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ABSTRACT

We propose personal volunteer computing, a novel paradigm to

encourage technical solutions that leverage personal devices, such

as smartphones and laptops, for personal applications that require

significant computations, such as animation rendering and image

processing. �e paradigm requires no investment in additional

hardware, relying instead on devices that are already owned by

users and their community, and favours simple tools that can be

implemented part-time by a single developer. We show that sam-

ples of personal devices of today are competitive with a top-of-the-

line laptop from two years ago. We also propose new directions to

extend the paradigm.

1 INTRODUCTION

�e commercial success of computing has made available billions

of personal devices. In the mobile industry alone, there has been

more than a billion smartphones sold every year for the last 4

years [5, 7, 9, 14]. In addition, millions of devices of yesteryear,

including older laptops, tablets, and desktops are si�ing at the bot-

tom of drawers, in recycling centres and other warehouses. Since

the average user obtains a new smartphone every 18-20months [6],

the next years are most likely to add billions more to the lot. �ese

personal devices can potentially be used as a distributed comput-

ing infrastructure at no cost, should their current owners be will-

ing to either actively lend CPU time or to donate the devices they

no longer need. Given the availability of these devices, the result-

ing economic opportunity cannot be overlooked.

Personal devices will also be useful for longer than in previous

times of rapid performance improvements. Hardware devices of

today, excluding their ba�ery, have a potential usable lifetime of at

least a decade. Moreover, the slowing of Moore’s law [64], as well

as the convergence of mobile computing performance with that of

laptops and desktops of the recent past [47] is likely to make their

performance competitive for many years.

We propose personal volunteer computing as a novel distributed

computing paradigm to leverage both opportunities. �e paradigm

aims at creating simple and effective designs for distributed sys-

tems that can quickly and easily tap into personal devices and at

enabling volunteers from a user’s community to contribute extra

computing devices when needed. We target users with significant

computing needs but limited resources available: potential devel-

opers that may only be available to develop and maintain new ap-

plications part-time with limited capital to acquire new hardware

devices. �is includes associations of citizens performing scientific

activities in their spare time [29, 31], researchers in disciplines with

limited funding available, or so�ware developers and scientists in

less industrialized countries. �ey could use personal volunteer

computing tools for animation rendering, image processing, run-

time verification, and many other applications.

�is new personal volunteer computing paradigm is uniquely

positioned, compared to existing paradigms, to answer the comput-

ing needs of developers with privacy needs and limited resources.

�is combination of characteristics had not explicitly been pursued

by other major paradigms. Contrary to cloud computing, comput-

ing resources can be used without financial transactions. Contrary

to systems typically built for grid computing, the computing re-

sources are available to the general public with no administrative

permissions. Compared to existing volunteer computing tools, the

tools are easier to deploy and require no dedicated hardware. Com-

pared to edge computing, which also leverages personal devices but

require trust in an external platform operator, private data is only

exposed to devices from trusted volunteers. Compared to other de-

centralized and peer-to-peer platforms, the focus is on simple tools

rather than a global platform, which removes the maintenance

costs when not actively used.

We show the applicability of personal volunteer computing to-

day by measuring the combined performance we obtained on two

samples of personal devices: the laptops and smartphones we have

accumulated over the years, and the smartphones of our colleagues

at work. We use Pando [53, 54], a tool we built for personal volun-

teer computing applications, to show that both samples of personal

devices, in their aggregate computing power, are competitive with

a top-of-the-line laptop from two years ago.

Personal volunteer computing can further be extended in differ-

ent directions, leading to interesting avenues of research. Newer

approaches such as crowdsourcing [48], in which participants take

an active role in the tasks performed, or support for long-running

computations, in which tasks and results may be exchanged during

intermi�ent connections, would increase the number of compati-

ble applications. �e computations performed by devices could

also be synchronized with the availability of energy; this would

decrease the need for ba�eries, lower operating costs, and make

the tools be�er compatible with intermi�ent energy sources.

In the rest of this paper, we first articulate the context of per-

sonal volunteer computing compared to other popular paradigms

of today to highlight its niche (Section 2). We then provide empir-

ical evidence of the significant computing potential of older per-

sonal devices (Section 3). We finally identify future applications

that are compatible with the paradigm and we articulate associ-

ated future research directions (Section 4).

2 MAJOR SOCIO-TECHNICAL PARADIGMS
FOR DISTRIBUTED COMPUTING

Distributed computing, through various paradigms, has developed

according to social and economic factors that are o�en implicit be-

hind the various technical contributions in the sub-disciplines. In

this section, we make those factors explicit in order to identify a

niche, which had not been explicitly articulated before, that we fill
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with personal volunteer computing by focusing on personal appli-

cations, tools, devices, and social networks. �is discussion shows

that, compared to the other major paradigms of cloud, grid, vol-

unteer, edge, and decentralized/p2p computing, personal volunteer

computing is an original emerging socio-technical paradigm that

opens up directions of research that would not necessarily be co-

herent with other paradigms. In the rest of this section, we briefly

summarize the established paradigms and we end with a presen-

tation of personal volunteer computing in Section 2.6. Readers al-

ready familiar with existing paradigmsmay directly skip to Table 1

for a high-level summary.

