
Analyzing Location-Based Advertising for Vehicle
Service Providers Using Effective Resistances

Haoran Yu

haoran.yu@northwestern.edu

Northwestern University, USA

Ermin Wei

ermin.wei@northwestern.edu

Northwestern University, USA

Randall A. Berry

rberry@eecs.northwestern.edu

Northwestern University, USA

ABSTRACT
Vehicle service providers can display commercial ads in their ve-

hicles based on passengers’ origins and destinations to create a

new revenue stream. We study a vehicle service provider who can

generate different ad revenues when displaying ads on different

arcs (i.e., origin-destination pairs). The provider needs to ensure the

vehicle flow balance at each location, which makes it challenging

to analyze the provider’s vehicle assignment and pricing decisions

for different arcs. To tackle the problem, we show that certain prop-

erties of the traffic network can be captured by a corresponding

electrical network. When the effective resistance between two loca-

tions is small, there are many paths between the two locations and

the provider can easily route vehicles between them. We derive the

provider’s optimal vehicle assignment and pricing decisions based

on effective resistances.

CCS CONCEPTS
• Networks → Network economics; Location based services; •
Information systems → Display advertising; • Social and pro-
fessional topics → Pricing and resource allocation.
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1 INTRODUCTION
In-vehicle advertising has been emerging as a promising approach

for vehicle service providers (e.g., taxi companies and ride-sharing

platforms) to monetize their service. Vehicle service providers can

display ads to users of their service, and receive payment from the

corresponding advertisers. In this work, we study the impact of

in-vehicle advertising on a vehicle service provider who displays
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banner ads or in-stream ads to its users regularly. We use “an arc”

to represent an origin-destination pair, and a “unit ad revenue” to

represent the revenue that the provider can gain by displaying ads

to a user for a time slot. The advertisers have different target arcs

to display their ads, and have different willingnesses to pay. Hence,

the provider’s unit ad revenues on different arcs can be different.

The provider can set different prices for the vehicle service on

different arcs [1, 3]. Given the unit ad revenues, we aim to analyze

the provider’s optimal service prices for different arcs. The analy-

sis is challenging, because the provider’s vehicle assignment and

pricing decisions for different arcs (i.e., origin-destination pairs)

are tightly coupled by the vehicle flow balance constraints. The flow
balance constraints do not exist in other advertising models (e.g.,

web advertising [2] and mobile advertising [5]), and constitute a

unique challenge to the study of in-vehicle advertising.

We show that the traffic network, which is determined by the

network topology and the traffic demand and travel time on dif-

ferent arcs, can be interpreted by an associated electrical network.

Each location corresponds to a node in the electrical network. If

there is a positive traffic demand between two locations, there is a

resistor between the two corresponding nodes, and its resistance is

determined by the traffic demand and travel time between the two

locations. Given the associated electrical network, we compute the

effective resistance between any two nodes. Based on the effective

resistances, we derive closed-form expressions for the provider’s

optimal prices.

2 MODEL
We consider a discrete-time model, and denote the set of locations

by N ≜ {1, 2, . . . ,N }. In each time slot, a continuum of users of

mass θi j ≥ 0 consider taking the provider’s vehicle service to

depart from location i to location j (i, j ∈ N ). In particular, we have

θii = 0 for all i ∈ N . Note that

{
θi j

}
i, j ∈N

induces a directed graph

G
d
= (N ,A), where there is an arc from i to j (i.e., (i, j ) ∈ A)

if and only if θi j > 0. We focus on the case where G
d
is weakly

connected. We use

{
ξi j

}
i, j ∈N

to denote the travel time between

different locations. If a user takes the vehicle service, the number

of time slots required for the travel from i to j is ξi j > 0 (j , i).
We use a reservation price to refer to the highest price that a

user is willing to pay. If the vehicle service’s price is no greater

than the reservation price, the user is willing to take the provider’s

vehicle service; otherwise, the user will travel to its destination

by other approaches. We assume that the reservation prices of all

the θi j users on arc (i, j ) ∈ A are uniformly distributed in [0, 1].

Therefore, if the vehicle service’s price is p, the mass of users that

want to take the service from i to j is θi j max

{
1 − p, 0

}
. We call

θi j max

{
1 − p, 0

}
the actual demand on arc (i, j ).
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The provider’s decisions include the vehicle assignment and

pricing. We use qi j to denote the mass of vehicles that depart from

i to j in each time slot. We use pi j to denote the vehicle service’s

price for arc (i, j ), measured in dollars per time slot. If a user travels

from i to j via the vehicle service, since the travel time is ξi j , the
user’s total payment is ξi jpi j .

Besides the users’ payment, the provider gets revenue by dis-

playing ads to the users. Different origin-destination pairs can

correspond to different values of ad revenue. Let ai j ≥ 0 denote the

provider’s unit ad revenue (i.e., the ad revenue per user per time

slot) on arc (i, j ). If a user travels from i to j via the vehicle service,
the provider can get ξi jai j by displaying ads to the user for ξi j time

slots. We use c to denote the provider’s unit cost, and the provider’s
total cost for transporting a user from i to j is ξi jc . In this work, we

focus on the case where c < 1, i.e., the unit cost is smaller than the

users’ maximum reservation price.

