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Abstract—In this paper we present Quanrum Encoded Quan-
tum Evolutionary Algorithm (QEQEA) and compare its perfor-
mance against a a classical GPU accelerated Genetic Algorithm
(GPUGA). The proposed QEQEA differs from existing quantum
evolutionary algorithms in several points: representation of
candidates circuits is using qubits and qutrits and the proposed
evolutionary operators can in theory be implemented on quantum
computer provided a classical control exists. The synthesized
circuits are obtained by a set of measurements performed on
the encoding units of quantum representation. Both algorithms
are accelerated in GPGPU. The main target of this paper, is
not to propose a completely novel quantum genetic algorithm
but to rather experimentally estimate the advantages of certain
components of genetic algorithm being encoded and implemented
in a quantum compatible manner. The algorithms are compared
and evaluated on several reversible and quantum circuits. The
results demonstrate that on one hand the quantum encoding and
quantum implementation compatible implementation provides
certain disadvantages with respect to the classical evolutionary
computation. On the other hand, encoding certain components in
a quantum compatible manner could in theory allow to accelerate
the search. This acceleration would in turn counter weight the
implementation limitations.

I. INTRODUCTION

The direct design of quantum circuits, that is designing
quantum or reversible circuits directly using a set of quantum
universal gates, suffers from two main problems. First, the
optimal method for constructing primitive logic reversible
quantum gates for larger number of qubits is not known. The
complexity of constructing such gates rises from the fact that
component quantum gates applied to at maximum two qubits
can be used. Second, designing large reversible and quantum
circuits from macros, does not guarantee an exact minimal and
optimal design. As a result, there is no real quantum circuit
design algorithm for both quantum and reversible circuits
using directly quantum primitives.

The synthesis of reversible quantum gates such as gates
from the CnU family with U being NOT , or SWAP unitary
operations, has been solved in general for some sets of
Turing universal quantum gates and small number of qubits.
For instance, the minimal realization of C2NOT gate is
known in the CNOT/CV/CV †, Clifford-T or CH/CZ set of

quantum gates. However, in the Ising model the Toffoli gate
is not known with certainty as the original specification was
found by a stochastic algorithm [1] while in [2] an improved
realization was found. Additionally, this situation only gets
worse with larger logic gates, where synthesis is done by
LUT [3] or replacement of large gates by a group of smaller
gates already known [4]. Thus, a synthesis method that designs
larger quantum circuits directly using quantum gates would
benefit from better minimal cost but also would require faster
computers.

The evolutionary approach is one of the possible way to
find cheaper realizations of the CnU quantum gates. The
reason is that while for smaller Turing-universal gate sets and
relatively small circuits it is possible to enumerate all possible
gate combinations and therefore obtain the less costly minimal
gate realization; for larger sets of gates and quantum circuits
enumeration would take too long. Consequently, a pseudo-
evolutionary search can accelerate the search for more optimal
realization of small and medium sized quantum gates using
evolutionary operators.

However, designing algorithm directly for quantum com-
puter is not a trivial task. To do that the specific principles
and constraints of quantum computing [5] has to be taken
into account. Naturally, one can use classical algorithms
implemented and accelerated in quantum computer such as
SAT [6] but such algorithms suffer from the overhead of
building classical mechanisms using quantum computational
elements. Thus, implementing an algorithm that is as close as
possible to quantum information and this manipulation using
basic quantum tools is most desirable.

