
Hardware Acceleration of Image Registration Algorithm on
FPGA-based Systems on Chip

Ioannis Stratakos
National Technical University of

Athens, Greece
istratak@microlab.ntua.gr

Dimitrios Gourounas
National Technical University of

Athens, Greece
dimitrisgrn@hotmail.com

Vasileios Tsoutsouras
National Technical University of

Athens, Greece
billtsou@microlab.ntua.gr

Theodore Economopoulos
National Technical University of

Athens, Greece
teoeco@otenet.gr

George Matsopoulos
National Technical University of

Athens, Greece
gmatso@esd.ece.ntua.gr

Dimitrios Soudris
National Technical University of

Athens, Greece
dsoudris@microlab.ntua.gr

ABSTRACT
Image processing algorithms are dominating contemporary digital
systems due to their importance and adoption by a large number of
application domains. Despite their significance, their computational
requirements often limit their usage, especially in deeply embed-
ded designs. Heterogeneous computing systems offer a promising
solution for this performance gap, leading to their ever increasing
utilization by designers. This work targets the acceleration of an
image registration pipeline on a System-on-Chip (SoC) including
both general purpose and re-configurable computing elements. The
evaluation of our proposed HW/SW co-designed image registration
application on a state-of-the-art FPGA based SoC showcases its abil-
ity to outperform software designs leading to orders of performance
speedup (up to 67x) against embedded CPUs.

CCS CONCEPTS
• Computing methodologies → Image processing; • Hard-
ware→Hardware accelerators;Hardware-software codesign.

KEYWORDS
Image Registration, Downhill Simplex, Affine Transformation, Cor-
relation Similarity Metric, Zynq

1 INTRODUCTION
Computing systems have invaded all aspects of human life in an ef-
fort to automatize and optimize important laborious tasks. Concepts
and architectures such as Internet of Things and Edge computing
have risen the bar in both computation and communication re-
quirements of embedded systems [21]. In parallel, a flood of data
is produced in unprecedented high rates leading to a saturation of
the efficiency of general purpose computing systems and eventu-
ally paving the way for the integration of versatile and specialized
computing accelerators [10].

A well established area of computing systems intervention is
the medical domain, where electronic devices have revolutionized
the way that patients are examined and treated [22]. While initially
electronic devices were utilized mainly for medical data acquisition
and visualization, there is a gradual wave of adoption of more so-
phisticated analysis mechanisms able to offload the critical tasks
of a doctor. Towards this direction, the sampled patient data must
be efficiently analyzed and correlated within short time frames, in
order to assist diagnosis and reduce hospitalization. A significant
amount of such algorithmic techniques stems from the image pro-
cessing domain, since medical imaging is a well-established and
essential part of accurate diagnosis [7]. A key requirement in medi-
cal applications is the accuracy and dependability of the derived
diagnosis, ergo sophisticated algorithms and high resolution image
acquisition techniques are utilized.

The inherent trade-off of this design choice is the severe toll
on the computation requirements of the developed applications in
order to abide by the high standard requirements. Nevertheless, ade-
quately fast response latency and cost effective designs are required
to allow for the successful adoption of new, high-accuracy image
processing algorithms. Consequently, the incorporation of accel-
erating computing sub-systems in medical devices is an appealing
and effective design choice.

One of the most common acceleration techniques of modern
computing systems is the integration of Field Programmable Gate
Arrays (FPGAs), which bare the responsibility of executing the
heavy tasks of the application. FPGAs can produce order of magni-
tude of acceleration, while preserving a low power consumption
profile of the target computing systems. These features have estab-
lished them as an acceleration alternative in the medical domain as
presented in the works of [4, 5, 11, 15].

