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ABSTRACT 
UniFrac is a commonly used metric in microbiome research for 
comparing microbiome profiles to one another (“beta diversity”). 
The recently implemented Striped UniFrac added the capability to 
split the problem into many independent subproblems and 
exhibits near linear scaling. In this paper we describe steps 
undertaken in porting and optimizing Striped Unifrac to GPUs. 
We reduced the run time of computing UniFrac on the published 
Earth Microbiome Project dataset from 13 hours on an Intel Xeon 
E5-2680 v4 CPU to 12 minutes on an NVIDIA Tesla V100 GPU, and 
to about one hour on a laptop with NVIDIA GTX 1050 (with minor 
loss in precision). Computing UniFrac on a larger dataset 
containing 113k samples reduced the run time from over 
one month on the CPU to less than 2 hours on the V100 and 
9 hours on an NVIDIA RTX 2080TI GPU (with minor loss in 
precision). This was achieved by using OpenACC for generating 
the GPU offload code and by improving the memory access 
patterns. A BSD-licensed implementation is available, which 
produces a C shared library linkable by any programming 
language. 
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1 Introduction 
The study of the microbiome has rapidly expanded over the past 
decade, in part because of the insight afforded by UniFrac [1]. 
UniFrac is a phylogenetic measure of beta-diversity that assesses 
differences between pairs of microbiome profiles. UniFrac is 

useful for microbial community analysis because it can account 
for the evolutionary relationships between microbes present 
within a sample. Other distance metrics, such as Euclidean 
distance, Bray-Curtis, and Jaccard, make the unrealistic implicit 
assumption that all organisms are equally related, leading to 
statistical artifacts, particularly with sparse data matrices (these 
are typical in real-world cases because most kinds of microbes are 
not found in most locations). Microbiome studies have recently 
transitioned from experimental designs with a few hundred 
samples to designs spanning tens of thousands of samples. Large-
scale studies, such as the Earth Microbiome Project (EMP) [2], 
afford the statistics crucial for untangling the many factors that 
influence microbial community composition.  

Having an efficient and scalable implementation for 
computing UniFrac thus becomes crucial for the advancement of 
science. A scalable implementation, named Striped UniFrac, was 
recently proposed and implemented [3]. This algorithm is highly 
parallelizable and shows almost linear scaling with the number of 
compute nodes. The existing implementation, however, does not 
scale linearly with the number of CPU cores on a single node, 
which is not entirely surprising given its memory-heavy nature.  

Massively parallel algorithms, especially memory-heavy ones, 
are natural candidates for GPU compute. We thus ported the 
algorithm to GPU resources. One main driver was the desire to 
avoid CPU-only and GPU-only code paths, to facilitate sustainable 
long-term support. Using OpenACC [4] was thus a natural choice, 
because it allows for co-existence of CPU and GPU compute, with 
conditional creation of GPU offload sections. 

Section 2 provides an overview of the minimal changes needed 
to get the original implementation to execute effectively on GPU 
resources. Section 3 provides an overview of the additional 
changes that were put in place to optimize the code to better 
exploit the GPU architecture. Finally, Section 4 provides an 
analysis of the obtained results when switching from fp64 to fp32 
compute in GPU code, which speeds by 3x the GPU compute on 
mobile and gaming GPUs. 

The original code was compiled with gcc version 7.3, and all 
OpenACC enabled code was compiled with PGI C compiler 
version 19.10. All tests were run in Linux environment. 

2 Porting Striped UniFrac to OpenACC 
The most time-consuming part of the original Striped UniFrac 
implementation is composed of a set of tight loops that operate on 
adjacent, independent memory cells. Converting such a loop to a 
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GPU offload section with OpenACC is as easy as adding a pragma 
to the code. 