In this paper we propose a quantum encoded quantum
evolutionary algorithm (QEQEA) parallelized on GPGPU and
we compare it to an equivalently GPGPU accelerated classical
evolutionary algorithm. QEQEA uses qubits and qutrits to
represent parameters evolved by the quantum evolutionary
operators as compared to classical genetic algorithm that uses
classical strings. The evolutionary operators of QEQEA are
strongly simplified and adapted to be quantum-realizable; the
used evolutionary operators are built from unitary evolution
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and measurement process. The QEQEA, evolves simple quan-
tum gates that are used to build the quantum circuits. From
one single population of gates, several quantum circuits are
sampled by measurement. As such the QEQEA is intended
for ensemble quantum computer approach such as NMR [5]
or One-Way quantum computing [7]. Each quantum gate is
updated proportionally to fitness values stored in the non-
quantum part of the algorithm. The QEQEA and the classical
GPUGA are both evaluated on the Ising model of quantum
computer [5] due to high complexity and high number of
parameters to optimize. The results presented here are aimed
to evaluate the difference between these two algorithms rather
than provide new state-of-the art circuits realizations in cur-
rently used models of quantum gates such as Clifford-T.

In summary the following quantum-like modifications are
implemented in QEQEA:
• ensemble-quantum computer inspired set of evolutionary

operators,
• population of candidates solutions encoded using qubits

and qutrits,
• adaptive mutation as the main driving force of the evo-

lution,
• templates for building interaction gates,
• use of position in the memory to encode circuit informa-

tion
• measurement based quantum gate and quantum circuit

creation.
This paper is organized as follows. Section II introduces

required knowledge about genetic algorithms and Section III
introduces the required information about quantum computing
and quantum circuits. Section IV introduces the proposed
model. Section V describe the experimentation and obtained
results and Section VI discusses the quantum implementation
discrepancies and performance considerations of the proposed
algorithm. Finally Section VII concludes the paper.

II. BACKGROUND

The genetic algorithms are a class of pseudo-random search
algorithms inspired by natural evolution. They are used to
solve difficult search and optimization problems that are
otherwise unsolvable by exhaustive or analytic approaches in
reasonable amount of time or with bounded memory. The
application of evolutionary algorithm for quantum synthesis
is a topic that has been previously studied since the beginning
of the century [8], [9], [10]. A lot of work has been done
for solving the problem in classical paradigm using different
approaches and hardware, however the execution time is a
limiting factor even for the most optimal evolutionary and
general algorithms [11] directly designing quantum circuits.
Thus, Quantum and Quantum Inspired Algorithms were intro-
duced in order to reduce the computation time using principles
of quantum mechanics. One of the first evolutionary algorithm
inspired by quantum computing was developed in [12]. The
most original idea was the extension of quantum inference
crossover [12]. In [13] the first definition and requirements
for evolutionary quantum algorithms have been introduced.

The most important and challenging requirements are listed
below for the clarity of understanding:
• A reasonable method of splitting the problem to sub-

problems
• ”The number of universes required should be identified”

[13], that is the number of quantum registers should be
well described

• The computations should occur in parallel
• ”There must be some form of interaction between all

of the universes. The interference must either yield a
solution, or new information for the universes to utilize
in locating a solution” [13]

Several further studies described the Quantum Genetic Al-
gorithms for general purposes [14] [15] such as for the
knapsack problem. The problem of quantum circuits synthesis
was studied using Quantum Evolutionary Algorithm (QEA) in
[16]. The study[16] used integer representation of population,
and demonstrated synthesis with multiple controlled NOT
gates. In [17] the design of quantum circuits used qutrits
for individual encoding. This allowed for more advantageous
usage of mutation and ternary operators. In order to run
these algorithms, most of the studies design special quan-
tum encoding and mapping of evolutionary operators that
could potentially allow to execute their algorithm on quantum
computers. The simulation task is not trivial and requires
optimization and performance acceleration by itself. Building
quantum simulators is also developing because of the need of
benchmark and corrections for upcoming quantum hardware
[18].

The previous studies in the quantum and in quantum in-
spired evolutionary computation fields outline several possible
improvements. For problems dealing with higher dimensional
space such as multi-qubit complex vector space (Hilbert space)
operators efficiency, the selection methodology and fitness
evaluation should be evaluated for both performance and
accuracy w.r.t to its classical counter parts.