2.1 Cloud Computing

Cloud computing [36, 39] has emerged ten years ago as a market

service that offers their customers on-demand computing resources

with no initial capital investment and quick scalability to match

variations in resource usage. For many businesses, it offers (1)

lower capital risks associated with over- or under-provisioning

their hardware infrastructure to match the demand on their ser-

vices and (2) enables economies of scale by sharing the same hard-

ware resources amongmultiple users, therefore increasing resource

utilization. Clouds accelerated the growth of startups into global

platforms, AirBnB and Uber being notable examples.

�e devices that power a cloud are provided by a single company.

�e development and the management of the platform is funded

by customers using the cloud services directly, by renting the com-

puting resources, or indirectly, by using online services that are

implemented with them. Most o�en, cloud providers receive fund-

ing from both cases: Google provides ad-supported search services

and the AppEngine [21] platform; Amazon provides an online mar-

ketplace and the Amazon Elastic Cloud 2 (EC2) [17] platform. �e

exact number of devices cloud providers manage is considered a

trade secret by some. Nonetheless, we estimate cloud providers

may collectively manage in the order of millions of devices.

�e operating costs that have a direct impact on the profitability

of operating a cloud (ex: hardware acquisition, hardware and so�-

ware management, power and cooling energy requirements) in-

centivize their efficient usage. Consequently, researchers develop

strategies to build cloud infrastructure using commodity hardware,

minimize resource consumption for given workloads, multiplex

many concurrently running services on the same hardware to amor-

tize the fixed costs of operation, and develop autonomic manage-

ment strategies to minimize the involvement of humans. Compa-

nies also increasingly share designs both for hardware with the

Open Compute Project [27] and so�ware with Open Stack [28] to

lower the development and maintenance costs. Additional chal-

lenges include the quality of service provided (ex: latency in provi-

sioning resources, total amount of available computing power) and

the accurate and efficient monitoring of resource usage for billing

to ensure a customer only pays for what they use.

In their canonical form, clouds are limited in three ways. First,

their billing infrastructure becomes a financial barrier for individ-

uals and organizations that do not have access to financial instru-

ments, such as a bank account or a credit card. Second, their re-

liance on centrally-managed dedicated hardware entails a mini-

mum price that may be inaccessible to many individuals and or-

ganizations. �ird, their API requires access permissions which

complicates their programming, in turn creating a higher techni-

cal barrier.

2.2 Grid Computing

Grid computing [42, 43] is an older but similar offering to cloud

computing that makes computing resources belonging to different

collaborating organizations available through a unified service. Grid

computing has been named by analogy to the way the electric grid

was initially built. As grid computing developed, it was anticipated

to also exist as a commercial offering, but was replaced by cloud

computing. �e grid approach survives today as a scientific util-

ity by providing computing resources to publicly funded organiza-

tions such as universities and research centres.

Grids are currently funded through the public spendings of gov-

ernments and offered to researchers both to carry their research

and train students in distributed computing. We estimate the po-

tential number of devices available through public organizations

to be in the order of millions, although specific grid projects have

much lower offerings. Grid5000 [37], PlanetLab [40] each currently

boast offerings of about a thousand devices.

�e main challenge with grids is to create technical infrastruc-

ture that interoperates with the various distinct administrative do-

mains and organization policies that manage the computing re-

sources while providing a unified interface to researchers.

Challenges in building grids are different than for clouds. �ere

is no need for a billing infrastructure because in most cases both

the users and computing infrastructure are paid from public spend-

ings. Also, the focus is on collaboratively sharing the infrastruc-

ture between researchers rather than maximizing resource utiliza-

tion because some research projects, such as performance studies,

require a reserved access to the devices.

However, while grids are available to many public organiza-

tions, they are not available to the general public. Even for re-

searchers, the administrative complexity in obtaining the neces-

sary permissions may rule out many small-scale projects because

the resulting gain is not worth the effort. Both issues raise admin-

istrative barriers.

