Lessons Learned and Challenges on Benchmarking
Publish-Subscribe loT Platforms

Ana Aguiar
University of Porto, Instituto de Telecomunicagdes
Porto, Portugal
ana.aguiar@fe.up.pt

ABSTRACT

The Internet of Things (IoT) emerged simultaneously in various
research fields and application domains, leading to the appearence
of a multitude of hardware, software technologies, horizontal plat-
forms and data models. Lost in this diversity, adoption decisions are
made to a large extent based on familiarity with a technology, or
because there is a broad community support for it. In this context,
bechmarking different technologies at different horizontal levels
would provide a more solid justification for the adoption of a spe-
cific technology in a specific context. In this paper, we reflect on our
previous work on benchmarking publish-subscribe IoT platforms
as a middleware for IoT applications, reporting lessons learned and
identifying challenges, thus contributing to the discussion on open
topics and relevant downstream work.

CCS CONCEPTS

» General and reference — Performance; Evaluation; Experi-
mentation,

KEYWORDS
Internet of Things, benchmarking, platforms

ACM Reference Format:

Ana Aguiar and Ricardo Morla. 2018. Lessons Learned and Challenges
on Benchmarking Publish-Subscribe IoT Platforms. In CPS-IoTBench 2019:
2nd Workshop on Benchmarking Cyber-Physical Systems and Internet of
Things, April 15, 2019, Montreal, Canada. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

As the Internet of Things (IoT) emerges in various research fields
and application domains, little is known about the benefits, dis-
advantages, and performance of each IoT technology or specific
implementations. Benchmarking different technologies at different
horizontal levels would provide a more solid justification for adop-
tion in a specific context. In prior work, we followed a systematic
approach at benchmarking different IoT publish-subscribe middle-
ware platforms motivated by a smart city scenario. In this paper,
we make a meta-analysis of that work, highlighting lessons learned

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoTBench 2019, April 15, 2019, Montreal, Canada

© 2019 Copyright is held by the owner/author(s). Publication rights licensed to

ACM.

ACM 978-1-4503-6693-9/19/04...$15.00

https://doi.org/10.1145/3312480.3313174

24

Ricardo Morla
University of Porto, INESC TEC
Porto, Portugal
rmorla@fe.up.pt

from these benchmarking efforts that . Although other benchmark-
ing tools for publish-subscribe [3] and IoT middleware [6] [7] exist,
we emphasise publish-subscribe communication middleware as
interoperability enabler for composing IoT applications from het-
erogeneous components. Our systematic approach and the use of an
archetypal IoT scenario makes us confident that the lessons learnt
are valuable and to some extent can be generalised, providing useful
end-yo-end system insights that speed up development and make
the learning curve less steep to performance evaluators.

We cover different challenges identified supported by illustrative
examples from our work, whereby the results are not important per
se, but serve as illustration and support for the points we make in
Section 8. We start by discussing important quantitative dimensions
in Section 3 and metrics in Section 4, and explore initial results to
show relevant observations. Section 6 follows from the duality we
experienced between using real deployments on the wild or using
laboratory settings with comparable computing infrastructure and
network conditions [1]. Section 7 shows how we addressed the
problem of abstracting components to reduce the cost of imple-
menting a new platform and further improve comparability [5].
We conclude the paper with a summary of lessons learned and
other challenges in Section 8. Although our examples use only two
publish-subscribe IoT platforms, we believe the lessons we learned
can be applicable to other publish-subscribe IoT platforms and other
massive sensing IoT scenarios.