III. QUANTUM CIRCUITS AND QUANTUM GATES

Information in quantum circuit is represented by a qubit |φ〉
represented by a wave state |φ〉 = α|0〉+β|1〉. Multiple qubits
are expanded into a quantum register using Kronecker product
such as for two qubits |a〉 and |b〉 the joint state is

|ψ〉 = |a〉 ⊗ |b〉 = αaαb|00〉+ αaβb|01〉+ βaαb|10〉+ βaβb|11〉
(1)

The logic operations applied upon qubits are specified by
unitary matrices. For instance, to negate the qubit |a〉 the X
operator can be applied (note the coefficients reordered):

X|ψ〉 = βaαb|00〉+ βaβb|01〉+ αaαb|10〉+ αaβb|11〉 (2)

The Ising model of quantum computing [5] uses three
single qubit quantum gates RX(θ), RY (θ) and RZ(θ) and
one two-qubit interaction quantum gate IZZ(θ). The gates are
parameterized by an angle of rotation θ from the range [0, 2π].
The rotations applied to a single qubit can be visualized using
the unitary Bloch sphere on Figure1
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Fig. 1. Bloch sphere

A sequence of single and two-qubit operators (gates) applied
to a quantum register is called a quantum circuit. Example of
a quantum circuit is shown in Figure 2.

IZ(π)

RZ(
π
2
)

IZ(−π)

IZ(
3π
4
)

RY (−π)

RX(π)

Fig. 2. Example of arbitrary quantum circuit in the Ising model

The single qubit rotations can be described by following
equations[1]:
• X direction
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• Y direction:
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• Z direction:

Rz(θ) = e(
−iθZ

2 ) = cos

(
θ

2

)
I2 − isin

(
θ

2

)
Z =

[
e−i(θ/2) 0

0 ei(θ/2)

]
(5)

The template for the two-qubit interaction in Ising model
[1]:

Jij(θ) = e
−iθ
2


1 0 0 0
0 eθ 0 0
0 0 eθ 0
0 0 0 1

 (6)

IV. QUANTUM EVOLUTIONARY ALGORITHM DESCRIPTION

The proposed approach is distinguished from previous work
in the following points:
• synthesis on a level of single qubit rotations and two-

qubit interaction gates,
• unique encoding of quantum population using qubits and

qutrits,
• GPU accelerated version for simulation of quantum com-

puter behavior; we offer unique mapping of quantum
operators that enables optimization for GPU acceleration,

• predefined templates of interaction matrices for simplifi-
cation of the search,

• evolutionary operators are a combination of adaptive
mutation and SU(3) rotations (in case of qutrits).

The proposed algorithm is briefly depicted in Figure 3.
The QEQEA does not evolve circuits directly; instead a set
of quantum gates (segments) are evolved as a population.
The circuits are obtained by probabilistic selection of gates
from the population. Each gate is encoded by several quan-
tum parameters and uses measurement procedure for circuit
construction.

j1

1 j

circuits of
Sample k

length j

I1 I2 In
Population

segments
of n

Evaluate circuits and assign fitness
to each segment based on circuit
and on location within circuit

Mutate the segments

Fig. 3. High level flow of the quantum evolutionary algorithm

A. Quantum Gates Representation

In this work the Ising model of quantum circuits is used.
While this model is only theoretically useful, it is the most
complex. Generating results in this circuit model is an in-
dicator of the performance of the applied algorithm. There
are two types of primitive gates in Ising model: rotations and
interactions that were described in Section III, and they were
used in the QEQEA. In the QEQEA, each quantum gate is
represented by a set of qubits and /or qutrits.

