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A B S T R A C T  

The problem of broadcasting a message through a net- 
work is considered. The objective is to minimize the 
number of time steps necessary to complete the broad- 
cast. This problem is known as the Minimum Broad- 
cast Time Problem or the Local Broadcasting Problem. 
Finding an optimal broadcast using a local broadcasting 
scheme is known to be NP-Complete. A genetic algo- 
rithm (GA) is used as a heuristic technique to find near 
optimal solutions to this problem. The GA is compared 
to a variant of a recent heuristic technique presented in 
the literature. 

I N T R O D U C T I O N  

The problem considered in this research is the Mini- 
mum Broadcast Time problem (MBT). This problem is 
formally presented by Garey and Johnson in [3, page 
219]. An equivalent statement of the problem follows: 
Given an undirected graph, without self-loops or mul- 
tiple edges, G = (V,E), a subset VoCV, and kEZ +, 
the objective is to "broadcast" a message throughout 
the graph in k time steps. Broadcasting a message is 
carried out as follows: 

* Research partially supported by OCAST Grant AR2- 
004 and Sun Microsystems, Inc. 

"Permission to make digital/hard copy of all or part of this material without 
fee is granted provided that copies are not made or distributed for profit or 
commercial advantage, the ACM copyright/server notice, the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery, Inc.(ACM). To 
copy otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee." 
© 1996 ACM 0-89791-820-7 96 0002 3.50 

258 

1. The message is present at all of the vertices in the 
set Vo at time zero. 

2. We must find a sequence V0, El, V1, E2, ..., Ek, V~, 
such that ViCV, EiCE, and Vk = V, for l<i<k, 
subject to the conditions: 

(a) Every edge in Ei has one endpoint in 1~_1 and 
the other in V -  Vi. 

(b) No two edges in Ei have an endpoint in com- 
mon, and 

(¢) = t _lu {vl v} eel}.  

Therefore, the sequence given in (2) above represents 
the broadcast where ~ -1  contains the vertices with the 
message at time i-l, Ei represents the transmission of 
the message during the time step between time i-1 and 
time i, and Vi contains the vertices that have a copy of 
the message at time i. Note that during each time step 
a vertex that has the message can send it to only one 
other adjacent vertex that does not already have the 
message. However, during the next time step all of the 
vertices that have a copy of the message can re-transmit 
the message. 

A thorough discussion of broadcasting and related top- 
ics is given by Hedetniemi el al. [4]. They present many 
applications of broadcasting, some are specific to com- 
puter networks and others deal with general communi- 
cation in groups. The use of broadcasting in the context 
of distributed file systems and distributed database sys- 
tems is found in Scheuermann el al. [7]. 

Several interesting variations of the MBT are contained 
in the literature. One such variation is the multi- 
destination broadcast, also known as a multicast. In this 
variant of the MBT problem the objective is to broad- 
cast the message to a subset of V instead of broadcast- 
ing to all of V. Note that if the base set consists of just 



one vertex, this is equivalent to the point-to-multipoint 
routing problem. The multi-destination broadcasting 
problem was proposed by Dalai and Metcalfe [2]. In the 
MBT problem a message can only be sent to an adjacent 
vertex. This type of scheme is called local broadcasting. 
Another variant is the line broadcasting problem where 
a message is sent during one time step along a path in 
the network, instead of just along a single edge. Two 
references describing this variation are [5] and [6]. 

D E T E R M I N I S T I C  
S T R A T E G I E S  

Scheuermann and Wu developed an exact algorithm for 
the Minimum Broadcast Time problem [7]. This algo- 
rithm is based on dynamic programming and uses sev- 
eral facts concerning the problem to prune the state 
space tree. However, this algorithm becomes inefficient 
for large networks. 

Scheuermann and Wu [7] also developed several heuris- 
tic algorithms for the MBT problem. One algorithm 
is based on a series of Least-Weight Maximum Match- 
ings in a series of induced bipartite graphs. A bipartite 
graph is induced on a network at every time step in 
the broadcast. One set of vertices, denoted by S, has 
a copy of the message, and the complement set, de- 
noted by R, does not have a copy of the message. The 
edges in the bipartite graph are edges from the original 
graph that connect elements of S and R, that is E'CE 
where E' = {(u,v)[uESAvERA(u, v)6E) .  This bipar- 
tite graph is denoted as Gs = [(S, R), E']. The weights 
on the edges in E' can be determined in several ways. 
The technique that performed the best for Scheuermann 
and Wu assigns each edge (u, v)6E' a weight equal to 
-dR(v), where v6R. The function da(*) is called the 
d-value of a vertex. For each vertex without a copy 
of the message, say v, dR(v) is the degree of v in the 
subgraph induced by R. Another scheme employed by 
Scheuermann and Wu is to replace the Least-Weight 
Maximum Matching algorithm (LWMM) with an Ap- 
proximate Matching (AM) algorithm. 

