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Abstract

We investigate weak coin flipping, a fundamental cryptographic primitive where two dis-
trustful parties need to remotely establish a shared random bit. A cheating player can try to
bias the output bit towards a preferred value. For weak coin flipping the players have known
opposite preferred values. A weak coin-flipping protocol has a bias ε if neither player can force
the outcome towards their preferred value with probability more than 1

2 + ε. While it is known
that all classical protocols have ε = 1

2 , Mochon showed in 2007 [1] that quantumly weak coin
flipping can be achieved with arbitrarily small bias (near perfect) but the best known explicit
protocol has bias 1/6 (also due to Mochon, 2005 [2]). We propose a framework to construct
new explicit protocols achieving biases below 1/6. In particular, we construct explicit unitaries
for protocols with bias approaching 1/10. To go below, we introduce what we call the Elliptic
Monotone Align (EMA) algorithm which, together with the framework, allows us to numerically
construct protocols with arbitrarily small biases.
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1 Introduction
We investigate coin flipping, a fundamental cryptographic primitive where two distrustful parties
need to remotely generate a shared unbiased random bit. A cheating player can try to bias the
output bit towards a preferred value. For weak coin flipping the players have known opposite
preferred values. A weak coin flipping (WCF) protocol has a bias ε if neither player can force the
outcome towards his/her preferred value with probability more than 1

2 + ε. For strong coin-flipping
there are no a priori preferred values and the bias is defined similarly. Restricting to classical
resources, neither weak nor strong coin flipping is possible under information-theoretic security,
as there always exists a player [3] who can force any outcome with probability 1. However, in a
quantum world, strong coin flipping protocols with bias strictly less than 1

2 have been shown and
the best known explicit protocol has bias 1

4 [4]. Nevertheless, Kitaev gave a lower bound of 1√
2 −

1
2

for the bias of any quantum strong coin flipping, so an unbiased protocol is not possible.
As for weak coin flipping, the current best known explicit protocol—the Dip Dip Boom pro-

tocol—is due to Mochon [2] and has bias 1/6. In a breakthrough result, he even proved the exist-
ence of a quantum weak coin-flipping protocol with arbitrarily low bias ε > 0, hence showing that
near-perfect weak coin flipping is theoretically possible [1]. This fundamental result for quantum
cryptography, unfortunately, was proved non-constructively, by elaborate successive reductions (80
pages) of the protocol to different versions of so-called point games, a formalism introduced by
Kitaev [5] in order to study coin flipping. Consequently, the structure of the protocol whose exist-
ence is proved is lost. A systematic verification of this by independent researchers recently led to a
simplified proof [6] (only 50 pages) but eleven years later, an explicit weak coin-flipping protocol is
still unknown, despite various expert approaches ranging from the distillation of a protocol using
the proof of existence to numerical search [7, 8]. Further, weak coin flipping provides, via black-box
reductions, optimal protocols for strong coin flipping [9], bit commitment [10] and a variant of
oblivious transfer [11] (fundamental cryptographic primitives). It is also used to implement other
cryptographic tasks such as leader election [12] and dice rolling [13].

We construct a framework that allows us to convert simple point games (i.e. corresponding to
known protocols) into explicit quantum protocols defined in terms of unitaries and projectors. We
use the said framework to convert a bias 1/10 point game into its corresponding explicit protocol
making it the first improvement of its kind in the last thirteen years since Mochon’s Dip Dip Boom
protocol (bias 1/6) [2].

Our second contribution, the Elliptic Monotone Align (EMA) algorithm, is a numerical al-
gorithm which can provably find the unitaries required for implementing protocols with arbitrary
biases, including the ones with ε→ 0.

1.1 State of the Art | Kitaev’s Formalisms and Mochon’s Games

Let us start with noting two features of weak coin flipping. First, note that we can say, without
loss of generality, that if the bit is zero it means Alice won and if the bit is one it means Bob won.
Why is that? In weak coin flipping we know both players have known preferences. Alice wants zero
and Bob wants one1 since if they both wanted the same outcome bit, there would be no need to
flip a coin. If a player gets what they want, we say they won. Second, we note that there are four
situations which can arise in a weak coin flipping scenario of which three are of interest. Let us

1Alice wanting a zero and Bob wanting a one is just an uninteresting relabelling.
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denote by HH the situation where both Alice and Bob are honest, i.e. follow the protocol. In this
situation we want the protocol to be such that both Alice and Bob (a) win with equal probability
and (b) are in agreement with each other. In the situation HC where Alice is honest and Bob
is cheating, the protocol must protect Alice from a cheating Bob. In this situation, a cheating
Bob tries to convince an honest Alice that he has won. His probability of succeeding by using his
best cheating strategy is denoted by P ∗B where the star/asterisk refers to a cheating player and the
subscript denotes the outcome he desires to enforce on the honest player. The CH situation where
Bob is honest and Alice is cheating naturally points us to the corresponding definition of P ∗A. The
situation CC where both players are cheating is not of interest to us as nothing can be said which
depends on the protocol. This is because nobody is following the protocol.

A trivial example of a weak coin flipping protocol is where Alice flips a coin and reveals the
outcome to Bob over the phone. A cheating Alice can simply lie and always win against an honest
Bob which means P ∗A = 1. On the other hand, a cheating Bob can not do anything to convince
Alice that he has won, unless it happens by random chance on the coin flip. This corresponds to
P ∗B = 1

2 . The bias of the protocol is max[P ∗A, P ∗B] − 1
2 which for this naïve protocol amounts to

1
2 , the worst possible. Manifestly, constructing protocols where one player is protected is nearly
trivial. Constructing protocols where neither player is able to cheat (against an honest player) is
the real challenge.

Given a WCF protocol it is not a priori clear how the best success probability of a cheating
player, denoted by P ∗A/B, should be computed as the strategy space can be dauntingly large.
It turns out that all quantum WCF protocols can be defined using the exchange of a message
register interleaved with the players applying the unitaries Ui locally (see Figure 3) until a final
measurement, say ΠA denoting Alice won and ΠB denoting Bob won, is made in the end. Computing
P ∗A in this case reduces to a semi-definite program (SDP) in ρ: maximise P ∗A = tr(ΠAρ) given the
constraint that the honest player follows the protocol. Similarly for computing P ∗B one can define
another SDP. Using SDP duality one can turn this maximization problem over cheating strategies
into a minimization problem over dual variables ZA/B. Any dual feasible assignment then provides
an upper bound on the cheating probabilities P ∗A/B. SDPs are usually easy to handle but in this
case, there are two SDPs, and we must optimise both simultaneously (see Subsection 2.1). Note that
here we assume the protocol is known and we are trying to find bounds on P ∗A and P ∗B. However,
our goal is to find good protocols. So what we would like is a framework which allows us to do
both, construct protocols and find the associated P ∗A and P ∗B. Kitaev gave us such a framework.

He converted this problem about matrices (Zs, ρs and Us) into a problem about points on a
plane, which Mochon called Kitaev’s Time Dependent Point Game (TDPG) framework. In this
framework, one is concerned with a sequence of frames—the positive quadrant of the plane with
some points and their probability weights—which must start with a fixed frame and end with a
frame that has only one point. The fixed starting frame consists of two points at [0, 1] and [1, 0]
with weight 1/2. The end frame must be a single point, say at [β, α], with weight 1. The objective
of the protocol designer is to get this end point as close to the origin as possible by transitioning
through intermediate frames (see Figure 1) by following certain rules (we describe these shortly).
The magic of this formalism, roughly stated, is that if one abides by these rules then corresponding
to every such valid sequence of frames, there exists a WCF protocol with P ∗A = α, P ∗B = β (see
Subsection 2.3).

We now describe these rules. Consider a given frame and focus on a set of points that fall on
this vertical (or horizontal) line. Let the y coordinate (or x coordinate) of the ith point be given
by zgi and the weight be given by pgi . Let zhi and phi denote the corresponding quantity in the
subsequent frame. Then, the following conditions must hold

2



1. the probabilities are conserved, viz.
∑
i pgi =

∑
i phi

(a) for all λ > 0 ∑
i

λzgi
λ+ zgi

pgi ≤
∑
i

λzhi
λ+ zhi

phi . (1)

Note that from one frame to the next, one can either make a horizontal transition or a vertical
transition. By combining these sequentially one can obtain the desired form of the final frame, i.e.
a single point. The aforesaid rule and the points in the frames arise from the dual variables ZA/B .
Just as the state ρ evolves through the protocol, so do the dual variables ZA/B. The points and their
weights in the TDPG are exactly the eigenvalue pairs of ZA/B with the probability weight assigned
to them by the honest state |ψ〉 at a given point in the protocol (|ψ〉 and ρ are closely related).
The aforementioned rules are related to the dual constraints. Given an explicit WCF protocol
and a feasible assignment for the dual variables witnessing a given bias, it is straightforward to
construct the TDPG. However, going backwards, constructing the WCF dual from a TDPG is
highly non-trivial and no general construction is known.

Our main contribution is precisely to this part. We construct a framework which allows for a
ready conversion of simple TDPGs into explicit protocols, and once supplemented with the EMA
algorithm, it can convert any TDPG into its corresponding protocol. This is relevant because
Mochon’s breakthrough result was to define a family of games2 with bias ε = 1

4k+2 where k encodes
the number of points that are involved in the non-trivial step (for k = 1 it reduces to a version
of the Dip Dip Boom (bias 1/6) protocol) which means, effectively, we can numerically construct
quantum weak coin flipping protocols with arbitrarily small bias (see Section 5 of either [1, 6]).

As this point game formalism is the cornerstone of the analysis, we simplify the rules further and
then apply them to construct a simple example game. Later, we convert this example game into
an explicit protocol using our framework. If we restrict ourselves to transitions involving only one
initial and one final point, the second condition reduces to zg ≤ zh (we suppressed the subscript).
This is called a raise. It means that we can always increase the coordinate of a single point. What
about going from one initial point to many final points (note that the points before and after
must lie along either a horizontal or a vertical line)? The second condition in this case becomes
1/zg ≥ 〈1/zh〉, that is the harmonic mean of the final points must be greater than or equal to
that of the initial point, where 〈f(zh)〉 := (

∑
i f(zhi)phi) /

(∑
j phj

)
. This is called a split. Finally,

we can ask: What happens upon merging many points into a single point? The second condition
becomes 〈zg〉 ≤ zh, that is the final position must not be smaller than the average initial position
(where 〈f(zg)〉 is analogously defined). This is called a merge. While these three transitions/moves
do not exhaust the set of moves, they are enough to construct games that almost achieve the bias
1/6. Let us construct a simple game as an example. We start with the initial frame and raise the
point [1, 0] along the vertical to [1, 1] (see Figure 1). We know this move is allowed as it is just a
raise. Next we merge the points [0, 1] with [1, 1] using a horizontal merge. The x-coordinate of the
resulting point can at best be 1

2 .0 + 1
2 .1 = 1

2 where we used the fact that both points have weight
1/2. Thus we end up with a single point at [1

2 , 1] with all the weight. Kitaev’s framework tells us
that there must exist a protocol which yields P ∗A = 1 while P ∗B = 1

2 . This, however, is the phone
protocol that we started our discussion with! It is a neat consistency check but it yields a trivial
bias. This is because we did not use the split. If we use a split once, we can, by simply matching
the weights, already obtain a game with P ∗A = P ∗B = 1√

2 . Protocols corresponding to this bias were
found by various researchers [14, 15, 16] long before this framework was known. In fact, the bias

2Mochon describes his games in Kitaev’s Time Independent Point Game (TIPG) framework but it is straightfor-
ward to go back from a TIPG to a TDPG.
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of the said weak coin flipping protocol, ε = 1√
2 −

1
2 , was exactly the lower bound for strong coin

flipping. It was an exciting time (we imagine) as the technique used to bound strong coin flipping
fails for weak coin flipping. The matter was not resolved for a while. This protocol held the record
for being the best known weak coin flipping protocol until Mochon progressively showed that if
we use multiple splits wisely at the beginning followed by a raise, one simply needs to use merges
thereafter to obtain a game with bias almost 1/6, which corresponds to his Dip Dip Boom protocol.
The Dip Dip Boom protocol, is actually a family of protocols which in the limit of infinite rounds
of communication yields bias 1/6. Going lower, therefore, is not a straight forward extension and
we need to use moves which can not be decomposed into the three basic ones, splits, merges and
raises. Our contribution is to find ways of constructing the unitaries corresponding to these moves.

1.2 A Framework | First Contribution

We first describe our framework for converting a TDPG into an explicit protocol. We start by
defining a ‘canonical form’ for any given frame of a TDPG. This allows one to write the WCF
dual variables, Zs, and the honest state |ψ〉 associated with each frame of the TDPG. We define a
sequence of quantum operations, unitaries and projections, which allow Alice and Bob to transition
from the initial frame to the final frame. It turns out that there is only one non-trivial quantum
operation in the sequence which we leave partially specified for the moment. This means that we
know that the unitary should send the honest initial state to the honest final state. However the
action of the unitary on the orthogonal space, which intuitively is what would bestow on it the
cheating prevention/detection capability, is obtained as an interesting constraint. Using the SDP
formalism we write the constraints at each step of the sequence on the Zs and show that they are
indeed satisfied (see Theorem 46 for a full statement of the following, Subsection 3.2 for its proof
and the description of the framework).