1) Rotation gates: The single qubit gates (RX(θ), RY (θ)
and RZ(θ)) are encoded using one qubit and one qutrit. The
angle of rotation θ is represented by the qubit parameter
specifying its complex amplitudes: e−iπθ . The axis of rotation
is obtained by measuring the state of the qutrit. We repeat
the measurement process multiple times to approximate the
state of the qutrit, without eliminating uncertainty. The qutrit
states: {|0〉, |1〉, |2〉} correspond to rotations around {x, y, z}
axis, respectively.

2) Interaction gates: The second type of quantum gate we
use is the two-qubit interaction. The interaction gate is equiv-
alent to two parameterized Z rotation gates applied simulta-
neously to two qubits [1]. By introducing interaction matrices
templates, we reduced the number of parameters required to
construct the interaction gate to one. This parameter is the an-
gle of rotation is obtained by copying qubit value similar to the
case of single qubit gates construction. For numberOfWires



wires, there can be at most
(
numberOfWires

2

)
possible con-

figurations (we call them templates).
3) Interaction Gate Templates: The interaction gate can be

expressed in form of term-wise exponent of scalar multiple
of gate parameter value and special diagonal matrix. The
elements of this diagonal matrix are +1 and −1 depending
on the wires on which the interaction is applied. Notice that
the number of possible interaction templates grows slowly con-
sidering the size of the problem. Thus, all possible templates
can be stored in memory. When an interaction gate is to be
inserted in a quantum circuit, parallel exponent of elements of
diagonal matrices instead of matrix multiplications between
swap gates and interactions are performed. These templates
allow to exclude swap gates for interaction between non-
neighboring qubits and therefore gives potential to synthesize
more optimal circuits.

B. Population Initialization

In the proposed QEQEA, the evolution is performed by local
modification of a set of qubits and qutrits. These elementary
quantum information units encode a set of quantum gates
that are sampled into several possible quantum circuits. The
set of evolved qubits (representing the population) can be
conditionally split to two regions : single qubit rotations and
interactions region. The population of the qubits and qutrits is
defined by following parameters
• sizeOfIndividual parameter corresponding to the

length of the circuit in gates (segments)
• sizeOfPopulation parameter corresponding to number

of individuals(circuits) in the evolution. The segments
count in population grows to:

sizeOfPopulation ∗ sizeOfIndividual (7)

• numberOfWires - parameter corresponding to the
number of qubits of the target quantum gate. From
this parameter, the interactionTemplatesNumber is
derived. Thus,numberOfWires parameter increases the
amount of memory required to store the qubits population
to:

(interactiontemplatesChose+ numberOfWires)

∗ sizeOfPopulation ∗ sizeOfIndividual (8)

The number of qutrits is fixed at

numberOfWires∗sizeOfPopulation∗sizeOfIndividual,
(9)

because qutrits are used only for segments that represent single
qubit rotations.

The number of individuals in the population raises the
amount of initial information to explore. It also significantly
increases the computational complexity. However, the tasks
required to synthesize one individual may be executed in
parallel and we aim to get most benefit of highly effective
parallel capabilities of quantum computers at that stage of the
algorithm.

Figure 4 describes an example population that would have
two individuals, targeting to synthesize the circuit consisting
of four gates applied to three input qubits (wires). The first
eight qubits encoding the circuit segments correspond to
rotation applied on the first input wire (labeled ”wire 1” in
Figure 4). There are exactly eight qubits in this particular case
because the population consists of two individuals of size four.
Similarly, the next eight qubits correspond to rotation on the
second wire (labeled ”wire 2” in Figure 4). Same rules apply to
the third set of eight qubits. The remaining twenty four qubits
do not have qutrits allocated for them because they belong to
interaction region and use pre-calculated templates instead of
measured axis (labeled ”Interactions” in Figure 4). The figure
does not contain qutrits in it, the qutrits are described on the
Figure 5.