2.3 Volunteer Computing

Volunteer computing [34, 62] leverages the personal devices of vol-

unteers from the general public to perform computations. It is orga-

nized around a commons paradigm, both digital,1 by sharing tools

between many independent research teams, and physical, by en-

abling volunteers to contribute their computing resources to many

1”�e digital commons are defined as an information and knowledge resources that are
collectively created and owned or shared between or among a community and that tend
to be non-exclusivedible, that is, be (generally freely) available to third parties. �us, they
are oriented to favor use and reuse, rather than to exchange as a commodity. Additionally,
the community of people building them can intervene in the governing of their interaction
processes and of their shared resources.” (Fuster [44])
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projects. Volunteers do not receive financial benefits for their con-

tributions butmay receive public recognition in the form of compu-

tation points. Computations performed with volunteer computing

sometimes represent global issues, such as climate prediction [19]

or drug discovery for cancer [20]. Other times they simply cap-

ture the imagination of the general public, such as the search for

extra-terrestrial intelligence (SETI@Home [16]).

�e development of volunteer computing platforms has been

funded by governments through public research grants to provide

researchers with supercomputing capacities at a much lower cost.

It has the potential to leverage billions of personal devices although

at the moment the current number of participating devices is in

the order of a million. At the time of writing, its flagship project,

BOINC [18], with 175,000 active volunteers managing 858,000 ac-

tive computers, and a total combined computing power of 22.579

PetaFlops is one of the top five most powerful supercomputers in

the world and has a fi�h of the power of the most powerful one

(Sunway TaihuLight), which boasts between 93 and 125PetaFlops [30].

�e major typical challenges to the volunteer computing ap-

proach concern the variability of capabilities of personal devices,

the necessity to encourage and maintain volunteer engagement,

and the automatic handling of volunteer’s unreliability [35, 58].

In contrast to cloud computing, an additional computation con-

tribution does not cost the researchers, therefore efficiently using

the hardware is less of an issue. Also, financial transactions are

replaced with computation points that are issued a�er successful

work has been performed, which lowers the financial barrier to

obtaining access to the computing devices. In contrast to grid

computing, there are fewer administrative barriers to deploy the

tools: a research team may buy its own server and use the tools

freely to request support from the general public. Its major ad-

vantage compared to both clouds and grids, is that the majority

of the costs are supported by volunteers, which covers the acqui-

sition, the operation, and the maintenance of the computing de-

vices. However, it typically has a higher communication latency

and more limited bandwidth available, making it be�er applica-

ble to compute-intensive tasks with low communication require-

ments.

With 4 billion estimated Internet users [10], the current num-

ber of volunteers represents less than 0.005% of humanity. From a

technical perspective, the number of smartphones that were sold

in 2015 and 2016 is more than 3000 times the number of active

computers in volunteer computing projects [15]. �e approach has

therefore not yet reached its full potential. We believe the complex-

ity of the BIONC tools, that have been designed for researchers and

large-scale projects, as well as the costs in acquiring and maintain-

ing dedicated servers to run the them are remaining technical and

financial barriers that slow the widespread adoption of the para-

digm.

2.4 Edge and Gray Computing

Edge and gray computing are based on a cloud-hosted platform,

and therefore inherit much of the same characteristics. Edge com-

puting [63] performs computation tasks on the devices that directly

interface with the real world, such as mobile phones and sensor

networks. Gray computing [59, 60] does the same in web browsers

by offloading tasks to visitors of websites. In both cases the mo-

tivation is to provide be�er quality of service with lower latency

and to lower the operation costs of cloud-hosted platforms.

Edge and gray computing are similar to volunteer computing by

their reliance on external resource providers on which operation

costs are transferred, end-users in the former, and volunteers in the

la�er. �ey can both benefit by the large increase in number and

performance of personal devices of the last years. However, the

two approaches are quite different in all other aspects including

the intention of participants to contribute or not: volunteers inten-

tionally choose to contribute to project they care about while end-

users of edge computing platforms may unknowingly contribute

resources to their operations. Moreover, as for cloud computing,

end-users of edge computing platforms also have to trust the oper-

ators that they will respect the privacy of their data and that the

implicit computations performed on their device will not degrade

the quality of service provided by their device.

2.5 Decentralized Approaches

Decentralized and peer-to-peer (P2P) approaches, contrary to all

other paradigms, use personal devices both for the execution of

tasks and their coordination. �is distributes the usual responsibil-

ities of servers in a central location to all the participating devices

in the network using peer-to-peer algorithms. In turn, it makes the

system more resilient to the failures of coordinators by eliminating

their privileged position.

�e motivation of decentralized approaches is typically to in-

crease the resilience of services by tolerating additional failuremodes

and spreading the loads differently. �ey are not tied to specific

organization paradigms: some are used to implement decentral-

ized storage [3] and computation [22] throughmarket services sup-

ported by crypto-currencies while other are used to exchange files

in commons directly between users [12].