Theorem 1 (TEF constraint (simplified)). If a unitary matrix U acting on the space
span{|g1〉 , |g2〉 . . . , |h1〉 , |h2〉 . . . } satisfying the constraints

U |v〉 = |w〉 ,∑
i

xhi |hi〉 〈hi| −
∑
i

xgiEhU |gi〉 〈gi|U †Eh ≥ 0 (2)

can be found for every move/transition (see Definition 47 and Definition 9) of a TDPG then an
explicit protocol with the corresponding bias can be obtained using the TDPG–to–Explicit–protocol
Framework (TEF), where {|gi〉}, {|hi〉} are orthonormal vectors and if the transition is horizontal

• the initial points have xgi as their x-coordinate and pgi as their corresponding probability
weight,

• the final points have, similarly, xhi as their x-coordinate and phi as their corresponding prob-
ability weight

• Eh is a projection onto the span {|hi〉} space,

• |v〉 =
∑
i
√
pgi |gi〉 /

√∑
pgi , |w〉 =

∑
i
√
phi |hi〉 /

√∑
phi

and if the transition is vertical, the xgi and xhi become the y-coordinates ygi and yhi with everything
else unchanged.

4
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Figure 1: Point game corresponding to the weak coin flipping over the phone protocol.

Note that the TDPG already specifies the coordinates xhi , xgi and the probabilities phi , pgi
which satisfy, Equation (1), the scalar condition. Our task therefore reduces to finding the correct
U which satisfies the aforesaid matrix constraints. It is this general problem that is solved by our
EMA algorithm which we describe later.

Given such a unitary U acting on the space span{|g1〉 , |g2〉 . . . |h1〉 , |h2〉 . . . } one can construct a
unitary, U (2)

AM , acting non-trivially on the space span{|g1g1〉AM , |g2g2〉AM . . . , |h1h1〉AM , |h2h2〉AM ,
. . . } by mapping |gi〉 → |gigi〉AM , |hi〉 → |hihi〉AM and as identity otherwise. We now informally
describe how to convert a TDPG into an explicit protocol. It suffices to show what a transition
from a given frame to the next frame corresponds to in terms of the protocol. In this discussion, we
refer to them as the initial frame and the final frame. Assume that the corresponding non-trivial
U

(2)
AM is known. As we saw, a given transition would either be horizontal or vertical. We assume it is

horizontal without loss of generality3. We label the points that do not participate in this horizontal
transition, i.e. remain unchanged in both frames, by k1, k2 . . . in both frames. The points in the
initial frame involved in this transition are labelled g1, g2 . . . and the ones in the final frame are
labelled h1, h2 . . . . All the points are now labelled. We denote the coordinates of the final points
by xh1 , xh2 . . . and the probability weights by ph1 , ph2 . . . . We similarly define xgi , pgi and xki , pki .
The Hilbert space of interest is given by H := span{|k1〉 , |k2〉 . . . , |g1〉 , |g2〉 . . . , |h1〉 , |h2〉 . . . , |m〉}
where each vector is assumed orthonormal (|m〉 is just an idle state in which the message register
is assumed to be initially and returned to finally). We assume that Alice’s register, Bob’s register
and the message register each have dimension at least as large as dim(H). The state (by state in
this discussion, we mean the honest state) corresponding to the initial frame is assumed to have
the form ∣∣∣ψ(1)

〉
=
(∑

i

√
pgi |gigi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M .

Bob: Assume Bob has the message register. He applies the conditional swap USWP{~g,m}
BM where

U
SWP{~g,m}
BM swaps conditionally on both registers being in the subspace span{|g1〉 , |g2〉 . . . , |m〉}.

The state after this operation is∣∣∣ψ(2)
〉

=
∑
i

√
pgi |gigi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M .

He then sends the message register to Alice.
Alice: Alice applies the non-trivial unitary U (2)

AM on her local register and the message register.
She then measures {E(2), I − E(2)} where E(2) := (

∑
|hi〉 〈hi|+

∑
|ki〉 〈ki|)A ⊗ IM . The state at

3Mochon’s point games have a repeating structure he calls a “ladder”. Corresponding to each k he constructs
a family of point games parametrised by the number of points in this ladder. The game approaches the bias ε =
(4k + 2)−1 as the number of points is increased (the value is reached in the limit of infinite points). Consequently,
we consider a finite set of points in the transition.
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this point is ∣∣∣ψ(3)
〉

=
∑
i

√
phi |hihi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M .

If the outcome corresponds to the latter, she declares herself to be the winner. Otherwise she sends
the message register back to Bob.

Bob: Bob again applies a conditional swap USWP{~h,m}
BM followed by a measurement correspond-

ing to {E(3), I− E(3)} where E(3) := (
∑
i |hi〉 〈hi|+

∑
i |ki〉 〈ki|)B ⊗ IM . The final state is

∣∣∣ψ(4)
〉

=
(∑

i

√
phi |hihi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M .

If the outcome corresponds to I− E(3), Bob declares himself the winner.
As the final state is in the same form as the initial state, one can progressively build the

sequence corresponding to the complete protocol. Once the entire sequence is known, one must
reverse the order of all the operations to obtain the final protocol. Note that the message register
is initially decoupled, it then gets entangled, and finally it emerges decoupled again. This simplifies
the analysis (and also entails that one need not keep the message register coherent for the duration
of the protocol; keeping it coherent for each round individually is sufficient).

Let us try to apply this procedure to our example game (see Figure 1). We label the points in
the first frame as g1 and g2. The state is given by 1√

2 (|g1g1〉AB + |g2g2〉AB)⊗ |m〉M . (This should
make it clear that the order is reversed here because we want to end with an EPR like state so
that when Alice and Bob make a measurement, they agree on a random bit.) We simply claim
for the moment that raising does not require Alice and Bob to do anything. This means that we
can consider the second frame with the same labels. We now apply the merge transition by using
the aforesaid recipe, where Bob applies a swap, sends the message register to Alice, she applies
U

(2)
AM and the projector, returns the message register to Bob and he applies the final swap and

measurement. We continue to assume we are given the correct U (2)
AM that implements the merge

step. The state one obtains after the application of these unitaries turns out to be |h1h2〉AB⊗|m〉M .
(This looks like the state we should start with, completely unentangled. This is intuitively why
the actual protocol is a reversed version of what we have.) Our procedure can be applied to any
point game, granted the non-trivial unitary U (2) can be found. The central issue is that there is no
general recipe known for constructing U (2)s.

To address this we can prove that what we call the Blinkered Unitary satisfies the required
constraints for both the split and merge moves (see Subsection 3.3). It is defined as

Ublink = |w〉 〈v|+ |v〉 〈w|+
∑
i

|vi〉 〈vi|+
∑
i

|wi〉 〈wi| (3)

where |v〉, {|vi〉} and |w〉, {|wi〉} are orthonormal vectors spanning the {|gi〉} and {|hi〉} space
respectively. With these the former best protocol (bias 1/6) can already be derived from its TDPG,
in a manner analogous to the one used for the example game. This was not known (to the best
of our knowledge), even though the protocol itself was separately known and analysed. We next
study the family of bias 1/10 TDPGs and isolate the precise moves required to implement it (see
Subsection ??). Let ng → nh denote a move from ng initial points to nh final points. While the
bias 1/6 games used a 2 → 1 merge as its key move, the bias 1/10 games use a combination of
3→ 2 and 2→ 2 moves (these can not be produced by a combination of merges and splits, as was
pointed out earlier). We give analytic expressions for these unitaries and show that they satisfy
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the required constraints (see Subsection 4.4). In particular, we show that for 3 → 2 moves with
xg1 < xg2 < xg3 and xh1 < xh2

U3→2 = |w〉 〈v|+ |w1〉
〈
v′1
∣∣+ ∣∣v′2〉 〈v′2∣∣+ ∣∣v′1〉 〈w1|+ |v〉 〈w| (4)

satisfies the required constraints (under some further technical conditions which are satisfied by
the 1/10 games of interest), where

|v〉 =
√
pg1 |g1〉+√pg2 |g2〉+√pg3 |g3〉

Ng
,

|v1〉 =
√
pg3 |g2〉 −

√
pg2 |g3〉

Nv1
,

|v2〉 =
−(pg2+pg3)√

pg1
|g1〉+√pg2 |g2〉+√pg3 |g3〉

Nv2

and
|w〉 =

√
ph1 |h1〉+√ph2 |h2〉

Nh
, |w1〉 =

√
ph2 |h1〉 −

√
ph1 |h2〉

Nh

are normalised vectors (this fixes the normalisation factors) which we use to define∣∣v′1〉 = cos θ |v1〉+ sin θ |v2〉 ,
∣∣v′2〉 = sin θ |v1〉 − cos θ |v2〉

where cos θ is obtained by solving
√
ph1ph2

N2
h

(xh1 − xh2)− cos θ
√
pg2pg3

NgNv1
(xg2 − xg3)

− sin θ 〈xg〉
Ng

Nv2
= 0

and choosing the solution which is closer to 1. Similarly we give an explicit unitary corresponding
to the second move, i.e. the 2→ 2 move. For the second move, i.e. the 2→ 2 move with xg1 < xg2

and xh1 < xh2 , we show that

U2→2 = |w〉 〈v|+ (α |v〉+ β |w1〉) 〈v1|+ |v〉 〈w|+ (β |v〉 − α |w1〉) 〈w1|

satisfies the required constraints (again, under further technical conditions which are satisfied by
the 1/10 games of interest) where

|v〉 = 1
Ng

(√
pg1 |g1〉+√pg2 |g2〉

)
,

|v1〉 = 1
Ng

(√
pg2 |g1〉 −

√
pg1 |g2〉

)
and

|w〉 = 1
Nh

(√
ph1 |h1〉+√ph2 |h2〉

)
|w1〉 = 1

Nh

(√
ph2 |h1〉 −

√
ph1 |h2〉

)
.
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Further, α, β ∈ R are such that α2 + β2 = 1 and

β =
√
ph1ph2

pg1pg2

(xh1 − xh2)
(xg1 − xg2) .

This lets us, in effect, convert Mochon’s family of bias 1/10 games into explicit protocols, finally
breaking the 1/6 barrier. Mochon’s games achieving lower biases correspond to larger unitary
matrices. Consequently, this approach based on guessing the correct form of the solution becomes
untenable.

1.3 EMA Algorithm | Second Contribution

To go lower than 1/10 we use our Elliptic Monotone Align (EMA) algorithm which we now describe.
Note that if we neglect the projector in Equation (2), we can express it as Xh ≥ UXgU

† where
Xh, Xg are diagonal matrices with positive entries (justified in Subsection 5.1). Surprisingly, it is
possible to show that we can restrict ourselves to orthogonal matrices without loss of generality
(see Subsection 5.2). Once we restrict to real numbers, it is easy to see that the set of vectors
EXh := {|u〉 | 〈u|Xh |u〉 = 1} describe the boundary of an ellipsoid as

∑
i u

2
i /(x−1

hi
) = 1 (note xhi

is fixed here and ui is the variable). Similarly EOXgOT represents a rotated ellipsoid where O is
orthogonal (see Figure 2). Note that larger the xhi (or xgi) higher is the curvature of the ellipsoid
along the associated direction. It is not hard to see the aforesaid inequality, geometrically, as the EXh
ellipsoid being contained inside the EOXgOT ellipsoid (the order gets reversed; see Subsection 6.1).

Recall that the orthogonal matrix also has the property O |v〉 = |w〉. Imagine that in addition,
we have 〈w|Xh |w〉 = 〈v|Xg |v〉 which in terms of the point game means that the average is preserved
(as was the case for merge). In terms of the ellipsoids, it means that the ellipsoids touch along the
|w〉 direction. More precisely, the point |c〉 := |w〉 /

√
〈w|Xh |w〉 belongs to both EXh and EOXgOT .

Since the inequality tells us the smaller h ellipsoid is contained inside the larger g ellipsoid, and we
now know that they touch at the point |c〉, we conclude that their normals evaluated at |c〉 must
be equal. Further, we can conclude that the inner ellipsoid must be more curved than the outer
ellipsoid.

Mark the point |c〉 on the EOXgOT ellipsoid. Now imagine rotating the EXg ellipsoid to the
EOXgOT ellipsoid. The normal at the marked point must be mapped to the normal of EXh at |c〉.
It turns out that to evaluate the normals |nh〉 on EXh at |c〉 and |ng〉 on EXg at the marked point,
one only needs to know Xh, Xg, |v〉 and |w〉. Complete knowledge of O is not required and yet we
can be sure that O |ng〉 = |nh〉 which means O must have a term |nh〉 〈ng|. In fact, one can even
evaluate the curvature from the aforesaid quantities. It so turns out that when this condition is
expressed precisely, it becomes an instance of the same problem we started with one less dimension
allowing us to iteratively find O, which so far we had only assumed to exist. This, however, only
works under our assumption that 〈w|Xh |w〉 = 〈v|Xg |v〉. This is not always the case which we
address next.