C. Segments construction

The population of qubits and qutrits encodes a set of seg-
ments. Each single qubit rotation gate is expanded to the width
of the full circuit defined by numberOfWires parameter. For
interaction gates, templates are expanded to the circuit width
before the evolutionary process starts and then are simply
retrieved from memory. The obtained segments (rotation and
interaction) are used to build the target candidate circuit.
The restriction of using only one quantum gate per segment
allowed for more efficient acceleration on the GPGPU [2].
Additionally, as described in Section IV-B, the population uses
structure to encode following properties
• The wire on which the gate should operate
• The position of a segment inside of the individual

The segment construction procedure consists of five steps and
is illustrated in Figure 5.
• Step 1: Measure the qutrits to get an array of axes of

rotation
• Step 2: Plug in the qubits values for corresponding matrix

template determined by qutrit measure and parameter
value defined by qubit

• Step 3: Rearrange the memory in parallel Kronecker
Product friendly order

• Step 4: Apply Kronecker product simultaneously to rota-
tion matrices

• Step 5: Construct interaction matrices in a way it was
described above and put next to segments obtained from
rotation matrices

Note that the allocated memory represents directly units of
quantum information. Thus, references to memory allocation
represent directly qubit and qutrit allocation in particular order.

D. Circuit construction

The proposed quantum circuit design method is a form of
evolutionary algorithm heavily altered in order to allow some
of its components to be directly mapped into a quantum com-
puter. Additionally, the proposed algorithm is also intended to
be efficiently implementable on a highly parallel device such
as GPGPU.



Fig. 4. Example of memory allocation for three-qubit circuit of length four with two individuals in the population

Fig. 5. Process of Segment Construction

For the circuit of length of sizeOfIndividual we
launch sizeOfIndividual parallel threads each indexed by
indexthread. Each thread generates two random numbers:
• whichIndividual from range 0..sizeOfPopulation
• whichRotationOrInteraction from the range

0..numberOfWires+ interactionTemplatesNumber

These values are later used to calculate the index of segment
to be plugged in the circuit:

segmentIndex = whichRotationOrInteraction

∗ sizeOfIndividual ∗ sizeOfPopulation
+ whichIndividual ∗ sizeOfIndividual + indexthread

(10)

The result of calculation is stored as reference to a segment in
population for indexthread position in the circuit. An example
of process is shown in the Figure 6.

Fig. 6. Building a circuit of length three affecting two qubits having two
individuals in the population

We repeat this process sizeOfPopulation times to gener-
ate sizeOfPopulation circuits each iteration.

E. Fitness Evaluation

The fitness value reflects the proximity of the synthesized
circuit matrix S, to the target circuit matrix T . The possible
values of selected function are ranging from 0 to 1, where
1 represents identical matrices and 0 being the opposite. The
approach is based on property of unitary matrices that U†∗U =
I . The Equation 11 displays the actual fitness function:

fitnessV alue(S) = 1−
√
size− |tr(S†T )|

size
(11)

In this expression, the || operator corresponds to modulo
operation. The tr operation represents calculation of the sum
of diagonal elements. The size is normalization constant and
is taken to be equal to 2numberOfWires.

1) Segment Fitness: Each segment used during circuit con-
struction stage (Section IV-D) is assigned with a fitness value.
The fitness value assigned to each segment is the same as the
fitness value of the circuit it was used to construct.

Additionally, an elitist approach was implemented: if the
new fitness value of a segment is better than the previous
best value, the states of the qubits and qutrits are preserved,
otherwise they get discarded.



Finally, each segments fitness is tied to a particular position
in a given circuit. That is, the same segment will be represented
by various fitness values depending on the position where it
was located within the synthesized circuit.

F. Evolutionary Search

The main differences between the classical GPUGA and
the proposed QEQEA is the mutation operation and the
lack of crossover. We use adaptive mutation inspired from
the evolutionary strategies approach [19]. The mutation is
proportional to the error, i.e. better individuals undergo less
significant changes[20]. This approach is argued to be more
effective than the mutation with constant probability and mu-
tation range[21]. Additionally, the probabilityOfMutation
parameter is introduced in the algorithm to make the mutation
operation probabilistic.