The tests conducted by Scheuermann and Wu [7] were 
on networks where IV[ was 15 and 20. In both cases 
the Approximate Matching algorithm runs in less than 
half the time of the Least-Weight Maximum Matching 
algorithm for the edge weighting technique described 
above. From now on this edge weighting technique will 
be referred to as the degree weighting technique. With 
15 vertices the LWMM algorithm significantly outper- 
forms the AM algorithm. However, in the case with 
20 vertices, the AM performance is very near that of 
the LWMM. This seems to suggest that for the degree 
weighting technique the running time of the AM algo- 
rithm will be significantly less than that of the LWMM 

algorithm, and the performance of the AM will approach 
that of the LWMM as the size of the network increases. 

We present the Approximate Matching heuristic algo- 
rithm found in [7 I. The testing in this research used 
a variant of this algorithm that sorted R based on the 
degree of the vertices rather than on the d-values of the 
vertices. We found this easier to implement. 

AM HEURISTIC 

S - set of vertices that have the message at the begin- 
ning of the time step. (equivalent to ~ -1  at time step 
i) 

R - set of vertices that do not have the message at the 
beginning of the time step. (equivalent to V - r~_~ at 
time step i) 

Apply the following procedure at each time step: 

1. Sort R in descending order of d-value. 

2. Sort S in ascending order of vertex degree. 

3. Find the first r in R that has not been used in the 
time step. 

4. If every element of R has been used, then stop. 

5. Find the first s in S that has not been used in the 
time step and is adjacent to r. 

6. If no such s is found, then mark r as used in the 
time step and goto Step 3. 

7. Otherwise, s transmits message to r. 

8. Mark s and r as used in the time step and goto Step 
3. 

In Step 1, R is sorted in descending order because send- 
ing messages to higher degree vertices first increases the 
chance that more vertices will be able to transmit a copy 
of the message in the next time step. In Step 2, S is 
sorted in ascending order because sending from low de- 
gree vertices first increases the chance that more vertices 
will be able to transmit a copy of the message during 
the current time step. 

G A  E N C O D I N G  

The encoding used for the Minimum Broadcast Time 
problem is a permutation of the integers from 1 to IV]. 
The decoding of a chromosome splits the chromosome 
into two lists Vi and V - Vi at each time step. Next, the 
order of the list of vertices in V - ~ is reversed. This 
reversal is done for the same reason R is sorted in de- 
scending order in the AM heuristic. That is, otherwise 
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vertices with larger degrees or d-values will tend toward 
the end of the list of vertices. After reversing the order, 
we tend to send the message to a vertex with a large 
degree or d-value, thus increasing the chance that  this 
new vertex will be able to re-transmit the message in 
the next time step. Vertices with larger degree or d- 
value tend toward the end of the list in the GA because 
of the crossover that  is used, and they are forced to the 
end of the list by sorting in the AM. 

Next, the first vertex in the list of vertices in Vi will 
send the message to the first vertex in the reversed list of 
vertices from V -  Vi that it is adjacent to. At this point, 
these two vertices will be removed from consideration for 
the remainder of the time step. This process continues 
until no more copies of the message can be sent during 
the present time step. At this point the chromosome will 
be split again into the two lists, ~+1 and V - 1~+1, and 
the transmission of the message for the next time step 
will be determined by the same procedure. This process 
will continue until all the vertices have a copy of the 
message. The fitness of the chromosome is the number 
of time steps required to complete the broadcast. 

E X A M P L E  D E C O D I N G S  

Given the undirected graph G = (V,E) where E = 
{(1, 2), (2, 4), (2, 6), (3, 4), (3, 5), (4, 5), (5, 6)}, and V = 
{1, 2, 3, 4, 5, 6} in Figure 1, the decoding of two exam- 
ple chromosomes that  represent broadcasts in this graph 
are illustrated below. 