2 SCENARIOS AND WORKLOAD

Data Fusion and
Information
Extraction

N

Consumer
Service
ub

P

Figure 1: A massive sensing IoT scenario

One challenge of benchmarking IoT systems is to have a shared
understanding of scenarios and benchmarked IoT systems. This is
important when replicating results from others and making sure
we are comparing apples to apples.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CPS-loTBench 2019, April 15, 2019, Montreal, Canada

We focus on an archetypal case of publication-subscription of
massive amount of data, motivated by a smart city application,
e.g. adaptive vehicle routing. This scenario is depicted in figure 1.
Heterogeneous sensor networks collect massive amounts of hetero-
geneous data, e.g. inductive loop counts, buses and taxis positions,
or their observed travel time statistics. A data fusion and informa-
tion extraction service must subscribe to the various data sources
to provide useful information, e.g. to predict the travel time in each
edge. Then, it publishes the processed data for a wide geographic
ares every x minutes. A mobility service, e.g. adaptive routing, then
subscribes to this data. Publish-subscribe middleware provides in-
teroperability among these different IoT application components,
both at the protocol and data layers.

The illustrative question that motivated our work was which
IoT middleware on the path to standardisation, FIWARE! or ETSI
M2M?/ OneM2M3, would be the most appropriate to support this
application. The load, which was constant throughout our efforts,
was the publication of 20 thousand 4 4 byte values.

Another scenario for which it should be sensible to benchmark
IoT systems is where data is not massive but delay sensitive. That
scenario is out of scope of this paper, but was previously explored
in [2].

3 QUALITATIVE DIMENSIONS

When presented with different sets of capabilities of competing
platforms, qualitative metrics can be used to assess how well they
comply with functional requirements. The most systematic part
of these metrics rely on the extensive framework of IoT-A”. Rel-
evant requisites within this framework concern interoperability
at protocol and data level, security, access control and anonymity,
name-based access and self-description, and support for queries
(semantic, location) [4].

Additionally, it is important to considered dimensions related to
the support to developers: availability and clarity of the documen-
tation, available tutorials, quality of the support and livelihood of
developer communities, like StackOverflow®. These dimensions are
not technically relevant, but play a big role in the learning curve
and maintainability of the implementation. Standardisation efforts
are of major importance for sustainability of the platforms.

Our qualitative analysis showed that FIWARE does not fulfill
IoT-A UNIL405 (support for multiple coordinate systems), and ETSI
M2M does not fulfill UNI.016 (support geographic coordinates),
UNI.240 (unified query interfaces), UNL405 and UNI.406 (support
for geographic queries). We also found out that FIWARE’s Orion
Context Broker imposes a 1 MByte limit on the publish request size
and 8 MByte limit on the subscription/notification size.

4 QUANTITATIVE METRICS

Quantitative performance metrics measure speed and efficiency
of the platforms, whereby here the specific implementations must

!https://www.fiware.org

http://www.etsi.org

Shttp://www.onem2m.org

4This is the size of the Open Street Maps graph for the city of Porto, a middle-sized
city.

Shttp://www.meet-iot.eu/iot-a-requirements.html

Shttp://stackoverflow.com

25

Aguiar and Morla, et al.

be considered. As speed, we mean the time to spread data among
subscribers. Efficiency measures the overhead imposed by the plat-
form, including the increase in the size of the data sent through
the network and the total number of bytes needed to send the data.
We defined metrics at different levels of the stack [4]: publish and
subscribe times, as defined in figure 2; time between first publi-
cation and last confirmation; size of marshalled data; size of TCP
payload; total amount of data to publish a resource, measured at
network level. One challenge is to understand how rich this set
is, how relevant each of the metrics is for different benchamrking
goals, workloads and scenarios, and which sets of metrics should
be added to cover other areas like power and security.

| Publisher || Broker | |Subscriber‘

Time Time

Time

Figure 2: Publish and subscribe time metrics.

5 ETSIM2M VS. FIWARE

We summarise here the initial results obtained from observing the
defined metrics for the two IoT platforms for brokers not under our
control—on the wild. These results have the purpose of illustrating
the insights that can be obtained from such an experiment, rather
than the actual values.

Publishing a large dataset as individual data elements can be
done in two ways: sequentially, or in parallel, and we tried both.