Compared to cloud, grid, and volunteer computing, decentral-

ized approaches remove the required trust from the operators of

the platform/tool and the servers used. However, they usually still

provide a globally shared platform and accordingly maintain global

structured overlays [32, 41, 46, 50, 51, 57, 61, 65, 66] with corre-

sponding maintenance and complexity challenges. When applied

to volunteer computing, maintaining the platform while it is not

actively used puts pressure on volunteers to keep it running. �is

costs energy, time, and a�ention, but provides no clear benefit.

Moreover, the complexity in developing andmaintaining such plat-

forms requires dedicated specialists and ongoing recurrent resources.

Compared to decentralized approaches, volunteer computing

tools are centralized in the sense that the coordination of com-

putations is performed on a dedicated server. However, contrary

to decentralized platforms, different users create disjoint networks.

�is greatly simplifies the implementation of coordinators while

providing independence from the failures of other users.

2.6 Personal Volunteer Computing

Wepropose personal volunteer computing as a new volunteer com-

puting approach that follows its commons paradigm but focuses

on the personal computation needs of programmers from the gen-

eral public for applications of personal or community interest. �e
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Cloud Grid Volunteer Edge/Gray Decentralized Personal

/P2P Volunteer

Motivation Lower infrastr. Lower infrastr. Lower operation Lower operation Resilience Lowest hardware

costs & risks costs costs costs and sharing and op. costs

Paradigm Market service Scientific utility Commons Market service - Commons

Ress. providers Single company Multiple org. General public End users - Friends,family

Target users Customers Researchers Researchers Customers - General public

Funders Customers Governments Governments Customers - General public?

Nb of devices Millions Millions Billions Billions Billions Billions

Challenges Efficiency, Interoperability, Variability, Application Fault-tolerance, Simplicity,

monitoring, unified interface, engagement, partitioning trust, portability,

billing sharing unreliability consensus scalability

Trusted Parties Platform op. Platform op. Tool op. Platform op. P2P algorithms Friends, family

Design Global platform Global platform Persistent Tool Global platform Global platform Transient Tool

Coordination Centralized Centralized Centralized Centralized Distributed Centralized

(disjoint) (disjoint)

Coordinators(s) Dedicated Dedicated Dedicated Dedicated All devices User device

servers servers server server

Table 1: Comparison summary between the major distributed computing paradigms and personal volunteer computing.

user starts a computation on their personal device, then spreads

the computations on other of their devices, and if the task still re-

quires more computing power, they ask their friends, family, and

colleagues to participate with additional devices. Its key oppor-

tunity is that it can provide distributed computing infrastructure

without additional investment in hardware and at low operating

costs by using participant devices for both coordination and com-

putation with a simpler implementation than typical decentralized

approaches. �e main limitation of the approach is that availabil-

ity of other volunteers’ devices is not guaranteed because they are

not integrated in an online platform; the devices instead join for

punctual needs a�er explicit requests. �e exact characteristics

and performance of participating devices shall therefore be vari-

able. Nonetheless, a user is likely to remember whom contributed

the most computing power and will most likely invite previous vol-

unteers with particularly powerful machines in priority for subse-

quent tasks.

�e users we target are varied. �ey include but are not limited

to scientists in research teams with low but significant computa-

tion needs, individuals in developing countries with a personal

smartphone and no access to other alternatives, amateurs doing

science as a hobby, etc. �e approach leverages a user’s trust in

the friends, family, and collegues they are asking for help (their

personal social network) for two reasons: (1) it incentivizes more

contributions since volunteers are more likely to contribute com-

puting power to help someone they personally know, and (2) vol-

unteers that are known by the user are less likely to intentionally

provide invalid results since this would have social consequences

to them once detected. So far, our work has been funded from

research grants from governments but its potentially wide applica-

bility could encourage the general public to directly fund it for its

own needs. �is approach could potentially use the billions of avail-

able personal devices [15], but rather than unifying all devices in a

single platform, devices assemble in temporary networks around

potentially thousands of independent projects.

�e main challenges for personal volunteer computing derive

from the wide diversity of programming environments and so�-

ware/hardware combinations to support, the more limited time

available to learn and deploy the tools for small projects because

they are o�en done part-time as part of other projects, as well as

the currently limited capital available for its growth. It is therefore

significantly more important than for other approaches that the

tools remain simple to use and to deploy to provide quick gains

with low efforts. It is also important that the tools are quickly

portable to many environments, current and future, by being sim-

ple to implement. Finally, the tools also need to scale to all the de-

vices of the personal social network of its user to maximize their

benefits.

Compared to cloud and grid computing, personal volunteer com-

puting removes their financial and administrative barriers. Com-

pared to volunteer computing, it drastically lowers its technical

barriers and removes itsfinancial barriers by using one of the user’s

devices for coordination. In contrast to decentralized approaches,

personal volunteer computing leverages the existing mutual trust

between friends and family. To recruit volunteers, social interac-

tions, possibly through existing social platforms, are used instead

ofmaintaining separate decentralized services. Both choices greatly

reduce the complexity of the infrastructure needed so that the tool

can be maintained by a single developer in their spare time.

