
Porting and optimizing UniFrac for GPUs
Reducing microbiome analysis runtimes by orders of magnitude

Igor Sfiligoi
 University of California San Diego

 La Jolla CA USA
 isfiligoi@sdsc.edu

Daniel McDonald
 University of California San Diego

 La Jolla CA USA
danielmcdonald@ucsd.edu

Rob Knight
 University of California San Diego

 La Jolla CA USA
robknight@ucsd.edu

ABSTRACT
UniFrac is a commonly used metric in microbiome research for
comparing microbiome profiles to one another (“beta diversity”).
The recently implemented Striped UniFrac added the capability to
split the problem into many independent subproblems and
exhibits near linear scaling. In this paper we describe steps
undertaken in porting and optimizing Striped Unifrac to GPUs.
We reduced the run time of computing UniFrac on the published
Earth Microbiome Project dataset from 13 hours on an Intel Xeon
E5-2680 v4 CPU to 12 minutes on an NVIDIA Tesla V100 GPU, and
to about one hour on a laptop with NVIDIA GTX 1050 (with minor
loss in precision). Computing UniFrac on a larger dataset
containing 113k samples reduced the run time from over
one month on the CPU to less than 2 hours on the V100 and
9 hours on an NVIDIA RTX 2080TI GPU (with minor loss in
precision). This was achieved by using OpenACC for generating
the GPU offload code and by improving the memory access
patterns. A BSD-licensed implementation is available, which
produces a C shared library linkable by any programming
language.

CCS CONCEPTS
• Applied computing---Life and medical sciences---
Computational biology;500 • Computing methodologies---Parallel
computing methodologies---Parallel algorithms---Massively
parallel algorithms;300 • Software and its engineering---
Software notations and tools---Software libraries and
repositories;100

KEYWORDS
Microbiome, GPU, OpenACC, Optimization, UniFrac

ACM Reference format:

Igor Sfiligoi, Daniel McDonald and Rob Knight. 2020. Porting and
optimizing UniFrac for GPUs: Reducing microbiome analysis runtimes by
orders of magnitude. To be published in Proceedings of Practice and
Experience in Advanced Research Computing (PEARC’20). PREPRINT

1 Introduction
The study of the microbiome has rapidly expanded over the past
decade, in part because of the insight afforded by UniFrac [1].
UniFrac is a phylogenetic measure of beta-diversity that assesses
differences between pairs of microbiome profiles. UniFrac is

useful for microbial community analysis because it can account
for the evolutionary relationships between microbes present
within a sample. Other distance metrics, such as Euclidean
distance, Bray-Curtis, and Jaccard, make the unrealistic implicit
assumption that all organisms are equally related, leading to
statistical artifacts, particularly with sparse data matrices (these
are typical in real-world cases because most kinds of microbes are
not found in most locations). Microbiome studies have recently
transitioned from experimental designs with a few hundred
samples to designs spanning tens of thousands of samples. Large-
scale studies, such as the Earth Microbiome Project (EMP) [2],
afford the statistics crucial for untangling the many factors that
influence microbial community composition.

Having an efficient and scalable implementation for
computing UniFrac thus becomes crucial for the advancement of
science. A scalable implementation, named Striped UniFrac, was
recently proposed and implemented [3]. This algorithm is highly
parallelizable and shows almost linear scaling with the number of
compute nodes. The existing implementation, however, does not
scale linearly with the number of CPU cores on a single node,
which is not entirely surprising given its memory-heavy nature.

Massively parallel algorithms, especially memory-heavy ones,
are natural candidates for GPU compute. We thus ported the
algorithm to GPU resources. One main driver was the desire to
avoid CPU-only and GPU-only code paths, to facilitate sustainable
long-term support. Using OpenACC [4] was thus a natural choice,
because it allows for co-existence of CPU and GPU compute, with
conditional creation of GPU offload sections.

Section 2 provides an overview of the minimal changes needed
to get the original implementation to execute effectively on GPU
resources. Section 3 provides an overview of the additional
changes that were put in place to optimize the code to better
exploit the GPU architecture. Finally, Section 4 provides an
analysis of the obtained results when switching from fp64 to fp32
compute in GPU code, which speeds by 3x the GPU compute on
mobile and gaming GPUs.

