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ABSTRACT

We review and analyze a formal problem of fault de-
tection in point to point telecommunications networks
that are modeled as undirected graphs. Two heuristics,
one deterministic and the other an application of ge-
netic algorithm techniques, are tested on several sample
graphs. The performance of these heuristics is compared
and interpreted. The genetic algorithm technique con-
sistently outperforms the deterministic technique on our
test data sets.

INTRODUCTION

Fault detection is an important aspect of fault manage-
ment in which a network manager tries to determine
whether there is a fault in a data network and, if so,
to determine the location of the fault. Recently, many

problems related to network management have been for-
mally stated and partially solved [1, 9, 11, 12, 13].
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We assume that a network is modeled as an undirected
graph G = (V,E) with a set of nodes, V, which corre-
sponds to the active elements of the network, and a set
of edges, F, which corresponds to the passive elements
interconnecting the active elements. Active elements are
those elements which have their own computing power
and are able to send their own status. Examples of ac-
tive elements include hosts, bridges and routers. Passive
components, such as transmission lines, are those which
do not have the ability to send their own status. One of
the active elements is designated as the network man-
ager. A fault in a network corresponds to the failure of
a node or an edge in our model. Paul and Miller present
two basic approaches, along with variations, for solving
the fault location problem [9]. They also analyze the
performance and effectiveness of their schemes.

In the incremental multicasting scheme (IMS) discussed
in [9], the network manager sets up multicast spanning
trees, each rooted at the network manager node and in-
cluding all other nodes. After selecting one of the span-
ning trees, the network manager node (NM) multicasts
a status request message to all of the nodes at distance
1, where ¢ ranges from one to the depth of the spanning
tree. For each ¢, and for each node in the tree at a depth
of i, the network manager receives a reply of 1 (the node
is alive and a reply comes back) or a reply of 0 (no reply
comes back). If the NM receives a 1, the NM knows that
the node is alive and so are the links along the path in
the multicast tree from the NM to the node in question.
However, if the reply is 0, either the node in question is
dead or the last link on the path from the NM to the
node is dead. In either case, the NM uses an alternate
spanning tree to probe the same node. If an undirected
graph has no bridge edges and has a single fault (either
a node or an edge), their IMS approach with a suitable



collection of multicast spanning trees is guaranteed to
locate the fault [9]. An edge in a graph is a bridge edge
if its removal disconnects the graph.

In the Investigator Propagation Scheme (IPS) described
in [9], the NM sends a special message encapsulating a
program, which is called the investigator, along a pre-
computed route beginning and ending at the NM. The
function of the investigator, upon reaching a node along
the precomputed route, is to activate the node to collect
the status of all adjacent links and all adjacent nodes
and to report to the NM if any of them are down. As
with the IMS technique, the absence of a reply may indi-
cate a problem with either the link or with the adjacent
node. Again, assuming only one fault and no bridge
edges, Paul and Miller state that the ambiguity can be
resolved [9]. The investigator continues to the next
node and repeats the process. The precomputed tour
is called an Investigator Tour and determining the tour
provides a solution to the Investigator Tour Problem.

Finally, hybrid and combined procedures are proposed
in [9] that utilize notions from the IMS and the IPS as
a way to overcome the poor response time of the IPS
while reducing the network load generated by the IMS.

The objective of this research is to apply a genetic algo-
rithm to find optimal or near optimal solutions to the
Investigator Tour Problem (ITP).

THE ITP PROBLEM

Using the terminology presented by Liu [8], we let G
= (V,E) be an undirected graph without self loops and
without multiple edges. A path in G from v;; to v;, is
a sequence of nodes (v;,, vi,, ..., vik) where consecutive
nodes are adjacent. A path is simple if it does not in-
clude the same edge twice. A path is elementary if it
does not include the same node twice. A touris a path
for which the terminal node coincides with the initial
node. A tour is simple if it does not include the same
edge twice. A fouris elementary if it does not include
the same node twice (i.e., other than the initial node
coinciding with the terminal node). A tour in G covers
an edge 1f at least one of the endpoints of the edge is in
the tour. A subset V' of Vis a verlex cover if each edge
in G has at least one of its incident nodes in V' [4]. As
noted above, an edge in a graph is a bridge edge if its
removal disconnects the graph.

The Investigator Tour Problem, assuming an undirected
graph, G, with edge lengths, is to find a minimum length
tour that covers each edge of G. Note that such a tour
1s not necessarily a postman tour because a postman
tour must include each node. All of our research as-
sumes that each edge in G has length equal to one,
corresponding to the notion of a “hop” in a telecom-
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munication network, and that G has no bridge edges.
The ITP was shown to be NP-hard in [9].