Parallel Publications. Our quantitative analysis showed that ETSI
M2M publish, subscribe, and total publish times were approximately
850% greater than FIWARE times. We believe it was caused by an
error in the implementation of the ETSI M2M library used that
did not allow for more than 2 simultaneous TCP connections. As
such, it was not possible to publish more than 2 resources at the
same time, no matter what number of parallel requests was chosen.
Publish times for both middleware platforms can be observed in
Figure 3. The ETSI M2M average publish times for a single resource
range from 5992 ms to 72858 ms for 50 and 500 requests in parallel,
respectively. In both cases, we observe outliers. These are likely
due to queueing at the broker’s database, because we are sending
requests in parallel, but the corresponding database transactions
do not occur in parallel. We also observe only excess outliers in
FIWARE, but both types in ETSI M2M. Although it would have
been interesting to look deeper into this, that was not possible in
these experiments because we did not have access to the broker ex-
cept via the public interfaces. We explore similar behaviours in our
controlled experiments reported in the next section. The subscribe
times are very similar to the publish times. A difference is that the
ETSI M2M broker we used always sends the subscription notifica-
tion before sending the HT TP response to the publish request. This
results in limited scalability when there are several subscriptions
to a given resource, since the broker will send all the subscription

Lessons Learned and Challenges on Benchmarking Publish-Subscribe loT PlatformsCPS-loTBench 2019, April 15, 2019, Montreal, Canada

t_pub[ms]
40000

30000 +

20000

.
10000 -| o <§> v

T T T T T T T T T T
50 100 150 200 250 300 350 400 450 500

Number of parallel publications

t pub[ms]

250000¢

2000004

o @

1500004 °

1000001

50000

T

1 iiet
CHTTTTIH

T T T T
50 100 150 200

-

T T T T T T
250 300 350 400 450 500
Number of parallel publications

Figure 3: Publish times for different number of parallel re-
quests. Top: FIWARE, bottom: ETSI M2M.

notifications before sending the HTTP response to the publish re-
quests, ultimately leading to larger than necessary publish times.
On the contrary, FIWARE sends the subscription notifications asyn-
chronously, and therefore sometimes the subscription notification
arrives before the HTTP response to the publish request and at
other times it arrives after.

Sequential Publication. Publish times were smaller in this case for
both platforms. FIWARE’s average publish time was 175 ms, while
ETSI M2M’s was 282 ms which was almost 61% greater. Subscribe
times were also smaller for both when publishing sequentially.
FIWARE’s average subscribe time was 227 ms with a performance
similar to ETSI M2M with 237 ms. Remarkably, FIWARE took nearly
64 minutes to publish all data, an increase of 1180% compared to
parallel publication. ETSI M2M that took nearly 98 minutes, an
increase of 98% in the total time to publish all data, when compared
to the parallel publication.

Although there is a clear advantage of publishing large datasets
using request parallelisation, this is not part of any client library
and must be implemented by the developer.

26

Other Observations. The average content-length for ETSI M2M is
390 bytes, 55% greater than that of FIWARE which is 251 bytes. This
is unexpected as FIWARE data structure format is JSON which tends
to be lengthy. We believe the reason behind this larger than expected
ETSI M2M content-length is an implementation inefficiency: we
verified that the ETSI M2M library sends unnecessary attributes
in the payload, such as the content-type which should only be in
the headers of the HTTP packet. The data itself only accounts for
146 bytes, which is lower than in FIWARE that requires the JSON
overhead.

We also observed that the FIWARE’s authentication proxy re-
turned HTTP errors in the 500 range. According to the team oper-
ating the FIWARE broker, it should not have.

We observed that the number of retries in the FIWARE experi-
ments grew throughout the day. We contacted the FIWARE team
and were told that the retries were due to the authentication proxy—
Steelskin PEP—and not due to the broker load itself.

Take Aways. The quantitative benchmark highlighted unexpected
or undesired behaviour of specific implementations, rather than
support for the choice of a middleware. Nevertheless, the undesired
behaviour would otherwise only have been found after costly im-
plementation efforts. Moreover, they provided many lessons about
the platforms and IoT application caveats.

