fraction

of queues at time t with ℓ or more jobs that are in service phase i .

For ease of notation let hℓ,n+1(t) = 0 and h0,1(t) = 1. Note that a

service completion in a queue with a length of at least ℓ always de-

creases hℓ,i (t) for i ≥ 2 as the next customer starts service in phase

1, whereas hℓ,1(t) only decreases if the queue length is exactly ℓ.
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Hence, the set of ODEs given by (12) then generalizes to:

d

dt
hℓ,1(t) = fℓ,1(h(t))

−

n∑
j=1

[
(hℓ, j (t) − hℓ, j+1(t)) − (hℓ+1, j (t) − hℓ+1, j+1(t))

]
µ j (1 − pj )

(13)

d

dt
hℓ,i (t) = 1[ℓ > 1]fℓ,i (h(t)) + (hℓ,i−1(t) − hℓ,i (t))pi−1µi−1

−

n∑
j=i

(hℓ, j (t) − hℓ, j+1(t))µ j (1 − pj ) (14)

for ℓ ≥ 1 and i = 2, . . . ,n, where the sums are due to service

completions and the second term in the dri� of hℓ,i(t) corresponds

to phase changes.

We remark that we can also model systems with a finite buffer

of size B by se�ing fℓ,i (h) = 0, for i = 1, . . . ,n and ℓ > B, as this

implies that hℓ,i(t) = 0 for i = 1, . . . ,n and ℓ > B.

4 EXAMPLES

4.1 JSQ(d): Join-the-Shortest-�eue among d
randomly selected servers

Let us first consider the classic power-of-d choices load balancer

[22, 34], where jobs arrive at rate λN to a dispatcher who imme-

diately assigns incoming jobs among the N servers by routing the

job to the server with the least number of jobs among d randomly

selected servers. In this case the function f reflects the changes

due to arrivals and one finds for ℓ ≥ 1

fℓ,1(h(t)) = λ(hℓ−1,1(t)
d − hℓ,1(t)

d ),

as hℓ−1,1(t)
d − hℓ,1(t)

d is the probability that the server with the

least number of jobs among d randomly selected servers has queue

length ℓ − 1. Further, since the dispatcher does not take the ser-

vice phase into account when dispatching jobs and (hℓ−1,i (t) −

hℓ,i (t))/(hℓ−1,1(t)−hℓ,1(t)) is the probability that a server of length

ℓ − 1 is in service phase j ≥ i , we have

fℓ,i (h(t)) = fℓ,1(h(t))
hℓ−1,i(t) − hℓ,i (t)

hℓ−1,1(t) − hℓ,1(t)

= λ
©­
«
d−1∑
j=0

hℓ−1,1(t)
jhℓ,1(t)

d−1−jª®
¬
(hℓ−1,i(t) − hℓ,i (t)),

for ℓ > 1 and i = 2, . . . ,n, as (ad − bd )/(a − b) =
∑d−1
j=0 ajbd−1−j .

For convenience we also define f1,i (h(t)) = 0 for i = 2, . . . ,n.

4.2 Pull and push strategies

In this example we consider the system analyzed in [21]. It consists

of N servers that each have local job arrivals with rate λ. Servers

that are idle generate probe messages at rate r . A probe message

is sent to a random server and if this server has pending jobs, a job

is transferred to the idle server. �e function f now captures the

changes due to arrivals as well as job transfers, hence

fℓ,1(h(t)) = λ(hℓ−1,1(t) − hℓ,1(t))

+ r (1 − h1,1(t))[1[ℓ = 1]h2,1(t) − 1[ℓ > 1](hℓ,1(t) − hℓ+1,1(t))],

for ℓ ≥ 1 and

fℓ,i (h(t)) = λ(hℓ−1,i(t) − hℓ,i(t))

− r (1 − h1,1(t))(hℓ,i(t) − hℓ+1,i (t)),

for ℓ > 1 and i = 2, . . . ,n. Note that r (1−h1,1(t))(hℓ,i (t)−hℓ+1,i(t))

is the rate at which jobs are transferred from a server with length ℓ

in phase j ≥ i to an idle server. �erefore r (1−h1,1(t))h2,1(t) is the

rate at which idle servers become busy due to the probe messages.

4.3 JSQ(K,d): Join-the-Shortest-K-�eues
among d randomly selected servers

�is example is a generalization of the first example. Jobs now ar-

rive in batches of sizeK and the dispatcher assigns theK jobs (with

independent sizes) belonging to the same batch to the K servers

with the least number of jobs among d randomly selected servers

(with K ≤ d). �is load balancing scheme is called batch sampling

in [38]. �e mean field model in [38] is however different than the

one presented here, as we assume that both K and d are fixed, i.e.,

do not grow as a function of N .

In this case λ < 1/K in order to have a stable system (as the

mean service time of a job equals 1) and the function f once more

reflects the changes due to arrivals. Note that

pk, ℓ(h(t)) =

k−1∑
s=0

(
d

s

)
(1 − hℓ,1(t))

shℓ,1(t)
d−s
,

is the probability that the k-th shortest queue has a length of at

least ℓ. As such

fℓ,1(h(t)) = λ

K∑
k=1

(pk, ℓ−1(h(t)) − pk, ℓ(h(t))) = λ

K−1∑
s=0

(K − s)

(
d

s

)

·
(
(1 − hℓ−1,1(t))

shℓ−1,1(t)
d−s − (1 − hℓ,1(t))

shℓ,1(t)
d−s

)
,

for ℓ ≥ 1 and

fℓ,i (h(t)) = fℓ,1(h(t))
hℓ−1,i (t) − hℓ,i (t)

hℓ−1,1(t) − hℓ,1(t)
.

for ℓ > 1. In addition we define f1,i (h(t)) = 0 for i = 2, . . . ,n.

Note that in the special casewhereK = d , one finds that fℓ,1(h(t))

simplifies to λK(hℓ−1,1(t) − hℓ,1(t)). �us, when K = d the set of

ODEs describes the transient evolution of anM/Cox/1 queue with

arrival rate λK .