Unfortunately, the original code used a set of memory buffers 
in such a loop, for perceived efficiency reasons. Passing an array 
of pointers into an OpenACC sections is, however, not supported 
in any existing compiler, so some code refactoring was needed. 
After assessing the usage patterns, we realized that over half of 
the codebase assumed such a data structure, making proper 
refactoring a tedious and risky endeavor. As a result, we decided 
to create a unified temporary buffer for the time-consuming code 
to operate on, then make a final copy at the end of the 
computation. While not ideal, the computational cost of this 
operation is very small, although it does increase the memory 
footprint of the application. We may clean up the implementation 
sometime in the future. 

With a unified memory buffer in place, it became possible to 
use simple pointer manipulation math to access the necessary 
memory cells. This further helped by allowing for fusing of loops 
and thus increase the available parallelism. Comparison of a 
subset of the code before and after is provided in Figure 1.  

for(unsigned int stripe = start;  
    stripe < stop; stripe++) { 
  dm_stripe = dm_stripes[stripe]; 
  for(unsigned int j = 0;  
      j < n_samples / 4; j++) { 
    int k = j * 4; 
    double u1 = emb[k]; 
    double u2 = emb[k+1]; 
    double v1 = emb[k + stripe + 1]; 
    double v2 = emb[k + stripe + 2]; 
    … 
    dm_stripe[k]   += (u1-v1)*length; 
    dm_stripe[k+1] += (u2-v2)*length; 
   } 
} 

#pragma acc parallel loop collapse(2) \ 
        present(emb,dm_stripes_buf) 
for(unsigned int stripe = start;  
    stripe < stop; stripe++) { 
  for(unsigned int j = 0;  
      j < n_samples / 4; j++) { 
    int idx =(stripe-start_idx)*n_samples; 
    double *dm_stripe =dm_stripes_buf+idx; 
    int k = j * 4; 
    double u1 = emb[k]; 
    double u2 = emb[k+1]; 
    double v1 = emb[k + stripe + 1]; 
    double v2 = emb[k + stripe + 2]; 
    … 
    dm_stripe[k]   += (u1-v1)*length; 
    dm_stripe[k+1] += (u2-v2)*length; 
   } 
} 

Figure 1: A subset of the most time-consuming code, before 
and after. 

This simple change was all that was needed to compile a 
working version of UniFrac that could run on a GPU. The GPU 
runtime of this new executable compared very favorably with the 
CPU version; computing UniFrac on the EMP sample lasted 
1.5 hours on an NVIDIA Tesla V100 GPU, versus 13 hours using 
an Intel Xeon E5-2680 v4 CPU, using all 14 cores concurrently. 

3 Optimizing for GPU compute 
Having achieved a working GPU port, we analyzed its 
performance. The first issue was the partial manual unrolling of 
the inner loop in the above code; that was done to help the CPU 
compiler generate better vector instructions. Unfortunately, it 
resulted in a striped memory access pattern in the GPU code, 
because the compiler automatically generated vector code based 
on the loop itself. Removing the manual unrolling, the time 
needed for the same compute was reduced from 92 minutes to 64 
minutes on the NVIDIA Tesla V100 GPU.  

Further code analysis pointed to the likely bottleneck to be the 
repeated updating of the main memory buffer. The original logic 
would retrieve, in the CPU section, one input buffer per GPU 
kernel invocation, which would then extract and transform the 
needed information and finally updated the main memory buffer. 
The same operation would be performed on O(10k) input buffers 
in sequence. This is suboptimal for two reasons: first, writing to 
memory is significantly more expensive than reading from it, and 
second, each kernel invocation has a non-negligible overhead. 

The implemented solution was to batch many input buffers in 
a single kernel invocation and modify the loops to process the data 
from all the input buffers before updating the main memory 
buffer. This slightly increased the memory footprint of the 
application, but resulted in a further reduction in runtime to about 
33 minutes on the NVIDIA Tesla V100 GPU. The updated code 
snippet is available in Figure 2. 