I. Stratakos et al.

This work targets image processing on FPGA based systems, with
emphasis on medical applications, utilizing computing platforms
which integrate general purpose computing elements (CPUs) and
FPGAs on the same System-on-Chip. This combination provides the
flexibility for efficient HW/SW co-design, which if applied properly
can get the most out of the FPGA sub-system. Most importantly, the
design principles of this system are similar to the FPGA systems for
large scale deployments (e.g. cloud based systems), thus enhancing
the re-applicability and importance of our proposed design.

On the algorithmic side, we focus on image registration algo-
rithmswhich is a fundamental task frequently encountered in image
processing applications. It is used in computer vision [14], medi-
cal imaging [13, 16], remote sensing [2], military automatic target
recognition [12] and satellite imaging [19].

Our methodology involves benchmarking and analysis of the
sub-components of the image registration algorithmic pipeline in
order (i) to optimize the algorithmic structure for our target dataset
and (ii) to locate and accelerate the computational hotspots of the
algorithm. This approach enables us to develop an accurate and
efficient accelerator, which in comparison to the embedded ARM
processors of our target system achieves a speedup of up to 67x.

The rest of the paper is organized as follows. Section 2 briefly
introduces related works regarding FPGA utilization in medical
applications. Section 3 introduces the fundamentals of image regis-
tration pipelines and outlines their major building blocks. Section 4
details the utilized building methodology and design internals of
our proposed HW/SW co-designed system. Section 5, describes the
experimental evaluation analysis of our proposed accelerator, while
Section 6 concludes the manuscript.

2 RELATEDWORK
Regarding the acceleration of registration methods using an FPGA
device, the work in [6] presents an FPGA-based architecture for
accelerated implementation of mutual information (MI)-based de-
formable registration. Reduction on the execution time from hours
to a few minutes is achieved, thus making it usable and efficient in
a clinical environment.

In addition, [23] presents a high performance FPGA-based direct
affine image registration core. The system runs at 100MHz and
achieves a registration speed of 82fps for 640x480 images, while a
floating pointMatlab implementation on a 2.4GHz Intel Core 2 Quad
required 5 seconds per frame, thus succeeding a 400x speedup. [18]
presents an innovative method for representing and exploring the
hardware design space when mapping image registration algo-
rithms onto configurable hardware. A rigid image registration ap-
plication under real-time performance constraints is designed with
74MHz maximum operating frequency.

The goal in [11] was to accelerate the demanding computational
parts of the magnetic resonance imaging (MRI). Based on a previous
work, a partial volume estimation (PVE) algorithm on an FPGA
was implemented. Compared to an Itanium 2 CPU, speedups of
2.5x for the probability density estimation and 9.4x for the prior
information estimation was measured.

Similarly, [5] explored the benefits of heterogeneous architec-
tures that include FPGAs and GPUs, in order to meet the real-time
execution requirements of an adaptive beamforming algorithm.

They implemented the minimum-variance (MV) adaptive beam-
forming algorithm using the NVIDIA GTX 480 GPU and the ML605
FPGA board, reaching speedups of up to 38x and 39x, respectively.

3 IMAGE REGISTRATION
Image registration refers to the mapping between two images, both
spatially and with respect to the intensity. It is used to match two
or more pictures taken at a different time, or from different sen-
sors/viewpoints [3]. One of the images is the fixed/source, while
the others are the moving/targets. The reference frame in the fixed
image is stationary, and the moving image is spatially transformed
to match the target.

Image registration algorithms can be divided in two categories:
intensity based and feature based [8]. Intensity-based methods
compare intensity patterns within the images via correlation or
error metrics. A pair of images, a similarity metric, an optimizer,
and a geometrical transformation must be specified. Feature-based
methods find correspondences between image features (such as
points, lines and contours) and utilize them to estimate a global
transformation which is finally applied to the moving image in
order to align it.

In general, image registration can be described as an iterative
trial-and-error procedure. A measure of similarity or distance is
computed between the images at each iteration and used to deter-
mine if they are sufficiently aligned. This process is controlled by
the optimizer starting from an initial state and determining subse-
quent steps to reach an optimal alignment. A brief presentation of
each of the three main steps is presented below.