The provider decides the vehicle assignment and pricing to maxi-

mize its time-average payoff in the system’s steady state.We assume

that the provider’s supply of vehicles on each arc is no greater than

the actual demand, i.e., qi j ≤ θi j max

{
1 − pi j , 0

}
for all (i, j ) ∈ A.

Then, we can formulate the provider’s problem as follows:

max

∑
(i, j )∈A

qi jξi j
(
pi j + ai j − c

)
(1a)

s.t. qi j ≤ θi j max

{
1 − pi j , 0

}
,∀ (i, j ) ∈ A, (1b)∑

j :(i, j )∈A

qi j =
∑

j :(j,i )∈A

qji ,∀i ∈ N , (1c)

var. qi j ≥ 0,pi j ≤ 1,∀ (i, j ) ∈ A. (1d)

The objective function in (1a) captures the provider’s time-average

payoff. In each time slot, a continuum of vehicles of mass qi j depart
from i to j, i.e., qi j is the vehicle departure rate for the travel from
i to j . In any time slot, the mass of vehicles traveling on arc (i, j ) is
qi jξi j . Each vehicle carries a user, and the provider gets pi j +ai j −c
by serving the user in this time slot. Therefore, the provider’s time-

average payoff from arc (i, j ) is qi jξi j
(
pi j + ai j − c

)
.

Constraint (1b) states that the supply of vehicles is no greater

than the actual demand, which is the assumption made above. Con-

straint (1c) captures the vehicle flow balance at each location i .
For arc (i, j ), both the rate that the vehicles depart i and the rate

that the vehicles arrive at j are qi j . Considering all arcs, the vehi-
cles’ departure rate at i is

∑
j :(i, j )∈A qi j , and the arrival rate at i is∑

j :(j,i )∈A qji . The two rates are equal under constraint (1c).

3 RESULTS
We first construct an electrical network corresponding to the di-

rected graph G
d
, and then analyze the provider’s optimal decisions

based on properties of the electrical network.

Given the directed graph G
d
= (N ,A), we define a weighted

undirected graph Gu = (N , E). Specifically, E contains edge (i, j )
if and only if there exists at least one arc between i and j in the

directed graph G
d
. Moreover, edge (i, j ) is associated with a weight,

which is

θi j
ξi j
+

θ ji
ξ ji

. Then, we can construct an electrical network

via replacing the vertices in N by nodes and the edges in E by

resistors. If (i, j ) ∈ E, we use ri j to denote the resistance of the

resistor between nodes i and j, and let ri j =
1

θi j
ξi j
+
θji
ξji

.

In the electrical network, the effective resistance between any

two nodes i and j (i, j ∈ N ) is defined as the voltage between i and
j when a unit current is injected at i and withdrawn at j. Let Ri j
denote the effective resistance between i and j. We can see that

Rii = 0 and Ri j = Rji for all i, j ∈ N .

Next, we analyze the provider’s decisions based on the effective

resistances. Let µi j be the dual variable corresponding to pi j ≤ 1 in

(1d). We use µ∗i j to denote the optimal dual variable, and can derive

the following result.

Theorem 3.1. In the case where µ∗i j = 0 for all (i, j ) ∈ A, the
provider’s optimal price p∗i j is given by

p∗i j =
1 − ai j + c

2

+
1

4ξi j

∑
k ∈N

(
Rjk − Rik

)
vk ,∀ (i, j ) ∈ A, (2)

where vk is defined by

vk ≜
∑

m:(k,m)∈A

θkm (1 + akm − c ) −
∑

m:(m,k )∈A

θmk (1 + amk − c ) .

Moreover, the optimal vehicle assignment q∗i j equals θi j
(
1 − p∗i j

)
for

all (i, j ) ∈ A.

Here, vk measures the value of having available vehicles at loca-

tion k . When vk is large, the traffic demand and unit ad revenues

on the arcs originating from k are large, and the provider needs to

route more vehicles to k to achieve a high payoff.

Theorem 3.1 characterizes the optimal prices based on the ef-

fective resistances, which measure the “distances” between nodes

in the electrical network. Suppose that, compared with location i ,
location j is “farther” frommost of the locations with largevk in the

electrical network. In this case,

∑
k ∈N

(
Rjk − Rik

)
vk is large. Eq.

(2) implies that the provider should charge a high price to reduce

the actual demand on arc (i, j ). This reduces the mass of vehicles

traveling from i to j , which is farther frommost “valuable” locations.

In the full version of our work, we generalize Theorem 3.1 to

the case where µ∗i j ≥ 0 for all (i, j ) ∈ A [4]. We also include the

following results in [4]. First, we characterize the dependence of

an arc’s optimal price on any other arc’s unit ad revenue. Second,

we analyze the impact of ad revenues on the provider’s optimal

payoff and consumer surplus. Third, we study the provider’s optimal

selection of advertisers when it can only display ads for a limited

number of advertisers. Fourth, we relax some assumptions and

evaluate our solution’s performance based on a real-world dataset.
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