A deterministic heuristic for the I'TP 1s the technique
proposed in [9]. The results obtained after imple-
menting this heuristic are later compared to the results
obtained by implementing our genetic algorithm tech-
nique. The steps of the deterministic heuristic follow:

1. Find a vertex cover, V' of G = (V,E).

2. Build a new complete graph, G' = (V', E'), with
edge lengths. V' is the set of nodes in the vertex
cover of G. The length of any edge, say ¢/ = (v, v'),
in G’ is the length of the shortest path from u’ to
v in G.

3. Find a near optimal TSP tour of G’. That is, find
a near optimal solution to the Traveling Salesman
Problem (TSP) for the complete graph, G”.

4. Map the TSP tour in G’ to a tour in G by letting
each edge, €', of the TSP tour in G’ expand to the
shortest path in G between the corresponding end
nodes of €'

We illustrate the result of applying each of the above
four steps of the deterministic ITP heuristic, as imple-
mented in our research, to the graph G = (V,E) pre-
sented in Figure 1.

There may be several vertex covers for a graph. For
example, in Figure 1, V' ={1,2,4,5} is a vertex cover
for G. V' =V and V' = {2,3,4,5} are two other vertex
covers. In our telecommunications application, it would
seem to be advantageous to find a minimal vertex cover.
Finding a vertex cover of minimum cardinality is itself
NP- complete [4]. The specific heuristic that we use to
find a minimal or near minimal vertex cover is to repeat-
edly select a node of highest degree and remove all of
its incident edges. There are vertex cover heuristics that
are known to have a ratio bound of 2 [4]. Although our
heuristic does not have a ratio bound of 2, the degree
considerations seem to be advantageous in our context.
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Application of our heuristic to Figure 1 results in the
selection sequence 4, 1, 2, and, then, 5, when ties are
broken by selecting the node with the smaller label. The
resulting vertex cover is V' = {1,2,4,5}.

Given that the length of each edge in G = (V,E} is
assigned to be 1, the complete graph, G' = (V', F'),
that results when the vertex cover, V', is selected to be
{1,2,4,5} is presented in Figure 2.

The TSP is also NP-complete and has been used to
benchmark many problem solving techniques in combi-
natorial optimization [2, 4]. We use the classical deter-
ministic nearest neighbor heuristic and, when applied
to Figure 2 with node 1 as the initial node, produces
the TSP tour given by (1,2,4,5) as illustrated in Figure
3.

The TSP tour in (', illustrated in Figure 3, maps, at
least for one strategy of breaking ties, to the investi-
gator tour given by (1,2,3,4,5,4,1) and is illustrated in
Figure 4.

We refer to the entire four step deterministic I'TP heuris-
tic as simply the Vertex Cover Nearest Neighbor tech-
nique (VCNN).
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THE MITP PROBLEM

For a graph with no bridge edge that contains at most
one fault, either at an active node or along a passive
edge, the objective of the TIPS in Paul and Miller [9]
is (a) to determine that there is no fault, or, otherwise,
(b) to determine the location of the only fault. The
TIPS scheme presented in [9] for finding the location of
a fault relies on the fact that one can reverse the di-
rection of travel along the investigator tour. However,
we can show, by using an example only slightly more
complex than the example in Figure 1, that reversing
the direction of travel is not necessarily successful in lo-
cating a fault if the investigator tour contains repeated
edges. An example is an investigator tour that is made
up of two simple cycles that are connected by a single
edge. This edge must be repeated to form the investi-
gator tour. Furthermore, if the investigator encounters
a fault as it is attempting to cross the repeated edge
from a node in one of the simple cycles, then reversing
direction along the tour will bring the investigator back
to the same location in the same cycle. The investigator
will be unable to determine whether the fault is located
along the repeated edge or at the incident node in the
other simple cycle.

Hence, the Modified Investigator Tour Problem
(MITP), still assuming an undirected graph, G, with
edge lengths, is to find a minimal length tour that is
simple and that covers each edge of G. Since a solution
to the MITP problem requires a simple tour, the MITP
problem is harder than the I'TP problem. As with the
ITP problem, all of our research with the MITP prob-
lem assumes that each edge in G has length equal to
one and that G has no bridge edges.

The objective of a tour being minimal and the objec-
tive of a tour being simple often conflict with each other.
Most of our research seeks a solution to the MITP prob-
lem. That is, we attempt to find a tour that is neces-
sarily simple, and, among the simple tours, the one that
has minimal length. However, our genetic algorithm is



very flexible and provides reward and penalty mecha-
nisms to attach either higher or lesser priority to each
of the conflicting objectives.