A monotone function f is defined to be a function which has the property “x ≥ y =⇒
f(x) ≥ f(y)”. An operator monotone function4 is obtained from a generalisation of the aforesaid
property to matrices, which in our notation can be expressed as “Xh ≥ OXgO

T =⇒ f(Xh) ≥
Of(Xg)OT ”. In mathematics, it is known that for a certain class of operator monotone functions f ,

4Note that the monotone function f(x) = x2 is not an operator monotone. This is a counter-example:
[

2 1
1 1

]
≥[

1 1
1 1

]
.
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f−1 is also an operator monotone. Using these results in conjunction with results from Aharonov
et al. [6] we conclude that one can show that there is always an operator monotone f such that
〈w| f(Xh) |w〉 = 〈v| f(Xg) |v〉. (This result also admits a beautiful geometric interpretation. It
means that to establish EXh is inside EOXgOT , which essentially means we look at all different
directions and make sure the h ellipsoid is inside the g ellipsoid, we can instead look along a single
direction |w〉 and check that all the different ellipsoids Ef(Xh) are inside the corresponding EOf(Xg)OT
ellipsoids along just this direction, for every operator monotone f in the class indicated earlier.)
Since the orthogonal matrix which solves the initial problem also solves the one mapped by f ,
we can use our technique on the latter to proceed. This shows how and why our EMA algorithm
works. Let us summarise the algorithm into an informal statement.

Definition (EMA Algorithm (informal)). Given a transition from a TDPG the algorithm proceeds
in three phases.

1. Initialise

• Tightening procedure: Bring the final points close to zero until the corresponding ellips-
oids start to touch.
• Spectral domain, matrices: Find the spectrum of the matrices which represent the el-
lipsoid. Evaluate the smallest matrix size n needed to represent the problem using
ellipsoids.
• Bootstrapping: Using the aforesaid, define

(
X

(n)
h , X

(n)
g ,

∣∣∣w(n)
〉
,
∣∣∣v(n)

〉)
:= X(n) where

the superscript denotes the size of the matrix and vectors.

2. Iterate (neglecting special cases)
Input: X(k)

Output: X(k−1), the vector
∣∣∣u(k)
h

〉
and the orthogonal matrices Ō(k)

g , Ō
(k)
h

Procedure:

• Tightening procedure: Similar to the one above, shrink the outer ellipsoid until it touches
the inner ellipsoid.
• Honest align: Use operator monotone functions to make the ellipsoids touch along the
|w〉 direction.
• Evaluate the Reverse Weingarten Map: Evaluate the curvatures and the normal (which

fixes
∣∣∣u(k)
h

〉
) along the |w〉 direction.

• Finite Method: Use the curvatures to specify X(k−1) and find the orthogonal matrices
Ō

(k)
g , Ō

(k)
h .

3. Reconstruction
Evaluate O(n) recursively using O(k) = Ō

(k)
g

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō

(k)
h .

Theorem 2 (Correctness of the EMA Algorithm (informal)). Given a transition of a TDPG, the
EMA Algorithm always finds a U such that the constraints in Theorem 1 are satisfied.

See Subsection 1.3 for the complete algorithm and proof of the theorem; in particular Defin-
ition 96 and Theorem 97 for the corresponding formal statements. Results from a preliminary
numerical implementation of the EMA algorithm are discussed in Section 8.
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Despite the apparent simplicity of the main argument there were many difficulties we had to
address in order to prove the aforesaid statement. We had to extend the results about operator
monotone functions to be able to use them for performing the tightening step as indicated and
for being certain that the solution unitary/orthogonal matrix stays unchanged under these trans-
formations. We also extended some results related to different representations of the aforesaid
transitions as these situations arise in the tightening procedure (see Subsection 7.2.1). Finding
an easy method for evaluating the curvatures—the reverse Weingarten map—was key as has been
noted (see Subsection 6.2). The trickiest part of the algorithm, which we have not mentioned here
in the introduction, was handling the cases where one of the tangent directions of an ellipsoid has
an infinite curvature. For concreteness, imagine an ellipse which under an operator monotone gets
mapped to a line segment. The tip of the line segment, if viewed as a limit of an ellipse, has an
infinite curvature. In these cases, our finite analysis breaks down as the normal is no longer well
defined. For the moves used by Mochon in his 1/18 game for instance that we tried to numerically
solve using this algorithm, this infinite case does not appear. However, to solve the split move
using the algorithm (instead of the blinkered unitaries) the infinite case does appear. In either
case, our algorithm can handle these infinite cases using what we call the Wiggle-v method (see
Subsection 7.2.3 and Subsection 7.3).

The implication is that we can now numerically convert known games with arbitrarily small
bias into complete protocols. One remaining question is the effect of noise. In the current analysis
two idealising assumptions have been made. First, the EMA algorithm assumes one can solve
certain problems with arbitrary precision classically, such as finding the roots of polynomials and
diagonalising matrices. Second, in Mochon/Kitaev’s point game formalisms, one assumes that the
unitaries are known and applied exactly. Neither of these will hold practically, therefore, the effect
of noise on the bias of the protocol must be quantified, which we leave as an open problem for
further work.

The remaining document starts with stating the previously known formal results and motiv-
ating their proofs (Section 2). Thereafter the document is divided into two parts. The first part
establishes the TDPG-to-Explicit-protocol Framework, TEF, (Section 3) and then discusses its ap-
plication to Mochon’s games (Section 4) including the one with bias 1/10. The second part starts
with laying the groundwork for viewing the problem in terms of ellipsoids (Section 5), summarises
some results about ellipsoids (Section 6) and finally discusses the Elliptic Monotone Algorithm
itself (Section 7). It ends by stating some observations made through a preliminary numerical
implementation of the said algorithm and briefly discussing related open problems (Section 8).
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Figure 2: On the left the ellipsoids correspond to the diagonal matrices Xg and Xh. The vectors |w〉
and |v〉 indicate only the direction. On the right, the larger ellipsoid is now rotated to corresponding
to OXgO

T . The point of contact is along the vector |w〉 = O |v〉.

Alice Message Bob

U1

U2

U3

U4

Un-1

Un

ΠΑ,ΠΒ ΠΑ,ΠΒ

Figure 3: General structure of a Weak Coin Flipping protocol.
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2 Prior Art
We start with stating the results up to a certain point from Aharonov et al’s [6] paper (which
completely formalises Mochon’s results [1] and simplifies one of the results proved in its appendix;
we build on this improved proof in our work). We will motivate the statements as we go along. It
is unlikely that the next section will make perfect sense unless one has already read Aharonov’s et
al’s and/or Mochon’s article. The ideas should get clear in the following sections as we use them to
construct explicit protocols. Logically, however, we have tried to keep everything consistent (even
though the presentation thereof may not be optimal).

We define R≥ := [0,∞), R> := (0,∞) and similarly R≤ := (−∞, 0],R< := (−∞, 0). A note
about the colour scheme. We use purple for intuitive and non-technical discussions and, in this
section, blue for statements/corrections that we have added to the results from Aharonov et al’s
article.

2.1 WCF protocol as an SDP and its Dual

Any weak coin flipping protocol can be expressed in the following general form (we do not prove
this claim here; see [4]).

Definition 3 (WCF protocol with bias ε). For n even, an n-message WCF protocol between two
players, Alice and Bob, is described by

• three Hilbert spaces with A, B corresponding to Alice and Bob’s private workspaces (Bob
does not have any access to A and Alice to B), and a message spaceM;

• an initial product state |ψ0〉 = |ψA,0〉 ⊗ |ψM,0〉 ⊗ |ψB,0〉 ∈ A ⊗M⊗B;

• a set of n unitaries {U1, . . . Un} acting on A ⊗M ⊗ B with Ui = UA,i ⊗ IB for i odd and
Ui = IA ⊗ UB,i for i even;

• a set of honest states {|ψi〉 : i ∈ [n]} defined by |ψi〉 = UiUi−1 . . . U1 |ψ0〉;

• a set of n projectors {E1, . . . En} acting on A ⊗M⊗ B with Ei = EA,i ⊗ IB for i odd, and
Ei = IA ⊗ EB,i for i even, such that Ei |ψi〉 = |ψi〉;

• two final positive operator valued measure (POVM) {Π(0)
A ,Π(1)

A } acting on A and {Π(0)
B ,Π(1)

B }
acting on B.

The WCF protocol proceeds as follows:

• In the beginning, Alice holds |ψA,0〉 |ψM,0〉 and Bob |ψB,0〉.

• For i = 1 to n:

– If i is odd, Alice applies Ui and measures the resulting state with the POVM {Ei, I−Ei}.
On the first outcome, Alice sends the message qubits to Bob; on the second outcome,
she ends the protocol by outputting “0”, i.e, Alice declares herself to be the winner.

– If i is even, Bob applies Ui and measures the resulting state with the POVM {Ei, I−Ei}.
On the first outcome, Bob sends the message qubits to Alice; on the second outcome,
he ends the protocol by outputting “1”, i.e., Bob declares himself to be the winner.

– Alice and Bob measure their part of the state with the final POVM and output the
outcome of their measurements. Alice wins on outcome “0” and Bob on outcome “1”.
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The WCF protocol has the following properties:

• Correctness: When both players are honest, Alice and Bob’s outcomes are always the same:
Π(0)
A ⊗ IM ⊗Π(1)

B |ψn〉 = Π(1)
A ⊗ IM ⊗Π(0)

B |ψn〉 = 0.

• Balanced: When both players are honest, they win with probability 1/2:
PA =

∣∣∣Π(0)
A ⊗ IM ⊗Π(0)

B |ψn〉
∣∣∣2 = 1

2 and PB =
∣∣∣Π(1)

A ⊗ IM ⊗Π(1)
B |ψn〉

∣∣∣2 = 1
2 .

• ε biased: When Alice is honest, the probability that both players agree on Bob winning is
P ∗B ≤ 1

2 + ε. And conversely, if Bob is honest, the probability that both players agree on Alice
winning is P ∗A ≤ 1

2 + ε.

To be able to define the bias, we need P ∗A and P ∗B which correspond to the best possible cheating
strategy of the opponent. The primal semi-definite program (SDP) formalises this statement.

Theorem 4 (Primal).
P ∗B = maxTr((Π(1)

A ⊗ IM)ρAM,n) over all ρAM,i satisfying the constraints

• TrM(ρAM,0) = TrMB(|ψ0〉 〈ψ0|) = |ψA,0〉 〈ψA,0|;

• for i odd, TrM(ρAM,i) = TrM(EiUiρAM,i−1U
†
i Ei);

• for i even, TrM(ρAM,i) = TrM(ρAM,i−1).

P ∗A = maxTr((IM ⊗Π(0)
B )ρMB,n) over all ρBM,i satisfying the constraints

• TrM(ρMB,0) = TrAM(|ψ0〉 〈ψ0|) = |ψB,0〉 〈ψB,0|;

• for i even, TrM(ρMB,i) = TrM(EiUiρMB,i−1U
†
i Ei);

• for i odd, TrM(ρMB,i) = TrM(ρMB,i−1).

A feasible solution to an optimisation problem is one which satisfies the constraints but is not
necessarily optimal. A feasible solution to the primal problems gives a lower bound on P ∗A and P ∗B.
If we consider the duals instead, it is known that, a feasible solution gives an upper bound on P ∗A
and P ∗B. This certifies how good the protocol is.

Theorem 5 (Dual).
P ∗B = minTr(ZA,0 |ψA,0〉 〈ψA,0|) over all ZA,i under the constraints

1. ∀i, ZA,i ≥ 0;

2. for i odd, ZA,i−1 ⊗ IM ≥ U †A,iEA,i(ZA,i ⊗ IM)EA,iUA,i;

3. for i even, ZA,i−1 = ZA,i;

4. ZA,n = Π(1)
A .

P ∗A = minTr(ZB,0 |ψB,0〉 〈ψB,0|) over all ZB,i under the constraints

1. ∀i, ZB,i ≥ 0;

2. for i even, IM ⊗ ZB,i−1 ≥ U †B,iEB,i(IM ⊗ ZB,i)EB,iUB,i;

3. for i odd, ZB,i−1 = ZB,i;
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4. ZB,n =
∏(0)
B .

We add one more constraint to the above dual SDPs.

5. |ψA,0〉 is an eigenvector of ZA,0 with eigenvalue α > 0 and |ψB,0〉 is an eigenvector of ZB,0
with eigenvalue β > 0.

Definition 6 (dual feasible points). We call dual feasible points any two sets of matrices {ZA,0, . . . , ZA,n}
and {ZB,0, . . . , ZB,n} that satisfy the corresponding conditions 1 to 5 as listed in Theorem 5.

It turns out that strong duality holds for the primal problems which means that there is a
cheating strategy for Alice and Bob matching the upper bound on P ∗A and P ∗B respectively.

Proposition 7. P ∗A = inf α and P ∗B = inf β where the infimum is over all dual feasible points and
β, α are defined in constraint 5 of the definition of the dual feasible points.

