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ABSTRACT

The interest in probabilistic real-time is increasing, in response
to the lack of traditional static WCET analysis methods for appli-
cations running on complex systems, like multi/many-cores and
COTS platforms. However, the probabilistic theory is still imma-
ture and, furthermore, it requires strong guarantees on the timing
traces, in order to provide safe probabilistic-WCET estimations.
These requirements can be verified with appropriate statistical
tests, as described in this paper, and tested with synthetic and real-
istic sources, to assess their ability to detect unreliable results. In
this work, we identified also the challenges and the problems of
using statistical test based procedures for probabilistic real-time
computing.
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« Computer systems organization — Real-time systems; Em-
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1 INTRODUCTION

The estimation of the Worst-Case Execution Time (WCET) is essential
for hard real-time systems, in which the timing constraints of the
tasks must be guaranteed under any condition. Failing to meet these
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constraints leads the system to misbehave with possible unaccept-
able consequences, especially in the case of mission-/safety-critical
applications. Consequently, a timing analysis requires the estimated
WCET value for a critical task to be greater or equal to the real
WCET. On the other hand, this estimation must be as tight as possi-
ble to the real WCET, in order to minimize the resource assignment
over-provisioning.

Recently, getting a safe but tight WCET has become a challenging
problem. The growing computational power demand of embedded
systems, in addition, but opposed to, the reaching of technology
limits, is increasing the hardware complexity of processors — such
as the introduction of many-cores, multi-level caches, complex
pipelines, etc... This leads to hindering the use of traditional WCET
estimation techniques [17] [19] [5]. The problem is even magnified
when dealing with Commercial-Off-The-Shelf (COTS) components,
mixed-criticality and general-purpose operating systems [26] [27].

1.1 Probabilistic Real-Time

Given the aforementioned scenarios, probabilistic (hard) real-time
has been proposed as a possible solution to WCET estimation prob-
lem. This approach is founded on the well-known Extreme Value
Theory (EVT), which is typically applied to natural disaster predic-
tion, For example, to estimate the probability of unseen catastrophic
floods. The theory is briefly described in Section 2. The use of EVT
in real-time systems has been proposed at the beginning of 2000s by
Burns et al. [7] and Bernat et al. [4]. The first paper described EVT
and how it can be used for probabilistic real-time analysis, while
the latter focused on the algebraic properties needed to combine
several probabilistic-WCET estimations. A few years later, the EVT
has been applied with measurement-based methodologies [32].
Probabilistic real-time based approaches can be divided into
two classes [1]: Static Probabilistic Time Analysis (SPTA) and the
Measurement-Based Probabilistic Time Analysis (MBPTA). MBPTA,
the subject of this work, has been proposed to estimate the so-called
probabilistic-WCET (pWCET), by directly sampling the execution
times of the tasks. Unlikely the classical WCET estimations, the
pWCET is not a single value. Rather it is a statistical distribution,
characterized by the following cumulative distribution function (cdf):

p =P(X > WCET)

where X is the random variable representing the task execution time.
By using this distribution, it is possible to compute the probability
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of violation (p) of a given WCET or, vice versa, the WCET given
the probability of violation (p). The pWCET is considered safe if the
estimated distribution “upper-bounds” the worst-case execution
time with a probability value equal or higher than the real one !,

Lately, some researchers on probabilistic analyses focused their
effort on creating architectures, from which to generate time traces
fulfilling the EVT requirements (see Section 2.1) [18] [9]. These re-
sults are however considered controversial [30]. Others focused on
the theoretical aspects of MBPTA [23] [32] [2], which still presents
several challenges to address [13] [29].

Contributions. Several articles in literature assume the truth of
the EVT hypotheses or do not systematically assess their validity:
some works applied improper hypothesis tests, erroneously run
multiple tests on the same data, or reached conclusions without
a proper evaluation of the statistical effects. Strategies based on
expert knowledge instead, like graphical plot analysis, do not offer
a systematic approach and thus quantitative information on the
pWCET reliability.

In this article, we aim at (1) analyzing and making a selection of
the statistical tests fitting the probabilistic real-time computing case;
(2) clearly stating the problems and the statistical aspects affecting
the pWCET reliability. Moreover, we highlight some common errors
recurring when statistical tests are applied to MBPTA.