Consider chromosome 1 as [1 5 3 6 4 2] with V0 = [3]. 
Thus, it follows that  V - V0 = [1, 5, 6, 4, 2]. First, the 
drder of V - V0 is reversed to obtain [2, 4, 6, 5, 1]. The 
reason for reversing the order of V - V0 was explained 
in the previous section. We intentionally refrained from 
representing V - Vi and Vi as sets because the order of 
the vertices is important .  At each step in the decoding 
process, the vertices in l~ are scanned left to right. For 
each vertex in Vi, the vertices in V -  Vi are scanned 
left to right searching for the first vertex that  a message 
can be broadcast to. Each vertex in V - ~ that  is able 
to receive a broadcast during the time step is removed 
from V - Vi and placed into ~ .  Note that  vertices are 
placed in Vi in the same relative order, left to right that  
they appear in the original chromosome. For example, 
the decoding of chromosome 1 is as follows: during time 
step 1 the message is sent from vertex 3 to vertex 4, be- 
cause vertex 4 is the first vertex in the reversed list that  
is adjacent to vertex 3. So V1 becomes [3, 4] and V - Va 
becomes [2, 6, 5, 1]. Following this process, during t ime 
step 2 the message is sent from vertex 3 to vertex 5 and 
from vertex 4 to vertex 2. This makes V2 = [5, 3, 4, 2] 
and V - V2 = [6, 1]. In time step 3 the message is sent 
from vertex 5 to vertex 6 and from vertex 2 to vertex 1. 
At this point V3 = [3, 4, 5, 2, 6, 1] and V - V3 = ¢. The 

Figure h An Example Undirected Graph 

fitness of this chromosome is 3, the number of required 
time steps. 

Consider [4 6 5 3 1 2] as a second example chromosome 
with V0 = [3]. The reader is encouraged to verify that  
at t ime step 1: vertex 3 sends a message to vertex 5, 
at time step 2: vertex 5 sends to vertex 6 and vertex 
3 sends to vertex 4, at t ime step 3: vertex 4 sends to 
vertex 2, and during t ime step 4: vertex 2 sends to 
vertex 1. This gives chromosome 2 a fitness of 4. 

G E N E T I C  O P E R A T O R S  

The crossover operator used in this research is MX1, a 
member of the MX family of crossover operators intro- 
duced by Blanton and Wainwright [1]. Associated with 
a problem instance is a global precedence vector (GPV) 
which is used during the application of the MX1 opera- 
tor. In our case, the global precedence vector consists of 
the vertices in increasing order of degree. From Figure 
1 it is clear that  deg(1) = 1, deg(2) = 3, deg(3) = 2, 
deg(4) = 3, deg(5) = 3, and deg(6) = 2, where deg(y) is 
the degree of vertex y. Using this information the global 
precedence vector (GPV) for this problem is GPV = (1, 
3 , 6 , 2 , 4 , 5 ) .  

To illustrate the MX1 crossover operator applied to the 
MBT problem, consider the two chromosomes in the 
previous section as the selected parents. The " * "  indi- 
cates the allele currently under consideration. 

Step I. Parent I: 1 S 3 6 4 2 

Parent 2: 4 6 S 3 1 2 

Consider the first allele in each parent. 

1 comes before 4 in the GPV so 1 is 

selected. Parent 2 is fixed by exchanging 
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alleles I and 4. Now consider the second 

allele. 

Step 2. Parent 1: 1 S 3 6 4 2 

Parent 2: 1 6 5 3 4 2 

Child: 1 x x x x x 

6 comes before 5 in the GPV so 6 is 

selected. Parent I is fixed by 

exchanging alleles 6 and 5. 

Now consider the third allele. 

Step 3. Parent I: 1 6 3 5 4 2 

Parent 2: 1 6 5 3 4 2 

Child: 1 6 x x x x 

3 is before 5 in the GPV so 3 is 

selected. Parent 2 is fixed by 

exchanging alleles 3 and 5. 

Consider the next allele. 

Step 4: 
$ 

Parent I: 1 6 3 S 4 2 

Parent 2: 1 6 3 5 4 2 

Child: I 6 3 x x x 

Now the parents are identical, so the 

child is uniquely determined: 

Child: I 6 3 5 4 2. 

The mutat ion operator is swap (i.e. two allele values 
are exchanged). Note that the global precedence vec- 
tor favors vertices with lower degree. Hence, there is a 
tendency to force the lower degree vertices toward the 
front of the chromosome and the higher degree vertices 
toward the end of the chromosome. During the decoding 
evaluation, it is clearly desirable to transmit to higher 
degree vertices first. As stated before, this is the reason 
why the list of vertices without a copy of the message is 
reversed at the beginning of each step. 