2.2 (Time Dependent) Point Games with EBM transitions

The basic idea here is to remove all inessential information, that is the basis information, from
the two aforesaid dual problems. Kitaev’s genius was to achieve this by considering, at a given
step, the dual variable ZA, ZB as observables with |ψ〉 governing the probability. This combines the
evolution of the certificates on cheating probabilities with the evolution of the honest state—the
state obtained when both players follow the protocol (nobody cheats). Originally, using a similar
manoeuvre, Kitaev settled solvability of the quantum strong coin flipping problem by giving a
bound on ε. To make this insight precise, first “prob” is defined.

Definition 8 (prob). Consider Z ≥ 0 and let Π[z] represent the projector on the eigenspace of
eigenvalue z ∈ sp(Z). We have Z =

∑
z zΠ[z]. Let |ψ〉 be a (not necessarily normalised) vector. We

define the function with finite support prob[Z,ψ] : [0,∞)→ [0,∞) as

prob[Z,ψ](z) =
{
〈ψ|Π[z] |ψ〉 if z ∈ sp(Z)
0 else.

If Z = ZA⊗IM⊗ZB, using the same notation, we define the 2−variate function with finite support
prob[ZA, ZB, ψ] : [0,∞)× [0,∞)→ [0,∞) as

prob[ZA, ZB, ψ](zA, zB) =
{
〈ψ|Π[zA] ⊗ IM ⊗Π[zB ] |ψ〉 if (zA, zB) ∈ sp(ZA)× sp(ZB),
0 else.

Think of the aforesaid 2–variate function as assigning a weight on each point of the plane.
Going from one such configuration to another is what we would intuitively refer to as a “move”
for the moment. Notice that at an odd step i, the dual variable ZB doesn’t change while ZA
does (see Theorem 5). The constraint equation in this step is ZA,i−1 ⊗ IM ≥ U †i (ZA,i ⊗ IM )Ui.
The honest state can be expressed as |ψi〉 = Ui |ψi−1〉 but this acts on the complete A ⊗M⊗ B
space. Applying the aforesaid method of removing the basis information using the prob method,
and appending the fixed ZB,i−1 = ZB,i, we conclude that prob(ZA,i−1 ⊗ IM ⊗ ZB,i, |ψi−1〉) →
prob(ZA,i ⊗ IM ⊗ ZB,i, |ψi〉) should constitute an “allowed move” as it is simply re-expressing the
dual SDP in a basis independent form. For the dual, we are assuming the protocol is given to us,
i.e. Ui (unitary operations), ΠA/B (measurements) and |ψ0〉 (initial state) are specified, and we
have to find the appropriate Zs. However, when we discuss the notion of an “allowed move” we are
moving towards a framework which will free us from discussing a specific protocol. This motivates
the following definitions.
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Definition 9 (EBM line transition). Let g, h : [0,∞) → [0,∞) be two functions with finite
supports. The line transition g → h is EBM if there exist two matrices 0 ≤ G ≤ H and a (not
necessarily normalised) vector |ψ〉 such that g = prob[G,ψ] and h = prob[H,ψ].

Definition 10 (EBM transition). Let p, q : [0,∞) × [0,∞) → [0,∞) be two functions with finite
supports. The transition p→ q is an

• EBM horizontal transition if for all y ∈ [0,∞), p(., y)→ q(., y) is an EBM line transition, and

• EBM vertical transition if for all x ∈ [0,∞), p(x, .)→ q(x, .) is an EBM line transition.

It turns out that when one writes the dual, the order of the constraints gets inverted, i.e.
the condition associated with the final measurements and states appears first and the condition
associated with the initial state appears in the end. We expect the final state to be like an EPR
state and, intuitively, expect two points (in terms of the 2–variate function as described earlier) to
be associated with it. This makes it plausible that we will start with two points in the dual when
it is expressed in the aforementioned basis independent way. The initial state of the protocol is
unentangled. This we expect should correspond to a single point. This helps us accept that we
end with a single point in the basis independent expression of the dual. The rules for moving these
points must be related to the dual constraints. We already formalised these conditions into EBM
transitions. The notation

[xg, yg](x, y) =
{

1 xg = x and yg = y

0 else

will be useful for formalising the complete description into what Mochon dubbed an “Expressible
by Matrices” (Time Dependent) point game.

Definition 11 (EBM point game). An EBM point game is a sequence of functions {p0, p1, . . . , pn}
with finite support such that

• p0 = 1/2[0, 1] + 1/2[1, 0];

• for all even i, pi → pi+1 is an EBM vertical transition;

• for all odd i, pi → pi+1 is an EBM horizontal transition;

• pn = 1[β, α] for some α, β ∈ [0, 1]. We call [β, α] the final point of the EBM point game.

Since we started with a WCF protocol, considered its dual and re-expressed it as a TDPG
(which is just a basis independent representation), the following should not come as a surprise.

Proposition 12 (WCF =⇒ EBM point game). Given a WCF protocol with cheating probabilities
P ∗A and P ∗B, along with a positive real number δ > 0, there exists an EBM point game with final
point [P ∗B + δ, P ∗A + δ].

What is slightly more non-trivial is that given this TDPG one can construct a WCF protocol.
This means that by using only “allowed moves” one can be sure that there exists a corresponding
sequence of unitaries Ui, the measurements ΠA/B and the initial state |ψ0〉 complemented by the
dual variables ZA,i and ZB,i which certify the bias corresponding to the coordinates of the final
point in the point game. This establishes the equivalence between TDPGs and WCF protocols.
The precise statement is as follows.
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Theorem 13 (EBM to protocol). Given an EBM point game with final point [β, α], there exists
a WCF protocol and two dual feasible points proving that the optimal cheating probabilities are
P ∗A ≤ α and P ∗B ≤ β.

Our first contribution is related to this part. We construct protocols from EBM point games in
a slightly different way which results in two important improvements. The first improvement makes
the protocol more practical as the message register gets decoupled from Alice and Bob’s registers
after each round. (In Mochon/Aharonov et al’s version the message register is highly entangled
and stays that way until the very end.) The second improvement is due to the addition of a cheat
detection measurement at every round (similar to Mochon’s improved Dip Dip Boom protocol)
which allows us to consider certain matrices with infinite eigenvalues in a well defined way. These
pave the path for converting the bias 1/10 point game (due to Mochon; will be introduced later)
into a protocol.

2.3 (Time Dependent) Point Games with valid transitions

While the problem has been simplified by the removal of the basis information, it is still hard to
know which transitions are allowed, i.e. are EBM transitions. This is because finding the matrices
certifying that a transition is EBM is not easy. The goal of this section is to find another criterion
for establishing that a transition is EBM. This criterion is at the heart of coin flipping. It would
turn out that the set of EBM functions (closely related to EBM transitions) form a closed convex
cone. The dual of this cone happens to be the set operator monotone functions (as described earlier
in Subsection 1.3, these are a generalisation of monotone functions, x ≥ y =⇒ f(x) ≥ f(y), to
X ≥ Y =⇒ f(X) ≥ f(Y ) where X and Y are now matrices). These functions have a very nice
and simple characterisation. This is what leads to the key simplification for WCF. To be able to
harness this, one can use the known fact that for a closed convex cone, the dual of the dual is
the original cone itself (also called bi-dual). So this dual of operator monotone functions, i.e. the
bi-dual of the cone of EBM functions, equals the cone of EBM functions. The dual of operator
monotone functions has an easy description because operator monotone functions have an easy
description. Combining these, one obtains an easy characterisation of EBM functions which allows
one to construct interesting WCF protocols. The catch is that we establish that the two cones, the
cone of EBM functions and the dual of the cone of operator monotone functions, are the same but
given a point in the second cone we do not have a recipe for finding the matrices certifying it is an
EBM. Without the matrices we can not implement the protocol even though we know the matrices
must exist as the cones are the same. These notions are now formalised.

2.3.1 Formalising the equivalence between transitions and functions

Working with functions instead of transitions will be rather useful as will be evident from the next
subsection.

Definition 14 (K, EBM functions). A function a : R≥0 → R with finite support is an EBM
function if the line transition a− → a+ is EBM, where a+ : R≥0 → R≥0 and a− : R≥0 → R≥0
denote, respectively, the positive and the negative part of a (a = a+ − a−).

We denote by K the set of EBM functions.

Definition 15 (KΛ, EBM functions on [0,Λ]). For any finite Λ, a function a : [0,Λ) → R with
finite support is an EBM function with support on [0,Λ] if the line transition a− → a+ is EBM
with its spectrum in [0,Λ], where a− : [0,Λ) → R≥0 and a+ : [0,Λ) → R≥0 denote, respectively,
the positive and the negative part of a.
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We denote the set of EBM functions with support on [0,Λ] by KΛ.

It is evident that if the functions g, h denoting the transition g → h have no common support
then the function description uniquely captures the said transition. In this section we restrict to
such transitions and therefore use them interchangeably. In later sections we revisit this notion.

To be able to talk about different characterisations of EBM functions it is useful to abstract it
(the characterisation) into a property P which the function must satisfy. Using this we can define
games which use these P functions. This is done to be able to handle subtleties which arise in
proving that the set of EBM functions is the same as the set of P functions for specific Ps.

Definition 16 (Horizontal and vertical P-functions). A P-function a : R≥0 → R is a function with
finite support that has the property P.

A function t : R≥0 × R≥0 → R is a

• horizontal P-function if for all y ≥ 0, t(., y) is a P-function;

• vertical P-function if for all x ≥ 0, t(x, .) is a P-function.

Definition 17 (point games with P-functions). A point game with P-functions is a set {t1, . . . , tn}
of n P-functions alternatively horizontal and vertical such that

• 1
2 [0, 1] + 1

2 [1, 0] +
∑n
i=1 ti = [β, α];

• ∀j ∈ {1, . . . , n}, 1
2 [0, 1] + 1

2 [1, 0] +
∑j
i=1 ti ≥ 0.

We call [β, α] the final point of the game.

We note the following before looking at P functions in more detail.

Lemma 18 (point game with EBM functions =⇒ point game with EBM transitions). Given a
point game with n EBM functions and final point [β, α] we can construct a point game with n EBM
transitions and final point [β, α].

2.3.2 Operator monotone functions and valid functions

This discussion is essential to understand our second contribution. The set of EBM functions forms
a convex cone. To see this we recall the definition of a convex cone.

Definition 19 (convex cone). A set C in a vector space V is a cone if for all x ∈ C and for all
λ > 0, λx ∈ C. It is convex if for all x, y ∈ C, x+ y ∈ C.

Noting that the state |ψ〉 in the definition of an EBM function (which in turn invokes an EBM
transition) is unnormalised the set of EBM functions is easily seen to form a cone. By taking a
direct sum one can establish convexity as well. The vector space of interest here is given by the
span of the basis {[xg]}xg∈[0,∞) where [xg](x) = δxg ,x. The notation is similar to the one introduced
earlier. We use it shortly.

Lemma 20. K is a convex cone. Also, for any Λ ∈ (0,∞), KΛ is a convex cone.

To establish an alternative characterisation of the cone of EBM functions we need to define
what is called a dual cone.
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Definition 21 (dual cone). Let C be a cone in a normed vector space V . We denote by V ′ the
space of continuous linear functionals from V to R. The dual cone of a set C ⊆ V is

C∗ =
{
Φ ∈ V ′|∀a ∈ C,Φ(a) ≥ 0

}
.

For our purpose linear functionals can be thought of simply as functions which map objects in
the cone to a non-negative real number with the added property of being linear in its argument.

We now formally define operator monotone functions.

Definition 22 (operator monotone functions). A function f : R≥0 → R is operator monotone if
for all 0 ≤ X ≤ Y we have f(X) ≤ f(Y ).

Definition 23 (operator monotone functions on [0,Λ]). A function f : [0,Λ] → R is operator
monotone on [0,Λ] if for all 0 ≤ X ≤ Y with spectrum in [0,Λ] we have f(X) ≤ f(Y ).

The pivotal result of this (sub)section is the equivalence between the cone of operator monotone
functions and the dual cone of EBM functions.

Lemma 24. Φ ∈ K∗ if and only if fΦ is operator monotone in [0,∞]. Also, for any Λ ∈ (0,∞),
Φ ∈ K∗Λ if and only if fΦ is operator monotone on [0,Λ].

(NB: We need to use the bijection between Φ (a linear functional from V → R) and a function
on reals (from R→ R) given by the identification fΦ(x) = Φ([x]) to make such a statement)

The proof of this crucial result is not too hard (almost trivial in one direction) and follows from
the respective definitions with some work for unpacking. What makes this connection interesting
is the following beautiful characterisation of operator monotone functions introduced by Löwner
(in 1934, see [17]).

Lemma 25 (characterisation of operator monotone functions). Any operator monotone function
f : R≥0 → R can be written as

f(x) = c0 + c1x+
∫ ∞

0

λx

λ+ x
dω(λ)

for a measure ω satisfying
∫∞
0

λ
1+λdω(λ) <∞.