Each individual undergoes change per iteration of our algo-
rithm with probabilityOfMutation. Every time the mutation
is to be performed, there are two equiprobable operations that
may happen: qubits or qutrits mutation.
• We use the mutationRange parameter that determines

the maximum possible change to qubit parameter. In our
algorithm, it is taken to be fraction of π. The formula to
calculate the mutation value is ±(1−segmentF itness)∗
mutationRange. The qubit parameters are assumed to
stay within [0, 2 ∗ π] range, so after the mutation the
resulting parameter is readjusted modulo 2 ∗ π

• The qutrits mutation is performed by applying the arbi-
trary SU(3) rotations on a qutrit [22]. Such matrix can be
generated using eight parameters: three rotation angles
θ1, θ2, θ3 from range 0 < θ < π/2 and five phases
φ1, φ2, φ3, φ4, φ5 from range 0 < φ < 2∗π. Equation 12
shows the template used to calculate the mutation on the
qutrits, with ck = cosθk and sk = sinθk.

During one step of mutation, one of these nine parameters
is generated randomly from a domain of its possible values
multiplied by 1− segmentF itness. The constructed operator
is then applied to the target qutrit.

The crossover operation was intentionally removed from the
model, as our genotype - the array of qubits and qutrits is
used to generate a population of circuits. Thus, only one set
of qubits and qutrits is evolved and the crossover is replaced
by the location dependent segment fitness value.

V. RESULTS

A. Evaluation of QEQEA

To verify the QEQEA algorithm we tested it on several
small quantum gates: C2NOT , Peres and CNOT . Table I
shows the results of the search for the CNOT gate.

The Table I presents the outputs from the algorithm obtained
in the process of synthesizing a CNOT gate. Each row in
the table from top to the bottom represent encoded circuit
segments in the order they appear in the synthesized circuit.
Each row of the table contains all information required to
decode information about circuit segment. The first column
contains the parameter value θ representing the rotation. The

second column determines whether the parameter θ should be
plugged to rotation or interaction template. The third column
of the table contains the states of the qutrit, which after
measurement indicate the direction of the rotation gate. The
value of this column should be ignored if the segment is a
two-qubit interaction. The fourth column indicates the axis of
rotation obtained as a result of measurement.

TABLE I
RESULT OF CNOT GATE SYNTHESIS (sizeOfIndividual=3,

sizeOfPopulation = 1)

Parameter θ Index in memory Qutrit states Axis
π/2 0 -0.43 - 0.16i; 0.85 + 0.08i; 0.03 - 0.24i y
3π/2 7 Interaction template between 1 and 2
3π/2 2 0.39 - 0.66i; -0.43 + 0.43i; 0.16 - 0.14i x

thus,Table I represents a CNOT circuit constructed using
the following sequence of gates:R1y(θ = 1.570796)J12(θ =
4.712389)R1x(θ = 4.712389).

Table II shows the resulting matrix of the obtained C2NOT
gate with the length of 16 segments. The schematic represen-
tation of the target Toffoli gate is shown in Figure 7a). Some
terms of the matrix have differences from original Toffoli gate
therefore the circuit obtained is not exact, however on average
the error per term is ≈ 0.02. The reason of not having exact
gate appeared due to the convergence to local maximum.

