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ABSTRACT

We review and analyze a formal problem of fault de�
tection in point to point telecommunications networks
that are modeled as undirected graphs� Two heuristics�
one deterministic and the other an application of ge�
netic algorithm techniques� are tested on several sample
graphs� The performance of these heuristics is compared
and interpreted� The genetic algorithm technique con�
sistently outperforms the deterministic technique on our
test data sets�

INTRODUCTION

Fault detection is an important aspect of fault manage�
ment in which a network manager tries to determine
whether there is a fault in a data network and� if so�
to determine the location of the fault� Recently� many
problems related to network management have been for�
mally stated and partially solved ��� �� ��� ��� ����
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We assume that a network is modeled as an undirected
graph G � �V�E� with a set of nodes� V� which corre�
sponds to the active elements of the network� and a set
of edges� E� which corresponds to the passive elements
interconnecting the active elements� Active elements are
those elements which have their own computing power
and are able to send their own status� Examples of ac�
tive elements include hosts� bridges and routers� Passive
components� such as transmission lines� are those which
do not have the ability to send their own status� One of
the active elements is designated as the network man�
ager� A fault in a network corresponds to the failure of
a node or an edge in our model� Paul and Miller present
two basic approaches� along with variations� for solving
the fault location problem ���� They also analyze the
performance and e	ectiveness of their schemes�

In the incremental multicasting scheme 
IMS� discussed
in ���� the network manager sets up multicast spanning
trees� each rooted at the network manager node and in�
cluding all other nodes� After selecting one of the span�
ning trees� the network manager node 
NM� multicasts
a status request message to all of the nodes at distance
i� where i ranges from one to the depth of the spanning
tree� For each i� and for each node in the tree at a depth
of i� the network manager receives a reply of � 
the node
is alive and a reply comes back� or a reply of � 
no reply
comes back�� If the NM receives a �� the NM knows that
the node is alive and so are the links along the path in
the multicast tree from the NM to the node in question�
However� if the reply is �� either the node in question is
dead or the last link on the path from the NM to the
node is dead� In either case� the NM uses an alternate
spanning tree to probe the same node� If an undirected
graph has no bridge edges and has a single fault 
either
a node or an edge�� their IMS approach with a suitable



collection of multicast spanning trees is guaranteed to
locate the fault ���� An edge in a graph is a bridge edge
if its removal disconnects the graph�

In the Investigator Propagation Scheme 
IPS� described
in ���� the NM sends a special message encapsulating a
program� which is called the investigator� along a pre�
computed route beginning and ending at the NM� The
function of the investigator� upon reaching a node along
the precomputed route� is to activate the node to collect
the status of all adjacent links and all adjacent nodes
and to report to the NM if any of them are down� As
with the IMS technique� the absence of a reply may indi�
cate a problem with either the link or with the adjacent
node� Again� assuming only one fault and no bridge
edges� Paul and Miller state that the ambiguity can be
resolved ���� The investigator continues to the next
node and repeats the process� The precomputed tour
is called an Investigator Tour and determining the tour
provides a solution to the Investigator Tour Problem�

Finally� hybrid and combined procedures are proposed
in ��� that utilize notions from the IMS and the IPS as
a way to overcome the poor response time of the IPS
while reducing the network load generated by the IMS�

The objective of this research is to apply a genetic algo�
rithm to 
nd optimal or near optimal solutions to the
Investigator Tour Problem 
ITP��

THE ITP PROBLEM

Using the terminology presented by Liu ���� we let G
� �V�E� be an undirected graph without self loops and
without multiple edges� A path in G from vi� to vik is
a sequence of nodes 
vi� � vi� � ���� vik� where consecutive
nodes are adjacent� A path is simple if it does not in�
clude the same edge twice� A path is elementary if it
does not include the same node twice� A tour is a path
for which the terminal node coincides with the initial
node� A tour is simple if it does not include the same
edge twice� A tour is elementary if it does not include
the same node twice 
i�e�� other than the initial node
coinciding with the terminal node�� A tour in G covers
an edge if at least one of the endpoints of the edge is in
the tour� A subset V � of V is a vertex cover if each edge
in G has at least one of its incident nodes in V � ���� As
noted above� an edge in a graph is a bridge edge if its
removal disconnects the graph�

The Investigator Tour Problem� assuming an undirected
graph� G� with edge lengths� is to 
nd a minimumlength
tour that covers each edge of G� Note that such a tour
is not necessarily a postman tour because a postman
tour must include each node� All of our research as�
sumes that each edge in G has length equal to one�
corresponding to the notion of a �hop� in a telecom�
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munication network� and that G has no bridge edges�
The ITP was shown to be NP�hard in ����

A deterministic heuristic for the ITP is the technique
proposed in ���� The results obtained after imple�
menting this heuristic are later compared to the results
obtained by implementing our genetic algorithm tech�
nique� The steps of the deterministic heuristic follow�

�� Find a vertex cover� V �� of G � �V�E��

�� Build a new complete graph� G� � 
V �� E��� with
edge lengths� V � is the set of nodes in the vertex
cover of G� The length of any edge� say e� � 
u�� v���
in G� is the length of the shortest path from u� to
v� in G�

�� Find a near optimal TSP tour of G�� That is� 
nd
a near optimal solution to the Traveling Salesman
Problem 
TSP� for the complete graph� G��

�� Map the TSP tour in G� to a tour in G by letting
each edge� e�� of the TSP tour in G� expand to the
shortest path in G between the corresponding end
nodes of e��

We illustrate the result of applying each of the above
four steps of the deterministic ITP heuristic� as imple�
mented in our research� to the graph G � �V�E� pre�
sented in Figure ��

There may be several vertex covers for a graph� For
example� in Figure �� V � � f�� �� �� �g is a vertex cover
for G� V � � V and V � � f�� �� �� �g are two other vertex
covers� In our telecommunications application� it would
seem to be advantageous to 
nd a minimal vertex cover�
Finding a vertex cover of minimum cardinality is itself
NP� complete ���� The speci
c heuristic that we use to

nd a minimal or near minimal vertex cover is to repeat�
edly select a node of highest degree and remove all of
its incident edges� There are vertex cover heuristics that
are known to have a ratio bound of � ���� Although our
heuristic does not have a ratio bound of �� the degree
considerations seem to be advantageous in our context�
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Application of our heuristic to Figure � results in the
selection sequence �� �� �� and� then� �� when ties are
broken by selecting the node with the smaller label� The
resulting vertex cover is V � � f�� �� �� �g�

Given that the length of each edge in G � �V�E� is
assigned to be �� the complete graph� G� � 
V �� E���
that results when the vertex cover� V �� is selected to be
f�� �� �� �g is presented in Figure ��

The TSP is also NP�complete and has been used to
benchmark many problem solving techniques in combi�
natorial optimization ��� ��� We use the classical deter�
ministic nearest neighbor heuristic and� when applied
to Figure � with node � as the initial node� produces
the TSP tour given by 
�������� as illustrated in Figure
��

The TSP tour in G�� illustrated in Figure �� maps� at
least for one strategy of breaking ties� to the investi�
gator tour given by 
�������������� and is illustrated in
Figure ��

We refer to the entire four step deterministic ITP heuris�
tic as simply the Vertex Cover Nearest Neighbor tech�
nique 
VCNN��
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THE MITP PROBLEM

For a graph with no bridge edge that contains at most
one fault� either at an active node or along a passive
edge� the objective of the IPS in Paul and Miller ���
is 
a� to determine that there is no fault� or� otherwise�

b� to determine the location of the only fault� The
IPS scheme presented in ��� for 
nding the location of
a fault relies on the fact that one can reverse the di�
rection of travel along the investigator tour� However�
we can show� by using an example only slightly more
complex than the example in Figure �� that reversing
the direction of travel is not necessarily successful in lo�
cating a fault if the investigator tour contains repeated
edges� An example is an investigator tour that is made
up of two simple cycles that are connected by a single
edge� This edge must be repeated to form the investi�
gator tour� Furthermore� if the investigator encounters
a fault as it is attempting to cross the repeated edge
from a node in one of the simple cycles� then reversing
direction along the tour will bring the investigator back
to the same location in the same cycle� The investigator
will be unable to determine whether the fault is located
along the repeated edge or at the incident node in the
other simple cycle�

Hence� the Modi
ed Investigator Tour Problem

MITP�� still assuming an undirected graph� G� with
edge lengths� is to 
nd a minimal length tour that is
simple and that covers each edge of G� Since a solution
to the MITP problem requires a simple tour� the MITP
problem is harder than the ITP problem� As with the
ITP problem� all of our research with the MITP prob�
lem assumes that each edge in G has length equal to
one and that G has no bridge edges�

The objective of a tour being minimal and the objec�
tive of a tour being simple often con�ict with each other�
Most of our research seeks a solution to the MITP prob�
lem� That is� we attempt to 
nd a tour that is neces�
sarily simple� and� among the simple tours� the one that
has minimal length� However� our genetic algorithm is



very �exible and provides reward and penalty mecha�
nisms to attach either higher or lesser priority to each
of the con�icting objectives�

GENETIC ALGORITHMS

Several researchers have investigated the bene
ts of
solving combinatorial problems using genetic algo�
rithms� Davis ��� ��� Goldberg ���� Rawlins ����� and
Corcoran and Wainwright ��� provide an excellent in�
depth study of genetic algorithms�

The genetic algorithm operates on a 
xed size popula�
tion of chromosomes� In the context of combinatorial
optimization� a chromosome is a string of genes that
represents an encoding of a candidate solution� An al�
lele is a value assumed by a gene� Associated with each
chromosome is a 
tness value which is found by evalu�
ating a 
tness function at the chromosome� The 
tness
function is designed so that chromosomes representing
better candidate solutions will have better 
tness� It is
the 
tness of a chromosome that determines its ability
to survive and produce o	spring� The genes of a chro�
mosome may be bits� integers� �oating point numbers�
or instances of some other primitive data type� This re�
search work uses an order based genetic algorithmwhere
a chromosome is a permutation of integers� The ge�
netic algorithm implementation used in this research is
LibGA ����

GENETIC ALGORITHM EN�

CODING

As stated previously� the ITP for a graph G is NP�hard�
Noting that step � and step � in the VCNN are each NP�
complete� one strategy for using a genetic algorithm to

nd near optimal solutions to the ITP problem is to
apply the GA technique to determine a near optimal
vertex cover in step � and� then� to apply a good deter�
ministic heuristic to 
nd a near optimal solution to the
TSP problem in step �� Alternately� one could apply a
good deterministic heuristic to 
nd a near optimal so�
lution to the vertex cover problem in step � and� then�
apply a GA technique to 
nd a near optimal solution
to the TSP problem in step �� We did not investigate
either of these approaches� but� rather� we designed a
representation scheme that directly determines an in�
vestigator tour or a modi
ed investigator tour from a
permutation of the integers from � to N� where N is the
number of nodes in G� The decoding algorithm for a
chromosome is�

Let the first allele in the chromosome

be the current node�

Mark the edges incident to the current

node as being covered�

Repeat

Let the next node be the next allele

in the chromosome that has edges incident

upon it that have not been covered�

Proceed to this node using the shortest

path �consistent with allowing or not

allowing repeated edges�� while marking

the newly encountered edges as covered

at each node along the way�

until all edges are covered�

Return to the initial node via the shortest

path�

We illustrate our representation scheme by decoding the
chromosome given by 
������������ to obtain an investi�
gator tour in the context of the graph in Figure ��
The NM node is assumed to be at the 
rst allele in the
chromosome� but could be relocated at any node in the
resulting tour� We start at node � and record that four
new edges are covered� Then the chromosome dictates
that we traverse the graph to node � by the shortest
path� We go from node � to node � along edge 
����
and record that two new edges� namely 
���� and 
�����
are covered� Next� we go from node � to node � along
edge 
����� This causes one new edge� namely 
����� to
be covered� At this point� all of the edges incident upon
node � have been covered� Therefore� we skip node ��
From the chromosome� it is determined that the investi�
gator must move to node �� Using the shortest path� we
go through nodes � and �� Notice that at nodes � and
� no new edges are covered� and� at node �� one new
edge� namely 
����� is covered� At this point� all of the
edges are covered and we can return to the initial node�
in this case node �� If we are enforcing no repeated
edges� the shortest path between node � and node �
is via node �� Otherwise we would go back to node �
directly from node �� Thus� the tour that we obtain
from this chromosome that requires no repeated edges
is 
����������������� The tour derived from this chro�
mosome while allowing repeated edges is 
���������������
Note that� when repeated edges are prohibited� not ev�
ery chromosome represents a feasible tour� That is� the
tour speci
ed by the chromosome may not be able to
return to the initial node or even cover all of the edges
without traversing an edge twice�

GENETIC OPERATORS

The crossover operator used in this research is MX�� a
member of the MX family of crossover operators intro�
duced by Blanton and Wainwright ���� Associated with



a problem instance is a global precedence vector 
GPV�
which is used during the application of the MX� oper�
ator� In our case� the global precedence vector consists
of the nodes in decreasing order of degree� From Fig�
ure �� it is clear that deg
�� � �� deg
�� � �� deg 
��
� �� deg
�� � �� deg
�� � �� and deg
�� � �� where
deg
i� is the degree of node i� Using this information�
the global precedence vector 
GPV� for this problem is
GPV � 
������������� To illustrate the MX� crossover
operator� consider the two chromosomes� 
������������
and 
������������� as selected parents� The ��� indicates
the allele currently under consideration�

�

Step �� Parent �� � � 	 
 � �

Parent �� � 
 � 	 � �

Consider the first allele in each parent�

Node � comes before node � in the GPV so �

is selected� Parent � is fixed by exchanging

alleles � and �� Now consider the second

allele�

�

Step �� Parent �� � � 	 
 � �

Parent �� � 
 � 	 � �

Child� � x x x x x

Node � comes before node 
 in the GPV so �

is selected� Parent � is fixed by exchanging

alleles � and 
� Now consider the third

allele�

�

Step 	� Parent �� � � 	 
 � �

Parent �� � � 
 	 � �

Child� � � x x x x

Node 	 is before node 
 in the GPV so 	 is

selected� Parent � is fixed by exchanging

alleles 	 and 
� Consider the next allele�

�

Step �� Parent �� � � 	 
 � �

Parent �� � � 	 
 � �

Child� � � 	 x x x

Now the parents are identical and� so� the

child is determined�

Child� � � 	 
 � �

Note that the global precedence vector favors nodes with
higher degree� Hence� there is a tendency to force the
higher degree nodes toward the front of the chromosome
and the lower degree nodes toward the end of the chro�
mosome� Thus� the chromosome attempts to cover as
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many edges in as few steps as possible� Our mutation
operator is swap 
i�e� two allele values are exchanged��
Our GA uses the generational model and the mutation
rate varies from ���� to �����

CONCLUSIONS AND FUTURE

WORK

The four graphs that were used to test the two heuristics
were designed by hand� They contain no bridge edges in
accordance with our assumptions� All of these graphs
contain cycles with length � or greater� This is in re�
sponse to the fact that 
rst attempts to construct test
cases produced graphs where the longest cycles were of
length ��

The best solutions found by the deterministic heuris�
tic 
VCNN� and the genetic algorithm 
GA� for the six
node graph presented as Figure � are depicted in Figure
� and Figure �� respectively� The chromosome that rep�
resents the tour shown in Figure � is 
������������� The
�� node graph is shown in Figure �� The best results
from our four test graphs are presented in Table ��

VCNN GA
No� of Tour Simple Tour Simple
Nodes Length Tour Length Tour

� � No � Yes
�� � No � Yes
�� �� No �� Yes
�� �� No �� No

Table �� VCNN and GA Results for Various Graphs

The VCNN column gives the length of the ITP tour ob�
tained by the deterministic heuristic� The GA column
gives the tour length of the best individual obtained by
the genetic algorithm� In each case� our 
rst execution
of the GA did not allow edges to be repeated� If a so�
lution was not found� then the GA was restarted� this
time allowing repeated edges� As shown in Table �� the
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tour length of the GA�s solutions were always less than
or equal to those of VCNN� It is also the case that the
GA found a simple tour in all but the last test case� On
the other hand� VCNN never found a simple tour�

Therefore� our results show that the GA can outperform
VCNN on a consistent basis� However� the inability of
the GA to 
nd a simple tour in the test case of �� nodes
raises the question of scalability� It is unclear how the
GA will perform on larger test cases� For this reason�
alternate heuristics that attempt to solve the ITP in one
step� as the GA does� will be considered in the future�
The use of larger test cases will also be included in fu�
ture work�

We also intend to consider the graph theoretic issues
of the ITP more thoroughly� For example� does every
graph without bridge edges have a simple investigator
tour 
i�e� one without repeated edges�� As another ex�
ample� can some investigator tours with repeated edges
still locate any single fault in a network� In a previous
section� while de
ning the MITP problem� we presented
an example where we were not able to locate certain
faults with a particular tour containing a repeated edge�
However� the example does not prove that every investi�
gator tour with repeated edges is unable to locate every
possible single fault in a network without bridge edges�
We do not presently know whether having a simple tour
is a necessary condition for locating a single fault� The
theoretical result of our current work� however� shows
that having a simple investigator tour is su�cient for
locating any single fault in a network without bridge
edges�
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