
ar
X

iv
:2

10
7.

00
41

7v
1 

 [
cs

.D
C

] 
 1

 J
ul

 2
02

1

Toward Interoperable Cyberinfrastructure: Common Descriptions for

Computational Resources and Applications

JOE STUBBS, TACC, University of Texas, Austin

SURESH MARRU, Cyberinfrastructure Integration Research Center, Indiana University

DANIEL MEJIA, Network for Computational Nanotechnology, Purdue University

DANIEL S. KATZ, NCSA, CS, ECE, iSchool, University of Illinois at Urbana-Champaign

KYLE CHARD, University of Chicago

MAYTAL DAHAN, TACC, University of Texas, Austin

MARLON PIERCE, Cyberinfrastructure Integration Research Center, Indiana University

MICHAEL ZENTNER, San Diego Supercomputer Center, University of California, San Diego

The user-facing components of the Cyberinfrastructure (CI) ecosystem, science gateways and scientific workflow systems, share a

common need of interfacing with physical resources (storage systems and execution environments) to manage data and execute

codes (applications). However, there is no uniform, platform-independent way to describe either the resources or the applications.

To address this, we propose uniform semantics for describing resources and applications that will be relevant to a diverse set of

stakeholders. We sketch a solution to the problem of a common description and catalog of resources: we describe an approach to

implementing a resource registry for use by the community and discuss potential approaches to some long-term challenges. We

conclude by looking ahead to the application description language.

CCS Concepts: • Computer systems organization → Distributed architectures; • Information systems → Computing plat-

forms; • Computing methodologies → Distributed computing methodologies.

Additional Key Words and Phrases: Cyberinfrastructure, interoperability, resource description, application description, science gate-

ways, science gateways community institute

ACM Reference Format:

Joe Stubbs, Suresh Marru, Daniel Mejia, Daniel S. Katz, Kyle Chard, Maytal Dahan, Marlon Pierce, and Michael Zentner. 2020. To-

ward Interoperable Cyberinfrastructure: Common Descriptions for Computational Resources and Applications. In Practice and Ex-

perience in Advanced Research Computing (PEARC ’20), July 26–30, 2020, Portland, OR, USA. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3311790.3400848

1 INTRODUCTION

A wide range of cyberinfrastructure (CI) components exist within the overall scientific ecosystem, from science gate-

ways to scientific workflow systems to Jupyter notebook-based environments, that integrate and provide access to

scientific applications, computing resources, and scientific data collections. For example, the Science Gateways Com-

munity Institute’s [10, 17] gateway catalog [14] alone contains nearly 600 entries, and Globus [1] provides access to

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or

to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

Manuscript submitted to ACM

1

http://arxiv.org/abs/2107.00417v1
https://doi.org/10.1145/3311790.3400848


PEARC ’20, July 26–30, 2020, Portland, OR, USA Stubbs and Marru, et al.

20,000 active endpoints. Typically, these systems rely on a variety of storage and execution infrastructure to main-

tain data collections and perform analyses. Such resources range from departmental servers and campus clusters, to

regional and national scale supercomputing facilities, to academic and commercial clouds, as well as the unique com-

munities and applications themselves. There is presently no uniformway of describing and discovering these resources

and applications, and as a result, each CI project creates its own ways of encoding this information.

This non-standardized approach leads to two problems. First, the information must be discovered and recompiled

by each cyberinfrastructure component as part of configuring and deploying the component, and as a result, the

information is often incomplete or inaccurate. Second, the components themselves, such as data management tools

or analysis components, are coupled to the non-standard description of the resources, typically through configuration

metadata, and as a consequence, there is a barrier to reusing the component in another framework or platform.

To address this problem, we propose a roadmap for improving interoperability across CI components, and we sketch

a solution to the challenge of resource description and discovery: a centralized, uniform computational resource reg-

istry. This would be valuable in its own right: CI components would be able to automatically obtain complete and

up-to-date information about available resources, removing the laborious and error-prone manual process currently

in place. In turn, the resource registry could improve aggregate resource utilization and reduce time-to-solution.

While we ultimately strive for interoperability at the scientific application level, finding a solution for uniform

resources is a necessary precursor. Codes for computational research tend to be highly sensitive to the execution

environment, often depending on specific hardware architectures, software libraries, storage resources, etc. to run

correctly, much less optimally.

2 STAKEHOLDERS AND PRIORWORK

A number of common CI frameworks and components leverage custom, non-standard ways of describing resources

and/or applications. The extensive experience of these stakeholders provides a starting point for understanding re-

quirements and defining initial solutions.