Personal volunteer computing, similar to volunteer computing,

lends itself naturally to compute-bound applications with many

independent tasks. While the computing needs of the projects tar-

geted are smaller than for volunteer computing, the smaller net-

work latency between local devices opens an opportunity for dis-

tributed applications that require more communication between

computing nodes, extending the range of applications that can pos-

sibly be targeted.
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3 COMPUTING POTENTIAL OF PERSONAL
DEVICES

For personal volunteer computing to be adopted, personal devices

need to provide sufficient computing power to be useful. In this

section, we show this is already the case by measuring the collec-

tive performance on CPU-bound applications that can be achieved

using two samples of personal devices: a collection of personal

laptops and smartphones we have accumulated over the years at

home, and the smartphones of our friends at work.

�e experiments have been performed with Pando [53], a new

tool for distributing JavaScript computations on personal devices.

It essentially provides a streaming map operation, which applies

a function on every value of the stream and returns the results in

order. �e actual processing happens on participating devices in

parallel. New devices may join anytime during computation sim-

ply by opening a URL in their browser and will obtain inputs to

process and communicate back results through WebSocket [2] or

WebRTC [13], depending on availability. Devices may also quit

at any time without affecting the results; failed computations are

transparently resubmi�ed to remaining devices. �e current ver-

sion has been optimized for throughput by avoiding redundancy

when processing values and ensuring faster devices receive more

values to process. We used version 0.17.2 of Pando for the tests.

�e design and implementation of Pando are covered in more de-

tail in a separate publication [54].

3.1 Personal Devices Experiments

We have tested six applications that all use Pando to distribute the

core and most expensive part of their computations. Collatz im-

plements the Collatz Conjecture [11], that has been made popular

with the BOINC volunteer computing platform [33]; our JavaScript

implementation uses a Bignumber library to perform the recursive

steps. Crypto-Mining searches for a nounce whose value, when

combined with a block provided in input, will result in a hashed

value with a certain number of leading zeros, similar to the proof-

of-work algorithm of Bitcoin [56]. Random-testing simulates the

behaviour of the StreamLender abstraction, at the heart of Pando,

on random interleavings of concurrent processes to find examples

in which execution properties are violated to ensure they never

happen in practice. Animation-rendering renders individual frames

of a synthetic scene by applying a raytracer algorithm on each

of them and then assembles the result in a gif animation. Image-

processing applies a blur on satellite images of the Landsat-8 open

dataset [25]. MLAgent-Training trains an agent in a simulated envi-

ronment over a sequence of steps using reinforcement learning [49].

All applications are CPU-bound and we hide transmission delays

by sending values to process in batches of two, this way network

delays for one value happen while the other is processed. We used

the version of benchmarks at commit 12164ee69b of the pando-

handbook [52].

Table 2 shows the combination of devices we gathered from

those we have accumulated over the years. �e oldest is the iPhone

4S (2 cores 1.0 Ghz ARM 32-bit), released in 2011, and the two

newest are the iPhone SE (2 cores 1.85 Ghz ARMv8 64-bit), re-

leased in 2016, and the Macbook Pro 2016 (4 cores i5 2.9 Ghz x86

64-bit). In between, we also have the Novena [8], a linux laptop

based on a Freescale iMX6 CPU (4 cores 1.2 Ghz ARMv7 32-bit)

produced in a small batch in 2015, an Asus Windows laptop based

on a Pentium N3540 (4 cores 2.16 Ghz x86 64-bit) processor, and

a Macbook Air mid-2011 (2 cores i7 1.8 Ghz x86 64-bit). We used

Firefox (64.0 on x86 and 60.3.0 ESR on ARM) on laptops for consis-

tency and because it is the fastest on numerical benchmarks [47];

on the iPhones we used Safari.

We noticed that the number of concurrent browser tabs that

provided the maximum performance was less than the number of

cores of many devices, possibly because some shared resources of

the CPUswere saturated or because theOS or the browser reserved

other cores for different services. We therefore chose the mini-

mum number of cores that provided the maximum performance,

which we mention beside the device name in Table 2. �e perfor-

mance when using a single core was roughly equal to the ratio

of the throughput obtained divided by the number of cores men-

tioned. We also reserve one core on the MacBook Air 2011 to ex-

ecute Pando’s master process which coordinates communication

with other devices, leaving the other for computations.

A few results are worth discussing. First, the performance of the

iPhone 4S was too low on some benchmarks to be included. On

the others we noticed that the iPhone SE brings a significant per-

formance improvement, between 3x and 21x. �is shows that not

all older phones may provide a significant contribution on modern

tasks. Second, the iPhone 4S and the Macbook Air 2011 are of the

same generation, similar to the iPhone SE and the Macbook Pro.