6 CONTROLLED VS. ON THE WILD

The quantitative results shown in section 5 were obtain by bench-
marking broker deployments on the wild. This is important, e.g.
to help in the process of deciding which vendor platform to plug
your smart city nodes to. The brokers were installed in different
locations, and were operated by different entities: public Barcelona
FIWARE broker in Barcelona, vs a reference ETSI M2M broker in-
stalled in our premises but developed and operated by a telco. Thus,
we defined several network metrics to support result interpretation:
HTTP retries, round trip time to broker, TCP re-transmissions and
delays. We are able to make an initial comparison among the two
standard candidate platforms. We identified changes related to the
different specifications, but also inefficiencies in implementations,
and characterized performance variations throughout the day. The
results showed variability that could not be explained because the
brokers were running on different computing platforms and at dif-
ferent network distance. A challenge here is to identify methods
for narrowing down causes for the variability of results, for exam-
ple by additionally collecting traffic performance in the same path
between the clients and the broker.

Benchmarking in a controlled environment is a different ap-
proach that provides the degree of freedom required to test and
compare different configurations of the systems being assessed. In
a controlled environment the variability related to the network and
computing infrastructure is removed, and a fairer comparison is
possible for protocols, marshalling and implementation options, e.g.,
the chosen database engine. It is also possible to select and compare
alternative configurations at the broker. We used servers in our lab
to install an Orion Context Broker instance to evaluate FIWARE’s
performance and the OM2M broker to evaluate oneM2M’s perfor-
mance. FIWARE uses HT TP as application protocol. The OneM2M

CPS-loTBench 2019, April 15, 2019, Montreal, Canada

contains bindings for HTTP, CoAP, and MQTT’ application pro-
tocols. In this controlled environment, we were able to find that
broker performance can depend on different components like the
database and underlying communications protocol, but also on the
verbs used. For example, FIWARE performance with the same load
degrades with single versus multiple entities in the database and
the OneM2M performance is much better with HTTP and CoAP
protocols than with MQTT and its intermediate broker. Further,
while the execution of several parallel publications can in fact de-
crease the overall transmission time, in average each publication
will be delayed. We provide quantitative performance results for
these conclusions in the rest of this section. Further details of this
work can be found in [1].

6.1 Example — protocol performance

OM2M HTTP and OM2M CoAP have much better average publish
times than FIWARE. FIWARE’s publish times range from 21251 to
98,635 ms for 1 and 5 requests, respectively. The average publish
times of OM2M CoAP are lowest, ranging from 5873 to 8696 ms. The
use of CoAP represents an average decrease of 1.1% of the publish
time when compared with the use of HTTP in OM2M, which shows
small benefits of using UDP in addition to the smaller, binary base
header format. The use of MQTT as application protocol, including
the Mosquitto broker as proxy between the client and the OM2M
broker, represents an increase of the publish time of nearly 9.6
times when compared with the use of HTTP and an increase of
approximately 9.7 times when compared with the use of CoAP. The
publish times for the platforms with the different configurations
can be observed in figure 4.

The average total time to publish all data was nearly 395 s for
FIWARE, 58 s for OM2M HTTP, 58 s for OM2M CoAP, and 567 s for
OM2M MQTT. The latter represents an increase of nearly 8.8 times
to the fastest (OM2M HTTP and OM2M CoAP). We observe that
although the average publish time increases with the number of
parallel requests, the total time to publish all data decreases, except
for FIWARE. We discuss below the reasons for this not happen-
ing with FIWARE. We further observe that the use of Mosquitto
considerably decreases the performance. Figure 5 shows the mar-
shalling overheads, highlighting the efficiency of CoAP and MQTT
vs HTTP.

