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ABSTRACT
Verification of stochastic dynamical systems can often be formu-
lated as chance-constrained optimization problems — maximize
probability of satisfaction of safety/reachability objectives subject
to dynamics and control bounds. For linear systems perturbed by
Gaussian noise, chance-constraint techniques have proven to be
highly efficient. With the goal of extending this approach to non-
Gaussian disturbances, this short paper focuses on tractable ap-
proaches to enforce chance constraints involving non-Gaussian
random vectors. After reviewing existing techniques, we propose a
novel approach to enforce chance constraints for arbitrary distur-
bances using Fourier transforms that is sampling-free and provides
tight approximations. We demonstrate the efficiency of our ap-
proach in a simple example.

CCS CONCEPTS
•Theory of computation→ Stochastic control and optimiza-
tion; Convex optimization; • Computing methodologies→ Con-
trol methods; Computational control theory;

1 INTRODUCTION
In real world applications, uncertainties may arise due to model
discrepancies, sensing limitations, and the influence of external
agents (for example, humans) acting on the system. Stochastic veri-
fication can be used to quantify the likelihood of achieving a desired
specification with a minimum desired probability, while respecting
system dynamics and control bounds [1–3]. A theoretical frame-
work for addressing stochastic reachability and viability problems
provides a dynamic programming solution. for the general class
of hybrid dynamical systems [4]. However, its numerical imple-
mentation relies on gridding, resulting in a lack of scalability. An
alternate approach is to pose the stochastic reachability problem as
a stochastic optimization problem, and to utilize existing literature
on chance constraints [5]. A chance constraints-based approach
has been utilized to verify linear systems perturbed by Gaussian
disturbance [6–9]. We extend this approach to non-Gaussian dis-
turbances, and propose a Fourier transform-based approach that
is tight and sampling-free. We demonstrate that our approach out-
performs existing state-of-the-art techniques to enforce chance
constraints involving non-Gaussian random vectors.
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We first formally state the problem of interest. Let u ∈ Rn be an
optimization variable andw ∈ Rm be a random vector with proba-
bility measure Pw . Define the halfspaceH(u) = {w ∈ Rm : a⊤w ≤

b + c⊤u} using known a, b, and c with appropriate dimensions.
Given some u ∈ Rn and p ∈ (0, 1), we wish to tractably evaluate
the probability ofw lying inH(u). We denote this probability by
G : Rn → [0, 1],

G(u) ≜ Pw {w ∈ H(u)}. (1)

In verification problems, u may be the control input to the system,
w the disturbance, and a,b, and c may be derived from the polytopic
safety constraints, the dynamics of a linear system, and the initial
state (see [6] for more details). We also wish to characterize the
feasible set for u, denoted by F (p) ⊆ Rn ,

F (p) = {u ∈ Rn : G(u) ≥ p}. (2)

The main contributions of this paper are as follows: i) review
existing techniques to enforce (1) and characterize (2) for non-
Gaussian disturbancew , and ii) propose a sampling-free approach
to enforce the chance constraint using Fourier transforms. We also
review known properties aboutG(u) and F (p). Finally, we illustrate
the efficacy and accuracy of our method over existing techniques
using a numerical example.

2 REVIEW OF KNOWN RESULTS
2.1 Cumulative density function-based

reformulation of (1) and (2)
Let Φa⊤w (·) denote the cumulative density function of the random
variable a⊤w . We have

G(u) = Pw {a⊤w ≤ b + c⊤u} = Φa⊤w (b + c⊤u) (3)

In addition, we have

F (p) =
{
u ∈ Rn : Φa⊤w

(
b + c⊤u

)
≥ p

}
. (4)

For Gaussian random vectors, u ∈ F (p) can be enforced exactly as
a deterministic linear constraint on u, using the standard normal
cumulative density function [6, 7]. The main focus of this paper is
to provide a tractable approach to implement (3) and (4) for non-
Gaussian disturbances.

2.2 Properties of G(u) and F (p)
Lemma 1. [5, Thms. 4.2.4 and 10.2.1] For any probability measure
Pw , the function G(u) is upper semicontinuous. For a log-concave
probability measure Pw , the function G(u) is log-concave.