RESULTS 

Assuming that IV0[ = 1 and that  IV[ = n, several in- 
teresting facts about the broadcast t ime can be derived. 
The objective function maps a broadcast time to a value 
in set A = { [ l o g ~ n ] , . . . , n -  1}. Note that  n - 1 is an 
upper bound on the broadcast time. Tha t  is, for any 
graph and any initial vertex with the message, there 
is at least one broadcast that  takes n - 1 time steps. 
However, unless the edges of the graph are sparse this 
is probably not the optimal value. If n - 1 is not the 
optimal value, it is unlikely that either the AM or the 
GA will produce a broadcast with fitness of n - 1. This 

is due to the greedy nature of both  the AM heuristic 
and the chromosome decoding scheme in the GA. 

The smallest element of A, [log2n], is a theoretical lower 
bound. . I t : i s  a lower bound, but  not always an attain- 
able value. Thus the optimal value will be greater than 
or equal to [logan], and the broadcast time given by the 
AM heuristic and the GA will be greater than or equal 
to the optimal and less than or equal to n - 1. These 
bounds are very useful in the interpretation of the test 
results. 

A first set of tests was run on randomly generated 
graphs containing 10 to 500 vertices with low edge con- 
nectivity probabilities. The results of these tests are 
summarized in Table 1. 

Network Size 

10 
10 
20 
20 
30 
40 
100 
100 
100 
250 
250 
250 
500 
500 
500 

Edge Probability 

0.275 
0.25 
0.2 

0.17 
0.15 
0.15 
0.1 
0.2 
0.3 
0.1 

0.2 
0.3 
0.1 
0.2 
0.3 

Broadcast Time 
AM I GA 

5 4* 
5 5 
5 5 
9 7* 
6 6 
6 6 
7 7 
7 7 
7 7 
9 9 
8 8 
9 8* 
10 9* 
9 9 
9 9 

Table h AM and GA Results for Random Networks 
with Low Edge Probabilities 

In Table 1, we see that  the GA gave the same or bet- 
ter results in every case tested. The GA outperformed 
the AM in four cases indicated by a n  "*" in Table 1. 
The maximum fitness value of the initial pool of chro- 
mosomes was never more than the minimum value plus 
3. Most of the t ime the maximum fitness was 1 or 2 
greater than the minimum value. Due to the fact that 
several permutations have the same fitness value and 
the range of the fitness values present at ~ny generation 
was smMl, the GA converged rapidly, even with muta- 
tion rates as high as 0.1. 

In our second set of tests, we contrived a set of net- 
works of size 40, 80 and 160. The characteristic of 
these networks is that  there are a large number of highly 
connected clusters of nodes that  are in turn connected 
by only one or two edges to each of the other clusters. 
This is similar to a network layout for a company that  
may have several business centers around the world con- 
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Broadcast Time 
Network Size AM I GA I Optimal 

40 14 8 8 
80 15 9 9 
160 23 13 11 

Table 2: AM and GA Results for a Contrived Set of 
Networks 

nected by a low connectivity backbone. One side effect 
of this type of network is that the AM heuristic gives 
very poor solutions. 

In Table 2, we see that indeed the AM heuristic yields 
extremely poor results, while the GA produces excellent 
solutions. The networks were contrived, hence the opti- 
mal broadcast time is known and presented in the table 
for comparison. 

C O N C L U S I O N  A N D  F U T U R E  
W O R K  

From our results, it seems that the AM performs fairly 
well in most situations. On occasion, however, the AM 
gives poor results, such as in our contrived networks 
presented in Table 2. The rapid evolutionary behav- 
ior of the GA encoding presented in this paper is most 
likely attributable to the many-to-one behavior of the 
mapping from permutations to fitness values and the 
limited range of this mapping. However, this did not 
deter the GA from producing excellent results for ran- 
domly generated networks, as well as our contrived net- 
works. The obvious precedence of the nodes (ordered 
by degree) allowed us to construct a global precedence 
vector. This in turn allowed us to use the MX crossover 
operators (which require a precedence vector) to drive 
the GA to optimal or near optimal solutions. To the 
authors' knowledge, this is the first implementation of 
the MBT problem using genetic algorithms, and the re- 
sults are excellent. 

One variant of the MBT problem that could be consid- 
ered for future work is the introduction of more than 
one message into the problem. That is, start with two 
or more messages and broadcast until every vertex has a 
copy of all the messages. A second variation of the MBT 
that may be investigated in the future is the multicast 
or point-to-multipoint problem. In this formulation the 
fitness function could be either the number of time steps 
or the sum of the weights of the edges used in the mul- 
ticast. The multicast problem with edge weight fitness 
should not be hampered by the problems encountered 
in this research that were caused by the limited range 
of the fitness values and the many-to-one nature of the 
objective function. Although we have not yet imple- 
mented a GA solution to these variations of the MBT 

problem, we suspect the GA will perform very well. 
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