5 STATE SPACE AND PARTIAL ORDER

In the case of exponential job sizes the state space is typically de-

fined as

Ωexpo = {(hℓ,1)ℓ>0 |0 ≤ hℓ,1 ≤ 1,hℓ+1,1 ≤ hℓ,1,
∑
ℓ

hℓ,1 < ∞},

where hℓ,1 represents the fraction of queues with length ℓ or more.

�e partial order used to prove global a�raction on Ωexpo in case

of exponential job sizes is the componentwise order. In this section

we introduce the state space and partial order needed in case of a

job size distribution belonging to class C0.
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We define the state space Ω of the mean field model in terms of

the variables hℓ,i as follows

Ω = {(hℓ,i)ℓ>0,i ∈{1, ...,n } |0 ≤ hℓ,i ≤ 1,hℓ,i+1 ≤ hℓ,i ,hℓ+1,i ≤ hℓ,i ,

hℓ,i + hℓ+1,i+1 ≥ hℓ+1,i + hℓ,i+1,
∑
ℓ

hℓ,1 < ∞}.

�e conditions hℓ,i+1 ≤ hℓ,i and hℓ+1,i ≤ hℓ,i are obvious as hℓ,i
is the fraction of servers with at least ℓ jobs in service phase j ≥ i .

�e inequality hℓ,i + hℓ+1,i+1 ≥ hℓ+1,i + hℓ,i+1 may seem a bit

unexpected. �is inequality can be understood by noting that Ω

corresponds to

Ω̄ = {(x0, (xℓ,i )ℓ>0,i ∈{1, ...,n })|x0 ≥ 0,xℓ,i ≥ 0,

x0 +
∑
ℓ,i

xℓ,i = 1,
∑
ℓ,i

ℓxℓ,i < ∞}.

a�er a change of variables (i.e., hℓ,i =
∑

ℓ′≥ℓ
∑
i ′≥i xℓ′,i ′), where

xℓ,i is the fraction of servers with exactly ℓ jobs in service phase i .

�erefore the inequality hℓ,i + hℓ+1,i+1 ≥ hℓ+1,i + hℓ,i+1 follows

from the fact that (hℓ,i − hℓ,i+1) − (hℓ+1,i − hℓ+1,i+1) = xℓ,i ≥ 0.

In the case of a system with a finite buffer of size B the state

space reduces to

ΩB = {(hℓ,i)ℓ∈{1, ...,B },i ∈{1, ...,n } |0 ≤ hℓ,i ≤ 1,hℓ,i+1 ≤ hℓ,i ,

hℓ+1,i ≤ hℓ,i ,hℓ,i + hℓ+1,i+1 ≥ hℓ+1,i + hℓ,i+1}.

Whenever the buffer size is finite, we can replace Ω in all subse-

quent statements by ΩB .

Proposition 5. For any fixed point π ∈ Ω of the set of ODEs

given by (13-14), we have π1,i = π1,1
∑n
j=i

1
µ j

∏j−1
s=1 ps , for i =

1, . . . ,n, where µi and ps are the parameters of the Coxian repre-

sentation.

Proof. See Appendix B. �

We introduce the following partial order on Ω which reduces

to the usual componentwise order in case of exponential job sizes

(i.e., when n = 1).

Definition 2 (partial order ≤C ). Let h, h̃ ∈ Ω. We state that

h ≤C h̃ if and only if

hℓ,i ≤ h̃ℓ,i , (15)

for all ℓ, i , and

hℓ1,1 +

n∑
i=2

(hℓi,i − hℓi−1,i ) ≤ h̃ℓ1,1 +

n∑
i=2

(h̃ℓi,i − h̃ℓi−1,i ), (16)

for any set of integers ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓn ≥ 1 with ℓ1 > ℓn .

It is useful to note that hℓ1,1+
∑n
i=2(hℓi,i −hℓi−1,i ) is the fraction

of the servers for which the queue length is at least ℓi and the

service phase equals i for some i ∈ {1, . . . ,n}.

Without condition (16) the order would correspond to the usual

componentwise partial order. To illustrate the need for a stronger

partial order, let n = 2 and consider h, h̃ ∈ Ω with h1,1 = h̃1,1 = 1,

h1,2 = h̃1,2 = 1/2, h2,1 = h̃2,1 = 1/2, h2,2 = 0, h̃2,2 = 1/2 and

h3,1 = h̃3,1 = 0. �us, in both states half of the servers have queue

length one and the other half has queue length 2. In state h the

servers with length 1 are in service phase 2 and the servers with

length 2 are in phase 1, while in state h̃ the phases are reversed

(queues with length i are in phase i , for i = 1, 2). Note that h is

smaller than h̃ in the componentwise order, but condition (16) is

violatedwith ℓ1 = 2 and ℓ2 = 1, meaning h �C h̃. If we now look at

the dri� of the number of busy servers due to service completions,

we see that it equals −µ2/2 in state h and −µ1(1 − p1)/2 in state

h̃. Hence, h1,1 = h̃1,1 = 1, but h1,1 decreases more slowly than

h̃1,1 (when µ2 < µ1(1 − p1)). �is example therefore shows that

the componentwise partial order used for the set of ODEs with

exponential job sizes, is not preserved over time by the set of ODEs

with a job size distribution in C0 and we need to replace it by a

stronger partial order, which turns out to be the order ≤C defined

above.

We end by noting that due to the condition hℓ,i − hℓ+1,i ≥

hℓ,i+1 − hℓ+1,i+1 in Ω, we have hℓ,1 − hℓ+1,1 ≥ hℓ,i − hℓ+1,i for

any i = 2, . . . ,n and therefore

hℓ1,1+

n∑
i=2

(hℓi,i − hℓi−1,i ) = hℓ1,1 +

n∑
i=2

ℓi−1−1∑
ℓ=ℓi

(hℓ,i − hℓ+1,i)

≤ hℓ1,1 +

n∑
i=2

ℓi−1−1∑
ℓ=ℓi

(hℓ,1 − hℓ+1,1)

= hℓ1,1 +

n∑
i=2

(hℓi,1 − hℓi−1,1) = hℓn,1, (17)

for any h ∈ Ω.

6 GLOBAL ATTRACTION

We now list the assumptions needed to establish the main result.