Lemma 26 (characterisation of operator monotone functions on [0,Λ]). Any operator monotone
function f : [0,Λ]→ R can be written as

f(x) = c0 + c1x+
∫

λx

λ+ x
dω(λ)

with the integral ranging over λ ∈ (−∞,−Λ) ∪ (0,∞) satisfying
∫ λ

1+λdω(λ) < ∞ where ω is a
measure.

As will become clear when we discuss the dual of the cone of operator monotones, it suffices to
consider operator monotones of the form λx/(λ+ x) (which basically is because ω is a measure).

So far the statements from Aharonov et al’s paper were made in the same order as they had
originally appeared. We now re-order these a little with an eye on our end-goal (as opposed to the
one of Mochon/Aharonov). It is known that the bi-dual of a cone is the closure of the cone we
started with.

Fact 27. Let C ⊆ V be a convex cone, then C∗∗ = cl(C) where C∗ is the dual cone of C.5

5See [Boyd and Vandenberghe 2004] for proofs of these facts.
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The astute reader would have guessed where we are going with this discussion. We define, from
hindsight, the bi-dual of EBM functions to be the cone of valid functions. Since the dual of EBM
functions has an easy characterisation, the bi-dual also has an easy characterisation which is why
we are interested in it.

Definition 28 (Λ valid functions). A function a : [0,Λ]→ R with finite support on [0,Λ] is Λ valid
if a ∈ K∗∗Λ .

To be able to use the aforementioned fact we note that the cone of interest, the cone of EBM
functions, is closed. As one can imagine, proving this is easier if the matrices involved have a
bounded spectrum. We consider only these for now. This means that the cone of valid functions is
the same as the cone of EBM functions. We state these precisely below.

Lemma 29. For Λ ∈ (0,∞), KΛ is closed (which implies K∗∗Λ = KΛ).

Corollary 30. For Λ ∈ (0,∞), KΛ = {a ∈ V |∀Φ ∈ K∗Λ,Φ(a) ≥ 0}.

Corollary 31 (EBM on [0,Λ] is equivalent to Λ valid). A function a : [0,Λ]→ R with finite support
on [0,Λ] is EBM on [0,Λ] if and only if

∑
x a(x) = 0,

∑
x xa(x) ≥ 0 and ∀λ ∈ (−∞,−Λ] ∪ (0,∞),∑

x
λx
λ+xa(x) ≥ 0.

In the last statement, the characterisation of operator monotone functions was used which we
introduced earlier. Note that all the statements made here assume that the matrices used in EBM
functions have a finite spectrum. Our EMA algorithm heavily relies on this part of the analysis
which is due to Aharonov et al.

It is worth pointing out that Mochon outlines this scheme used by Aharonov et al. but himself
proceeds by using matrix perturbation theory for proving a similar result.

2.3.3 Strictly valid functions are EBM functions

To be able to simplify the conditions one needs to check, it is useful to relax the condition on
the spectrum of the matrices involved. This is evident from range of λ one needs to use in the
characterisation of operator monotone functions (compare Lemma 26 and Lemma 25).

It is easy to describe the interior of the dual of a cone. It is also possible to relate the interior
with the closure of the cone, but in finite dimensions. This reasoning fails for infinite dimensions.
They still serve as motivation for the definition of valid and strictly valid functions.

Fact 32. Let C be a convex set, then int(C) = int(cl(C)).

Fact 33. Let C be a cone in the finite-dimensional vector space V , then int(C∗) =
{Φ ∈ V ′|∀a ∈ C − {0},Φ(a) > 0}.

Definition 34 (valid function). A function a : R≥0 → R with finite support is valid if for every
operator monotone function f : R≥0 → R we have

∑
x∈supp(h) f(x)a(x) ≥ 0.

Definition 35 (strictly valid function). A function a : R≥0 → R with finite support is strictly valid
if for every non-constant operator monotone function f : R≥0 → R we have

∑
x∈supp(a) f(x)a(x) > 0.

One can use the characterisation of operator monotone functions to explicitly characterise the
set of valid and strictly valid functions.
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Lemma 36. Let a : R≥0 → R be a function with finite support such that
∑
x a(x) = 0. The function

a is a strictly valid function if and only if for all λ > 0,
∑
x
−a(x)
λ+x > 0 and

∑
x x.a(x) > 0.

(We added the last condition else the merge (discussed later) becomes a strictly valid function but
it can be shown that no bounded matrices exist for which it is EBM.)

The function a is valid if and only if for all λ > 0,
∑
x
−a(x)
λ+x ≥ 0 and

∑
x x.a(x) ≥ 0.

The set of strictly valid functions can be shown to also be Λ valid for some finite Λ. This means
that it would also be EBM on [0,Λ] which in turn means it would be an EBM function. We hence
have the following.

Lemma 37. Any strictly valid function is an EBM function.

2.3.4 From valid functions to EBM functions

If we construct a point game with valid functions we can convert it into a game with EBM functions
with an arbitrarily small overhead on the bias. The trick is to raise the coordinates of all the final
points (ones with positive weight) a little at each step, to convert a valid function into a strictly
valid function.

Theorem 38 (valid to EBM). Given a point game with 2m valid functions and final point [β, α]
and any ε > 0, we can construct a point game with 2m EBM functions and final point [β+ ε, α+ ε].

Lemma 39. Fix ε > 0. Given a point game with 2m valid functions and final point [β, α] we can
construct a point game with 2m strictly valid functions and final point [β + ε, α+ ε].

2.3.5 Examples of valid line transitions

We go back to transitions to discuss some simple valid and strictly valid line transitions which are
defined similar to the corresponding functions.

Definition 40 (Valid and strictly valid line transitions). Let g, h : R≥0 → R be two functions with
finite support. The transition g → h is valid (resp., strictly valid) if the function h − g is valid
(resp., strictly valid).

We focus our attention to the simplest cases. The first is to increase the coordinate of a point.
The second considers the case of merging two points into one. The third is about splitting a single
point into two.

Example 41 (Point raise). p[xg]→ p[xh] with xh ≥ xg.

Example 42 (Point merge). pg1 [xg1 ] + pg2 [xg2 ]→ (pg1 + pg2)[xh] with xh ≥
pg1xg1+pg2xg2

pg1+pg2
.

Example 43 (Point split). pg[xg]→ ph1 [xh1 ] + ph2 [xh2 ] with pg = ph1 + ph2 and pg
xg
≥ ph1

xh1
+ ph2

xh2
.

The merge and split can be generalised to many points and be shown to have the same form.

2.4 TIPGs.

Mochon’s Dip Dip Boom protocol, the one with bias 1/6, can be expressed already as a (time
dependent) point game. However, it is possible to simplify the point game formalism even further
and it is in this simplified formalism Mochon constructs his family of point games that achieve
an arbitrarily small bias. Instead of worrying about the entire sequence of horizontal and vertical
transitions, one can focus on just two functions as described below.
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Definition 44 (TIPG). A TIPG is a valid horizontal function a and a valid vertical function b
such that

a+ b = 1[β, α]− 1
2[0, 1]− 1

2[1, 0]

for some α, β > 1/2. We call the point [β, α] the final point of the game.

The main difference here is that we do not worry about the sequence in which one must apply
the transitions to obtain the final configuration. This justifies the name TIPG which stands for a
Time Independent Point Game. It is not too hard to see that if we have a valid point game we
can combine the horizontal functions and the vertical functions to obtain a and b. It is a little
counter-intuitive in fact to learn that one can convert a TIPG into a valid (time dependent) point
game with an arbitrarily small cost on the bias. It is counter-intuitive because it is not clear that
one can flesh out a time ordered sequence as one can, and in fact does for Mochon’s point games,
run into causal loops that is you expect a point to be present to create another point which in
turn is required to produce the first point. The trick that is used to fix this problem is known as
the “catalyst state”. One deposits a little bit of weight wherever there is negative weight for a, for
instance, and then one can implement a scaled down round of a and b. The scaling is proportional
to the weight that is placed to start with. Repeating this procedure multiple times yields the
required final state along with the “catalyst state” which stays unchanged. Absorbing the catalyst
state leads to a small increase in the bias. The number of rounds increases with how small one
wants this increase in bias to be.

Theorem 45 (TIPG to valid point games). Given a TIPG with a valid horizontal function a and
a valid vertical function b such that a+ b = 1[β, α]− 1

2 [0, 1]− 1
2 [1, 0], we can construct, for all ε > 0,

a valid point game with final point [β + ε, α+ ε] where the number of transitions depends on ε.

It is important to state that the conversion from a TIPG to a valid (time dependent) point
game, TDPG, is easy and explicit.

A word about resource usage. The size (dimension) of the physical system we use depends on
the number of points involved in the point games linearly. The number of rounds on the other
hand needs to be calculated with more care as it depends on the choice of the catalyst state. These
calculations with respect to Mochon’s game and in general have been performed by Aharonov et
al. in their article and we do not discuss it here.

We have stated enough results to be able to commence the discussion of our work.
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Part I

Bias 1/10
3 TDPG → Explicit Protocol, Framework (TEF)
We strongly recommend that the reader looks at the third section titled “The illustrated guide to
point games” from Mochon’s [1] article, if they have not already, before proceeding.

3.1 Motivation and Conventions

We wish to construct a protocol such that its dual matches a given TDPG. The main difference in
our construction, compared to the one used by Aharonov et al. and Mochon, is the introduction of a
message register that decouples after each round and of suitably adapted projectors. Consequently,
the non-trivial constraint that the dual matrices must satisfy would be similar to, but not quite
the same as, the EBM condition.

Keep Definition 8 in mind. Intuitively, the most natural way of constructing Zs and a |ψ〉 given
an arbitrary frame (think of a TDPG as a sequence of frames) is to construct an entangled state
that encodes the weight and define Zs to contain the coordinates corresponding to the weight. Let
us make this idea more precise.

Definition (Canonical Form). The tuple (|ψ〉 , ZA, ZB) is said to be in the Canonical Form with
respect to a set of points in a frame of a TDPG if (see Figure 4a) |ψ〉 =

∑
i

√
Pi |ii〉AB ⊗ |.〉M ,

ZA = (
∑
xi |i〉 〈i|A)⊗|.〉 〈.|M and ZB = (

∑
yi |i〉 〈i|B)⊗|.〉 〈.|M where |.〉M represent extra uncoupled

registers which might be present.

It is easy to see that the ‘label’ |ii〉 correspond to a point with coordinates xi, yi and weight Pi
in the frame (see Definition 8). It is tempting to imagine that we systematically construct, from
each frame of a TDPG, a canonical form of |ψ〉 s and Zs. The unitaries can be deduced from the
evolution of |ψ〉. This approach has two problems, (1) it does not manifestly mean that the unitaries
would be decomposable into moves by Alice and Bob who communicate only through the message
register and (2) the constraints imposed consecutive Zs, of the form Zn−1⊗ I ≥ U †n (Zn ⊗ I)Un, are
not satisfied in general. This construction ensures these issues are dissolved.

The framework will output variables in the reverse time convention indexed as, for example,∣∣∣ψ(i)
〉
, Z(i), U(i). The variables at the ith step of the protocol (which follows the forward time

convention) would be given by |ψi〉 =
∣∣∣ψ(N−i)

〉
, Zi = Z(N−i) and Ui = U †(N−i). Note that the results

so obtain extend naturally to the case where Ui may not be unitary and contains projections.

Basic Moves Work Out of the Box

Recall the three basic moves of a TDPG were given by

1. Raise: p1[x, y]→ p1[x′, y] s.t. x′ ≥ x.

2. Merge: p1[x1, y] + p2[x2, y]→ p1 + p2
[
p1x1+p2x2
p1+p2

, y
]

3. Split: (p1 + p2)
[(

p1w1+p2w2
p1+p2

)−1
, y

]
→ p1[x1, y] + p2[x2, y] where w1 = 1/p1 and w2 = 1/p2.

22



(a) Frame of a TDPG

(b) The points which are unchanged from one frame to another are labelled by {ki}. Among the points that
change, the initial ones are labelled by {gi} and the final ones by {hi}.

Figure 4: Illustrations for the Canonical Form

We construct the explicit Unitaries that implement these moves which in turn (when generalised to
n points) are enough to construct the former best known protocol from its TDPG. Note, however,
that these moves do not exhaust the set of moves and more advanced moves will be constructed to
go beyond the 1/6 limit.

3.2 The Framework

Intuition

Imagine a canonical description is given. Let the labels on the points one wants to transform be
indexed by {gi} and let us also assume that one wishes to apply an x-transition (meaning Alice
performs the non-trivial step). Let the labels of the points that one wishes to leave untouched be
given by {ki} (see Figure 4b). We can write the state as

∣∣∣ψ(1)
〉

=
(∑

i

√
pgi |gigi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M .
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We want Bob to send his part of |gi〉 states to Alice through the message register. One way is that
he conditionally swaps to obtain the following∣∣∣ψ(2)

〉
=
∑
i

√
pgi |gigi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M .

This should at most force all the points to align along the y-axis but no non-trivial constraint should
arise (speaking with hindsight). Let {hi} be the labels of the new points after the transformation.
We assume that h and g index orthonormal vectors. Alice can update the probabilities and labels
by locally performing a unitary to obtain∣∣∣ψ(3)

〉
=
∑
i

√
phi |hihi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M .