TABLE II
RESULT OF TOFFOLI GATE SYNTHESIS (sizeOfIndividual=16)

0.894 0.000 0.004 0.000 0.101 0.000 0.000 0.000
0.000 0.916 0.000 0.001 0.000 0.080 0.000 0.004
0.004 0.000 0.967 0.000 0.000 0.000 0.029 0.000
0.000 0.004 0.000 0.121 0.000 0.000 0.000 0.875
0.101 0.000 0.000 0.000 0.894 0.000 0.004 0.000
0.000 0.080 0.000 0.004 0.000 0.916 0.000 0.001
0.000 0.000 0.029 0.000 0.004 0.000 0.967 0.000
0.000 0.000 0.000 0.875 0.000 0.004 0.000 0.121

B. Comparing QEQEA and GA

The comparison of the performance was done between the
QEQEA and the non-quantum GPUGA algorithm from [2].
The reason to compare QEQEA with algorithm from [2] is
that the GPUGA provides similar algorithmic and acceleration
basis for comparison. In fact, the QEQEA was developed as
a quantum extension of the original non quantum algorithm.
The main differences are:
• Representation: same mapping from memory to individ-

ual was implemented. The representation of quantum gate
(segment) was performed using a set of real and complex
coefficients

• The Evolutionary operators: two point crossover was used
and the mutation was a random small alterations of the
gate parameters.

• Selection was using the Stochastic Universal Sampling
(SUS)

• Evolution occurred on the level of level of circuits, not
on the individual gates (segments).



U =

 eiφ1c1c2 eiφ3s1 eiφ4c1s2
e−iφ4−iφ5s2s3 − eiφ1+iφ2−iφ3s1c2c3 eiφ2c1c3 −e−iφ1−iφ5c2s3 − eiφ2−iφ3+iφ4s1s2c3
−e−iφ2−iφ4s2c3 − eiφ1−iφ3+iφ5s1c2s3 eiφ5c1s3 e−iφ1−iφ2c2c3 − e−iφ3+iφ4+iφ5s1s2s3

 (12)

(b)(a)

Fig. 7. a) Representation of Toffoli and b) Peres logic gates

• In the GPUGA no qutrits were used; we introduced
the qutrits in QEQEA in order to avoid allocating ex-
tra memory for each type of the rotation gates (x,y,z)
direction. This evolution of qutrits could possible reduce
computation time required for each population step.

The common parts of both algorithms are in the GPU
acceleration and parallelism. The computational overhead that
was required for the implementation of the QEQEA is the
amount of measurement used during the creation of candidate
segments from the encoding qubits and qutrits. Despite these
various implementation differences the two algorithms are
evaluated for speed of convergence and ability to find the de-
sired solution as many of their components were programmed
in a similar manner.

The Table III shows the differences of speed in obtaining
the various gates for which we tested both algorithms. Notice
that in all cases the classical algorithm was faster than the
QEQEA algorithm (iteration of QEQEA takes significantly
more time). Thus even if the iteration number is smaller in
QEQEA, the GPUGA is faster in real time and was able
to converge to better results. The reason is the fact that the
QEQEA is evolving gates rather than whole circuits while the
classical GA evolves whole circuits. Additionally, the QEQEA
generates solutions from a single set of encoding qubits and
qutrits. As such there is no crossover because there is only
one individual of qubits and qutrits. Consequently, because
the main evolution mechanisms are selection and mutation,
the proposed QEQEA is more related to evolutionary strategies
rather than to genetic algorithm.

TABLE III
COMPARISON OF RESULTS AND PERFORMANCE BETWEEN THE QEQEA

AND A CLASSICAL GPGPU

Function QEQEA GPGPU
Accuracy No. Generations Accuracy No. Generations

CNOT 1.0000 400 1.0000 200
Toffoli 0.7047 13000 0.9663 34500

CCCNOT 0.6464 limit 0.7539 650970
Peres 0.5693 limit 0.9443 2M

The first and the third columns of Table III display the
accuracy of best results achieved by each algorithm. The iter-

ations number could also serve as a measure for performance
comparison, however for the QEQEA this data is only partially
available. The reason for that is the search of CCCNOT
and Peres gates reached the maximum iterations limit of ten
million iterations. However, this fact also means the result
could be possibly improved if the higher limit for iterations
was set. Careful reader may notice the difference between best
available results shown in this table and in [2]. This is due to
re-evaluation of accuracy of previously achieved results with
respect to the new fitness function described above.