Note that some of the intermediate results do not require all of the

assumptions.

Assumption A0. �e functions fℓ,i (h) : Ω → R are such that

for any h ∈ Ω, the set of ODEs given by (13-14) has a unique solution

h(t) : [0,∞) → R with h(0) = h and there exists a fixed point π in

Ω.

�e existence of a unique (continuously differentiable) solution

h(t) is guaranteed by defining a norm on RN such that the dri� is

locally Lipschitz and bounded on Ω. When the buffer size B < ∞,

the existence of a fixed point follows almost immediately from

Brouwer’s fixed point theorem as ΩB is a convex and compact sub-

set of RBn and ΩB is clearly a forward invariant set [3].

�e next two assumptions are needed to establish that the par-

tial order ≤C is preserved over time by the set of ODEs.

AssumptionA1. �e functions fℓ,i (h) : Ω → R are non-decreasing

in hℓ′,i ′ for any (ℓ
′, i ′) , (ℓ, i).

For any set of integers ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓn ≥ 1 with ℓ1 > ℓn ,

define д(ℓ1, ..., ℓn) and f(ℓ1, ..., ℓn ) as a function from Ω to R such

that

д(ℓ1, ..., ℓn )(h) = hℓ1,1 +

n∑
i=2

(hℓi,i − hℓi−1,i ), (18)
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and

f(ℓ1, ..., ℓn )(h) = fℓ1,1(h) +

n∑
i=2

(fℓi ,i (h) − fℓi−1,i (h)). (19)

Due to (16), h ≤C h̃ implies that д(ℓ1, ..., ℓn)(h) ≤ д(ℓ1, ..., ℓn )(h̃).

Assumption A2. �e functions f(ℓ1, ..., ℓn )(h) : Ω → R are such

that

f(ℓ1, ..., ℓn)(h) ≤ f(ℓ1, ..., ℓn)(h̃)

for anyh, h̃ ∈ Ω such thath ≤C h̃ andд(ℓ1, ..., ℓn )(h̃) = д(ℓ1, ..., ℓn )(h).

�e next assumption is used to prove that for any h ≤C π or

π ≤C h the trajectory starting in h of the set of ODEs converges

to the fixed point π .

Assumption A3. �e functions fℓ,1(h) are such that for any fixed

point π and L ≥ 1 we have

∑
ℓ≥L

(fℓ,1(h) − fℓ,1(π )) =

L−1∑
ℓ=1

n∑
j=1

bL, ℓ, j (h)(hℓ, j − πℓ, j ) − aL,π (h),

for some bounded functions bL, ℓ, j (h) on Ω and functions aL,π (h) for

which aL,π (h) ≥ 0 if π ≤C h and aL,π (h) ≤ 0 if h ≤C π .

�e main theorem is stated below.

Theorem2 (Global attraction). Consider the set of ODEs given

by (13-14). Assume that (A0-A3) hold and µi (1−pi ) is decreasing in

i . �en, for any h(0) ∈ Ω, h(t) converges pointwise to the unique

fixed point π ∈ Ω as t tends to infinity.

Proof. In Section 8 we show that any fixed point π ∈ Ω is a

global a�ractor, which implies that the fixed point is unique. �

Corollary 1. Consider a density dependent population process

as defined by Kurtz [17] on ΩB such that its dri� given by the right

hand side of (13-14) is Lipschitz continuous. Let X
(N )
∞ be the station-

arymeasure of theN -th population process and assume (A0-A3) hold,

then X
(N )
∞ converges weakly to the Dirac measure on π .

Proof. As the N -th population process has a finite number of

states it has a unique stationary measure X
(N )
∞ . �is sequence of

measures is tight as ΩB is compact, thus any subsequence has a

further subsequence that converges to some limit point. Due to

�eorem 3.5 and Corollary 3.9 in [26] any such limit point has sup-

port on the Birkhoff center of the set of ODEs1. As π is a global

a�ractor, the Birkhoff center is the singleton {π } and the only pos-

sible limit point is therefore the Dirac measure on π . �us, every

subsequence of X
(N )
∞ has a further subsequence that converges to

the same limit, which implies that the entire sequence converges

to this limit. �

Note that the above corollary is very general. In order to apply

it, we do need to truncate the buffer to some finite size B (as in

[12, 14]). �is is not a real restriction from a practical point of

view as there is virtually no difference between having an infinite

buffer or a huge finite buffer, say of size B = 1015 (provided that

1Note that this result holds in a more general se�ing that the one considered here,
where the dri� is not necessarily Lipschitz continuous and is characterized by a dif-
ferential inclusion.

the system is stable in case of an infinite buffer). Establishing a

similar result for infinite buffers is technically more demanding as

one needs to establish the existence of X
(N )
∞ and prove that this

sequence converges.

An issue regarding the convergence is that Ω is not compact

due to the condition
∑

ℓ hℓ,1 < ∞ (note that as Ω is not a fi-

nite dimensional Euclidean space, compactness of a set depends

on the norm used). For systems with exponential job sizes the

following approach is o�en used, see [1, 19, 34]. One first drops

the condition that prevents Ω from being compact, thus in our

case we consider Ω∞ which equals Ω without the requirement∑
ℓ hℓ,1 < ∞. �en one picks a suitable norm, for instance | |h −

h̃ | | =
∑n
i=1

∑
ℓ

|hℓ, i−h̃ℓ, i |
2

2ℓ
in our case2, such that Ω∞ is compact.

�us, by Prokhorov’s theorem any subsequenceX
(Nk )
∞ ofX

(N )
∞ has

a further subsequence X
(N ′

k
)

∞ that converges to some measure on

Ω∞. Next one argues that any such limit point π∗ necessarily con-

centrates on Ω. Note that while X
(N )
∞ (Ω) = 1 for all N , weak con-

vergence does not immediately imply that π∗(Ω) = 1 as Ω is an

open set.