#pragma acc parallel loop collapse(2) \ 
        present(emb,dm_stripes_buf,length) 
for(unsigned int stripe = start;  
    stripe < stop; stripe++) { 
  for(unsigned int k = 0;  
      k < n_samples ; k++) { 
    double my_stripe = dm_stripe[k]; 
#pragma acc loop seq 
    for (unsigned int e=0;  
         e<filled_embs; e++) { 
      uint64_t offset = n_samples*e; 
      double u = emb[offset+k]; 
      double v = emb[offset+k+stripe+ 1]; 
      my_stripe += (u-v)*length[e]; 
    } 
    … 
    dm_stripe[k]   += (u1-v1)*length; 
  } 
} 

Figure 2: A subset of the most time-consuming code after 
input buffer batching.  
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Once the above changes were in place, it became obvious that 
the same input buffers were accessed multiple times during the 
execution of a single GPU kernel. The access pattern was however 
such that the next reuse came only at a much later time, trashing 
the cache. We thus proceeded in splitting the main loop in such a 
way that it maximized both vectorization opportunities and input 
buffer cache locality, as can be seen in Figure 3. Note that it is very 
important to properly align the memory buffers and pick the right 
value for the grouping parameters, as it can drastically affect the 
observed run time. 

#pragma acc parallel loop collapse(3) \ 
        present(emb,dm_stripes_buf,length) 
for(unsigned int sk = 0;  
    sk < sample_steps ; sk++) { 
  for(unsigned int stripe = start;  
      stripe < stop; stripe++) { 
    for(unsigned int ik = 0;  
        ik < step_size ; ik++) { 
      unsigned int k = sk*step_size + ik; 
      … 
      double my_stripe = dm_stripe[k]; 
#pragma acc loop seq 
      for (unsigned int e=0;  
           e<filled_embs; e++) { 
        uint64_t offset = n_samples*e; 
        double u = emb[offset+k]; 
        double v = emb[offset+k+stripe+ 1]; 
        my_stripe += (u-v)*length[e]; 
      } 
      … 
      dm_stripe[k]   += (u1-v1)*length; 
    } 
  } 
} 

Figure 3: A subset of the most time-consuming code in its 
final incarnation.  

With the latest change, computing UniFrac on the EMP sample 
took only 12 minutes on the NVIDIA Tesla V100 GPU.  We also 
compiled the new code with OpenACC disabled, computed 
UniFrac on the EMP sample on the Intel Xeon E5-2680 v4 CPU, 
using all 14 cores concurrently, and it finished in 193 minutes.  

To summarize, Table 1 provides the times needed to compute 
UniFrac on the EMP sample, both using the original code and after 
being ported to the GPU. As can be seen, an NVIDIA Tesla V100 
GPU provides an order of magnitude improvement over the tested 
Intel Xeon E5-2680 v4 CPU. Note that the quoted CPU time is for 
the whole chip, i.e. using all its resources, not single-threaded. 

Table 1: Runtimes of Striped UniFrac on EMP dataset. 
In chip minutes. 

Intel Xeon E5-2680 v4 CPU NIVIDA Tesla V100 GPU 
Original Final OpenACC base Final 

800 193 92 12 
 

To verify that the obtained improvements in run time were not 
specific to the chosen input dataset, we also computed UniFrac on 
the same input dataset used in [3], which is much bigger and 
contains 113,721 samples. This input dataset is too big to be ran 
on a single CPU in reasonable time, so we distributed the compute 
over several CPUs and GPUs. Using 128 chips in parallel gave us 
a reasonable per-chip runtime for the CPU systems. Note that 
running larger subproblems on the GPUs results in a significant 
speedup, so we ran the GPU compute also with 4 parallel chunks. 
As can be seen from Table 2, which provides the times needed to 
compute UniFrac on those 113,721 samples, the GPU version 
provides several orders of magnitude speedup, both in terms of 
per-chip and total compute time. It would now be possible to 
compute UniFrac on 113,721 samples in a couple of hours using a 
single NVIDIA Tesla V100 GPU. 