VI. DISCUSSION ON THE PERFORMANCE AND REALISM OF
THE IMPLEMENTATION

While the search for the gates was partially successful (and
thus, confirming that the proposed approach converges), the
main drawback of the QEQEA was the slower convergence
due to the simulated quantum evolution of individual gates.
However, the changes implemented are intended to simulate
the implementation of the QEQEA using certain quantum
components and thus, the main concern was the general
convergence and feasibility.

In more details the following design choices of implemen-
tation of the QEQEA affected its overall performance.

1) First, the structure of the task requires our population
being represented as floating point numbers. While this
is a limitation for GPGPU it is an advantage for quan-
tum computer where each qubit and qutrit exists in a
state-wave state. Using quantum computer an amplitude
estimation technique would have to be used in order to
estimate the parameter θ.

2) Second, the use of adaptive mutation approach. The lack
of crossover benefits from GPU acceleration, but the
algorithm shows performance reduction compared with
regular GPU accelerated genetic algorithms [2].

3) Third, the genetic algorithms utilizing elitism approach
are more in danger of convergence to local maxima
compared with the other approaches, but the specificity
of the task enforces us to use this approach to preserve
control over the population.

4) Additionally, observe that in general the QEQEA is less
performant compared to the GPGPU (Table III). The
main reason is due to the fact QEQEA evolves quantum
gates and thus, each gate have fitness representing it gen-
eral usefulness rather than its usefulness in a particular
quantum circuit.

Several design choices making QEQEA computationally
tractable prevent it from being directly ported to a quantum
computer. The two most important restrictions imposed that
would require several changes to the algorithm in order to
make it quantum implementable are:



1) The measurement approach: for each circuit the qubits
are measured and new quantum gates are generated
while the unmeasured states of the qubits and qutrits
are evolved. In a more realistic setting of the proposed
method is to use weak measurement [23] that would
allow to preserve the quantum states at least partially.
While the usage of protective measurement directly on
the encoding qubits and qutrits makes it impossible
for the algorithm to be considered implementable on
quantum computer (one would need an infinite amount
of copies and evolve them in parallel) it allowed us to
at least simulate the result of such process.

2) The evolution of quantum gates instead of the whole
circuits. This was decided in order to avoid entanglement
between elements of the quantum circuits in space and
in time. While entanglement could be highly beneficial
to quantum evolution it also makes the simulation of
the evolution much more complex and computationally
expensive.

VII. CONCLUSION

We introduced a QEQEA as a means for the synthesis of
quantum circuits and we compared its performance with a
parallelized version of classical GA. The QEQEA features
certain components being a possible target for implementation
in a quantum computer but in order to keep the implementation
computationally tractable several design choices that made it
impossible to port directly to a quantum computer.

Additionally even if all components of the algorithm were
made quantum-implementation compatible, many components
would remain classic. In particular this means, that even if
QEQEA evolutionary components are mapped to a quantum
computer, fitness function values, circuit information, algo-
rithm flow control and other parameters require to be kept in
a classical memory.

The comparison with the classical GPUGA showed that
the quantum evolutionary model shows worse performance
than the classical evolution. The inferior performance is due
to many constraints included in the QEQEA that resulted in
strong simplification of the evolutionary process. Consequently
the main result is that the evolutionary process for computation
as originally proposed in [24] seems to be most efficient when
implemented in classical computer. In quantum computer, an
efficient implementation requires the entanglement that would
made the search much more efficient. However simulating
such system on classical computer requires high computational
resources and is not easily compared to a classical GA.

As future work, we plan to integrate weak-measurement for
circuit generation and an additional mechanism in classical
computer that keeps track of gates fitness with respect to a
all circuits it was used to build. An even further improvement
is to use more complex encoding such as qudits with higher
number of bases states and evolve whole quantum circuits.
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