Measure of match: Image similarity metrics are methods used
to calculate a quantitative evaluation of the similarity between
two images. They act as a base in all registration applications,
since they enable the optimizer to progress in the search of the
optimum transformation. Commonly usedmeasures include: Sum of
Absolute/Squared Differences, Correlation Coefficient, Matte’s Mutual
Information, Gradient Correlation [20].

Two similarity metrics were examined in this study: the Corre-
lation Coefficient and Matte’s Mutual Information. The Correlation
Coefficient provides a measure of the linear relationship between
the two images. Matte’s Mutual Information is a method that mea-
sures the amount of information that can be obtained for one of
them by observing the other.

Transformer: The transformer maps points of the moving im-
age to new locations in the transformed image. According to the
registration problem the transformer can be either collinear or de-
formable. Collinear transformations are the rigid, the affine and the
projection. The rigid transformation includes translation and rota-
tion only, whereas the affine transformation also includes scaling
and shearing [9]. This work uses an affine transformation around
the center of the image.

Optimizer: The optimizer defines an efficient and often non-
exhaustive strategy to search the allowed transformation space for
the best match between the images. An optimizer can be categorized
as gradient-based or gradient-free, global or local [20].

In this study the Downhill Simplex and the Powell’s Direction
Method, both of which are classified as gradient-free and local [20]
are examined. Other methods include: Gradient-Descent, Soblex,

Figure 1: Registration example using the iris dataset

Simulated Annealing, etc. The Downhill Simplex utilizes the concept
of the simplex, which consists of N+1 points in a N-dimensional
space [17]. After initialization, the optimizer follows a series of steps
that aim in moving the highest points of the simplex to lower ones.
Convergence is usually achieved after multiple contractions of the
simplex. The process terminates when the distance of the vector
moved in two subsequent steps is below a threshold. Powell’s is a
direction method that produces N mutually conjugate directions.
This method practically searches for a multidimensional function’s
minimum or maximum by moving along set directions.

4 PROPOSED HARDWARE ACCELERATOR
This section presents the HW/SW co-designed system that was de-
veloped. An exploration is necessary to determine the best combina-
tion of the optimizer and similarity measure. To achieve that, we uti-
lized a dataset of gray-scale photographs of the iris of different eyes
acquired by high resolution cameras (image size: 1000x1000). Reg-
istration of these eyes can have security or medical purposes [13].
Figure 1 illustrates an image registration example on the utilized
dataset. The first two images correspond to different photographs
of the same eye. The left one is the moving image, while the second
the fixed one. The registration result is depicted in the third image,
where the moving image has been optimally transformed to be
aligned to the fixed. An edge detection and an image fusion have
also been applied for a visual representation.

4.1 Evaluating the optimizer and similarity
measure methods

As explained in Section 3, the Downhill Simplex method and Powell’s
Direction method are considered as the optimizing procedure, while
for the similarity measure the Correlation Coefficient and Matte’s
Mutual Information are the methods under evaluation. Thus, four
different combinations are derived and examined in order to choose
the final configuration of the image registration application. The
solution quality provided by these methods directly affects the
registration’s performance. For the dataset of the application, it
was concluded that all four models had the same success rate.

The affine transformation parameters and their maximum al-
lowed values also influence performance. We experimentally con-
cluded that typical values of 30°for rotation and 10% for scaling are
sufficient for our target dataset. Conversely, the maximum value of
displacement is what affects the alignment process the most.

Table 1 presents how the similarity measure is affected by the
maximum displacement value and the different configurations. All
methods achieve a higher similarity (and consequently a better
alignment), when themaximum displacement is increased to a value
that can sufficiently express the required geometric transformation.

Table 1: Computed similarity measure for various maxi-
mumdisplacement. Scaling and rotation are fixed at 10% and
30° respectively.