It is precisely this step which yields the non-trivial constraint. Bob must now accept this by
‘unswapping’ to get

∣∣∣ψ(4)
〉

=
(∑

i

√
phi |hihi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M

which leaves Bob’s Z in essentially the standard form (we will see). Remember that in the actual
protocol the sequence will get reversed as described above.

Note that we add a few extra frames to the final TDPG to go from a given frame to the next of
the initial TDPG. This is irrelevant as the bias stays the same but we mention it to avoid confusion.

Formal Description and Proofs

1. First frame. ∣∣∣ψ(1)
〉

=
(∑

i

√
pgi |gigi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M

ZA(1) =
∑
i

xgi |gi〉 〈gi|A +
∑
i

xki |ki〉 〈ki|A

ZB(1) =
∑
i

ygi |gi〉 〈gi|B +
∑
i

yki |ki〉 〈ki|B .

Proof. Follows from the assumption of starting with a Canonical Form.

2. Bob sends to Alice. With y ≥ max{ygi} the following is a valid choice∣∣∣ψ(2)
〉

=
∑
i

√
pgi |gigi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M

U (1) = U
SWP{~g,m}
BM

ZA(2) = ZA(1)

ZB(2) = yI{~g,m}B +
∑
i

yki |ki〉 〈ki|B .
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Proof. We have to prove: (1)
∣∣∣ψ(2)

〉
= U (1)

∣∣∣ψ(1)
〉
and (2) U (1)†

(
ZB(2) ⊗ IM

)
U (1) ≥

(
ZB(1) ⊗ IM

)
.

(1) It follows trivially from the defining action of U (1).
(2) For convenience, let momentarily U = U (1) and note that U † = U so that we can write

U
(
ZB(2) ⊗ IM

)
U

= y

U (I{~g,m}B ⊗ I{~g,m}M

)
U + U

(
I{~g,m}B ⊗ I{

~k,~h}
M

)
︸ ︷︷ ︸

outside U ’s action space

U

+ U
(∑

yki |ki〉 〈ki| ⊗ I
)

︸ ︷︷ ︸
outside U ’s action space

U

= Z(2) ⊗ IM ≥ Z(1) ⊗ IM

so long as y ≥ ygi which is guaranteed by the choice of y.

3. Alice’s non-trivial step. We claim that the following is a valid choice,∣∣∣ψ(3)
〉

=
∑
i

√
phi |hihi〉AM ⊗ |m〉B +

∑
i

√
pki |kiki〉AB ⊗ |m〉M

E(2)U (2) = E(2) (|w〉 〈v|+ other terms acting on span{ |hihi〉 , |gigi〉})AM
ZA(3) =

∑
i

xhi |hi〉 〈hi|+
∑
i

xki |ki〉 〈ki|

ZB(3) = ZB(2)

where

|v〉 =
∑
i
√
pgi |gigi〉√∑
i pgi

, |w〉 =
∑
i
√
phi |hihi〉√∑
i phi

, E(2) =
(∑

|hi〉 〈hi|A +
∑
|ki〉 〈ki|A

)
⊗ IM

subject to the condition∑
xhi |hihi〉 〈hihi| ≥

∑
xgiE

(2)U (2) |gigi〉 〈gigi|U (2)†E(2) (5)

and of course the conservation of probability, viz.
∑
pgi =

∑
phi .

Proof. We must show that (1) E(2)
∣∣∣ψ(3)

〉
= U (2)

∣∣∣ψ(2)
〉
and (2)

ZA(3) ⊗ IM ≥ E(2)U (2)
(
ZA(2) ⊗ IM

)
U (2)†E(2).

(1) Observing E(2)
∣∣∣ψ(3)

〉
=
∣∣∣ψ(3)

〉
the statement holds almost trivially by construction of

U (2).
(2) Consider the space H = span {|g1g1〉 , |g2g2〉 . . . , |h1h1〉 , |h2, h2〉 . . . }. We separate all
expressions (they are nearly diagonal) into the H space (which gets non-diagonal) and the
rest. We start with the RHS,

ZA(2) ⊗ IM =
∑

xgi |gigi〉 〈gigi|︸ ︷︷ ︸
I

+
∑

xgi |gi〉 〈gi| ⊗ (I− |gi〉 〈gi|) +
∑

xki |ki〉 〈ki| ⊗ I,
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where only term I is in the operator space spanned by H. Note that all the terms are still
diagonal. Next consider the LHS, without the Us,

ZA(3) ⊗ IM =
∑

xhi |hihi〉 〈hihi|︸ ︷︷ ︸
I

+
∑

xhi |hi〉 〈hi| ⊗ (I− |hi〉 〈hi|) +
∑

xki |ki〉 〈ki| ⊗ I,

which also has only term I in the H operator space. Consequently, only on these will U have
a non-trivial action. Let us first evaluate the non-H part where we only need to apply the
projector. The result after separating equations where possible is∑

xhi |hi〉 〈hi| ⊗ (I− |hi〉 〈hi|) ≥ 0∑
(xki − xki) |ki〉 〈ki| ⊗ I ≥ 0

which essentially only implies
xhi ≥ 0.

Finally the non-trivial part yields∑
xhi |hihi〉 〈hihi| ≥

∑
xgiEU |gigi〉 〈gigi|U †E

which completes the proof.

4. Bob accepts Alice’s change. The following is valid.

∣∣∣ψ(4)
〉

=
(∑

i

√
phi |hihi〉AB +

∑
i

√
pki |kiki〉AB

)
⊗ |m〉M

E(3)U (3) = E(3)U
SWP{~h,m}
BM

ZA(4) = ZA(3)

ZB(4) = y
∑
i

|hi〉 〈hi|+
∑
i

yki |ki〉 〈ki|B

where E(3) = (
∑
|hi〉 〈hi|+

∑
|ki〉 〈ki|)B ⊗ IM .

Proof. We have to prove: (1) E(3)
∣∣∣ψ(4)

〉
= U (3)

∣∣∣ψ(3)
〉
and (2)

ZB(4) ⊗ IM ≥ E(3)U (3)
(
ZB(3) ⊗ IM

)
U (3)†E(3).

(1) This can be proven again, by a direct application of U †E on
∣∣∣ψ(4)

〉
(where E is defined

to be E(3) and U to be U (3) for the proof).
(2) Note that

EU

(
I{~g,m}B ⊗ I{

~h,~g,~k,m}
M

)
U †E = EU

(
I{m}B ⊗ I{

~h,~g,~k,m}
M

)
U †E + E

(
I{~g}B ⊗ I{

~h,~g,~k,m}
M

)
E

= EU

(
I{m}B ⊗ I{

~h,m}
M

)
U †E

=
∑
|hi〉 〈hi| ⊗ I{m}M .
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Since the other term in ZB3 ⊗ I is anyway in the non-action space of U it follows that

EU(ZB3 ⊗ I)U †E = y
∑
|hi〉 〈hi| ⊗ I{m}M +

∑
yki |ki〉 〈ki| ⊗ IM .

It only remains to show that ZB(4) ⊗ IM ≥ E(3)U (3)
(
ZB(3) ⊗ IM

)
U (3)†E(3) which it obviously

is because y
∑
|hi〉 〈hi| ⊗ IM ≥ y

∑
|hi〉 〈hi| ⊗ I{m}M and the yki term is common.

We can summarise the condition of interest as follows, the proof of which is a trivial consequence
of the aforesaid.

Theorem 46. For an x-transition (where Alice performs the non-trivial step)

nk∑
i=1

pki [xki ] +
ng∑
i=1

pgi [xgi ]→
nh∑
i=1

phi [xhi ] +
nk∑
i=1

pki [xki ]

to be implementable under the TDPG-to-Explicit-protocol Framework (TEF) one must find a U (2)

that satisfies the inequality

nh∑
i=1

xhi |hihi〉 〈hihi|AM ≥
ng∑
i=1

xgiE
(2)
h U (2) |gigi〉 〈gigi|AM U (2)†E

(2)
h (6)

and the honest action constraint
U (2) |v〉 = |w〉

where |hi〉 and |gi〉 are orthonormal basis vectors,

|v〉 = N
(∑√

pgi |gigi〉AM
)

and
|w〉 = N

(∑√
phi |hihi〉AM

)
for N (|ψ〉) = |ψ〉 /

√
〈ψ|ψ〉, Eh = (

∑nh
i=1 |hi〉 〈hi|A +

∑
|ki〉 〈ki|A) ⊗ IM with U (2)’s non-trivial ac-

tion restricted to span {{|gigi〉AM}, {|hihi〉AM}} (note |ki〉 corresponds to the points that are left
unchanged in the transition).

3.3 Important Special Case: The Blinkered Unitary

So far we have not specified the non-trivial U (2) (which we call U from now) beyond requiring it
to have a certain action on the honest state. We now define an important class of U , we call the
Blinkered Unitary, as

U = |w〉 〈v|+ |v〉 〈w|+
∑
|vi〉 〈vi|+

∑
|wi〉 〈wi|+ Ioutside H

and can even drop the last term as we are restricting our analysis to the H operator space,
where |v〉 , {|vi〉} form a complete orthonormal basis and so do |w〉 , {|wi〉} wrt span{|gigi〉} and
span{|vivi〉} respectively. The blinkered unitary can be used to implement the two non-trivial
operations of the set of basic moves.
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• Merge: g1, g2 → h1
We can construct from the very definitions

|v〉 =
√
pg1 |g1g1〉+√pg2 |g2g2〉

N
, |v1〉 =

√
pg2 |g1g1〉 −

√
pg1 |g2g2〉

N
, |w〉 = |h1h1〉

with N = √pg1 + pg2 and even

U = |w〉 〈v|+ |v〉 〈w|+ |v1〉 〈v1| (= U †).

We would need
EU |g1g1〉 =

√
pg1 |w〉
N

, EU |g2g2〉 =
√
pg2 |w〉
N

because the constraint was (substituting for m and n)

xh |h1h1〉 〈h1h1| ≥
∑

xgiEU |gigi〉 〈gigi|U †E

which becomes
xh ≥

pg1xg1 + pg2xg2

N22 .

This is precisely the merge condition Mochon derives. This can be readily generalised to an
m→ 1 point merge condition by simply constructing appropriate vectors (which we leave for
the appendix).

• Split: g1 → h1, h2

|v〉 = |g1g1〉 , |w〉 =
√
ph1 |h1h1〉+√ph2 |h2h2〉

N
, |w1〉 =

√
ph2 |h1h1〉 −

√
ph1 |h2h2〉

N

with N = √ph1 + ph2 and

U = |v〉 〈w|+ |w〉 〈v|+ |w1〉 〈w1| = U †.

We evaluate EU |g1g1〉 = |w〉 which upon being plugged into the constraint yields

xh1 |h1h1〉 〈h1h1|+ xh2 |h2h2〉 〈h2h2| − xg1 |w〉 〈w| ≥ 0.

This yields the matrix equation[
xh1

xh2

]
− xg1

N2

[
ph1

√
ph1ph2√

ph1ph2 ph2

]
≥ 0

I ≥ xg1

N2

 ph1
xh1

√
ph1
xh1

ph2
xh2√

ph1
xh1

ph2
xh2

ph2
xh2


xg1

N2

(
ph1

xh1

+ ph2

xh2

)
≤ 1

where in the second step we used the fact that F −M ≥ 0 implies I −
√
F
−1
M
√
F
−1 ≥ 0

(if F > 0) and the last step is obtained by writing the matrix in the previous step as |ψ〉 〈ψ|
followed by demanding 1 ≥ 〈ψ|ψ〉.
The last statement is the same constraint for a split as the one derived by Mochon. This also
readily generalises to the case of 1→ N splits which again we defer to the appendix.
It would not be surprising to learn/prove that the class of unitaries with these properties is
much more general than the Blinkered Unitaries.
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• General m→ n: g1, g2 . . . gm → h1, h2 . . . hn
It is not too hard to show that in general one obtains the constraint

1
〈xg〉

≥
〈 1
xh

〉
or more explicitly,

1∑m
i=1 pgixgi

≥
n∑
i=1

phi .
1
xhi

,

using the appropriate blinkered unitary (which also we show in the appendix).

This class of unitary is enough to convert the 1/6 game into an explicit protocol. However, for
games given by Mochon that go beyond 1/6 this class falls short. One way of seeing this is that the
general m → n blinkered transition effectively behaves like an m → 1 merge followed by a 1 → n
split, which are a set of moves that are insufficient to break the 1/6 limit (at least using Mochon’s
games).

4 Games and Protocols
We now describe two games, the bias 1/6 game and the bias 1/10 game, from the family of games
constructed by Mochon to show that arbitrarily small bias is achievable. Mochon parametrises his
games by k which determines the number of points involved in the non-trivial step. The bias he
obtains is ε = 1/(4k + 2). We consider games with k = 1 and k = 2, yielding the aforementioned
bias.