Table 2: Runtimes of Striped UniFrac on 113,721 samples. 
In chip hours. 

 Org. CPU version Final GPU version 
 128x E5-2680 v4 128x V100 4x V100 
Per chip 6.9 hours 0.23 hours 0.34 hour 
Aggregated 890 hours 30 hours 1.9 hours 

4 Validating 32-bit floating point compute 
UniFrac was originally designed and always implemented using 
fp64 math operations. The higher-precision floating point math 
was used to maximize reliability of the results. 

On CPU cores, the penalty to pay for fp64 versus fp32 is 
expected to be small. Only a fraction of the total compute uses 
floating point compute, and that part would be at best 2x faster on 
CPUs. The situation is similar on server-class GPUs, like the 
NVIDIA Tesla V100 GPU, but on mobile and gaming GPUs fp64 
compute is 32x slower than fp32 compute. We measured the time 
needed to compute UniFrac, on both the EMP dataset and the 
dataset containing 113,721 samples, using the latest GPU-enabled 
UniFrac code, and we observe between 2x and 6x speedup in fp32-
bit mode, see Table 3 and Table 4. Note that the compute times on 
the CPU were virtually identical for the fp32 and fp64 code paths. 

Table 3: Runtimes of the final GPU-enabled Striped Unifrac on 
EMP, using fp64 vs fp32 math. All GPUs by NVIDIA. In minutes. 

 V100 2080TI 1080TI 1080 Mobile 1050 
fp64 12 59 77 99 213 
fp32 9.5 19 31 36 64 

Table 4: Runtimes of the final GPU-enabled Striped Unifrac 
on 113,721 samples, using fp64 vs fp32 math.  

Using multiple GPUs by NVIDIA. In aggregated hours. 

 V100 2080TI 1080TI 
fp64 1.9 hours 49 hours 67 hours 
fp32 1.3 hours 8.5 hours 22 hours 
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Getting unusable results fast would, however, not be helpful. 
We thus compared the results of the compute using fp32-enabled 
and fp64-only code, using the same EMP input, and observed a 
near identical result (Mantel R2 0.99999; p<0.001, comparing 
pairwise distances in the two matrices). The fp32-enabled code can 
thus be used for most microbiome discovery work, especially if 
run on personal equipment, with the fp64-only code used only in 
the unusual situation where the relative abundances of the input 
data or the tree branch lengths exhibit a very high dynamic range 
in elements of the distance matrix that contribute substantially to 
downstream results, e.g. after dimensionality reduction. 

6 Conclusions 
Microbiome studies are transitioning from experimental designs 
with a few hundred samples to much larger designs spanning tens 
of thousands of samples. Having access to effective but also fast 
compute tools is thus becoming essential. UniFrac has long been 
an important tool in microbiome research, and our work now 
allows many analyses which were previously relegated to large 
compute clusters to be performed with much lower resource 
requirements. Even the largest datasets currently envisaged could 
be processed in reasonable time with just a handful of server-class 
GPUs, while smaller but still sizable datasets like the EMP can be 
processed even on GPU-enabled workstations. 

We used OpenACC to port the existing Striped UniFrac 
implementation to GPUs, because this allows a single codebase for 
both CPU and GPU code, thus significantly reducing long term 
support burden. Some refactoring of the code was needed to 
obtain maximum performance from the GPUs, but this refactoring 
was mostly limited to the most time-consuming part of the code. 
The increased memory footprint is slightly increased, but we 
believe this trade-off is well worth the order of magnitude speed 
improvement in run times. 

Finally, we explored the use of lower-precision floating point 
math to effectively exploit consumer-grade GPUs, which are 
typical in desktop and laptop setups. We conclude that fp32 math 
yields nearly identical results to fp64, and should be adequate for 
the vast majority of studies, making compute on GPU-enabled 
personal devices, even laptops, a sufficient resource for this 
otherwise rate-limiting step for many researchers. 
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