Maximum Downhill Simplex Powell’s Direction
Disp. Correlation Mutual Correlation Mutual

50 0.157844 0.261021 0.227008 0.285423
100 0.231213 0.374724 0.487449 0.385665
200 0.783975 0.788725 0.784077 0.788861
300 0.784035 0.789102 0.784041 0.789113

Therefore, both optimizers and both similarity metrics noted similar
performance, provided that they were equally initialized. In total,
the chosen solver for the hardware acceleration makes use of the
Downhill Simplex Optimizer, the Affine TransformationModel and the
Correlation Similarity Metric. The aforementioned components were
preferred mainly due to their popularity and conceptual simplicity.

Figure 2 illustrates a high-level representation of the processing
flow for a general image registration solver. The dashed boxes are
optional steps, which were not necessary in this work, while the
boxes with solid contours are the ones that are part of our design.
The flow of the application is as follows:

Step 1: Images are loaded either from non-volatile memory or
the moving image is dynamically captured from an imaging device
and the fixed image is extracted from a database.

Step 2: N+1 initial points are calculated. These points are re-
quired by the Downhill Simplex method and cover the whole range
of the exploration space. For each of them an affine transforma-
tion is applied and the respective similarity measure between the
fixed and the moving images is computed, thus creating the initial
simplex in question.

Step 3: Starting from the initialization of Step 2, the optimizer
begins the evaluation process of the termination criteria. If they are
satisfied then a valid transformation has been found and the appli-
cation moves on to the post-processing stages. If the termination
criteria are not satisfied, then Step 4 is executed.

Step 4: The state of the transformation parameters are optimized
and a new candidate transformation is determined. The correspond-
ing similarity measure is computed and the optimizer again decides
upon the completion or not of the registration procedure, by re-
turning to Step 3.

4.2 Profiling of Image registration algorithm
The registration solver has been developed using the C program-
ming language. A further profiling procedure was performed to

Start

Pre-
Processing

Initial Point
Calculation

Optimizer

Terminate

Affine
Transform

Similarity
Measure

Post-
Processing

Load
Images

Yes

No

Stop

Figure 2: Processing flow of a general registration solver.

I. Stratakos et al.

Table 2: Profiling of registration for two pairs of eye images.

Total Execution Transform & Measure
Latency (sec) Execution Latency (sec)

Matching pair 39.923572 39.9216161
Differing pair 103.084555 103.080554

identify parts of the application that are computationally intensive,
their memory requirements, as well as the type of operations in-
volved. Besides its structure, the execution latency of the examined
application is affected by the following parameters:

• Image size: As the image size becomes larger, the required
latency to process it increases, becoming a serious bottleneck
especially for image processing operations that are difficult
to apply numerous pixels concurrently.

• Tolerance threshold: The threshold for determining a suc-
cessful registration is a trade-off between accuracy and the
required computations of the application.

• Iteration number : In case the optimizer is unable to converge
to a solution (e.g. very low threshold), after a predefined num-
ber of iterations the registration process is stopped. In this
case, the results may not be optimal and a post-processing
step must be taken. This value was set to maximum 500
allowed iterations.

• Maximum displacement/rotation/scaling: The initial transfor-
mation parameters are directly affected by the maximum
allowed values of these parameters. Certain transformations
may be rejected if the computed transformed coordinates
lay out of the image boundaries. The maximum rotation is
fixed at 30°, scaling at 10% and displacement at 300 pixels
(Section 4.1).

The initial profiling was performed on the 1000x1000 images.
Moreover, to decouple the measured profile of the application from
the properties of the examined pairs, we examine both cases of
successful and unsuccessful registrations. Table 2 presents the mea-
sured latency of such an example, where there is a pair of matching
input images (Matching pair) and a pair of non matching images
(Differing pair) of the input dataset. The Table includes the total ex-
ecution latency of the application, as well as the execution latency
of its Transform & Measure function. The latency of this function
requires almost 99% of the total latency in both cases. Consequently,
this is the algorithmic part that will be the focus of our accelerated
design on the FPGA fabric.