GENETIC ALGORITHMS

Several researchers have investigated the benefits of
solving combinatorial problems using genetic algo-
rithms. Davis [5, 6], Goldberg [7], Rawlins [10], and
Corcoran and Wainwright [3] provide an excellent in-
depth study of genetic algorithms.

The genetic algorithm operates on a fixed size popula-
tion of chromosomes. In the context of combinatorial
optimization, a chromosome is a string of genes that
represents an encoding of a candidate solution. An al-
lele is a value assumed by a gene. Associated with each
chromosome is a fitness value which is found by evalu-
ating a fitness function at the chromosome. The fitness
function is designed so that chromosomes representing
better candidate solutions will have better fitness. It is
the fitness of a chromosome that determines its ability
to survive and produce offspring. The genes of a chro-
mosome may be bits, integers, floating point numbers,
or instances of some other primitive data type. This re-
search work uses an order based genetic algorithm where
a chromosome 1s a permutation of integers. The ge-
netic algorithm implementation used in this research is

LibGA [3)].

GENETIC ALGORITHM EN-
CODING

As stated previously, the I'TP for a graph G is NP-hard.
Noting that step 1 and step 3 in the VCNN are each NP-
complete, one strategy for using a genetic algorithm to
find near optimal solutions to the ITP problem 1is to
apply the GA technique to determine a near optimal
vertex cover in step 1 and, then, to apply a good deter-
ministic heuristic to find a near optimal solution to the
TSP problem in step 3. Alternately, one could apply a
good deterministic heuristic to find a near optimal so-
lution to the vertex cover problem in step 1 and, then,
apply a GA technique to find a near optimal solution
to the TSP problem in step 3. We did not investigate
either of these approaches, but, rather, we designed a
representation scheme that directly determines an in-
vestigator tour or a modified investigator tour from a
permutation of the integers from 1 to N, where N is the
number of nodes in G. The decoding algorithm for a
chromosome is:

Let the first allele in the chromosome
be the current node.

Mark the edges incident to the current
node as being covered.

Repeat
Let the next node be the next allele
in the chromosome that has edges incident
upon it that have not been covered;

Proceed to this node using the shortest
path (consistent with allowing or not
allowing repeated edges), while marking
the newly encountered edges as covered
at each node along the way;

until all edges are covered.

Return to the initial node via the shortest
path.

We illustrate our representation scheme by decoding the
chromosome given by (4,2,3,6,5,1) to obtain an investi-
gator tour in the context of the graph in Figure 1.
The NM node is assumed to be at the first allele in the
chromosome, but could be relocated at any node in the
resulting tour. We start at node 4 and record that four
new edges are covered. Then the chromosome dictates
that we traverse the graph to node 2 by the shortest
path. We go from node 4 to node 1 along edge (4,1)
and record that two new edges, namely (1,3) and (1,2),
are covered. Next, we go from node 1 to node 2 along
edge (1,2). This causes one new edge, namely (2,3), to
be covered. At this point, all of the edges incident upon
node 3 have been covered. Therefore, we skip node 3.
From the chromosome, it is determined that the investi-
gator must move to node 6. Using the shortest path, we
go through nodes 3 and 4. Notice that at nodes 3 and
4 no new edges are covered, and, at node 6, one new
edge, namely (6,5), is covered. At this point, all of the
edges are covered and we can return to the initial node,
in this case node 4. If we are enforcing no repeated
edges, the shortest path between node 6 and node 4
is via node 5. Otherwise we would go back to node 4
directly from node 6. Thus, the tour that we obtain
from this chromosome that requires no repeated edges
is (4,1,2,3,4,6,5,4). The tour derived from this chro-
mosome while allowing repeated edges is (4,1,2,3,4,6,4).
Note that, when repeated edges are prohibited, not ev-
ery chromosome represents a feasible tour. That is, the
tour specified by the chromosome may not be able to
return to the initial node or even cover all of the edges
without traversing an edge twice.

GENETIC OPERATORS

The crossover operator used in this research is MX1, a
member of the MX family of crossover operators intro-
duced by Blanton and Wainwright [2]. Associated with



a problem instance is a global precedence vector (GPV)
which is used during the application of the MX1 oper-
ator. In our case, the global precedence vector consists
of the nodes in decreasing order of degree. From Fig-
ure 1, it is clear that deg(1l) = 3, deg(2) = 2, deg (3)
= 3, deg(4) = 4, deg(5) = 2, and deg(6) = 2, where
deg(i) is the degree of node i. Using this information,
the global precedence vector (GPV) for this problem is
GPV = (4,1,3,2,5,6). To illustrate the MX1 crossover
operator, consider the two chromosomes, (1,5,3,6,4,2)
and (4,6,5,3,1,2), as selected parents. The “*” indicates
the allele currently under consideration.