6.2 Example — Impact of CRUD Methods

OneM2M complies with technical standards that strictly define how
and where on the resource structure should be published. The flexi-
bility in FIWARE allows us to compare three different approaches
of publishing data using its Orion Context Broker, which we could
not compare in the previous section on the wild. The first approach
is the one we have been using up to here in this section: we previ-
ously create an entity for each edge and upon incoming edge data
we update the values of all entities. In the second approach, upon
incoming edge data we create a new set of entities—each entity with
the new value for its edge. This requires additional mechanisms
for entity cleanup and subscription. In the third approach, a single
entity is used to publish new data for all edges. We update the edge

"The use of MQTT is only possible with the use of an external MQTT broker as
intermediary. For that, we used the Mosquitto broker (https://mosquitto.org/).

27

Aguiar and Morla, et al.

id attribute together with edge data in the entity, once for every
edge and upon incoming edge data.

The results are shown in figure 6. There is a clear decrease in
performance for updating the values of several entities (first ap-
proach) and for creating entities (second approach) when compared
to updating the attributes of a single entity (third approach). Pub-
lishing data using the third approach results in FIWARE having
slightly better performance than OM2M HTTP and OM2M CoAP.
We relate this variation in FIWARE'’s performance to the database.
We observe that in the boxplots of the first approach there are no
publish requests with small publish times. As we are doing updates
to entities in a database with a rather large number of entities,
each update takes longer, and more parallel requests mean larger
times due to concurrency. In the second approach, we see that the
boxplots have measurement points spread across the entire Y-axis.
The database locks writing updates to the different entities. The
requests that can access the lock to create a new entity will have
low publish times; the rest of the requests must wait and experi-
ence larger publish times. As a final argument for the impact of the
database on the FIWARE broker performance, we stress the fact
that all reported measurements were done in a clear broker and
empty database.

7 EASE OF INTEGRATION

Early work showed that ensuring common ground across different
experiments is very cumbersome and error prone. To address these
difficulties, we designed a tool that enables multiple comparisons
across different platforms in an efficient manner. We propose a
generic architecture from which will stem a modular tool in which
the benchmarks can be run. The aim of the tool is twofold: to
provide a common ground in which the different platforms can be
benchmarked to ensure an equal playing field and replicability, and
to reduce the cost of trying out subsequent platforms.

We created a modular architecture by factoring the common
elements in the benchmarking applications, whose general plan
can be seen in figure 7. A user should be able to swap instances of
a block as necessary. To achieve this, we defined interfaces (inputs
and outputs) for all blocks.

The load block will enable different types of IoT scenarios to be
programmed and dynamically changed, so that we can attempt to
mimic varied real world scenarios. Again, this should be totally
independent from any other block so that the same workloads can
be used throughout all middlewares and protocols, providing a basis
for comparison and ensuring high flexibility.

The data block is where the middleware specific functions reside,
and each of these is responsible for implementing its data structure
and bridging the gap to the protocols. When a new middleware is to
be tested, one can leverage the existing functions, thereby speeding
up the implementation process. A new middleware will be added
as a new instance of the data block so as to not interfere with the
previous middlewares.

Next, we have the communication block where the protocols, such
as HTTP, CoAP, MQTT, are lodged. Each has its methods imple-
mented, e.g. POST or GET, so that they are middleware independent
and can be reused. If a new protocol is required, its methods can be
implemented without interfering with the remaining structure.

Lessons Learned and Challenges on Benchmarking Publish-Subscribe loT PlatformsCPS-loTBench 2019, April 15, 2019, Montreal, Canada

250
200
0
Q
(2]
£.150 |
£ H :
E
= i i
5 100 H E S ! ‘
s -
g = =RoRE
50 P B LoF L +
== (|
= ¥ H i
4 = s B L = = & ==
0 =
FIWARE OoM2M OoM2M OoM2M
HTTP HTTP CoAP MQTT

Figure 4: Publish times for different number of parallel requests.
to right.

1000 = TCP/UDP

F B HTTP/CoAP/MQTT
[Data

800

FIWARE
HTTP

OM2M
HTTP

OoM2M
CoAP

OM2M
MQTT

Figure 5: Publish request (left bar), response (center bar), and
notification (right bar) sizes for the different configurations.