The original code was compiled with gcc version 7.3, and all
OpenACC enabled code was compiled with PGI C compiler
version 19.10. All tests were run in Linux environment.

2 Porting Striped UniFrac to OpenACC
The most time-consuming part of the original Striped UniFrac
implementation is composed of a set of tight loops that operate on
adjacent, independent memory cells. Converting such a loop to a

Preprint for PEARC’20 I. Sfiligoi, D. McDonald and R. Knight

GPU offload section with OpenACC is as easy as adding a pragma
to the code.

Unfortunately, the original code used a set of memory buffers
in such a loop, for perceived efficiency reasons. Passing an array
of pointers into an OpenACC sections is, however, not supported
in any existing compiler, so some code refactoring was needed.
After assessing the usage patterns, we realized that over half of
the codebase assumed such a data structure, making proper
refactoring a tedious and risky endeavor. As a result, we decided
to create a unified temporary buffer for the time-consuming code
to operate on, then make a final copy at the end of the
computation. While not ideal, the computational cost of this
operation is very small, although it does increase the memory
footprint of the application. We may clean up the implementation
sometime in the future.

With a unified memory buffer in place, it became possible to
use simple pointer manipulation math to access the necessary
memory cells. This further helped by allowing for fusing of loops
and thus increase the available parallelism. Comparison of a
subset of the code before and after is provided in Figure 1.

for(unsigned int stripe = start;
 stripe < stop; stripe++) {
 dm_stripe = dm_stripes[stripe];
 for(unsigned int j = 0;
 j < n_samples / 4; j++) {
 int k = j * 4;
 double u1 = emb[k];
 double u2 = emb[k+1];
 double v1 = emb[k + stripe + 1];
 double v2 = emb[k + stripe + 2];
 …
 dm_stripe[k] += (u1-v1)*length;
 dm_stripe[k+1] += (u2-v2)*length;
 }
}

#pragma acc parallel loop collapse(2) \
 present(emb,dm_stripes_buf)
for(unsigned int stripe = start;
 stripe < stop; stripe++) {
 for(unsigned int j = 0;
 j < n_samples / 4; j++) {
 int idx =(stripe-start_idx)*n_samples;
 double *dm_stripe =dm_stripes_buf+idx;
 int k = j * 4;
 double u1 = emb[k];
 double u2 = emb[k+1];
 double v1 = emb[k + stripe + 1];
 double v2 = emb[k + stripe + 2];
 …
 dm_stripe[k] += (u1-v1)*length;
 dm_stripe[k+1] += (u2-v2)*length;
 }
}

Figure 1: A subset of the most time-consuming code, before
and after.

This simple change was all that was needed to compile a
working version of UniFrac that could run on a GPU. The GPU
runtime of this new executable compared very favorably with the
CPU version; computing UniFrac on the EMP sample lasted
1.5 hours on an NVIDIA Tesla V100 GPU, versus 13 hours using
an Intel Xeon E5-2680 v4 CPU, using all 14 cores concurrently.

3 Optimizing for GPU compute
Having achieved a working GPU port, we analyzed its
performance. The first issue was the partial manual unrolling of
the inner loop in the above code; that was done to help the CPU
compiler generate better vector instructions. Unfortunately, it
resulted in a striped memory access pattern in the GPU code,
because the compiler automatically generated vector code based
on the loop itself. Removing the manual unrolling, the time
needed for the same compute was reduced from 92 minutes to 64
minutes on the NVIDIA Tesla V100 GPU.

Further code analysis pointed to the likely bottleneck to be the
repeated updating of the main memory buffer. The original logic
would retrieve, in the CPU section, one input buffer per GPU
kernel invocation, which would then extract and transform the
needed information and finally updated the main memory buffer.
The same operation would be performed on O(10k) input buffers
in sequence. This is suboptimal for two reasons: first, writing to
memory is significantly more expensive than reading from it, and
second, each kernel invocation has a non-negligible overhead.

The implemented solution was to batch many input buffers in
a single kernel invocation and modify the loops to process the data
from all the input buffers before updating the main memory
buffer. This slightly increased the memory footprint of the
application, but resulted in a further reduction in runtime to about
33 minutes on the NVIDIA Tesla V100 GPU. The updated code
snippet is available in Figure 2.