To show that π∗(Ω) = 1, it suffices that Eπ ∗ [
∑

ℓ hℓ,1] < ∞. As

Eπ ∗ [
∑

ℓ hℓ,1] ≤ lim inf E
X

(N ′
k
)

∞

[
∑

ℓ hℓ,1] (due to Portmanteau’s the-

orem as
∑

ℓ hℓ,1 is continuous and bounded from below), π∗(Ω) =

1 if E
X

(N )
∞

[
∑

ℓ hℓ,1] is bounded by some constant c for allN . Finally,

this constant c is shown to be themean queue length in some finite

stable queueing system (an M/M/1 queue in [34], a set of J queues

with random routing in [1] and a classic Jackson network in [19]).

Having established that π∗(Ω) = 1 for any limit point π∗ , one

can use�eorem 1 of [2] and the global a�raction to show that π∗

is the Dirac measure δπ . To apply this theorem weak convergence

over finite time scales suffices.

In case of phase-type service exactly the same line of reason-

ing can be applied. �e main step that requires extra care is to

show that the mean queue length of a queue in the N -th system is

bounded by some constant c , for instance by le�ing c be the mean

queue length of a queue in a set ofN independentM/PH/1 queues

(which should hold for any load balancing strategy that performs

be�er than random). Recall that an M/PH/1 queue (with a load

below one) has a finite mean queue length as the second moment

of a phase-type distribution is finite.

7 EXAMPLES REVISITED

In this section we discuss assumptions A0 to A3 for the examples

listed in Section 4. With respect to assumption A0, we only briefly

discuss the existence of a fixed point as the existence of a unique

solution h(t) with h(0) = h for h ∈ Ω can be easily verified by

checking the Lipschitz continuity of the dri� on Ω.

7.1 JSQ(d): Join-the-Shortest-�eue among d
randomly selected servers

�e existence of a fixed point when the buffer size B is finite is easy

to establish (see Section 7.3 with K = 1). For an infinite buffer size

2Note that pointwise convergence of h(t ) to π also implies convergence under this
norm.
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B, the existence of a fixed point in Ω follows from [5, Section 8] as

the distributions belonging to C0 have a decreasing hazard rate.

Assumption A1 is trivial to verify. To check whether Assump-

tion A2 holds, we can write д(ℓ1, ..., ℓn )(h) as
∑n
i=1(hℓi,i − hℓi,i+1)

and similarly f(ℓ1, ..., ℓn)(h) equals
∑n
i=1(fℓi ,i (h)− fℓi,i+1(h)). �ere-

fore,

f(ℓ1, ..., ℓn )(h) = λ

n∑
i=1

1[ℓi > 1]
©­
«
d−1∑
j=0

h
j
ℓi−1,1

h
d−1−j
ℓi,1

ª®
¬

· [(hℓi−1,i − hℓi ,i ) − (hℓi−1,i+1 − hℓi,i+1)]

= λ

n∑
i=1

1[ℓi > 1]
©­
«
d−1∑
j=0

h
j
ℓi−1,1

h
d−1−j
ℓi,1

ª®
¬

· [(hℓi−1,i − hℓi−1,i+1) − (hℓi,i − hℓi,i+1)] (20)

If ℓ1 > ℓ2 > . . . > ℓn , this can be wri�en as

f(ℓ1, ..., ℓn)(h) = λ

n∑
i=1

©­
«
d−1∑
j=0

h
j
ℓi−1,1

h
d−1−j
ℓi,1

ª®¬
· [д(ℓ1, ..., ℓi−1, ℓi−1[ℓi>1], ℓi+1, ..., ℓn )(h) − д(ℓ1, ..., ℓn)(h)].

and Assumption A2 holds as h ≤C h̃ implies that hℓ,i ≤ h̃ℓ,i and

д(ℓ′
1
, ..., ℓ′n)

(h) ≤ д(ℓ′
1
, ..., ℓ′n )

(h̃) for (ℓ′1, . . . , ℓ
′
n ) , (ℓ1, . . . , ℓn).

If ℓi = ℓi+1 > 1 for some i , the above expression cannot be

directly used as ℓi − 1[ℓi > 1] ≥ ℓi+1 does not hold. In general

assume ℓ̃1 > ℓ̃2 > . . . > ℓ̃k are the unique values appearing in the

sequence ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓn and let ℓji be the first element in this

sequence equal to ℓ̃i , then (20) becomes

f(ℓ1, ..., ℓn)(h) = λ

k∑
i=1

1[ℓ̃i > 1]
©­«
d−1∑
j=0

h
j

ℓ̃i−1,1
h
d−1−j

ℓ̃i,1

ª®
¬

· [(h
ℓ̃i−1, ji

− h
ℓ̃i−1, ji+1

) − (h
ℓ̃i, ji

− h
ℓ̃i, ji+1

)].

Assumption A2 now follows as (h
ℓ̃i−1, ji

− h
ℓ̃i−1, ji+1

) − (h
ℓ̃i, ji

−

h
ℓ̃i, ji+1

) can be wri�en as д(ℓ′1, ..., ℓ
′
n)
(h) − д(ℓ1, ..., ℓn)(h) with ℓ

′
s =

ℓs − 1 for ji ≤ s < ji+1 and ℓ
′
s = ℓs otherwise. Note that ℓ

′
1 ≥ ℓ′2 ≥

. . . ≥ ℓ′n as required because ℓ̃i > ℓ̃i+1.

Assumption A3 with L = 1 is immediate as
∑

ℓ≥1 fℓ,1(h) = λ

for any h ∈ Ω, meaning we can pick a1,π (h) = 0. Finally, as∑
ℓ≥L(fℓ,1(h) − fℓ,1(π )) = λ(hd

L−1,1
− πd

L−1,1
), se�ing aL,π (h) = 0,

bL,L−1,1(h) = λ
∑d−1
j=0 (hL−1,1)

j (πL−1,1)
d−1−j ≤ λd and bL, ℓ, j (h) =

0 for (ℓ, j) , (L − 1, 1) verifies Assumption A3 with L > 1.

When the buffer is finite of size B, the above discussion remains

valid, except that we need to set aL,π (h) = λ(hd
B,1

−πd
B,1

), for L ≥ 1,

such that Assumption A3 holds.