2 EXTREME VALUE THEORY IN REAL-TIME
COMPUTING

The statistical theory of extremes has been developed to study the
“tails” of a distribution. In this regard, the aforementioned Extreme
Value Theory (EVT) is opposite to the central limit theorem, which
focuses on the behaviour of the distribution around its mean value.

Given a sequence of independent and identically distributed ran-
dom variables X1, Xy, ..., Xp, the EVT provides the limit distribution
at the extremes, i.e. the max(X1, Xa, ..., Xp,) or min(X1, Xo, ..., Xp).
In a real-time computing scenario, X1, X2, ..., Xy, is a sequence of
execution times of a given task. Consequently, since for the WCET
estimation we are interested in the maximum value, we can formal-
ize the probability of not incurring in a execution time longer than
a certain value x as follows:

P(max(X1,X2,...,Xn) <x)=P(X; <x,X2 <x,..,Xn <x)

iid n ey

= P(X1 £ x)P(Xp < x)---P(Xp < x) = F'(x)

As we mentioned above, F(x) is the cumulative distribution func-
tion (cdf) of X1, X2, ..., Xn. Without entering in statistical details, it
is possible to demonstrate that [8]:

dap, by, s.t. nli_I)I(l)o F"(apx + by) = G(x) (2)

where G(x) is the cdf of the so-called Extreme Value Distribution.
The form of this distribution can be generalized as subsequently
described and its parameters can be estimated from data.

The parameters of G(x) can be estimated by grouping the data
using the Block-Maxima (BM) or the Peak-over-Threshold (PoT) ap-
proach. In the first case, the time values are grouped inside blocks

Formal definitions for pWCET comparison are available in [32].
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Figure 1: pWCET estimation flow based on the EVT.

of constant size B, to then compute the maximum value for each
block. Formally:

BM _ (yvBM BM BM
X ={X7, X5 ""’Xn/B} 6
BM
X;i" = max(Xp.(j-1)+1> XB-(i-1)+25 - XB-i)
The latter instead, discards values by removing any sample lower

than a predefined threshold P:

xPeT = {X; st. X; > P} (4)

XBM XPOT

According to the Extreme Value Theory [11] and
converge respectively to the Generalized Extreme Value Distribution
(GEVD) and to Generalized Pareto Distribution (GPD). These distri-
butions can be then exploited to compute the pWCET, following
the flow depicted in Figure 1 [28].

The pWCET obtained is thus representative of the real distribu-
tion of extremes, and consequently safe for real-time computing, if
and only if the following EVT hypotheses hold:

(1) the input measurements must be identically and indepen-
dently distributed (i.i.d.)

(2) the XBM or XPoT set must be in the domain of attraction of
an extreme distribution

As explained in the next sections, both the hypotheses are necessary
to obtain a reliable pWCET.

2.1 The i.i.d. hypothesis

As for other statistical theories, the classical formulation of EVT
requires the random samples to be identically and independently
distributed. In real-time computing, this hypothesis is mainly de-
pendent on the processor and the system architecture. For example,
a processor with a standard cache would not be able to fulfill the
independence requirement, because subsequent executions of the
same task will be affected by the status of the cache. In practice, the
i.i.d. requirement can be relaxed in favor of the stationary property
and weaker independence properties [21] [33]. Such hypotheses
must hold [32] and can be formalized as follows:

Stationarity. Given a random sequence Xi, X2, ..., Xy of size
n, the process is said to be strict stationary iff for any choice of
k,I,m with 0 < k + [+ m < n the following condition is true:
FXks Xier1s s Xier1) = FX ks Xkrma15 - Xkrm+1), Where F is
the cdf of the joint distribution. This condition implies identical
distribution of the random variables. In real-time computing, the
stationary hypothesis indicates a flat distribution of execution times,
with constant variance. A task that drastically changes the job
execution time after some runs, for instance, violates this property.

Short-range independence. Given a sequence of random vari-
ables X1, X2, ..., X, of size n, the sequence is said to be short-range
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independent if for any i1 < iz < -+ <ip < j1 <-- <jp < n
st.ji—ip>2s>1, defining Fyj the cdf of iy, ..., ipsJ1s oo jns FI the
cdf of iy, ..., ip, Fy the cdf of ji, ..., jp we have |Fjj — F1Fj| < apn,s
where  is non-decreasing in s and limp—c0 @y, [n5] =0, VYo > 0.
In real-time computing, an example of cause of short-independence
property violation is the presence of processor cache effects be-
tween two job instances.