�e performance gap between each pair, when taking the perfor-

mance on a single core, has significantly reduced; it was between

3.3x and 14x in 2011 and dropped to between 1.3x and 2.1x in 2016.

Note that on the image processing application, the Macbook Pro

is surprisingly slower; using Safari on the Macbook Pro instead

of Firefox makes it faster again, the difference can therefore be at-

tributed to the difference in optimizations performed by browsers.

�ird, combining all other devices provides a performance level

comparable to that of theMacbook Pro, whichmeans thatwe could

at least double the overall throughput of the applications by lever-

aging other devices we have access to, making them quite useful.

3.2 Smartphones Experiments

Table 3 shows a repetition of the random-testing experiment, this

time with the smartphones of our colleagues at work, which ar-

guably represent an interesting sample of those available. We only

experimented on a single application, since there was a bound to

our colleagues’ interest in witnessing their ba�eries being drained.

�e exact specification of each device is rather tedious to list and of

limited interest since the whole experiment would be rather hard

to replicate. �ere are still a few points worth mentioning.

First, the range of performance is significant, the slowest de-

vice, the Zenfone 2, is 8 times slower than the fastest of the lot,

the iPhone SE. Second, it may be possible that some of them had

been using energy saving modes, the iPhone SE was connected

over a usb cable while the other were all running from their ba�er-

ies. �is is certainly the case for the second Huawei phone, which

locked during the experiment and went into low power mode, ex-

plaining the 10x difference with the other identical device. �ird,

the overall performance of all devices combined is higher than that
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Collatz Crypto- Rand.- Anim.- Image- MLAgent-

Mining Test. Render. Process. Training

Bignum/s % Hashes/s % Tests/s % Frames/s % Images/s % Steps/s %

Device (cores)

iPhone 4S (1) 15.55 0.9 13,951 3.5 54.22 1.5 — — — — 22.02 4.2

Novena (2) 63.56 3.8 16,326 4.2 150.46 4.1 0.34 3.2 0.03 5.2 51.76 10.0

Asus Laptop (3) 254.08 15.1 59,877 15.2 617.40 16.7 1.88 17.6 0.08 15.9 112.23 21.6

MBAir 2011 (1) 218.92 13.0 56,906 14.5 551.18 14.9 1.47 13.7 0.04 7.5 72.88 14.0

iPhone SE (1) 314.86 18.7 46,849 11.9 498.65 13.5 1.69 15.8 0.23 44.3 63.81 12.3

MBPro 2016 (2) 814.48 48.4 199,917 50.8 1816.23 49.3 5.33 49.8 0.14 27.1 197.17 37.9

All 1681.45 100.0 393,826 100.0 3688.15 100.0 10.70 100.0 0.53 100.0 519.86 100.0

Table 2: Average throughput for CPU-bound streaming applications using a combination of personal devices.

Random-Testing

Tests/s %

Device

iPhone SE 443.46 18.70

Huawei P10 lite 2017 364.99 15.39

Samsung Galaxy S7 304.64 12.84

Xiaomi redmi note 6 pro 291.03 12.27

LG G6 H870 2017 260.17 10.97

Lenovo P2a42 2016 171.26 7.22

Wileyfox Storm 2016 128.89 5.43

Honor 125.29 5.28

Zenfone 3 100.58 4.24

Samsung A3 2016 90.58 3.82

Zenfone 2 55.81 2.35

Huawei P10 lite 2017 (2) 35.13 1.48

All 2371.82 100.00

Table 3: Average throughput of smartphones volunteered

by colleagues.

of the Macbook Pro, showing that asking your colleagues for help

may be a valid substitute for a faster machine on some applications.

And finally, the implementation of the application used only a sin-

gle core on each device, it may be possible to reach a factor of 2-4

be�er performance in the future by leveraging parallel libraries or

WebWorkers [1].

�e last experiment shows that while older smartphones, such

an iPhone 4S, may contribute an insignificant amount of comput-

ing power, the combined computing power of a dozen more re-

cent smartphones can outperform a top-of-line laptop of only two

years ago. Moreover, the first experiment results provide addi-

tional empirical evidence for the decreasing performance gap be-

tween smartphones and laptop computers, opening the door for us-

ing them for significant computations in the future, not only alone

but also in combination with others.

4 FUTURE RESEARCH DIRECTIONS

In this section, we envision, from the personal volunteer computing

paradigm, a larger scope of application than has been shown in

the previous section and follow with the research directions they

open up. �is should help establish a research community effort

and provide interesting directions of investigation.