During the test cycle, a set of defined values, such as times and
publish request sizes, will be stored and fed into the metrics block,
which will extract metrics such as average publish time or generated
traffic. New metrics can be added without affecting those that are
already implemented, also keeping result compatibility.

We iteratively developed this tool, by implementing the bench-
mark for OneM2M, and then extending it to FIWARE, re-utilising
as much as possible of the existing code. Later, we extended it to
Ponte?.

Class Lines of code
Main 51
Load 119
Middleware 16
Metrics 136
Ponte 88
FIWARE 193
OM2M 198

Table 1: Lines of code for each class

Shttps://www.eclipse.org/ponte/

28

Number of parallel requests increases from 1 to 5 from left

We can attempt to quantify the impact of such a tool on the
changes needed for a new implementation by looking at the lines
of code. The distribution of lines per class can be seen in Table 1.
This adds up to a total of 801. At first glance, we can see that for
the implementation of a single platfrom the effort required varies,
with Ponte only needing 88 lines of new code. Nevertheless, there
is a great deal that can be reused across all of them, greatly easing
the process. Not only are the structures and protocols similar, but
some of the methods are similar as well, such as with the publish()
methods between Ponte and FIWARE.

8 LEARNT LESSONS AND OUTLOOK

e It is important to understand communication protocol and
data overhead as there are significant differences, especially
for cyber-physical systems.

IoT platform benchmarks need to consider parameters like:
network latency at the time of the measurements; publish-
subscribe protocol parameters like quality of service; data-
base state and CRUD method; degree of parallelism while
publishing data; infrastructure specification, including net-
work configurations of the used machines and execution
environments.

Overall time for publication of a massive dataset is faster if
publications are parallelised, because the network latency
time can be filled with new requests while the broker is
actually processing each request.

Overall time for publication depends on how the dataset is
mapped to the data structures of the IoT platform, because
of the different database operations involved.

Measuring the number of publications per unit time is very
challenging and must be carefully interpreted. If measured
on the lab it does not generalise to other deployments due
to different computation capabilities. If measured on the
wild, the impact of network throughput and latency varia-
tions cannot be easily de-correlated and requires additional
measurements.

CPS-loTBench 2019, April 15, 2019, Montreal, Canada Aguiar and Morla, et al.

200
—~ 150
(o]
@
12}
E
o El
E 100 5 B
[E3
5 B
3 — -
N = 3 »
50 H]
B L H -
= ioB | 1
Sl A A S N B e ——
Update Multi Entities Create Multi Entities Update Single Entity

Figure 6: Publish times for FIWARE with three different ways to publish data and for different number of parallel requests
(Left: 1; Right: 5).

Publisher Subscriber . . .
; ; o Assess the impact of security protocol overhead in the per-

formance of the IoT platform, and chart against security
guarantees

o Assess how resilient the platforms are to side channel at-
tacks on the communication patters that could endanger
user privacy in privacy-sentitive scenarios

Figure 7: Main building blocks of the benchmarking tool.

Our goal was to share our experience and know-how and raise
awareness to caveats of benchmarking complex multi-layer com-
puter systems as IoT enabled cyber physical systems are bound to
be. We believe that our experience can fuel discussions about plat-
form benchmarking and also about benchmarking other IoT-CPS

e Protocol implementations play a significant role in the per-
components.

formance. On the one hand, benchmarking can highlight
limitations; on the other, for benchmarking it is advisable ACKNOWLEDGMENTS

to abstract from such details by using common protocol))) o
implementations. This work is a result of the project MobiWise (POCI-01-0145/FEDER-
o The broker is a key component of high complexity with 016426), funded by FEDER, through COMPETE 2020 and national
funds through Fundacio para a Ciéncia e Tecnologia and UID/EEA/

significant impact on system performance.
e Measuring the broker as a blackbox has several caveats: an 50008/2019 and UID/EEA/50014/2019.

external entity can measure either a broker implementation
in a lab, or a broker deployment on the wild, but the effect
of the network cannot be removed and it is challenging to