4.1 Mochon’s Approach

4.1.1 Assignments

Recall that a function ∑
z∈{x1,x2,...xn}

p(z)[z]

is valid if ∑
z∈{x1,x2,...xn}

( −1
λ+ z

)
p(z) ≥ 0,

∑
z∈{x1,x2,...xn}

zp(z) ≥ 0,
∑

z∈{x1...xn}
p(z) = 0

for all λ > 0 where xi ≥ 0. Checking if a generic assignment for p satisfies these infinite constraints
in not always easy. Mochon had used a constructive approach here and we build on to it. Let
us state these results with some precision (proven in the appendix, well most) where as above n
numbers are assumed to be represented by xi and each xi ≥ 0.

Lemma (Mochon’s Denominator).
∑n
i=1

1∏
j 6=i(xj−xi)

= 0 for n ≥ 2.

Lemma (Mochon’s f-assignment Lemma).
∑n
i=1

f(xi)∏
j 6=i(xj−xi)

= 0 where f(xi) is a polynomial of
order k ≤ n− 2.

Definition (Mochon’s TIPG assignment). Given a set of n points 0 < x1 < x2 · · · < xn, a
polynomial f(x) with order k at most n − 2 and f(−λ) ≥ 0 for all λ ≥ 0, the probability weights
for a TIPG assignment is p(xi) = − f(xi)∏

j 6=i(xj−xi)
.
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Mochon was able to show that ‘Mochon’s TIPG assignment’ makes for a valid function (in the
TIPG formalism), given by

n∑
i=1

p(xi)[xi, y]

where the notion of validity has been extended to a pair of points. As we will see soon, the power
of this construction lies in the fact that we can easily construct polynomials that have roots at
arbitrary locations. This allows us to create interesting repeating structures called ladders (due
to Mochon) which we can terminate using these polynomials to obtain a game with a finite set of
points. These ladders play a pivotal role in achieving smaller biases and the ability to obtain finite
ladders is essential for being able to obtain a physical process that would yield the said bias.

We now build a little on Mochon’s notation and results.

Definition (Mochon’s TDPG assignment). Given Mochon’s TIPG assignment, let {i} be the set
of indices for which p(xi) < 0 and {k} be the remaining indices with respect to {1, 2, . . . n}. The
TDPG assignment (in accordance with the notation used in TEF) is given as

{xg1 , xg2 . . . } = {xi}
{pg1 , pg2 . . . } = {−p(xi)}
{xh1 , xh2 . . . } = {xk}
{ph1 , ph2 . . . } = {p(xk)}.

With these in place we make some observations about how initial and final averages behave
under such an assignment.

Proposition. N2
h = N2

g where N2
g =

∑
pgi and N2

h =
∑
phi for Mochon’s TDPG assignment.

Proof. We have to show that N2
h − N2

g =
∑
phi −

∑
pgi = 0 which is the same as showing∑n

i=1 p(xi) = 0 which holds because we just showed that
∑n
i=1 f(xi)/

∏
j 6=i(xj − xi) = 0 (Mochon’s

f-assignment Lemma).

Proposition. 〈xh〉 − 〈xg〉 = 0 for a Mochon’s TDPG assignment with k ≤ n − 3 where 〈xh〉 =
1
N2
h

∑
phixhi and 〈xg〉 = 1

N2
g

∑
pgixgi.

Proof. This is a direct consequence of Mochon’s f-assignment lemma. Let h be the n − 3 order
polynomial defined by Mochon’s TDPG assignment so that 〈xh〉 − 〈xg〉 ∝

∑
phixi −

∑
pgixgi =∑n

i=1 p(xi)xi =
∑n
i=1

h(xi)xi∏
j 6=i(xj−xi)

=
∑n
i=1

f(xi)∏
j 6=i(xj−xi)

= 0 because f is an n − 2 order polynomial.

Lemma. We have
∑n
i=1

xn−1
i∏

j 6=i(xj−xi)
= (−1)n−1 for n ≥ 2 (proof in section B of the Appendix).

Proposition. 〈xh〉 − 〈xg〉 = 1
N2
h

= 1
N2
g

for a Mochon’s TDPG assignment with k = n − 2 and
coefficient of xn−2 being ±1 in f(x). As above, here 〈xh〉 = 1

N2
h

∑
phixhi and 〈xg〉 = 1

N2
g

∑
pgixgi.

We will see that typically Nh = Ng are quite large and the average only slightly increase, if at
all. We are now in a position to discuss Mochon’s games.
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P1(x0)

P1(x1)

P1(xj-1)

P1(xj)

x0 x1 xj-1 xj

P(x0)
P(x1) P(xj-1)

P(xj)

P1(y0)

P1(y1)

P1(yj)

P1(yj+1)

y0

y1

yj

yj+1

P(x0)

P(x1)

P(xj)

P(xj+1)

Figure 5: Building a TDPG/TIPG using merge moves

4.1.2 Typical Game Structure

We assume an equally spaced n-point lattice given by xj = x0 + jδx where δx = δy is small and
x0 would essentially give a bound on P ∗B which will be determined by following the constraints;
similarly yj = y0 + jδy and we also define Γk+1 = yn−k = xn−k. Let P (xj) be the probability
weight associated with the point [xj , 0] s.t.

n∑
j=1

P (xj) = 1
2 ,

n∑
j=1

P (xj)
xj

= 1
2 .

Similarly with the point [0, yj ] we associate P (yj) where yj = xj as we also assume that x0 = y0.
These choices explicitly impose symmetry between Alice and Bob which in turn entails that we
have to do only half the analysis.

4.2 Bias 1/6
4.2.1 Game

With reference to Figure 5 we need to satisfy P (xj−1) + P1(yj) = P1(xj−1) which is probabil-
ity conservation and P1(yj)yj ≤ P1(xj−1)yj−2 which is the merge condition. Both of these are
automatically satisfied if we make a Mochon’s denominator based assignment as follows

0↔ xg1

yj ↔ xg2

yj−2 ↔ xh1
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P (xj−1)↔ pg1 = c(xj−1)
yjyj−2

P1(yj)↔ pg2 = c(xj−1)
(yj − yj−2)(yj)

= c(xj−1)
2yjδy

P1(xj−1)↔ ph1 = c(xj−1)
(yj − yj−2)(yj−2) = c(xj−1)

2yj−2δy

where the function c(xj−1) must be chosen so that P1(yj) = P1(xj) which entails

c(xj−1)
�2yj��δy

= c(xj)
�2yj−1��δy

and that in turn is solved by c(xj) = c0δx
xj

where we used xj = yj , δx = δy (and added a δx as it
helps approximating

∑
P (xj) by an integral). Plugging this back we have

P1(xj) = c0
2xjxj−1

, P (xj) = c0δx

xj−1xjxj+1
.

Since they involve a sum we do this in the limit δx → 0 and Γ → ∞ to avoid dealing with
summing a series.

n∑
j=0

P (xj) = 1
2 → c0

∫ Γ

x0

dx

x3 = c0
(−2)

[ 1
Γ2 −

1
x2

0

]
= 1

2

which entails c0 = x2
0. The next condition yields x0

n∑
j=0

P (xj)
xj

= 1
2 → x2

0

∫ Γ

x0

dx

x4 = x2
0

(−3)

[ 1
Γ3 −

1
x3

0

]
= 1

3x0
= 1

2

which means
x0 = 2

3 =⇒ ε = 1
6 .

Of course a more careful analysis must be done to show these things exactly. Aside from the
integration step one must also set c0(x) = (Γn+1 − x) in order to terminate the ladder which turns
the terminating step on the ladder into a raise. At the moment, however, we satisfy ourselves with
this and move on to the more interesting 1/10 game. These issues have been dealt with in general
(see [6]).

4.2.2 Protocol

Although we could only claim that one can construct the protocol once the unitaries are known,
the basic idea is that one starts with a split, then a raise by Alice and Bob, followed by a merge
by Bob, then a merge by Alice and so on until only two points remain. Bob can also start as the
description is symmetric. These two can then be raised to the same location and merged. The
coordinates of these points tend to [2

3 ,
2
3 ] as calculated above. The only creative part left would be

the choice of labels that make the description neater from the point of view of the explicit protocol.
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P2(xj)

P(xj)

P1(xj)

P1(yj+1)

P2(yj+2)

xj

yj+1

yj+2

Figure 6: 1/10 game: The 3→ 2 move based TIPG for bias 1/10

4.3 Bias 1/10 Game

With respect to Figure 6 we use Mochon’s assignment with f(yi) = (y−2− yi) (Γ1 − yi) (Γ2− yi) as

f(yj)c′(xj)∏
k 6=j(yk − yj)

.

Following the scheme as described above the probabilities become

P2(yj+2) = −f(yj+2)c(xj)
4.3(δy)2yj+2

P1(yj+1) = −f(yj+1)c(xj)
3.2(δy)2yj+1

P1(xj) = −f(yj−1)c(xj)
3.2(δy)2yj−1

P2(xj) = −f(yj−2)c(xj)
4.3(δy)2yj−2

P (xj) = f(0)c(xj)δy
yj+2yj+1yj−1yj−2

where we added the minus sign to account for the fact that f is negative for coordinates between
y−2 and Γ1. Imposing the symmetry constraints P1(yj) = P1(xj) we get

f(yj)c(xj−1)
���

��3.2(δy)2yj
= f(yj−1)c(xj)
���

��3.2(δy)2yj−1
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which means
c(xj) = c0f(xj)

xj

where c0 is a constant. This also entails that P2(yj) = P2(xj), viz. it satisfies the second symmetry
constraint. Finally we can evaluate

P (xj) = f(0)f(xj)δx
xj+2xj+1xjxj−1xj−2

= c0x0(x0 − xj)
x5
j

δx+O(δx2)

which means that∑
P (xj) = 1

2 =
∑ P (xj)

xj
→
∫ Γ

x0

(x0 − x)dx
x5 =

∫ Γ

x0

(x0 − x)dx
x6 .

We can evaluate this as

x0

∫ Γ

x0

( 1
x5 −

1
x6

)
dx =

∫ Γ

x0

( 1
x4 −

1
x5

)
dx[ 1

4x3
0
− 1

5x4
0

]
=
[ 1

3x3
0
− 1

4x4
0

]
[1

4 −
1
3

]
=
[1

5 −
1
4

] 1
x0

x0
3− 4
�4.3

= 4− 5
5.�4

x0 = 3
5 =⇒ ε = 3

5 −
1
2 = 1

10 .

4.4 Bias 1/10 Protocol

4.4.1 The 3→ 2 Move

In this section we introduce as many parameters as possible within the TEF to implement the
largest class of 3 → 2 moves. However, we use our insight to choose an appropriate basis so that
the parameters are small which in turn simplifies the analysis.

Recall that
|v〉 =

√
pg1 |g1〉+√pg2 |g2〉+√pg3 |g3〉

Ng

and let

|v1〉 =
√
pg3 |g2〉 −

√
pg2 |g3〉

Nv1

|v2〉 =
− (pg2+pg3 )

√
pg1

|g1〉+√pg2 |g2〉+√pg3 |g3〉
Nv2

where N2
v1 = pg3 + pg2 and N2

v2 = (pg2+pg3 )2

pg1
+ pg2 + pg3 . Recall that

|w〉 =
√
ph1 |h1〉+√ph2 |h2〉

Nh

|w1〉 =
√
ph2
|h1〉 −

√
ph1 |h2〉

Nh
.
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Now we define ∣∣v′1〉 = cos θ |v1〉+ sin θ |v2〉∣∣v′2〉 = sin θ |v1〉 − cos θ |v2〉

where we know (from hindsight) that cos θ ≈ 1. The full unitary (which is manifestly unitary) we
define to be

U = |w〉 〈v|+
(
α
∣∣v′1〉+ β |w1〉

) 〈
v′1
∣∣+ ∣∣v′2〉 〈v′2∣∣+ (

β
∣∣v′1〉− α |w1〉

)
〈w1|+ |v〉 〈w|

where |α|2 + |β|2 = 1 for α, β ∈ C. There is some freedom in choosing U in the sense that
α |v〉+β |w1〉 would also work (then |v〉 〈w| → |v1〉 〈w|) because these do not influence the constraint
equation. That is what we evaluate now. We need terms of the form EU |gi〉 with E = I{hi}. This
entails that on the {|gi〉} space

EhUEg = |w〉 〈v|+ β |w1〉
〈
v′1
∣∣

= |w〉 〈v|+ β |w1〉 (cos θ 〈v1|+ sin θ 〈v2|) .

Consequently we have

EhU |g11〉 =
√
pg1

Ng
|w〉+

[
cos θ.0− sin θpg2 + pg3√

pg1Nv2

]
β |w1〉

EhU |g22〉 =
√
pg2

Ng
|w〉+

[
cos θ

√
pg3

Nv1
+ sin θ

√
pg2

Nv2

]
β |w1〉

EhU |g33〉 =
√
pg3

Ng
|w〉+

[
− cos θ

√
pg2

Nv1
+ sin θ

√
pg3

Nv2

]
β |w1〉 .