Long-range independence. According to this property, the
time series does not show a significant correlation across large
time-spans. We define this property by defining its opposite. A long-
range dependent sequence can be defined as: a random sequence
X1,X2, ..., Xy of size n is said to have long-range dependence if its
auto-correlation function p(r) decays exponentially: p(7) ~ TLI(fZL

3]

with 0 < d < % where L(r) verifies lims— oo LL((L” = 1 for some
a> 0.

2.2 The domain-of-attraction hypothesis

The last property, introduced in [32], is called matching and it is
related to the domain of attraction hypothesis, i.e. the convergence
to an EVT distribution of the random output sequence of BM (or
PoT). This depends on several factors, including the BM (or PoT)
procedure itself and how the timing samples are measured.

When the timing samples are represented with continuous vari-
ables, such as directly time measure the system, the domain of
attraction hypothesis is verified in the overwhelming majority of
the times [31]. This is not necessarily true instead when we consider
discrete distributions.

The matching property is usually checked with a posteriori sta-
tistical tests, that verify whether the resulting distribution actually
matches the input data. Typical tests are the Kolmogorov-Smirnov
[16] and Anderson-Darling [34].

This hypothesis is, on the one hand, not very generalizable, on
the other hand, often true for continuous data, thus not interesting
with respect to the scope of this paper. This does not mean that
this hypothesis should not be considered in probabilistic real-time
analyses, but since it depends on several factors, we need specific
procedures for each scenario.

3 STATISTICAL TESTS IN MBPTA

All the hypotheses previously described can be verified through
suitable statistical tests. The results are reject/not-reject responses
that corresponds to the adherence or not to the EVT hypothesis.
This, in turn, can represent a true/false boolean response to the
problem of verifying the pWCET reliability. Therefore, performing
proper statistical tests in a correct way is fundamental, other than
being a necessary step towards the certifiability of the probabilistic
approaches.

3.1 Assessing the EVT hypotheses via
hypothesis testing

In this paragraph, we discuss about the choice of the of statistical
tests needed to verify the previously described hypotheses: station-
ary, short-range independence and long-range independence.

A statistical test is typically described by its hypothesis scheme.
Usually the symbol Hy represents the null hypothesis, while the
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symbol H; or H, the alternative hypothesis. The result of a test
can be “reject the null hypothesis” or “unable to reject the null
hypothesis”. In the first case, the test has detected strong evidences
that the null hypothesis is probably false, while the alternative
hypothesis is probably true.

The outcome of a statistical test (reject/not-reject) comes from
the evaluation of the p-value or the critical value. As the two ap-
proaches are exactly equivalent, we have decided to consider only
the second one. The critical value is a constant value derived from
the significance level . It is compared against the statistic computed
over the data to take the reject/not-reject decision. The computa-
tion of both critical value and the statistic depends on the specific
test.

Stationarity.

In statistical literature several studies on stationary processes
are available together with several test procedures. In particular,
there is a large availability of unit-root tests — a particular case of
non-stationarity — but less availability of general stationary tests.
Given a time series X = {Xj,Xa,...,Xn} we are searching a test
with the following hypothesis scheme:

Hy : the time series X is stationary
Hj : the time series X is not stationary

In this regard, the most used one is the Kwiatkowsky, Phillips,
Schmidt and Shin (KPSS) test [20]. While, a variant of KPSS consid-
ers a relaxed null hypothesis “the time series is stationary or trend
stationary”. For the EVT hypothesis of stationarity, we are inter-
ested in the most strict one, thus we do not consider this variant.

Short-Range dependence. To test the short-range dependence
of data, we selected the Brock, Dechert, Scheinkman and LeBaron
(BDS) test [6]. For probabilistic real-time, we decided to select this
test, since being a portmanteau test, i.e. the null hypothesis is well
specified, but the alternative hypothesis it is not.