Recall that upper semicontinuous functions are functions whose
superlevel sets Sα = {u ∈ Rn : G(u) ≥ α } are closed for every
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α ∈ R. Log-concavity ofG(u) implies that log(G(u)) is concave. Log-
concave functions have convex superlevel sets Sα for every α ∈ R.
Note that many standard distributions, like Gaussian, exponential,
and beta distributions, have a log-concave probability measure.
See [10] for more details.

Remark 1. For a log-concave probability measure Pw , the set F (p)
is convex and closed.

Remark 2. The approaches discussed in this paper to compute G(u)
and F (p) do not require Pw to be a log-concave probability measure.

Recall that the support function of a convex and closed set S is
given by the real-valued function ρS(ℓ) : Rn → R,

ρS(ℓ) = sup
y∈S
ℓ
⊤
y. (5)

The function ρS(·) characterizes the set S as follows,

S =
{
y ∈ Rn : ∀ℓ ∈ Rn , ℓ⊤y ≤ ρS(ℓ)

}
. (6)

Given two convex and closed sets G1,G2 ⊆ Rn , then

G1 ⊆ G2 if and only if ρG1 (ℓ) ≤ ρG2 (ℓ), ∀ℓ ∈ Rn . (7)

See [10, Sec. 7.1.2] for more details.

2.3 Moment-based restriction
Concentration inequalities provide several useful probability bounds
[11, 12]. As discussed in [12], one can use Cantelli-Chebyshev
inequality to obtain a sampling-free restriction of F (p) for any
p ∈ (0, 1). From Cantelli-Chebyshev inequality,

G(u) ≥ 1 −
a⊤Σwa

a⊤Σwa + (b + c⊤u − a⊤µw )
2 . (8)

By (8), we have Fm(p) ⊆ F (p) ⊆ Rn ,

Fm(p) ≜


u : −c⊤u ≤ b − a⊤µw −

√
p(a⊤Σwa)

1 − p︸                           ︷︷                           ︸
d


. (9)

Equation (9) is a linear constraint onu. A comparison of the bounds
(4) and (9) for a Gaussianw is given in [13, Fig. 2].

Proposition 1. If the set F (p) is convex and closed, then F (p) is a
halfspace for every p ∈ (0, 1).

Proof: By (7) and (9), we have for every ℓ ∈ Rn

ρF(p)(ℓ) ≥ ρFm(p)(ℓ) =

{
λd, ∃λ ∈ R≥0 s. t. λc + ℓ = 0
+∞, otherwise

(10)

Here, (10) follows from strong duality of linear programming. Let
d+ ≜ ρF(p)(−c) ≥ d . By (6) and (10), F (p) can be written as

F (p) = {u ∈ Rn : −c⊤u ≤ d+}. (11)

This completes the proof.

2.4 Sample average approximation
Sample average approximation (SAA) uses realizations of w to
enforce the chance constraint (2) [10, Ch. 5]. Wewill denote samples
of w as w(·). For any p ∈ (0, 1) and N ∈ N samples of w , we can
approximately evaluateG(u) and enforce F (p) approximately using
Fs(p) as follows,

G(u) ≈
1
N

∑N

i=1
1[0,∞)

(
b + c⊤u − a⊤w(i)

)
(12a)

Fs(p) ≜
{
u ∈ Rn :

∑N

i=1
1[0,∞)

(
b + c⊤u − a⊤w(i)

)
≥ pN

}
(12b)

Here, 1[0,∞)(z) = 1 if z ≥ 0 and 0 otherwise. The approximation
error in (12) converges to zero as N → ∞ [10, Prop. 5.1]. Recently,
lower bounds for N that provide probabilistic guarantees on the
approximation error have been proposed. However, these lower
bounds typically require large N , which results in significant con-
servativeness [10, Ch. 5].