#pragma acc parallel loop collapse(2) \
 present(emb,dm_stripes_buf,length)
for(unsigned int stripe = start;
 stripe < stop; stripe++) {
 for(unsigned int k = 0;
 k < n_samples ; k++) {
 double my_stripe = dm_stripe[k];
#pragma acc loop seq
 for (unsigned int e=0;
 e<filled_embs; e++) {
 uint64_t offset = n_samples*e;
 double u = emb[offset+k];
 double v = emb[offset+k+stripe+ 1];
 my_stripe += (u-v)*length[e];
 }
 …
 dm_stripe[k] += (u1-v1)*length;
 }
}

Figure 2: A subset of the most time-consuming code after
input buffer batching.

Porting and optimizing UniFrac for GPUs To be published in proceedings of PEARC’20

Once the above changes were in place, it became obvious that
the same input buffers were accessed multiple times during the
execution of a single GPU kernel. The access pattern was however
such that the next reuse came only at a much later time, trashing
the cache. We thus proceeded in splitting the main loop in such a
way that it maximized both vectorization opportunities and input
buffer cache locality, as can be seen in Figure 3. Note that it is very
important to properly align the memory buffers and pick the right
value for the grouping parameters, as it can drastically affect the
observed run time.

#pragma acc parallel loop collapse(3) \
 present(emb,dm_stripes_buf,length)
for(unsigned int sk = 0;
 sk < sample_steps ; sk++) {
 for(unsigned int stripe = start;
 stripe < stop; stripe++) {
 for(unsigned int ik = 0;
 ik < step_size ; ik++) {
 unsigned int k = sk*step_size + ik;
 …
 double my_stripe = dm_stripe[k];
#pragma acc loop seq
 for (unsigned int e=0;
 e<filled_embs; e++) {
 uint64_t offset = n_samples*e;
 double u = emb[offset+k];
 double v = emb[offset+k+stripe+ 1];
 my_stripe += (u-v)*length[e];
 }
 …
 dm_stripe[k] += (u1-v1)*length;
 }
 }
}

Figure 3: A subset of the most time-consuming code in its
final incarnation.

With the latest change, computing UniFrac on the EMP sample
took only 12 minutes on the NVIDIA Tesla V100 GPU. We also
compiled the new code with OpenACC disabled, computed
UniFrac on the EMP sample on the Intel Xeon E5-2680 v4 CPU,
using all 14 cores concurrently, and it finished in 193 minutes.

To summarize, Table 1 provides the times needed to compute
UniFrac on the EMP sample, both using the original code and after
being ported to the GPU. As can be seen, an NVIDIA Tesla V100
GPU provides an order of magnitude improvement over the tested
Intel Xeon E5-2680 v4 CPU. Note that the quoted CPU time is for
the whole chip, i.e. using all its resources, not single-threaded.

Table 1: Runtimes of Striped UniFrac on EMP dataset.
In chip minutes.

Intel Xeon E5-2680 v4 CPU NIVIDA Tesla V100 GPU
Original Final OpenACC base Final

800 193 92 12

To verify that the obtained improvements in run time were not
specific to the chosen input dataset, we also computed UniFrac on
the same input dataset used in [3], which is much bigger and
contains 113,721 samples. This input dataset is too big to be ran
on a single CPU in reasonable time, so we distributed the compute
over several CPUs and GPUs. Using 128 chips in parallel gave us
a reasonable per-chip runtime for the CPU systems. Note that
running larger subproblems on the GPUs results in a significant
speedup, so we ran the GPU compute also with 4 parallel chunks.
As can be seen from Table 2, which provides the times needed to
compute UniFrac on those 113,721 samples, the GPU version
provides several orders of magnitude speedup, both in terms of
per-chip and total compute time. It would now be possible to
compute UniFrac on 113,721 samples in a couple of hours using a
single NVIDIA Tesla V100 GPU.

Table 2: Runtimes of Striped UniFrac on 113,721 samples.
In chip hours.

 Org. CPU version Final GPU version
 128x E5-2680 v4 128x V100 4x V100
Per chip 6.9 hours 0.23 hours 0.34 hour
Aggregated 890 hours 30 hours 1.9 hours

4 Validating 32-bit floating point compute
UniFrac was originally designed and always implemented using
fp64 math operations. The higher-precision floating point math
was used to maximize reliability of the results.