Based on the profiling, a high-level HW/SW partitioning of the
registration solver is provided in Figure 3. The less computationally
demanding parts, such as loading the images, tuning the transfor-
mation parameters and evaluating the termination criteria remain
as software components, while the application of the candidate
transformation to the pixel coordinates and the computation of the
similarity measure are implemented on the FPGA.

4.3 Proposed HW accelerator architecture
The basic sub-modules of the implemented hardware accelerator
are: (i) the Transform, which applies the affine transformation on
every pixel. This unit takes as input the pixel coordinates and the

Legend

Start

Initial Point
Calculation

Optimizer

Terminate

Affine
Transform

Similarity
Measure

Load
Images Yes

No

Stop

HW

CPU

Figure 3: HW/SW partitioning of the image registration.

current transformation parameters and outputs the transformed
coordinates, partitioned in their decimal and fractional parts, (ii) the
Interpolation Weights, that generates the interpolation weights used
for computing the final intensity value of the transformed pixel. It
accepts the fractional parts of the transformed coordinates from the
Transformation unit and produces the appropriate interpolation
weights, (iii) the Interpolation Calculation, where the final intensity
of the transformed pixel is computed. The inputs of this module are
the weights and intensity values of the three pixels neighboring
the transformed pixel, as produced on the Interpolation Weights
unit, in addition to the weight and intensity value of the trans-
formed pixel, (iv) the Accumulations, which comprise a number of
accumulation units responsible for computing the sums needed
for the final calculation of the correlation between the images. Its
inputs are the intensity value of the interpolated pixel, coming from
the Interpolation Calculation unit, and the corresponding intensity
value of the pixel on the moving image.

Additionally, the hardware accelerator uses two memory mod-
ules for image storage purposes and a number of control units to
synchronize its operation. These controllers are responsible for gen-
erating the pixel coordinates, managing memory accesses, delaying
data and regulating the communication with the software applica-
tion. The final architecture of the developed hardware accelerator
is given in Figure 4.

4.3.1 HW/SW communication. In image processing applications
one of the main design challenges is the efficient communication
between the processing elements and the memory, so as to main-
tain a high throughput and low latency data transfers. To meet
these requirements a Direct-Memory Access (DMA) based solution
with streaming capabilities must be used. The streaming feature

Memory

Manager/

BRAMs

FPGA

Software

application

Coordinate

Generator
Transform

Interpolation

Weights

Transformed

Coordinates

Interpolation

Calculation

Delay

Lines
Pixel values

Accumulations

Initial

Coordinates

Termination Signal

Control signals

Controllers
Data

HW/SW Communication

Software

application

Computations

Figure 4: HW accelerator architecture.

will cover the throughput constraint and the DMA will provide
direct access to the memory for the processing elements. The target
platform offers these features through the use of the AXI commu-
nication infrastructure. Thus, the hardware accelerator adopts the
AXI4-Stream for high-bandwidth image data transfers, while the
AXI4-Lite is used for low-bandwidth communication.

4.3.2 Memory bottleneck. A common problem encountered in im-
age processing applications deployed on FPGA devices is the limited
BRAM resources to store image pixels for processing. To overcome
this problem a common approach used is the sliding window tech-
nique [1]. The image registration application utilizes two images,
the fixed one and the moving one. On the moving image, where
the transformation is applied, the new pixel coordinates follow an
irregular pattern, limiting the ability to apply this technique or
find an efficient way to access the required pixel values. To bypass
this problem, an offline preliminary step that downsizes the images
from 1000x1000 to 256x256 was introduced. After ensuring that
the quality of the results is not negatively affected by this strategy,
it is now possible to fit both images in the BRAMS of the FPGA,
allowing for a straightforward memory-mapped access.