The Tapis framework [15] provides APIs to enable gateway developers and researchers to automate interactions

with high-performance computing (HPC) and cloud resources. Fundamental to the Tapis system are its Systems and

Apps services: users define the resources (systems) and analysis codes (apps) their programs will use by making HTTP

requests to the Systems and Apps APIs, respectively.

Apache Airavata [11] is a science gateway framework, hosted and operated as a platform instance that connects

many gateways to diverse computing and storage resources. It provides abstractions for managing the execution and

provenance of applications on diverse computational resources [13].HUBzero [12] is an open source software platform

on which to create science gateways. The platform provides capabilities to host scientific tools, publish data, share

resources and build communities. HUBzero-based science gateways combine web interfaces with a middleware that

provides access to interactive simulation tools running on cloud computing resources, campus clusters, and other

national HPC facilities.

Globus [1] is a high-performance data management service and platform that is used across many CI projects and

frameworks, including Tapis, Airavata, HubZero, Whole Tale, and Parsl. Globus endpoints can be deployed on laptops,

supercomputers, tape archives, scientific instruments and cloud storage.

Parsl [4, 5] is a Python parallel scripting library that allows Python programs to be written with task control and

dependency logic separated from resource configuration information. Parsl constructs a dynamic dependency graph

of components that it can then execute efficiently on diverse resources.

2



Common Descriptions for Computational Resources and Applications PEARC ’20, July 26–30, 2020, Portland, OR, USA

Table 1. Resource Types

Category Examples

HPC and campus compute clusters Blue Waters, Bridges, Comet, Frontera, OSC cluster, Stampede2

National-scale storage systems Corral, Globus Endpoints, SDSC Openstack Storage, Stockyard

Academic or Commercial Clouds JetStream or EC2 instances, S3 Buckets

Individual or Lab Resources Laptops, Workstations, Compute clusters (e.g., Hadoop, Spark, etc)

Table 2. Types of resource metadata

Category Description

High-level data Primary information about the resource, including hostname or network ad-

dress, owner, and type (e.g., “compute” or “storage”)

Hardware Details about the hardware, including CPU architecture, memory type, core

and thread count, storage type and driver, network type, etc.

Operating System Information about the operating system, including kernel and distribution

versions

Scheduler Information regarding the scheduler, including scheduler type (e.g., “slurm”

or “sge” but also “fork” for resources not using batch scheduling) and version,

queue definitions, etc.

Software Information about available software packages, including MPI/OpenMP,

CUDA, container runtimes, etc.

TheWholeTale [6] platform is an open, web-based service that allows researchers to create “tales” – reproducible

artifacts that combine data, computation environment, and the narrative of computational research (e.g., in a Jupyter

notebook).

3 UNIFORM RESOURCE DESCRIPTIONS: A SOLUTION SKETCH

Resource Description Specification: To define the resource description specification, we begin with an overview

of the technical scope. The goal is to include attributes into the specification that allow for describing as many CI

resources as possible. Table 1 summarizes the types of resources considered to be in-scope for this specification. In

general, the resource is required to be available on a network accessible by other machines, though it need not be on

a public network. Additionally, Table 2 describes the metadata that are in-scope.

Design and Implementation of Centralized Resource Registry: The design and implementation of the central-

ized resource registry must meet several requirements. 1) The registry must contain accurate, up-to-date information,

as the goal is to have production CI systems depending on this information. 2) The system must make it easy to add

new resources, modify, and maintain existing information as changes are made to the underlying resources (e.g., addi-

tional nodes added to a queue on a resource). 3) The registry itself must be highly available because this impacts the

availability of the CI tools using it. 4) Finally, the physical cost of building and maintaining the registry must be kept

to a minimum, as this is critical to its sustainability.

Building the registry on top of a highly-available, cloud-hosted service helps meet the cost and availability goals.

Storing registry information, including the versions of the specification, across one or more repositories hosted in a

service such as GitHub is an attractive bootstrapping option. In addition to providing free, highly available hosting,

3



PEARC ’20, July 26–30, 2020, Portland, OR, USA Stubbs and Marru, et al.

Table 3. Application types

Type Examples

Command-line/batch bioinformatics (fastqc, RNAseq), HPC (AMBER, LS-DYNA), engineering

(opensees, ADCIRC), data vis (paraview), utilities (compression, format con-

verters)

Interactive Jupyter, Matlab, RStudio

Streaming Spark Streaming, Apache Storm

GitHub provides issue tracking and fine-grained authorization controls with familiar workflows such as pull requests.

The GitHub Pages feature can host web-accessible applications with minimal effort, including dynamic applications

written with JavaScript. To insulate downstream systems from changes, both resource definitions and the resource

specification itself should be versioned. Consuming systems will be able query the repository for a specific version of

a resource or for the “latest” version.

Over time, we envision complementing the registry with additional tools, as defined by the needs of the community.