7.2 Pull and push strategies

In this example it is possible to show that for λ < 1 the set of ODEs

has a unique fixed point that can be computed by determining

the invariant distribution of an ergodic�asi-Birth-Death Markov

chain [32]. Note that the issue of global a�raction is not addressed

in [32]. Assumption A1 is readily verified. To verify Assumption

A2 it is not hard to show that f(ℓ1, ..., ℓn )(h) can be wri�en as

f(ℓ1, ..., ℓn )(h) = λд(ℓ1−1, ℓ2−1[ℓ2>1], ..., ℓn−1[ℓn>1])(h)

− λд(ℓ1, ..., ℓn )(h) − r (1 − h1,1)д(ℓ1, ..., ℓn)(h)

+ r (1 − h1,1)д(ℓ1+1, ℓ2+1[ℓ2>1], ..., ℓn+1[ℓn>1])(h).

�us if д(ℓ1, ..., ℓn)(h) = д(ℓ1, ..., ℓn)(h̃), then

f(ℓ1, ..., ℓn )(h̃) − f(ℓ1, ..., ℓn )(h) = λд(ℓ1−1, ℓ2−1[ℓ2>1], ..., ℓn−1[ℓn>1])(h̃)

− λд(ℓ1−1, ℓ2−1[ℓ2>1], ..., ℓn−1[ℓn>1])(h)

+ r (1 − h̃1,1)д(ℓ1+1, ℓ2+1[ℓ2>1], ..., ℓn+1[ℓn>1])(h̃)

− r (1 − h1,1)д(ℓ1+1, ℓ2+1[ℓ2>1], ..., ℓn+1[ℓn>1])(h)

+ r (h̃1,1 − h1,1)д(ℓ1, ..., ℓn )(h̃) ≥ 0

if h ≤C h̃ as д(ℓ1, ..., ℓn )(h̃) ≥ д(ℓ1+1, ℓ2+1[ℓ2>1], ..., ℓn+1[ℓn>1])(h̃).

AssumptionA3withL = 1 follows by noting that
∑

ℓ≥1 fℓ,1(h) =

λ =
∑

ℓ≥1 fℓ,1(π ). Finally, Assumption A3 with L > 1 can be veri-

fied as follows. Note that∑
ℓ≥L

(fℓ,1(h) − fℓ,1(π )) = λ(hL−1,1 − πL−1,1)

− r ((1 − h1,1)hL,1 − (1 − π1,1)πL,1) = λ(hL−1,1 − πL−1,1)

+ r (h1,1 − π1,1)hL,1 − r (1 − π1,1)(hL,1 − πL,1),

meaning Assumption A3 with L > 1 holds with aL,π (h) = r (1 −

π1,1)(hL,1 − πL,1), bL,1,1(h) = rhL,1 ≤ r , bL,L−1,1(h) = λ and all

other bL, ℓ, j (h) equal to zero.

7.3 JSQ(K,d): Join-the-Shortest-K-�eues
among d randomly selected servers

With respect to assumptionA0, we limit ourselves to the casewhere

B is finite. �e existence of a fixed point in ΩB follows from the

fact that a convex compact forward invariant set K ⊂ RBn of a

dynamical system has a fixed point in K [3], which is not hard to

prove using Brouwer’s fixed point theorem.

Contrary to the previous two examples, verifying Assumption

A1 requires some work. First note that fℓ,1(h) only depends on

hℓ−1,1 andhℓ,1 and therefore the functions fℓ,1(h) are non-decreasing

in hℓ′,i ′ for (ℓ
′, i ′) , (ℓ, 1) if

ϕK (x) =

K−1∑
s=0

(K − s)

(
d

s

)
xd−s (1 − x)s ,

is non-decreasing on [0, 1]. We now prove that

ϕ′K (x) =

K−1∑
s=0

d

(
d − 1

s

)
xd−s−1(1 − x)s , (21)

which is clearly positive on [0, 1]. By definition of ϕK (x) we have

ϕ′K (x) =

K−1∑
s=0

(K − s)

(
d

s

)
xd−s−1(1 − x)s−1((1 − x)d − s).
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By induction on K we find

ϕ′K (x) =

K−1∑
s=0

(
d

s

)
xd−s−1(1 − x)s−1((1 − x)d − s)

+

K−2∑
s=0

d

(
d − 1

s

)
xd−s−1(1 − x)s .

Hence, (21) is equivalent to showing that

K−1∑
s=0

d

(
d

s

)
xd−s−1(1 − x)s =

K−1∑
s=1

d

(
d − 1

s − 1

)
xd−s−1(1 − x)s−1 + d

(
d − 1

K − 1

)
xd−K (1 − x)K−1

.

which is easy to establish (using induction on K once more).

Let us now focus on the functions fℓ,i (h) with i > 1. Clearly,

these functions are increasing in hℓ−1,i . It remains to show that

they are also increasing in hℓ−1,1 and hℓ,1, which holds if

ξK (x1, x2) =
ϕK (x2) − ϕK (x1)

x2 − x1
,

is increasing in both components for 0 ≤ x1 ≤ x2 ≤ 1. As

ξK (x1, x2) is symmetric, it suffices to argue that ξK (x1, x2) is in-

creasing in x1. Further, demanding that the derivative of ξK (x1, x2)

with respect to x1 is non-negative is equivalent to

ϕK (x2) ≥ ϕK (x1) + ϕ
′
K (x1)(x2 − x1),

which holds if and only if ϕK (x) is convex. Using (21) we have for

K < d

ϕ′′K (x) =

K−1∑
s=0

d

(
d − 1

s

)
xd−s−2(1 − x)s ((d − 1)(1 − x) − s).

Using induction on K this can be rewri�en as

ϕ′′K (x) = d(d − 1)

(
d − 2

K − 1

)
xd−K−1(1 − x)K−1

,

which is clearly positive on [0, 1]. For K = d , we have ϕ′′
K
(x) = 0

as ϕK (x) = dx .