As a starting point, we take as a core assumption that a grow-

ing number of sectors of our society are currently reaching limits

to growth [55], be them available governmental funding for less

popular research fields, public spendings to support various social

services, household surpluses available to support various chari-

ties and citizen initiatives, etc. �is does not preclude some other

sectors from still experiencing dramatic growth and improvement

rates. Nonetheless, to keep computing technologies relevant for

sectors with less or no economic growth, it is important that the

systems designed for them are as affordable as possible. �e key

advantage of personal volunteer computing to that end is that it

can provide computing services without additional investment in

hardware and could synchronize with intermi�ent and free energy

sources to provide extremely low operating costs.

We first review concrete potential future applications from ex-

isting citizen science initiatives. We then articulate a set of design

principles that would be consistent with providing computing ser-

vices without small or no investment in hardware and low operat-

ing costs. We then sketch what potential research topics may be

pursued within different sub-fields of computer science.

4.1 Potential Applications

�e unifying theme behind all the applications we envision is that

they increase capabilities at the community level by using that same

community’s resources rather than distant computing infrastruc-

ture and associated supporting resources. We start from applica-

tions that may directly contribute to ongoing initiatives and then

generalize abstract dimensions thatmay guide future investigations

and associated technical solutions.

One potential direction with potential short-term gains is to

support existing citizen science initiatives. Some Public Lab [29]

projects rely on near-infrared imagery to determine plant health [24,

26] and rely on so�ware processing pipelines [23]. Pictures are of-

ten processed at home, due to the amount of processing required.

Using Pando would enable that processing to happen in the field

with the volunteers’ smartphones. Another example, Zooniverse [31],

leverages the abilities of volunteers to performclassification, pa�ern-

matching, annotation, and transcription tasks that may provide

useful data for researcher as is, or a�er training with machine

learning algorithms. Pando in this case could make the effort more

6



social by coordinating the efforts of volunteers working in the

same room on their smartphones to perform the different tasks. In

fact, we already implemented a similar example to perform collabo-

rative filtering of a stream of interesting Arxiv paper abstracts [52].

�e applications we used in Section 3 all used the devices for

automatic processing, synchronously to complete tasks faster, and

in the vicinity of its user. Each choice is one possibility along a

different dimension. We briefly sketch other possibilities along the

same dimensions.

Nature of Computing. Automatic computations are performed

strictly on machines. Human computations require the input from

a human to make a decision, identify features, classify elements,

or process information, such as those performed by Zooniverse

volunteers and other forms of crowdsourcing [48]. In between, hy-

brid computations may blend both for a be�er result. An exciting

prospect for personal volunteer computing is to use data generated

by a community and train machine learning algorithms to act as a

collective memory specific to that community. For example, a for-

aging application, that could help identify and track useful plants

and mushrooms and optimized for a local region, could be quite

valuable to spread the skills quickly while preventing the appro-

priation of the knowledge by external parties.

Locality in time. Synchronous processing has all computing re-

sources working at the same time to complete a task as quickly as

possible. Asynchronous processing decouples the work performed

by computing resources, which may instead contribute when they

are most available. �is would enable, for example, processing

infrastructure powered by renewable energy in which the nodes

workwhen there is sufficient energy available but otherwise power

down. �is could work well in combination with an asynchronous

messaging infrastructure such as Secure Scu�lebu� [4].

Locality in space. Colocated computations happenwith all com-

puting resources in a close physical space. Widely distributed com-

putations happen with computing resources spread over a larger

area and potentially connected by routing infrastructure, such as

the Internet. �e la�er may happen for online communities of in-

terests. We can imagine, for example, a community-specific archival

service, similar to Archive.org, that would only keep track of re-

sources that were linked by community discussions related to spe-

cific interests. It would use the computing power and storage of

participants to archive the content at links, build indexes of re-

sources, and spread the load among members sharing the same

interests.

All the applications proposed previously address a community’s

needs using the computing resources it already owns. We believe

there aremanymore interesting applications that can be built along

the same lines and these have the potential to be several orders of

magnitude more affordable in infrastructure investment and en-

ergy usage than current alternatives.

4.2 Additional Design Principles

We propose the following additional design principles for a new

generation of personal volunteer computing systems.

Local first. Instantly available high-bandwidth communication

and scalable computing power and storage planet-wide require

significant infrastructure investment and uses enough energy to

power small countries. In contrast, systems keeping information

and computation local for services that may be offered without

global connectivity will make the services more resilient to poten-

tial outages and energy shortages, and will bring down energy us-

age in intermediate routing nodes and data centres by several or-

ders of magnitude.