Given a time series X1, X2, ..., Xn:

Hy : the time series x is independent
Hj : the time series X has some sort of dependency

Most of the other available tests detect specific sort of depen-
dency (e.g. serial correlation or deterministic chaos). Therefore, we
decided to maintain the test with the most general detection capabil-
ity. This increases the time trace rejections, i.e. erroneous rejections
of safe probabilistic-WCET, but it also reduces the false negative
results, i.e. missing rejections of unsafe probabilistic-WCET.

Long-Range dependence. The Hurst Exponent (H) is the tra-
ditional index used to measure the long-term memory of a time
series in financial applications [25]. H is a number in the range [0; 1]
indicating the degree of long-term dependency: H = 0.5 means a
perfectly random and uncorrelated time series, while H < 0.5 or
H > 0.5 indicates a negative or positive correlated time series, re-
spectively. However, performing a statistical test on H is nontrivial
[10] and, to the best of our knowledge, it does not exist a well-
assessed test. The Hurst index is computed from the R/S statistic
equation [15] instead, that can be directly used as a test:

Hy : the time series has no long-range dependency
Hj : the time series has long-range dependency
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This test is sensitive to long-range dependency but also to short-
range dependency.

Test result interpretation. An improper test selection, a too
small sample size or the continuous re-sampling to obtain a time
trace that passes the tests are common examples of not carefully
analyzed scenarios, that often led to misleading conclusions.

The execution of multiple tests on the same data is another case
where the shift of the « critical level is not often taken into account,
as described in Section 3.2.

3.2 Sample size and significance level

Once the statistical test procedure is defined, the next critical step
is to set the sample size and the significance level a.

The sample size, i.e. the number of time measurements compos-
ing a time trace, is a parameter affecting both WCET estimation
precision and safety. Using a limited number of samples may cause
the failure of the extreme value distribution estimator or, even
worse, the estimation of an incorrect distribution. The sample size
affects also the reliability of the statistical test results. However, in
previous works, this was often a not considered or not well justi-
fied aspect. Most of the times, the number of measurements was
empirically established. In this section and in the following one, we
will argue about the importance of the sample size in probabilistic
real-time and how it affects the reliability of KPSS, BDS, and R/S.

Moreover, when the sub-hypotheses presented in the previous
section has to be checked, the experimenter performs a sequence
of three statistical tests, usually on the same data. In general, ex-
ecuting multiple hypothesis tests on the same data increases the
false-positive rate on the null hypothesis rejection of the overall
test [3]:

Aglobal = 1= (1 - )" (5)

where n is the number of tests (in our case n = 3).

For common values & = 0.05 and & = 0.01, the resulting global
significance levels are respectively agobal ~ 0.14 and aglohal ~
0.03. The real significance level is thus higher than the single test
levels, entailing a higher false-positive rate in rejection. Rejecting a
sample implies that the pWCET estimation process stops, avoiding
unsafe pWCET estimation. This makes it difficult to characterize an
architecture according to its capability of fulfill the EVT hypothesis:
it is not possible to use a single test result. The test needs to be run
several times and we need to consider the overall ratio reject/not-
reject: a rejection ratio near « identifies an architecture that verifies
the EVT hypotheses, while an higher ratio represents a violation
of EVT hypotheses.

3.3 Safety considerations

When the result of a hypothesis test is evaluated, the experimenter
can incur in two possible errors: (1) reject the null hypothesis when
it is actually true (Type I error) and (2) retain the null hypothesis
when it is actually false (Type II error). The experimenter can control
the Type I error by changing the significance level a. Type II error
depends rather on the statistical power of the test. Unfortunately,
the statistical power is neither simple to control nor to estimate.
Let W be the statistical power, its analytical definition is: W =
1 — p where = P(Accept Hy|Hj is false). The statistical power W
depends on several parameters, including the significance level, the
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Rejectany Rejectgpgs  Rejectgpg  Rejectpg

Al 13.9% 6.8% 5.5% 4.5%
A2 12.3% 5.3% 4.9% 4.3%
A3 11.4% 4.9% 5.3% 3.4%
B1 100% 4.7% 100% 6.9%
B2 100% 100% 100% 100%
B3 100% 83.1% 99.2% 98%
B4 100% 100% 5.5% 100%

Table 1: Tests rejections of synthetic time traces. The ’any’
column represents rejection percentage of at least one test.

input data distribution, the test statistic and the sample size. It can
however easily be increased, by enlarging the sample size.