For example, a tool for automatically validating a resource definition could help reduce errors and the time required by

humans to maintain the definitions. Additionally, more robust search capabilities will facilitate automated discovery

of resources.In providing new tools, we will leverage existing solutions wherever possible to minimize maintenance

cost. For example, schema validation can be provided by using JSON Schema to define the specification itself and then

leveraging the reference implementations of tools such as validators.

Other issues must be addressed in future steps. For example, tens to hundreds of thousands of resources will be added

to the registry over time, considering the growth of edge computing. With this growth, performance and scalability

of the registry could become an issue. We must also consider resource lifecycles: stale entries in the registry (for old

resources) need to be retained for archival purposes, so decluttering the registry and other maintenance will be needed

to keep the information reliable.

Adoption in CI Components: The final step in implementing uniform resource descriptions is fostering adoption

across CI components. The value proposition of the project rests on improving interoperability across CI components.

If a critical mass of CI projects adopt the usage of uniform resource descriptions, 1) developers and users of the partici-

pating components will be able to discover accurate information about resources; and 2) participating CI projects will

be invested in the maintenance and success of the registry.

With support from the Science Gateways Community Institute (SGCI), we will promote our project with leading

CI component developers with the hopes of obtaining commitments to support and implement the specification and

registry. We plan to organize BoF sessions and workshops at conferences, including Gateways, WORKS, and SCXY,

to solicit input and participation from the CI community. We will use channels available to us through SGCI, such as

the webinar series, for dissemination of progress. Finally, once we establish an initial public project space, such as a

GitHub repository, we will enable community input via its associated mechanisms, such as its issue tracker.

4 UNIFORM APPLICATION DESCRIPTIONS

We begin building a uniform application description by defining the types of applications in scope (in Table 3), followed

by the types of metadata that need to be included (in Table 4). The situation is less clear cut than for resources, and

the definitions of application types will need further discussion.

4



Common Descriptions for Computational Resources and Applications PEARC ’20, July 26–30, 2020, Portland, OR, USA

Table 4. Types of application metadata

Category Description

High-level data Primary information about the application, including application name, type,

and description

Packaging Data pertaining to the application packaging, including container or VM im-

age, unikernel, module, etc.

Architecture & Hardware Depen-

dencies

Architecture (SP/MP) and hardware dependencies (processors, storage, net-

works, etc)

Software Dependencies Frameworks (Hadoop), Schedulers (SLURM), libraries, modules, etc.

Inputs and Data Dependencies Input files, objects, databases, URLs, environment variables

Runtime Requirements Additional runtime requirements, e.g., run as UID/GID, OS capabilities

Outputs Products produced by the app, including files, stdout streams, etc.

5 RELATED WORK

DRMAA [16] defined a generalized API to distributed resource management systems to facilitate the development

of portable application programs and high-level libraries. JSDL [3] describes the requirements of computational jobs

for submission to resources in grid environments. GLUE [2] is a conceptual information model for grid entities de-

scribed using the natural language and UML class diagrams. Globus Resource Specification Language [8] described

grid resources including computational job information. The Simple API for Grid Applications (SAGA) [9] provides

high-level interfaces for common grid components (e.g., transfer and scheduling). The Globus Monitoring and Discov-

ery Service [7] built upon the LDAP protocol to address the distributed resource selection problem.

6 CONCLUSION

This paper discusses early stage efforts in working towards a common computational resource schema. This is be-

ing bootstrapped by cyberinfrastructure practitioners committed to adopt the resulting common descriptions into

respective projects. The next phase will develop the schema and reference implementations. We plan to engage the

cyberinfrastructure developer community as broader adoption of the proposed common language will facilitate inter-

operability amongst various cyberinfrastructure components.

ACKNOWLEDGMENTS

JS, SM, MZ, MD and MP are supported by NSF award #1547611. DSK and KC are supported by NSF award #1550588.

KC is also supported by NSF award #1541450.

REFERENCES

[1] Bryce Allen, John Bresnahan, Lisa Childers, Ian Foster, Gopi Kandaswamy, Raj Kettimuthu, Jack Kordas, Mike Link, Stuart Martin, Karl Pickett,

et al. 2012. Software as a service for data scientists. Commun. ACM 55, 2 (2012), 81–88.

[2] Sergio Andreozzi, Stephen Burke, Felix Ehm, Laurence Field, Gerson Galang, Balazs Konya, Maarten Litmaath, Paul Millar, and JP Navarro. 2009.

GLUE Specification v. 2.0. In Open Grid Forum Recommendation Documents. Open Grid Forum.

[3] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough, Darren Pulsipher, and Andreas Savva. 2005. Job Sub-

mission Description Language (JSDL) Specification, Version 1.0. In Open Grid Forum, GFD, Vol. 56.