Leverage humans and their communities first, then aug-

ment their capabilities. Volunteers can achieve gigabytes/s by

carrying portable hard-drives; they can quickly provide access to

dozens of CPUs in a few minutes by lending their devices’ capa-

bilities; they can help organize information and maintain devices

in working order, and they can build supporting infrastructure for

providing energy and communication. Moreover, effective human

communities have a high inherent level of trust and solidarity that

can help simplify the designs of systems. �e total amount of vol-

untary work volunteers can bring to keep their community func-

tioning is a large resource to leverage. Volunteers may still bene-

fit from automation to decrease the most tedious aspects of their

work, in this case the infrastructure augments their capabilities

rather than replacing them.

Optimize for energy use and local energy sources. Lower-

ing the energy usage drastically reduces the operating costs. �ere

aremany potential optimization opportunities for applications that

are not latency or throughput critical. �is may allow, for example,

to create systems whose computation activities follow the natural

cycles of energy availability from solar panels or wind turbines.

�is would in turn lower the need for expensive energy storage,

or backup infrastructure powered by non-renewable energy, there-

fore further lowering the infrastructure and maintenance costs.

Taken together, these principles really represent an exciting new

paradigm of research that considers both unexploited opportuni-

ties of today and the hard constraints on energy andmaterial usage

that may appear in a near future for many sectors of our society.

4.3 Research Topics

In this section, we consider the promising avenues to be explored

in existing disciplines of computing and other related fields when

designing new systems built along the previous principles.

4.3.1 Programming Languages. To enable a single, or a few de-

velopers, to maintain and extend the required so�ware infrastruc-

ture favours a renewal of the tradition of self-hosted programming

systems, such as Oberon [67], Smalltalk [45], and Forth [38]. Newer

efforts could aim at creating a full environment for community ap-

plications based around personal volunteer computing.

4.3.2 New Algorithms. We envision the following three new

kinds of algorithms to be implemented for personal volunteer com-

puting systems.

Social algorithms would be partly or completely be performed

by cooperative members of communities, while being augmented

by capabilities of interactivity, long-term faithful storage, and au-

tomatic cryptographic validation brought by the computers.

Subjective algorithms would index, process, and organize pro-

duced by local communities according to the interest of each user,

from their point-of-view, without access to global information. �is

7



could provide similar services as current recommendation and per-

sonalization services of today without requiring a third-party to

access private data.

Natural algorithms would be long running and energy-aware

so they behave in accordance to the natural cycles in which the

computing systems are embedded.

4.3.3 System Design. For many older devices, the maintenance

and support from the original manufacturer is discontinued earlier

than the end of their useful lifetime. For example, Apple stops sup-

porting updates for older devices six years a�er they have been

released. As such there is a need for minimal operating systems

that can be developed and maintained by a community inherit-

ing legacy devices long a�er their manufacturer stopped their sup-

port, which could span multiple decades for some devices. �e

designs should also take energy availability into consideration for

task scheduling, persistence, and performance management.

4.3.4 Communication and Sensor Networks. Oldmobile phones

may be used to design ad hoc mesh communication networks. �e

resulting system should be self-configuring with minimal expert

knowledge from volunteers deploying them. New routing algo-

rithms should also take into account energy availability and effi-

ciency.

4.3.5 Energy Engineering. Design of small-scale energy storage

and production in the 5-10W range that can be built with local,

abundant, and inexpensive materials by volunteers. �ese could

be based on various technologies, including sterling engines using

water or oil for thermal storage, thermo-electric effects by combin-

ing different metals and heating them with the sun, small wind or

water turbine build with salvaged electric motors, etc. �ese will

help bring the operation costs close to zero.

�e previous research directions, compared to the current trends

in research, make smaller whole-system designs done by small

teams viable again. �ere may therefore be valuable insights to dig

back from the 80s and 90s literature and to refresh with the benefit

of insights from the two to three decades that followed, including

the growing importance of energy management.

5 CONCLUSION

In this paper, we have articulated a novel paradigm for distributed

computing, which we named personal volunteer computing, that:

(1) leverages existing personal devices, such as smartphones and

laptops, (2) encourages the development of system designs that can

be implemented by a single developer part-time, and (3) applies

to the development of personal applications with significant com-

putation needs, such as animation rendering and image process-

ing. Two relatively new factors concur to make it possible: there

is a current abundance of personal devices with a usable lifetime

significantly longer than their current replacement rate and the

performance improvements between generations of devices have

decreased to the point that combinations of older devices are com-

petitive with newer. We corroborated this analysis by measuring

the performance obtained on a sample of smartphones and laptops

we have accumulated over the years, as well of smartphones of our

friends and colleagues on a number of representative applications.

Both samples have been shown to be competitive with a top-of-the-

line laptop from two years ago. To foster further developments on

personal volunteer computing, we finally sketched a larger scope

of applications, additional design principles for creating new tools,

as well as potential topics to research within disciplines inside and

outside computer science. �ey hold a promise of affordable com-

puting for developers with significant computing needs but limited

resources available.
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