On CPU cores, the penalty to pay for fp64 versus fp32 is
expected to be small. Only a fraction of the total compute uses
floating point compute, and that part would be at best 2x faster on
CPUs. The situation is similar on server-class GPUs, like the
NVIDIA Tesla V100 GPU, but on mobile and gaming GPUs fp64
compute is 32x slower than fp32 compute. We measured the time
needed to compute UniFrac, on both the EMP dataset and the
dataset containing 113,721 samples, using the latest GPU-enabled
UniFrac code, and we observe between 2x and 6x speedup in fp32-
bit mode, see Table 3 and Table 4. Note that the compute times on
the CPU were virtually identical for the fp32 and fp64 code paths.

Table 3: Runtimes of the final GPU-enabled Striped Unifrac on
EMP, using fp64 vs fp32 math. All GPUs by NVIDIA. In minutes.

 V100 2080TI 1080TI 1080 Mobile 1050
fp64 12 59 77 99 213
fp32 9.5 19 31 36 64

Table 4: Runtimes of the final GPU-enabled Striped Unifrac
on 113,721 samples, using fp64 vs fp32 math.

Using multiple GPUs by NVIDIA. In aggregated hours.

 V100 2080TI 1080TI
fp64 1.9 hours 49 hours 67 hours
fp32 1.3 hours 8.5 hours 22 hours

Preprint for PEARC’20 I. Sfiligoi, D. McDonald and R. Knight

Getting unusable results fast would, however, not be helpful.
We thus compared the results of the compute using fp32-enabled
and fp64-only code, using the same EMP input, and observed a
near identical result (Mantel R2 0.99999; p<0.001, comparing
pairwise distances in the two matrices). The fp32-enabled code can
thus be used for most microbiome discovery work, especially if
run on personal equipment, with the fp64-only code used only in
the unusual situation where the relative abundances of the input
data or the tree branch lengths exhibit a very high dynamic range
in elements of the distance matrix that contribute substantially to
downstream results, e.g. after dimensionality reduction.

6 Conclusions
Microbiome studies are transitioning from experimental designs
with a few hundred samples to much larger designs spanning tens
of thousands of samples. Having access to effective but also fast
compute tools is thus becoming essential. UniFrac has long been
an important tool in microbiome research, and our work now
allows many analyses which were previously relegated to large
compute clusters to be performed with much lower resource
requirements. Even the largest datasets currently envisaged could
be processed in reasonable time with just a handful of server-class
GPUs, while smaller but still sizable datasets like the EMP can be
processed even on GPU-enabled workstations.

We used OpenACC to port the existing Striped UniFrac
implementation to GPUs, because this allows a single codebase for
both CPU and GPU code, thus significantly reducing long term
support burden. Some refactoring of the code was needed to
obtain maximum performance from the GPUs, but this refactoring
was mostly limited to the most time-consuming part of the code.
The increased memory footprint is slightly increased, but we
believe this trade-off is well worth the order of magnitude speed
improvement in run times.

Finally, we explored the use of lower-precision floating point
math to effectively exploit consumer-grade GPUs, which are
typical in desktop and laptop setups. We conclude that fp32 math
yields nearly identical results to fp64, and should be adequate for
the vast majority of studies, making compute on GPU-enabled
personal devices, even laptops, a sufficient resource for this
otherwise rate-limiting step for many researchers.

ACKNOWLEDGMENTS
This work was partially funded by US National Science
Foundation (NSF) under grants OAC-1826967, OAC-1541349 and
CNS-1730158, and by US National Institutes of Health (NIH) under
grant DP1-AT010885.

REFERENCES
[1] C. Lozupone and R. Knight, 2005. UniFrac: a New Phylogenetic Method for

Comparing Microbial Communities. Appl. and Env. Microbio. 71 (12) 8228-8235;
DOI: https://doi.org/10.1128/AEM.71.12.8228-8235.2005

[2] L. Thompson et al, 2017. A communal catalogue reveals Earth’s multiscale
microbial diversity. Nature 551, 457–463. DOI: https://doi.org/10.1038/
nature24621

[3] D. McDonald et al, 2018. Striped UniFrac: enabling microbiome analysis at
unprecedented scale. Nat Methods 15, 847–848. DOI: https://doi.org/10.1038/
s41592-018-0187-8

 [4] OpenACC Home page, https://www.openacc.org (Accessed April 2020)