We now proceed with Assumption A2. As f(ℓ1, ..., ℓn )(h) equals∑n
i=1(fℓi ,i (h) − fℓi ,i+1(h)) and ℓ1 > 1, we note that

f(ℓ1, ..., ℓn)(h) = λ

n∑
i=1

1[ℓi > 1]ξK (hℓi,1,hℓi−1,1)

· [(hℓi−1,i − hℓi,i ) − (hℓi−1,i+1 − hℓi,i+1)]

If ℓ1 > ℓ2 > . . . > ℓn , this can be wri�en as

f(ℓ1, ..., ℓn)(h) = λ

n∑
i=1

ξK (hℓi,1,hℓi−1,1)

· [д(ℓ1, ..., ℓi−1, ℓi−1[ℓi>1], ℓi+1, ..., ℓn )(h) − д(ℓ1, ..., ℓn )(h)],

where ξK (x1,x2) was increasing in x1 and x2. �e case where ℓi =

ℓi+1 for some i can be dealt with in the samemanner as in Example

7.1.

Assumption A3 with L = 1 holds as
∑

ℓ≥1 fℓ,1(h) = λK =∑
ℓ≥1 fℓ,1(π ). Finally, with respect to Assumption A3 with L > 1

we have∑
ℓ≥L

(fℓ,1(h) − fℓ,1(π )) = λ(ϕK (hL−1,1) − ϕK (πL−1,1))

= λξK (πL−1,1,hL−1,1)(hL−1,1 − πL−1,1),

and ξK (x1,x2) ≤ ϕ′
K
(1) = d due to the convexity of ϕK (x).

8 PROOF OF THEOREM 2

In this section we define νi = µi (1 − pi ) to ease the notation. We

start by showing that the order ≤C is preserved over time.

Proposition 6. Assume that (A0-A2) hold and let h, h̃ ∈ Ω. Let

h(t) and h̃(t) be the unique solution of (13-14) with h(0) = h and

h̃(0) = h̃, respectively. If µi (1 − pi ) is decreasing in i and h ≤C h̃,

then h(t) ≤C h̃(t) for any t > 0.

Proof. Assume that at some time t we have hℓ,i (t) = h̃ℓ,i(t)

for some ℓ and i , while h(t) ≤C h̃(t). We need to argue that

dh̃ℓ,i (t)/dt ≥ dhℓ,i (t)/dt ,

as the order is otherwise violated at time t+.

Ash(t) ≤C h̃(t) implies thathℓ′,i ′(t) ≤ h̃ℓ′,i ′(t) for all ℓ
′ and i ′, it

would be sufficient thatdhℓ,i(t)/dt is non-decreasing in allhℓ′,i ′(t)

with (ℓ′, i ′) , (ℓ, i). Looking at (13-14) and due to Assumption A1,

we see that this is clearly the case, except perhaps for the sums

over j (that are due to the service completions).

For i > 1, we have

−

n∑
j=i

(hℓ, j (t) − hℓ, j+1(t))νj =

n∑
j=i+1

hℓ, j (t)(νj−1 − νj ) − hℓ,i(t)νi ,

meaningdhℓ,i(t)/dt is non-decreasing in anyhℓ′,i ′(t)with (ℓ
′, i ′) ,

(ℓ, i) when i > 1, as νi = µi (1−pi ) is decreasing in i (and positive).

For i = 1, we find

−

n∑
j=1

[
(hℓ, j (t) − hℓ, j+1(t)) − (hℓ+1, j (t) − hℓ+1, j+1(t))

]
νj

=

n∑
j=2

(hℓ, j (t) − hℓ+1, j (t))(νj−1 − νj )

− (hℓ,1(t) − hℓ+1,1(t))ν1

=

n∑
j=2

(hℓ+1,1(t) + hℓ, j (t) − hℓ+1, j (t))(νj−1 − νj )

+ hℓ+1,1(t)νn − hℓ,1(t)ν1.

�is expression is decreasing in hℓ+1, j (t), for j > 1, which may

appear as a problem. However, as h(t) ≤C h̃(t), (16) with ℓ1 =

. . . = ℓj−1 = ℓ + 1 and ℓj = . . . = ℓn = ℓ implies that hℓ, j (t) +

hℓ+1,1(t) − hℓ+1, j (t) ≤ h̃ℓ, j (t) + h̃(t)ℓ+1,1 − h̃ℓ+1, j (t). As a result

dhℓ,1(t)/dt does not exceed dh̃ℓ,1(t)/dt as required.

We also need to verify that (16) remains valid, which corresponds

to verifying that д(ℓ1, ..., ℓn )(h(t)) ≤ д(ℓ1, ..., ℓn)(h̃(t)) remains valid.
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Assume thatд(ℓ1, ..., ℓn)(h(t)) = д(ℓ1, ..., ℓn )(h̃(t)) for some (ℓ1, . . . , ℓn),

then we need to argue that

dд(ℓ1, ..., ℓn)(h̃(t))/dt ≥ dд(ℓ1, ..., ℓn)(h(t))/dt ,

whenever h(t) ≤C h̃(t) to complete the proof. Due to Assump-

tion A2, we can restrict ourselves to showing that the terms of

dд(ℓ1, ..., ℓn )(h(t))/dt corresponding to phase changes and service

completions are increasing in д(ℓ′1, ..., ℓ
′
n )
(h(t)) when (ℓ′1, . . . , ℓ

′
n) ,

(ℓ1, . . . , ℓn).

Phase changes increase д(ℓ1, ..., ℓn )(h(t)) if such a change occurs

in a queue in phase i with a length in [ℓi+1, ℓi −1]. �erefore phase

changes increase д(ℓ1, ..., ℓn)(t) at rate

n−1∑
i=1

µipi (д(ℓ1, ..., ℓi−1, ℓi+1, ℓi+1, ..., ℓn )(h(t)) − д(ℓ1, ..., ℓn )(h(t))).

Service completions in queues in phase i that have a length in

[li , l1] decreaseд(ℓ1, ..., ℓn)(h(t)) at rateνi (as the initial service phase

of the next job in service is phase 1). �e dri� is therefore given by

−

n∑
i=1

νi (д(ℓ1+1, ..., ℓ1+1︸        ︷︷        ︸
i−1 times

, ℓi , ..., ℓn )(h(t)) − д(ℓ1+1, ..., ℓ1+1︸        ︷︷        ︸
i times

, ℓi+1, ..., ℓn)(h(t)))

=

n∑
i=2

д(ℓ1+1, ..., ℓ1+1︸        ︷︷        ︸
i−1 times

, ℓi, ..., ℓn )(h(t))(νi−1 − νi )

− д(ℓ1, ..., ℓn )(h(t))ν1 + д(ℓ1+1, ..., ℓ1+1)(h(t))νn .