[4] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Ian Foster, Michael Wilde, and Kyle Chard. 2019. Scalable Parallel Pro-

gramming in Python with Parsl. In Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines (Learning)

(PEARC ’19). New York, NY, USA. https://doi.org/10.1145/3332186.3332231

5

https://doi.org/10.1145/3332186.3332231


PEARC ’20, July 26–30, 2020, Portland, OR, USA Stubbs and Marru, et al.

[5] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S. Katz, Ben Clifford, Rohan Kumar, Luksaz Lacinski, Ryan Chard, Justin M. Wozniak, Ian Foster,

MichaelWilde, and Kyle Chard. 2019. Parsl: Pervasive Parallel Programming in Python. In 28th ACM International Symposium on High-Performance

Parallel and Distributed Computing (HPDC). https://doi.org/10.1145/3307681.3325400

[6] Adam Brinckman, Kyle Chard, Niall Gaffney, Mihael Hategan, Matthew B. Jones, Kacper Kowalik, Sivakumar Kulasekaran, Bertram Ludäscher,

Bryce D. Mecum, Jarek Nabrzyski, Victoria Stodden, Ian J. Taylor, Matthew J. Turk, and Kandace Turner. 2019. Computing Environments for

Reproducibility: Capturing the “Whole Tale”. Future Generation Computer Systems 94 (2019), 854 – 867. https://doi.org/10.1016/j.future.2017.12.029

[7] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. 2001. Grid Information Services for Distributed Resource Sharing. In Proceedings

of 10th IEEE International Symposium on High Performance Distributed Computing (HPDC). 181–194.

[8] Ian Foster and Carl Kesselman. 1998. The Globus project: A status report. In Proceedings of Seventh Heterogeneous Computing Workshop (HCW’98).

4–18.

[9] Shantenu Jha, Hartmut Kaiser, Andre Merzky, and Ole Weidner. 2007. Grid Interoperability at the Application Level using SAGA. In Third IEEE

International Conference on e-Science and Grid Computing (e-Science 2007). 584–591.

[10] Katherine A Lawrence, Michael Zentner, Nancy Wilkins-Diehr, Julie A Wernert, Marlon Pierce, Suresh Marru, and Scott Michael. 2015. Science

Gateways Today and Tomorrow: Positive Perspectives of Nearly 5000Members of the ResearchCommunity. Concurrency and Computation: Practice

and Experience 27, 16 (2015), 4252–4268.

[11] Suresh Marru, Lahiru Gunathilake, Chathura Herath, Patanachai Tangchaisin, Marlon Pierce, Chris Mattmann, Raminder Singh, Thilina Gu-

narathne, Eran Chinthaka, Ross Gardler, et al. 2011. Apache airavata: a framework for distributed applications and computational workflows.

In Proceedings of the 2011 ACM workshop on Gateway Computing Environments. 21–28.

[12] Michael McLennan and Rick Kennell. 2010. HUBzero: a Platform for Dissemination and Collaboration in Computational Science and Engineering.

Computing in Science & Engineering 12, 2 (2010), 48–53.

[13] Marlon Pierce, Suresh Marru, Mark Miller, Amit Majumdar, and Borries Demeler. 2019. 2018 SciGaP Annual Report and Metrics Data (Report No. 5).

Technical Report. http://hdl.handle.net/2022/22903

[14] SGCI. 2020. Science Gateways Community Institute Catalog. Retrieved Feb 17, 2020 from https://catalog.sciencegateways.org/

[15] Joe Stubbs, Richard Cardone, Mike Packard, Anagha Jamthe, Smruti Padhy, Steve Terry, Julia Looney, Joseph Meiring, Steve Black, Maytal Dahan,

Sean Cleveland, and Gwen Jacobs. 2020. Tapis: An API Platform for Reproducible, Distributed Computational Research. (2020). submitted.

[16] Peter Tröger, Roger Brobst, Daniel Gruber, Mariusz Mamonski, and Daniel Templeton. 2012. Distributed Resource Management Application API

Version 2 (DRMAA). Technical report, Open Grid Forum.

[17] Nancy Wilkins-Diehr, Michael Zentner, Marlon Pierce, Maytal Dahan, Katherine Lawrence, Linda Hayden, and Nayiri Mullinix. 2018. The Science

Gateways Community Institute at Two Years. In Proceedings of the Practice and Experience on Advanced Research Computing. 1–8.

6

https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1016/j.future.2017.12.029
http://hdl.handle.net/2022/22903
https://catalog.sciencegateways.org/

	Abstract
	1 Introduction
	2 Stakeholders and Prior Work
	3 Uniform Resource Descriptions: A Solution Sketch
	4 Uniform Application Descriptions
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