*
Step 1. Parent 1: 1
4

5 3 6 4 2
Parent 2: 6 5 3 1 2
Consider the first allele in each parent.
Node 4 comes before node 1 in the GPV so 4
is selected. Parent 1 is fixed by exchanging
alleles 1 and 4. Now consider the second

allele.

Parent 1: 4
Parent 2: 4
Child: 4

Step 2.

Moo o %
XMoo w
M ow o
Mo e
HONN

Node 5 comes before node 6 in the GPV so 5
is selected. Parent 2 is fixed by exchanging
alleles 5 and 6. MNow consider the third

allele.
*
Step 3. Parent 1: 4 5 3 6 1 2
Parent 2: 4 5 6 3 1 2
Child: 4 b5 x x X X

Node 3 is before node 6 in the GPV so 3 is
selected. Parent 2 is fixed by exchanging
alleles 3 and 6. Consider the next allele.

*
Step 4. Parent 1: 4 5 3 6 1 2
Parent 2: 4 5 3 6 1 2
Child: 4 5 3 x x X

Now the parents are identical and, so, the
child is determined:

Child: 4 5 3 6 1 2

Note that the global precedence vector favors nodes with
higher degree. Hence, there is a tendency to force the
higher degree nodes toward the front of the chromosome
and the lower degree nodes toward the end of the chro-
mosome. Thus, the chromosome attempts to cover as

Figure 5:

many edges in as few steps as possible. Our mutation
operator is swap (i.e. two allele values are exchanged).
Our GA uses the generational model and the mutation
rate varies from 0.01 to 0.10.

CONCLUSIONS AND FUTURE
WORK

The four graphs that were used to test the two heuristics
were designed by hand. They contain no bridge edges in
accordance with our assumptions. All of these graphs
contain cycles with length 4 or greater. This is in re-
sponse to the fact that first attempts to construct test
cases produced graphs where the longest cycles were of

length 3.

The best solutions found by the deterministic heuris-
tic (VCNN) and the genetic algorithm (GA) for the six
node graph presented as Figure 1 are depicted in Figure
4 and Figure b, respectively. The chromosome that rep-
resents the tour shown in Figure 5is (5,6,3,1,2,4). The
25 node graph is shown in Figure 6. The best results
from our four test graphs are presented in Table 1.

VCNN GA
No. of | Tour Simple Tour Simple
Nodes | Length Tour Length Tour
6 6 No 6 Yes
12 9 No 7 Yes
25 25 No 23 Yes
50 53 No 51 No

Table 1: VCNN and GA Results for Various Graphs

The VCNN column gives the length of the I'TP tour ob-
tained by the deterministic heuristic. The GA column
gives the tour length of the best individual obtained by
the genetic algorithm. In each case, our first execution
of the GA did not allow edges to be repeated. If a so-
lution was not found, then the GA was restarted, this
time allowing repeated edges. As shown in Table 1, the
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tour length of the GA’s solutions were always less than
or equal to those of VOCNN. It is also the case that the
GA found a simple tour in all but the last test case. On
the other hand, VCNN never found a simple tour.

Therefore, our results show that the GA can outperform
VCNN on a consistent basis. However, the inability of
the GA to find a simple tour in the test case of 50 nodes
raises the question of scalability. It is unclear how the
GA will perform on larger test cases. For this reason,
alternate heuristics that attempt to solve the I'TP in one
step, as the GA does, will be considered in the future.
The use of larger test cases will also be included in fu-
ture work.

We also intend to consider the graph theoretic issues
of the ITP more thoroughly. For example, does every
graph without bridge edges have a simple investigator
tour (i.e. one without repeated edges.) As another ex-
ample, can some investigator tours with repeated edges
still locate any single fault in a network. In a previous
section, while defining the MITP problem, we presented
an example where we were not able to locate certain
faults with a particular tour containing a repeated edge.
However, the example does not prove that every investi-
gator tour with repeated edges is unable to locate every
possible single fault in a network without bridge edges.
We do not presently know whether having a simple tour
is a necessary condition for locating a single fault. The
theoretical result of our current work, however, shows
that having a simple investigator tour is sufficient for
locating any single fault in a network without bridge
edges.
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