�

�e next proposition shows that it suffices to prove a�raction

for points h ∈ Ω for which h ≤C π or π ≤C h, where π is a fixed

point of the ODEs (13-14).

Proposition 7. Let h ∈ Ω and assume µi (1 − pi ) is decreasing

in i , then the trajectory h(t) starting in h(0) ∈ Ω at time 0 converges

pointwise to π provided that for any h ∈ Ω with h ≤C π or π ≤C h,

h(t) with h(0) = h converges pointwise to π .

Proof. Due to Proposition 6 it suffices to show that for any h ∈

Ω there exists a h(l ),h(u) ∈ Ω, with h(l ) ≤C π and π ≤C h(u), such

that h(l ) ≤C h ≤C h(u). For h(l ) we can simply pick the zero vector

as 0 ≤C h for any h ∈ Ω. For h(u) we set h
(u)
ℓ,i
= max(hℓ,1,πℓ,1),

for i = 1, . . . ,n. Hence,

hℓ,i ≤ hℓ,1 ≤ max(hℓ,1,πℓ,1) = h
(u)
ℓ,i

and for ℓ1 ≥ ℓ2 ≥ . . . ≥ ℓn ≥ 1 with ℓ1 > ℓn

hℓ1,1+

n∑
i=2

(hℓi,i − hℓi−1,i ) ≤ hℓn,1 ≤ max(hℓn,1, πℓn,1) = h
(u)
ℓn,1

= h
(u)
ℓ1,1
+

n∑
i=2

(h
(u)
ℓi,1

− h
(u)
ℓi−1,1

) = h
(u)
ℓ1,1
+

n∑
i=2

(h
(u)
ℓi,i

− h
(u)
ℓi−1,i

),

where the first inequality follows from (17). �is shows that h ≤C
h(u) and similarly one finds that π ≤C h(u). �

Remark that when B is finite we can simply use h
(u)
B,n
= 1 and

h
(u)
ℓ,i
= 0 for (ℓ, i) , (B,n).

Lemma 3. Define z1,L(h(t)) =
∑

ℓ≥L hℓ,1(t) and

z2(h(t)) =

n∑
i=2

h1,i (t)(Ri − Ri−1).

�en,

d

dt
z1,L(h(t)) =

∑
ℓ≥L

fℓ,1(h(t)) −

n∑
j=1

(hL, j (t) − hL, j+1(t))νj , (22)

and

d

dt
z2(h(t)) = −h1,1(t) +

n∑
j=1

(h1, j (t) − h1, j+1(t))νj . (23)

Proof. �eexpression fordz1,L(h(t))/dt is immediate from (13).

Fordz2(h(t))/dt we canmake use of (14) and obtain (a�er exchang-

ing the order of the sums):

d

dt
z2(h(t)) =

n∑
i=2

(h1,i−1(t) − h1,i (t))pi−1µi−1Ri

−

n∑
i=2

(h1,i−1(t) − h1,i (t))pi−1µi−1Ri−1

−

n∑
j=2

(
j∑

i=2

(Ri − Ri−1)

)
(h1, j (t) − h1, j+1(t))νj .

Using (8) on the first sum, we can rewrite this as

d

dt
z2(h(t)) =

n∑
i=2

(h1,i−1(t) − h1,i (t))νi−1Ri−1

−

n∑
i=2

(h1,i−1(t) − h1,i (t)) −

n∑
j=2

(h1, j (t) − h1, j+1(t))νjRj

+

n∑
j=2

(h1, j (t) − h1, j+1(t))νjR1

= (h1,1(t) − h1,2(t))ν1R1 − h1,1(t) + h1,n(t) − h1,n(t)νnRn

+

n∑
j=2

(h1, j (t) − h1, j+1(t))νjR1.

�e result follows by noting that R1 = 1 and Rn = 1/µn . �

Proposition 8. Assume that (A0-A3) hold and that µi (1− pi ) is

decreasing in i . For any h(0) ∈ Ω with h(0) ≤C π or π ≤C h(0), h(t)

converges pointwise to π .

Proof. We assume π ≤C h(0), the proof for h(0) ≤C π pro-

ceeds similarly. We first show that h1,1(t) converges to π1,1. As

π ≤C h(t) for t ≥ 0 due to Proposition 6, it suffices to show∫ ∞

t=0
(h1,1(t) − π1,1)dt < ∞. Let z(h) = z1,1(h) + z2(h), then by

Lemma 3 and Assumption A3 with L = 1, we have dz(h(t))/dt =∑
ℓ≥1 fℓ,1(π ) − h1,1(t) − a1(h(t)) ≤ 0. Further

∑
ℓ≥1 fℓ,1(π ) = π1,1

as dz(π )/dt = 0. �erefore,∫ τ

t=0
(h1,1(t) − π1,1)dt = −

∫ τ

t=0

dz(t)

dt
dt −

∫ τ

t=0
a1(h(t))dt

≤ z(h(0)) − z(h(τ )) ≤ z(h(0)),
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as π ≤C h(t) and z(h(τ )) ≥ 0 for τ ≥ 0. Hence,
∫ τ

t=0
(h1,1(t)−π1,1)dt

is uniformly bounded in τ ≥ 0, meaning
∫ ∞

t=0
(h1,1(t)−π1,1)dt < ∞.

We now show that h1, j (t) converges to π1, j , for j = 2, . . . ,n, by

arguing that
∫ τ

t=0
(h1, j (t) − π1, j )dt is uniformly bounded in τ ≥ 0.