In our scenario, the Type II error represents the inability to
detect a violation of EVT hypotheses, which consequently generates
an incorrect extreme-value distribution, that may lead to unsafe
pWCET computation. For hard real-time systems, a preliminary
study on the statistical power is therefore necessary, to both select
the proper sample size and to estimate the statistical power. The
latter can then be used in the evaluation of the pWCET reliability
and, consequently, in the safety analysis of the overall system.

4 EXPERIMENTAL EVIDENCES

In this section, we present the experimental evaluation of the chosen
statistical tests. The expectation is to get high rejection rates for
time traces that do not satisfy the conditions described in Section
2.1. On the other hand, if the source of the samples is a distribution
that verifies the EVT hypotheses, then the rejection rate should
settle around the significance value a.

4.1 Time trace sources

For characterizing the properties of the proposed test, we used both
synthetic time samples and real benchmarks executions. The first
class of time traces has been designed to stress the detection capabil-
ity of each statistical test. The real benchmarks are instead executed
on different hardware platforms, with well-known real-time capa-
bilities, to show an evaluation of the probabilistic predictability of
the target system.

Without losing generality, we evaluated the tests with a level of
significance @ = 0.05. This means that we expected for each test a
type I error (i.e. false-positive rate) of 5%. In our scenario, this is
a conservative error: each test excludes 5% of the times a dataset
that is actually valid for EVT estimation. The overall type I error
can be computed using Equation 5, obtaining 14% (ctgjopar = 0-14).

Synthetic sources. Let X,.;, be an ordered subset of the full
time trace Xj.,. For synthetic and controlled time traces we used
both i.i.d. and non i.i.d. sources. For the former, we selected the
following EVT-compliant distributions:

Al Xi.n ~ N(10, 1): Gaussian (normal)
A2 Xi.n, ~ P(10): Poisson
A3 Xi., ~ T(10,1): Gamma

Then we tested three non-compliant distributions:
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Bl Xj.z ~ N(10,1); X241, ~ $(1): a normally distributed
time trace for the first half part and then a Poisson distribu-
tion; it represents a sequence of independent but not identi-
cally distributed samples.

B2 Xi1.n ~ AR(2): an auto-regressive model of order 2, with
constant 10 and auto-regressive coefficients (0.7, 0.25). This
class represents a short-range dependent time source.

B3 Xi., ~ ARFIMA(%, 0,0,0, %): an auto-regressive fractionally
integrated moving average model with AR, MA, and I coef-
ficients zero, constant % andd = %. This class represents a
time source with long memory.

B4 Xi1., = {Vi € [1;n]|X; ~ N(10+0.001 - i, 1)}: non identically
distributed samples with long-range dependence, but short-
range independent.

We have drawn a total of 1 000 000 samples for each distribution and
then we split in groups of size 1000 for a total of 1000 evaluations.

Real sources. Concerning the experimental evaluation on real
platforms, we run four state-of-the-art benchmarks of the WCET
Malardalen suite [14]: sqrt, minver, fdct, complex. We imple-
mented each benchmark onto five different platforms, whose well-
known architecture characteristics introduce different degrees of
unpredictability:

R1 PIC: time-deterministic and simple processor: a PIC18F45K50
microcontroller without operating system;

R2 STM: time-deterministic platform with a L1D and L1I cache:
STM32F7 board programmed bare-metal without operating
system;

R3 MIO: time-deterministic platform with a real-time operating
system: the STM32F4 with Miosix operating system Z;

R4 ODR: partially unpredictable platform: multi-core Odroid XU-
3 with a Linux OS (vanilla kernel);

R5 INT: completely unpredictable platform: multi-core Intel i7
with a Linux OS (vanilla kernel).

The benchmarks have been slightly modified to add: (1) a PRNG
for input data generation (with the exception of complex where the
input is constant), (2) an external loop to run the benchmark multi-
ple times, (3) a toggling mechanism for a GPIO to signal the start
and stop of a benchmark execution. To maintain consistency among
all platform, the PRNG has been initialized with the same seed. This
way each platform generates the same sequence of pseudo-random
inputs to the benchmarks. The time measurements have been ac-
quired by measuring the GPIO interval between the rising edge
(start of the computation) and the falling edge (end of the computa-
tion), using a commercial logical analyzer with a 10ns resolution.
Each benchmark then has been executed 100 000 times by using
time series of size 1000 for statistical testing, for a total number of
100 estimations for each benchmark.