REFERENCES

[1] A. Aguiar R. Morla C. Pereira, J. Cardoso. 2018. Benchmarking Pub/Sub IoT
middleware platforms for smart services. Springer Journal of Reliable Intelligent

account for it. Only the operator of the broker can measure Environments 4, 1 (April 2018), 2537. https://doi.org/10.1007/540860-018-0056-3

the broker deployment directly, and only with more work [2] D.Ferreira A. Aguiar C. Pereira, A. Pinto. 2017. Experimental Characterisation of
. c . Mobile IoT Application Latency. IEEE Internet of Things Journal 4, 4 (April 2017).

may we be able to infer broker characteristics from observed https://doi.org/0.1109/JI0T.2017.2689682

behaviour. [3] Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka Versus RabbitMQ:

A Comparative Study of Two Industry Reference Publish/Subscribe Implemen-
tations: Industry Paper. In Proceedings of the 11th ACM International Conference

Although we did not explore them in detail yet, we believe the on Distributed and Event-based Systems (DEBS ’17). ACM, New York, NY, USA,

. I . _ 227-238. https://doi.org/10.1145/3093742.3093908
fOHOWIl’lg are relevant additional challenges for a credible bench [4] R. Morla A. Aguiar J. Cardoso, C. Pereira. 2017. Benchmarking IoT Middleware

e Database is one major bottleneck of the broker.

marking of IoT/CPS systems. Platforms. In Proc. IEEE 18th International Symposium on A World of Wireless, Mobile
. d Multimedia Networks (WoWMoM). IEEE. https://doi.org/10.1109/WoWMoM.

e Quality and diversity of the workload, specifically consider- ;(';17‘7;‘7 41;'; ia Networks (WoWMoM), peifidotor oo
ing samples from real deployments and modeling, and IoT [5] A. Aguiar L. Zilhio, R. Morla. 2018. A Modular Tool for Benchmarking IoT
testbeds?® Publish-Subscribe Middleware. In 2018 IEEE 19th International Symposium on A
. . World of Wireless, Mobile and Multimedia Networks’ (WoWMoM). IEEE. https:

e Understand the impact of different platform on energy con- //doi.org/10.1109/WoWMoM.2018 8449774

strained nodes, by means of measuring and modeling node [6] A.Shukla, S. Chaturvedi, and Y. Simmhan. 2017. RIoTBench: An IoT benchmark

B for distributed stream processing systems. Concurrency and Computation: Practice
energy consumption . X . and Experience 29, 21 (Nov. 2017). https://doi.org/10.1002/cpe.4257

o Consider known vulnerabilities of libraries and components [7] K. Zhang, T. Rabl, Y.P. Sun, R. Kumar, N. Zen, and H.-A. Jacobsen. 2014. PSBench:

of the benchmarked system in the qualitative analysis A Benchmark for Content- and Topic-based Publish/Subscribe Systems. In Pro-

ceedings of the Posters & Demos Session (Middleware Posters and Demos '14). ACM,

P New York, NY, USA, 17-18. https://doi.org/10.1145/2678508.2678517
https://www.iot-lab.info

29

https://www.iot-lab.info
https://doi.org/10.1007/s40860-018-0056-3
https://doi.org/0.1109/JIOT.2017.2689682
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1109/WoWMoM.2017.7974339
https://doi.org/10.1109/WoWMoM.2017.7974339
https://doi.org/10.1109/WoWMoM.2018.8449774
https://doi.org/10.1109/WoWMoM.2018.8449774
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1145/2678508.2678517

	Abstract
	1 Introduction
	2 Scenarios and Workload
	3 Qualitative Dimensions
	4 Quantitative Metrics
	5 ETSI M2M vs. FIWARE
	6 Controlled vs. On the wild
	6.1 Example – protocol performance
	6.2 Example – Impact of CRUD Methods

	7 Ease of Integration
	8 Learnt Lessons and Outlook
	Acknowledgments
	References