5 EXPERIMENTAL EVALUATION
5.1 Experimental setup
The evaluation targets the Zybo development board, featuring the
xc7z010 part of the Zynq-7000 SoC family devices. The Zynq plat-
form consists of the Processing System (PS), hosting a dual-core
ARM Cortex-A9 processor, and the Programmable Logic (PL) which
refers to the FPGA fabric of the device. The HW/SW co-designed
application is compared against software implementations executed
on an Intel i5 4200U CPU and on the ARM CPU of the Zynq PS.

Each implementation is compared based on the quality of the
results, which takes into consideration the calculated optimum
transformation parameters and the similarity measure. Moreover,
their execution latency is measured and the hardware cost in terms
of FPGA resources is given. In order to have fair comparisons be-
tween the platforms all the measurements are performed after the
dataset images are downscaled to 256x256 pixels in size in order to
meet the memory constraint of the FPGA device (Subsection 4.3.2).

5.2 Evaluation of transformation parameters
Our first experiments aim at providing quantified evidence that
the hardware accelerator provides accurate results with respect to
the reference software application. The six affine transformation
parameters (2 for rotation, 2 for scaling and 2 for displacement) and
the final similarity measure are used as quality metrics, with the
software implementation on Intel i5 serving as reference.

Table 3 gives the parameter values of the final transformation
to be applied on the moving image, as well as the final similar-
ity measure computed on the three different platforms. All the
computations were performed with single precision floating-point
arithmetic in order to have an initial estimate of the migration of
some software functions to the FPGA. As can be seen, the values of
the transformation parameters differ slightly, but the difference in
the context of the specific test case is acceptable.

Table 3: Final affine transformation parameters and similar-
ity measure on three different platforms.

Transformation Intel i5 xc7z010
Parameters 4200U PS PS+PL

T1 1.002974 1.010045 0.990064
T2 -0.015803 -0.015795 -0.017116
T3 45.320175 45.801357 44.415871
T4 0.024869 0.027911 0.021519
T5 0.997309 1.003294 0.989229
T6 -16.065662 -15.859092 -15.909966

Measure of 0.792186 0.792874 0.780669Match

5.3 Co-designed system execution latency
Having validated that the computed transformation parameters
have an acceptable deviation from the reference and that the final
similarity measure is acceptably close in all platforms, the execution
latency of the proposed HW/SW co-designed system is compared
against the software only implementations on Intel i5 4200U and
on ARM Cortex-A9 (Zynq PS). The comparisons are performed for
a single-threaded C code execution on all platforms. The operat-
ing frequencies of CPUs were preserved at their base supported
frequency, i.e. 650 MHz for the ARM Cortex-A9 CPU and 1.6 GHz
for the Intel i5 CPU. The FPGA accelerator operated at 100MHz
as reported by the synthesis tool. Also, note that for the following
experiments the downsized images were used.

Figure 5a shows the measured average execution latency over
100 runs of the co-designed application versus the software only
application on Intel i5 for four different sets of eye images. The
first three out of which lead to successful registration and the last
one fails. The achieved execution speedup is also annotated on
the figure. In all cases, there is a decrease in execution latency
and the average achieved speedup over the four test cases is ∼
3x. The variable execution latency stems from the fact that the
termination criteria is directly related to (i) the maximum number
of iterations allowed on the optimizer, (ii) the tolerance threshold
of the optimizer and (iii) on the nature of the images used. Small
deviations in the parameters generated at the end of an iteration
may lead to a varying convergence trajectory, which is caused by a
difference in the optimizing steps.

The experiment is repeated in a fully embedded execution envi-
ronment and the obtained results can be seen in Figure 5b, which
shows the execution latency of the presented design versus the
software only implementation running on ARM Cortex-A9 (Zynq
PS). It is clearly evident that there is a considerable decrease in exe-
cution latency in all four cases and the average speedup achieved is
∼ 46x. Again, observed fluctuation in the execution latency is due to
the variable nature of the termination criteria of the optimizer. Nev-
ertheless, the HW/SW co-designed application outperforms both
software-only implementations, despite the use of single-precision
floating-point implementation.