4.2 Results

Synthetic samples. The results on time traces from synthetic
sources are shown in Table 1. For i.i.d. datasets (A1-A3) it is pos-
sible to notice a rejection rate based on evaluations of single tests
around 5%, that actually matches the chosen significance level a.
The rejection rate of all the tests is slightly below 14%, that is the

Zhttp://miosix.org/
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Rejecty,, Rejectgpss Rejectgps  Rejectg/s
R1 23% 7% 15% 6%
R2 24% 2% 20% 3%
5 R3 29% 6% 23% 7%
® R4 14% 1% 13% 1%
R5 349 20% 12% 21%
R1 16% 6% 6% 6%
5 R2 15% 9% 5% 6%
g R3 17% 10% 7% 8%
E R4 44% 1% 44% 1%
R5 78% 61% 31% 66%
R1 8% 2% 5% 2%
R2 20% 4% 15% 4%
g R3 | 100% 99% 100% 99%
R4 62% 16% 48% 15%
R5 81% 67% 45% 71%
R1 79% 19% 72% 16%
% R2 56% 5% 52% 3%
% R3 | 100% 0% 100% 0%
S R4 92% 5% 92% 1%
R5 |  100% 60% 95% 71%

Table 2: Tests rejections of R1-R5 time traces. The ’any’ col-
umn represents rejection percentage of at least one test.

significance level value computed by using Equation 5. This value
represents the false-positive error rate, i.e. the percentage of time
series that is discarded even if they are generated by compliant
sources.

Regarding the results of time traces that do not satisfy at least
one EVT condition (B1-B4), we can notice the rejection rate is
always 100%. We can observe that the power of BDS is high for
B1-B3 but it is not for B4, where KPPS and R/S are able to reject
the hypothesis. On the contrary, for B1 only BDS results appears
to be sufficiently powerful. Moreover, it is worth highlighting that
B1 is a non-identically distributed time series, but KPSS is not able
to detect it, while BDS provides for it. This is due to the lack of
statistical power of KPSS in case of weak stationary, but not strict
stationary time series [24].

Real platforms samples. Table 2 shows the results when time
traces are generated by executing benchmark applications on the
aforementioned platforms. It is possible to observe the expected
trend of generating less-compliant time traces, with the increasing
of the hardware complexity. The traces generated by the complex
benchmark are hardly analyzable for all platforms, due to the lack
of variability. This is in contrast with the common logic behind the
WCET analysis for which a more stable timing is preferrable. The
statistical tests described and the EVT in general instead, require a
minimal degree of variability, as also shown by Lima et al. [22]. The
benchmark complex lacks of variability as it is the only benchmark
one - out of the four benchmarks - that performs simple computa-
tion on the same input data for each iteration. For example, in the
PIC microcontroller case, the variability of time measurements of
complex benchmark is due only to the measurement errors of the
instrumentation.

For all the other benchmarks, the simple PIC microcontroller
generates deterministic time traces that lead to a low rejection rate,
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close to the significance level, i.e. the false positive rate. The MIO
and STM platforms present higher values of rejection, caused by
the presence of the operating system and cache memories, respec-
tively. As expected, and with the only exception of sqrt case, the
probabilistic theory cannot be used for the Odroid, and least of
all, the Intel CPU based machine. The only unexpected outlier is
the fdct benchmark on the Miosix board. Here the rejection rate
is 100% without a clear reason. By observing the time traces, we
hypothezise that the instruction prefetcher, the board is equipped
with, causes large recurrent variations compared to the intrinsic
variability of the fdct benchmark, that triggers the detection of a
short-range dependence. However, this conclusion requires a more
in-depth analysis on the specific system, that falls outside the scope
of this paper.

5 CONCLUSION

Statistical hypothesis testing plays a key role on the reliability
of probabilistic real-time estimation and the consequently safety
of critical systems. However, some state-of-the-art works do not
follow a systematic procedure in performing statistical tests. This
work proposed three tests to assess the i.i.d. hypothesis, that have
been tested on synthetic dataset and real-time traces. Moreover,
we discussed which factors affect the reliability of statistical test
procedures applied to probabilistic real-time computing.
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