2.5 Conditional Value-at-Risk-based restriction
Recall the following observations:
1) Pz {z ≥ 0} = Ez [1[0,∞)(z)] for any random variable z, and
2) max(0, zα + 1) ≥ 1[0,∞)(z) for every z ∈ R and α > 0.
Let z ≜ a⊤w − b − c⊤u with Pz {z = 0} = 0. By properties of
expectations and above observations,

G(u) = 1 − Pz {z ≥ 0} ≥ 1 − Ew
[
max

(
0,
a⊤w − b − c⊤u

α
+ 1

)]
(13)

for any α > 0. Note that the right-hand side of (13) is a concave
function in u, and minimizing α for the tightest lower bound pro-
vides the Conditional Value-at-Risk (CVaR) bound on G(u) [14, 15].
The inequality in (13) provides an inner approximation Fcvar(p) ⊆
F (p) ⊆ Rn for any p ∈ (0, 1),

Fcvar =

{
u : Ew

[
max

(
0,
a⊤w − b − c⊤u

α
+ 1

)]
≤ 1 − p

}
. (14)

For an arbitrary random vectorw , we typically do not have a closed-
form expression for the expectation in (14). A common approach
to implement (13) and (14) is to use SAA as done in Section 2.4.

3 FOURIER TRANSFORMS-BASED
APPROACH

The characteristic function of a random vectorw ∈ Rm with prob-
ability density functionψw (z̄) is

Ψw (β̄) ≜ Ew
[
exp

(
j β̄⊤w

) ]
=

∫
Rp

e j β̄
⊤z̄ψw (z̄)dz̄ = F {ψw (·)} (−β̄) (15)

where F {·} denotes the Fourier transformation operator and β̄ ∈

Rm . Note that characteristic functions of standard distributions
are well studied and have closed-form expressions [16]. From [17,
Prop. P2] (or, see [16, Eq. 22.6.3]), the characteristic function of the
random variable a⊤w is given by,

Ψa⊤w (t) = Ψw (ta), for t ∈ R. (16)
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Figure 1: Approximations of F (p) via various approaches.
All the sets are halfspaces by Proposition 1.

We can compute (3) directly by the following well-known inversion
of Ψa⊤w defined in (16) [18–20]

G(u) =
1
2
−

1
2π

∫ ∞

−∞

Im

(
e(−jt (b+c

⊤u))Ψw (ta)

jt

)
dt (17)

where Im(·) denotes the imaginary component of the evaluation
of a complex function. We can implement (17) using quadrature
techniques [21]. Further, using (11), we can also compute F (p).

3.1 Advantages of this approach over others
Recall that the characteristic function Ψa⊤w (t) characterizes all the
moments of a⊤w . Thus, the Fourier transform-based (FT) approach
computes G(u) in (17) using all the moments of a⊤w . In contrast,
the moment-based approach (8) uses information only up to second
moment. The conservativeness of the CVaR approach with respect
to the FT approach can be seen from (13) and (17). Due to its reliance
on sampling, the SAA approach (12a) converges to the FT approach
(17) only asymptotically.

4 NUMERICAL EXAMPLE
We use SReachTools [22] to set up the problems, CharFunTool for
the proposed FT approach [21], and CVX [23] for the CVaR approach.
We presume w as a two-dimensional exponential random vector
with mean µw = [2 4]⊤, and that a = [1 1]⊤, b = 5, and c = −[1 1]⊤.

Since the exponential distribution is log-concave, F (p) is a halfs-
pace, by Proposition 1. Figure 1 shows the approximations of F (p)
characterized by (11). Since our proposed method (FT) directly com-
putes Φa⊤w (·) using (17), it contains the approximations of F (p)
from all of the other methods. The only other sampling-free tech-
nique, the moment-based set (9), is significantly more conservative.

Figure 2 shows the quality of approximation ofG(u) as well as the
computation time for each of the method. The maximum variance
in G(u) for SAA (12a), CVaR (13), and FT (17) were 5.80 × 10−3,
1.40 × 10−3, and 1.24 × 10−16 respectively for the varying number
of samples (in case of SAA and CVaR) or points of integration (in
case of FT). We compute the moment-based bound (8) directly.

5 CONCLUSION
This paper reviews the current state-of-the-art techniques to en-
force individual chance constraints involving non-Gaussian random
vectors. We also propose a Fourier transform-based sampling-free
approach that outperforms all of the existing approaches.

Figure 2: Comparison of G(u) and compute times.
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