I. Stratakos et al.

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

Registration 1 Registration 2 Registration 3 No registration

Ex
ec

u
ti

o
n

 la
te

n
cy

 (
se

c)

Intel i5-4200U xc7z010 PS + PL

3.5x

2.4x

3.7x
2.9x

(a) Comparison against Intel i5-4200U @ 1.6 GHz

0.00

2.50

5.00

7.50

10.00

12.50

15.00

17.50

20.00

Registration 1 Registration 2 Registration 3 No registration

Ex
ec

u
ti

o
n

 la
te

n
cy

 (
se

c)

xc7z010 PS xc7z010 PS + PL

40.4x

66.4x

37x 42.3x

(b) Comparison against ARM A9 @ 650 MHz

Figure 5: Performance evaluation of the proposed design.

Table 4: Resource utilization on xc7z010 Zynq device.

xc7z010 Available Used Resources
PL Resources Accelerator Communication

LUTs 17600 11396 (65%) 2768 (16%)
DFFs 35200 19965 (57%) 2656 (8%)

BRAMs 60 34 (57%) 1 (2%)
DSPs 80 76 (95%) 0 (0%)

5.4 FPGA resource utilization
Table 4 presents the resource utilization of the final HW architec-
ture. Even though the co-designed application uses single-precision
floating-point arithmetic, it can still fit on the FPGA device, despite
the high DSP utilization (95%). However, the high DSP utilization
presents a major bottleneck for the implemented application, as
the parallelization of the application in the FPGA becomes pro-
hibitive. Moreover, the majority of the FPGA resources have been
allocated for computation and not communication. Regarding mem-
ory resources requirements, the utilization of BRAMs is around
60%, which allows for the prospect on-chip analysis of images of
higher dimensions.

6 CONCLUSIONS
This paper presented the development of a HW/SW co-designed
application and the deployment on a SoC-FPGA device for an image
registration pipeline. The developed application was successfully
mapped to one of the smallest Zynq devices, while incorporating
single-precision floating-point arithmetic. Moreover, the quality
of the proposed design was experimentally verified against pure
software implementations showing high performance gains, while
preserving algorithmic accuracy.

ACKNOWLEDGMENTS
The work in this paper has been partially funded by the European
Union’s Horizon 2020 research and innovation programme, under
project SDK4ED, grant agreement No 780572.

REFERENCES
[1] Donald G. Bailey. 2011. Design for Embedded Image Processing on FPGAs (1st ed.).

Wiley Publishing.
[2] Youcef Bentoutou, Nasreddine Taleb, Kidiyo Kpalma, and Joseph Ronsin. 2005. An

automatic image registration for applications in remote sensing. IEEE transactions
on geoscience and remote sensing 43, 9 (2005), 2127–2137.

[3] Lisa Gottesfeld Brown. 1992. A survey of image registration techniques. ACM
computing surveys (CSUR) 24, 4 (1992), 325–376.

[4] Carlos R Castro-Pareja, Jogikal M Jagadeesh, and Raj Shekhar. 2003. FAIR: a
hardware architecture for real-time 3-D image registration. IEEE Transactions on
Information Technology in Biomedicine 7, 4 (2003), 426–434.

[5] Junying Chen, Alfred CH Yu, and Hayden K-H So. 2012. Design considerations
of real-time adaptive beamformer for medical ultrasound research using FPGA
and GPU. In Field-Programmable Technology (FPT), 2012 International Conference
on. IEEE, 198–205.

[6] Omkar Dandekar and Raj Shekhar. 2007. FPGA-accelerated deformable image
registration for improved target-delineation during CT-guided interventions.
IEEE Transactions on Biomedical Circuits and Systems 1, 2 (2007), 116–127.

[7] Thomas Martin Deserno. 2011. Biomedical image processing. Springer Science &
Business Media.