As νj−1 − νj > 0 it suffices to show that

∫ τ

t=0

n∑
j=2

(h1, j (t) − π1, j )(νj−1 − νj )dt

is uniformly bounded in τ ≥ 0. As z2(h(τ )) ≥ 0, we have z2(h(0)) ≥

−
∫ τ

t=0
dz2(h(t ))

dt
dt and Lemma 3 implies

z2(h(0)) ≥

∫ τ

t=0
h1,1(t)dt −

∫ τ

t=0

n∑
j=1

(h1, j (t) − h1, j+1(t))νjdt

=

∫ τ

t=0
h1,1(t)(1 − ν1)dt +

∫ τ

t=0

n∑
j=2

h1, j (t)(νj−1 − νj )dt

=

∫ τ

t=0
(h1,1(t) − π1,1)(1 − ν1)dt

+

∫ τ

t=0

n∑
j=2

(h1, j (t) − π1, j )(νj−1 − νj )dt ,

where the last inequality is due to the fact that π is a fixed point.

�is shows the uniform boundedness in τ as 0 ≤
∫ τ

t=0
(h1,1(t) −

π1,1)dt ≤ z(h(0)).

We complete the proof by showing that (hL, j (t)−hL, j+1(t)) con-

verges to (πL, j − πL, j+1), for L > 1 and j = 1, . . . ,n. Note that

(hL, j (t) − hL, j+1(t)) is not necessarily larger than (πL, j − πL, j+1)

when π ≤C h(t). We do however have that hL, j (t) + hL−1, j+1(t) −

hL, j+1(t) ≥ πL, j + πL−1, j+1 − πL, j+1 when π ≤C h(t) due to (16).

�us, using induction on L it suffices to show that

ΨL,τ =

∫ τ

t=0

n∑
j=1

((hL, j(t) + hL−1, j+1(t) − hL, j+1(t))

− (πL, j + πL−1, j+1 − πL, j+1))νjdt (24)

is uniformly bounded in τ ≥ 0. As z1,L(h(τ )) ≥ 0 for τ ≥ 0, we

have z1,L(h(0)) ≥ −
∫ τ

t=0

dz1,L (h(t ))
dt

dt and Lemma 3 for L > 1 im-

plies

zL,1(h(0)) ≥

−

∫ τ

t=0

∑
ℓ≥L

fℓ,1(h(t))dt +

∫ τ

t=0

n∑
j=1

(hL, j (t) − hL, j+1(t))νjdt

= −

∫ τ

t=0

∑
ℓ≥L

(fℓ,1(h(t)) − fℓ,1(π ))dt

+

∫ τ

t=0

n∑
j=1

((hL, j (t) − hL, j+1(t)) − (πL, j − πL, j+1))νjdt

where the last equality holds as π is a fixed point. �erefore we

find

zL,1(h(0)) +

∫ τ

t=0

n∑
j=1

(hL−1, j+1(t) − πL−1, j+1)νjdt

≥ −

∫ τ

t=0

∑
ℓ≥L

(fℓ,1(h(t)) − fℓ,1(π ))dt + ΨL,τ

By relying on Assumption A3 with L > 1 this can be restated as

zL,1(h(0)) +

∫ τ

t=0

n∑
j=1

(hL−1, j+1(t) − πL−1, j+1)νjdt

+

∫ τ

t=0

L−1∑
ℓ=1

n∑
j=1

bL, ℓ, j (h(t))(hℓ, j(t) − πℓ, j )dt

≥ΨL,τ +

∫ τ

t=0
aL,π (h(t))dt .

AsbL, ℓ, j(h) is bounded onΩ, the le� hand side is uniformly bounded

in τ by induction on L and therefore so are the (positive) integrals

on the right hand side. �

�eorem 2 follows by combining Proposition 7 and 8.

9 CONCLUSIONS

In this paper we demonstrated that monotonicity arguments can

still be applied to prove global a�raction of mean field models with

hyperexponential job sizes, which is a widely used class of distri-

butions for systems exhibiting large job size variability. �e key

ideas to enable the use of such monotonicity arguments existed in

formulating the ODE-based mean field model using a Coxian rep-

resentation and introducing a partial order that is stronger than

the usual componentwise order.

We believe that the approach presented in this paper can be ex-

tended to heterogeneous systems and systems in which a server

can serve multiple jobs simultaneously (i.e., in which each server

behaves as an ·/Cox/C server). Whether the assumption on the

first-come-first-served scheduling discipline can be relaxed is un-

clear at this moment and is the topic of future work.
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A PROOF OF LEMMA 2

By definition of Ri we have

Ri =
1

µi
+

n−1∑
j=i

(
j∏

k=i

pk

)
1

µ j+1
,

which implies that

Ri − Ri−1 =
1 − pi−1

µi
+

n−1∑
j=i

(
j∏

k=i

pk

)
1 − pi−1

µ j+1
−

1

µi−1
.

As µi (1 − pi ) is decreasing in i , we have (1 − pi−1)/µ j+1 > (1 −

pj+1)/µi−1 for j ≥ i − 1. Hence,

Ri − Ri−1 >
1 − pi

µi−1
+

n−1∑
j=i

(
j∏

k=i

pk

)
1 − pj+1

µi−1
−

1

µi−1

=

1

µi−1

©­«
n−1∑
j=i

(
j∏

k=i

pk

)
−

n−1∑
j=i−1

(
j+1∏
k=i

pk

)ª®
¬

= −
1

µi−1

n∏
k=i

pk = 0,

as pn = 0.

B PROOF OF PROPOSITION 5

Let β be the unique invariant vector of S + (−Se)α , that is, β(S +

(−Se)α) = 0 and βe = 1. It is easy to verify that βi = (
∏i−1

j=1 pj )/µi

(as the mean service time
∑
i βi µi equals one).

Due to (14) with i = 2, we immediately have that

n∑
j=1

(π1, j − π1, j+1)νj = (π1,1 − π1,2)µ1 . (25)

By means of (14) we have for i ≥ 2:

d

dt
(h1,i (t)−h1,i+1(t)) = (h1,i−1(t)−h1,i (t))pi−1µi−1−(h1,i(t)−h1,i+1(t))µi ,

meaning

(π1,i−1 − π1,i )pi−1µi−1 = (π1,i − π1,i+1)µi . (26)

Combining (25) and (26), we see that the vector

(π1,1 − π1,2,π1,2 − π1,3, . . . ,π1,n−1 − π1,n ,π1,n),

is an invariant vector of S+(−Se)α and thus amultiple of the vector

β . �e result then follows as βe = 1.
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