[8] Arthur Ardeshir Goshtasby. 2005. 2-D and 3-D image registration: for medical,
remote sensing, and industrial applications. John Wiley & Sons.

[9] John F Hughes, Andries Van Dam, James D Foley, Morgan McGuire, Steven K
Feiner, David F Sklar, and Kurt Akeley. 2014. Computer graphics: principles and
practice. Pearson Education.

[10] Christoforos Kachris and Dimitrios Soudris. 2016. A survey on reconfigurable
accelerators for cloud computing. In Field Programmable Logic and Applications
(FPL), 2016 26th International Conference on. IEEE, 1–10.

[11] Jahyun J Koo, Alan C Evans, and Warren J Gross. 2009. 3-D brain MRI tissue
classification on FPGAs. IEEE Transactions on Image Processing 18, 12 (2009),
2735–2746.

[12] Igor V Maslov. 2004. Automatic image registration and target recognition with
multiresolution hybrid evolutionary algorithm. In Signal Processing, Sensor Fu-
sion, and Target Recognition XIII, Vol. 5429. International Society for Optics and
Photonics, 180–188.

[13] George K Matsopoulos, Nicolaos A Mouravliansky, Konstantinos K Delibasis, and
Konstantina S Nikita. 1999. Automatic retinal image registration scheme using
global optimization techniques. IEEE Transactions on Information Technology in
Biomedicine 3, 1 (1999), 47–60.

[14] Ntana Nkanza. 2005. Image registration and its application to computer vision:
mosaicing and independant motion detection. Ph.D. Dissertation. University of
Cape Town.

[15] Mohd Fauzi Bin Othman, Norarmalina Abdullah, and Nur Aizudin Bin Ahmad
Rusli. 2010. An overview of MRI brain classification using FPGA implementation.
In Industrial Electronics & Applications (ISIEA), 2010 IEEE Symposium on. IEEE,
623–628.

[16] Hanchuan Peng, Phuong Chung, Fuhui Long, Lei Qu, Arnim Jenett, Andrew M
Seeds, EugeneWMyers, and Julie H Simpson. 2011. BrainAligner: 3D registration
atlases of Drosophila brains. Nature methods 8, 6 (2011), 493.

[17] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery.
2007. Numerical recipes 3rd edition: The art of scientific computing. Cambridge
university press.

[18] Mainak Sen, Yashwanth Hemaraj, William Plishker, Raj Shekhar, and Shuvra S
Bhattacharyya. 2008. Model-based mapping of reconfigurable image registration
on FPGA platforms. Journal of Real-Time Image Processing 3, 3 (2008), 149–162.

[19] Utsavkumar S Shah and Darshana Mistry. 2014. Survey of image registration
techniques for satellite images. International Journal for Scientific Research &
Development 1, 11 (2014), 2321–0613.

[20] Ramtin Shams, Parastoo Sadeghi, Rodney A Kennedy, and Richard I Hartley. 2010.
A survey of medical image registration on multicore and the GPU. IEEE signal
processing magazine 27, 2 (2010), 50–60.

[21] John A Stankovic. 2014. Research directions for the internet of things. IEEE
Internet of Things Journal 1, 1 (2014), 3–9.

[22] Eric J Topol and Dick Hill. 2012. The creative destruction of medicine: How the
digital revolution will create better health care. Basic Books New York.

[23] Brandyn A White. 2009. Using FPGAs to perform embedded image registration.
BSc. Major Thesis, Computer Engineering, University of Central Florida (2009).

	Abstract
	1 Introduction
	2 Related work
	3 Image registration
	4 Proposed Hardware Accelerator
	4.1 Evaluating the optimizer and similarity measure methods
	4.2 Profiling of Image registration algorithm
	4.3 Proposed HW accelerator architecture

	5 Experimental Evaluation
	5.1 Experimental setup
	5.2 Evaluation of transformation parameters
	5.3 Co-designed system execution latency
	5.4 FPGA resource utilization

	6 Conclusions
	Acknowledgments
	References