Recall that the constraint equation was∑
xhi |hi〉 〈hi| −

∑
xgiEhU |gi〉 〈gi|U †Eh ≥ 0

where the first sum becomes  〈xh〉
√
ph1ph2
N2
h

(xh1 − xh2)

h.c. ph2xh1+ph1xh2
N2
h


in the |w〉 , |w1〉 basis. Since we plan to use the 3 → 2 move with one point on the axis, we take
xg1 = 0. Consequently we need only evaluate

xg2EhU |g2〉 〈g2|U †Eh=̇xg2

 pg2
N2
g

β
(
cos θ

√
pg3pg2
NgNv1

+ sin θ pg2
NgNv2

)
h.c.

(
cos

√
pg3
Nv1

+ sin θ
√
pg2
Nv2

)2
|β|2


xg3EhU |g3〉 〈g3|U † ˙Eh =xg3

 pg3
N2
g

β
(
− cos θ

√
pg2pg3
NgNv1

+ sin θ pg3
NgNv2

)
h.c.

(
− cos

√
pg2
Nv1

+ sin
√
pg3
Nv2

)2
|β|2


which means that the constraint equation becomes 〈xh〉 −

〈
xg

〉 √
ph1ph2

N2
h

(xh1 − xh2 )− β cos θ
√
pg2pg3
NgNv1

(xg2 − xg3 )− β sin θ
〈
xg

〉
Ng
Nv2

h.c.
ph2xh1 +ph1xh2

N2
h

− |β|2

[
cos2 θ
N2
v1

(pg3xg2 + pg2xg3 ) + sin2 θ(
N2
v2
/N2
g

) 〈xg〉 +
2 cos θ sin θ√pg3pg2

Nv1Nv2

(
xg2 − xg3

)]
 ≥ 0.
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We already showed that Mochon’s transition is average non-decreasing viz. 〈xh〉−〈xg〉 ≥ 0. We set
the off-diagonal elements of the matrix above to zero and show that the second diagonal element,
the second eigenvalue therefore, is positive.

Setting the off-diagonal to zero one can obtain θ by solving the quadratic in terms of β although
the expression will not be particularly pretty. To establish existence and positivity we need to
simplify our expressions.

So far everything was exact even though the basis and techniques were chosen based on exper-
ience. Now we claim that θ NgNv2

= O(δy) at most (where δy = δx is the lattice spacing) and since
δy will be taken to be small we can take the small θ NgNv2

limit and to first order in it the constraints
become √

ph1ph2
N2
h

(xh1 − xh2)− β
√
pg2pg3
NgNv1

(xg2 − xg3)

β 〈xg〉
= θ

Ng

Nv2
+O(δy2)

and

ph2xh1 + ph1xh2

N2
h

− |β|2
[
pg3xg2 + pg2xg3

N2
v1

+ 2θ Ng

Nv2

√
pg3pg2

NgNv1
(xg2 − xg3)

]
+O(δy2) ≥ 0.

If our claim is wrong when we evaluate θ NgNv2
we will get zero order terms but as we show in the

following section θ NgNv2
= 0.δy +O(δy2) in fact.

4.4.2 Validity of the 3→ 2 Move

With respect to Figure 6 we have

P2(yj+2) = ph2 = −f(yj+2)
4.3δy2yj+2

P1(yj+1) = pg3 = −f(yj+1)
3.2δy2yj+1

P1(xj) = ph1 = −f(yj−1)
3.2δy2yj−1

P2(xj) = pg2 = −f(yj−2)
4.3δy2yj−2

P (xj) = pg1 = f(0)δy
yj+2yj+1yj−1yj−2

where we assumed f(0) > 0 and f(y) < 0 for y > y′0, y′0 = y0 + δy. We also scaled by δy to make
P (xj) into a nice density. So far everything is exact. We now convert all expressions to first order
in δy. To this end we note

f(yj+m) = f(yj) + ∂f

∂y
mδy +O(δy2)

1
yj+m

= (yj +mδy)−1 = 1
yj

(
1 +m

δy

yj

)−1

= 1
yj
−mδy

y2
j

+O(δy2)
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where ∂f
∂y refers to ∂f(y)

∂y |yj . We define and evaluate

Pmk = −f(yj+m)
kδy2yj+m

= 1
kδy2

[
−f(yj)−

∂f

∂y
mδy +O(δy2)

] [ 1
yj
−mδy

y2
j

+O(δy2)
]

= 1
kδy2

[
− f
yj
−mδy

yj

(
∂f

∂y
− f

yj

)
+O(δy2)

]

= 1
kyjδy2

[
−f −mδy

(
∂f

∂y
− f

yj

)
+O(δy2)

]

where f means f(yj). In this notation

ph2 = P 2
12, ph1 = P−1

6

pg2 = P−2
12 , pg3 = P 1

6 .

With an eye at the off-diagonal condition we evaluate

Pm1
k1
Pm2
k2

= 1
k1k2

(
1

yjδy2

)2 [
f2 + fδy

(
∂f

∂y
− f

yj

)
(m1 +m2) +O(δy2)

]

and
Pm1
k1

+ Pm2
k2

= 1
yjδy2

[
−
( 1
k1

+ 1
k2

)
f −

(
m1
k1

+ m2
k2

)
δy

(
∂f

∂y
− f

yj

)
+O(δy2)

]
.

We now evaluate

√
ph1ph2 =

√
P 2

12P
−1
6 = 1

yjδy2

√√√√ 1
12.6

[
f2 + fδy

(
∂f

∂y
− f

yj

)
+O(δy2)

]

N2
h = P 2

12 + P−1
6 = 1

yjδy2

−( 1
12 + 1

6

)
f −
��

�
��
�*0( 2

12 −
1
6

)
δy

(
∂f

∂y
− f

yj

)
+O(δy2)


= 1

4yjδy2

[
−f +O(δy2)

]
and similarly

√
pg2pg3 =

√
P−2

12 P
1
6 = 1

yjδy2

√√√√ 1
12.6

[
f2 − fδy

(
∂f

∂y
− f

yj

)
+O(δy2)

]

N2
g = P−2

12 + P 1
6 + pg1 = 1

4yjδy2

[
−f +O(δy2)

]
+
[
f(0)δy
y4
j

+O(δy2)
]

= 1
4yjδy2

[
−f +O(δy2)

]
N2
v1 = 1

4yjδy2

[
−f +O(δy2)

]
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where even though it seems like we have neglected pg1 when we take the ratios the meaning of
keeping first order in δy would become precise. We can actually take β = 1 and obtain

θ
Ng

Nv2
=

4
√

1
12.6(−3δy)

[
f.(�1 + δy

2f

(
∂f
∂y −

f
yj

)
)− f.(�1− δy

2f

(
∂f
∂y −

f
yj

)
) +O(δy2)

]
〈xg〉

= 0 +O(δy2).

This shows that to first order the off-diagonal term is zero for θ = 0.
Now we show that the second diagonal element is positive to first order in δy. Using the fact

that θ NgNv2
= O(δy2) we have

ph2xh1 + ph1xh2

N2
h

− pg3xg2 + pg2xg3

N2
v1

+O(δy2) ≥ 0

as the positivity condition. This becomes

=P 2
12yj−1 + P−1

6 yj+2
N2
h

− P 1
6 yj−2 + P−2

12 yj+1
N2
v1

+O(δy2)

=
(

4yjδy2

−f

)
1

yjδy2{ 1
12 [−f − 2δyγ] (yj − δy) + 1

6 [−f + γδy] (yj + 2δy)−
(1

6 [−f − δyγ] (yj − 2δy) + 1
12 [−f + 2δyγ] (yj + δy

)}
+O(δy2)

=−2
3f

{1
2(���−fy + fδy − 2yδyγ) + (���−fy − 2fδy + yδyγ)−

(
(���−fy + 2fδy − yδyγ) + 1

2 (���−fy − fδy + 2yδyγ)
)}

+O(δy2)

=−2
3f {(fδy − 2yδyγ) + 2(−2fδy + yδyγ)}+O(δy2)

=−2
3f {−3fδy}+O(δy2) = 2δy +O(δy2) ≥ 0

where γ =
(
∂f
∂y −

f
yj

)
and we suppressed the index j in yj for simplicity. This establishes the

validity of the 3→ 2 transition for a closely spaced lattice.
Note that only the proof of validity was done perturbatively to first order in δy. The unitary

itself is known exactly (θ can be obtained by solving the quadratic).
Using f(y) = (y′0 − y)(Γ1 − y)(Γ2 − y) we can implement the last two moves in Figure 6 as they
form a 3 → 1 merge and a 2 → 1 merge (possibly followed by a raise). The only remaining task
is implementing the 2→ 2 move in the last step because we assumed here that √pg2 6= 0 (else the
vectors which we assumed are orthonormal, cease to be so).

4.4.3 The 2→ 2 Move and its validity

We claim that the 2→ 2 move can be implemented using

U = |w〉 〈v|+ (α |v〉+ β |w1〉) 〈v1|+ |v〉 〈w|+ (β |v〉 − α |w1〉) 〈w1|

where as before |α|2 + |β|2 = 1,

|v〉 = 1
Ng

(√
pg1 |g1〉+√pg2 |g2〉

)
,
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|w〉 = 1
Nh

(√
ph1 |h1〉+√ph2 |h2〉

)
,

|v1〉 = 1
Ng

(√
pg2 |g1〉 −

√
pg1 |g2〉

)
,

and
|w1〉 = 1

Nh

(√
ph2 |h1〉 −

√
ph1 |h2〉

)
.

We evaluate the constraint equation using

EhU |g11〉 =
√
pg1 |w〉+ βe−iφgeiφh

√
pg2 |w1〉

Ng

EhU |g22〉 =
√
pg2 |w〉 − βe−iφgeiφh

√
pg1 |w1〉

Ng

and

EhU |g11〉 〈g11|U †Eh = 1
N2
g

〈w| 〈w1|
|w〉 pg1 βei(φh−φg)√pg2pg1

|w1〉 h.c. |β|2 pg2

(similarly for L |g22〉 〈g22|L†) as 〈xh〉 − 〈xg〉 1
N2
g

[√
ph1ph2(xh1 − xh2)− β√pg1pg2(xg1 − xg2)

]
h.c. 1

N2
g

[
ph2xh1 + ph1xh2 − |β|

2 (pg2xg1 + pg1xg2)
]  ≥ 0

where we absorbed the phase freedom in β, a free parameter, which will be fixed shortly. We use
the same strategy as above and take the first diagonal element to be zero. Our burden would be
to first show that √

ph1ph2

pg1pg2

(xh1 − xh2)
(xg1 − xg2) = β ≤ 1

and subsequently
1
N2
g

[
ph2xh1 + ph1xh2 − |β|

2 (pg2xg1 + pg1xg2)
]
≥ 0.

What makes this situation special (compared to the 3 → 2 merge) is that f(yj−2) = 0 which we
use to write

f(yj+k) = ∂f

∂y

∣∣∣∣
yj−2

(k + 2)δy = −(k + 2)αδy

where
α = − ∂f

∂y

∣∣∣∣
yj−2

= (Γ1 − yj−2)(Γ2 − yj−2).

Using the axis situation as depicted in Figure 7 we note that

ph1 = P1(xj) = −f(yj−1)
3.2δy2yj−1

= α+O(δy)
6δyyj

ph2 = P2(yj+2) = −f(yj+2)
4.3δy2yj+2

= α+O(δy)
3δyyj

xh1 = yj−1, xh2 = yj+2
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Figure 7: First 2→ 2 Transition

while

pg1 = P (xj) = f(0)δy
yj+2yj+1yj−1yj−2

= f(0)δy +O(δy2)
y4
j

pg2 = P1(yj+1) = −f(yj+1)
3.2δy2yj+1

= α+O(δy)
2δyyj

xg1 = 0, xg2 = yj+1.

This entails

β =
√
ph1ph2

pg1pg2

(xh1 − xh2)
(xg1 − xg2) =

√√√√√√α�2 +O(δy)

�
�
��

���
3

6.3δy2
�
�y2
j

�2��δy��y
4
j yj

��δy(f(0)�α+O(δy))
��

��(3δy)2

��
���

�
y2
j +O(δy)

=
√
y′0α+O(δy)

f(0) =
√

(Γ1 − yj−2)(Γ2 − yj−2) +O(δy)
Γ1Γ2

≤ 1

where we used f(0) = y′0Γ1Γ2 and assumed δy is small compared Γs (which is the case) for the
inequality in the last step to hold.
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The second condition can be proven similarly

1
N2
g

[
ph2xh1 + ph1xh2 − |β|

2 (pg2xg1 + pg1xg2)
]

≥ 1
N2
g

[ph2xh1 + ph1xh2 − pg2xg1 ]

= 1
N2
g

[
α+O(δy)

3δyyj
yj−1 + α+O(δy)

6δyyj
yj+2 −

f(0)δy +O(δy2)
y4
j

yj+1

]

= 1
3δyN2

g

(α+O(δy))
(3

2

)
− f(0)δy2 +O(δy3)

y3
j︸ ︷︷ ︸

∈O(δy2)


= 1

2δyN2
g

[(Γ1 − yj−2)(Γ2 − yj−2) +O(δy)] ≥ 0

where the last step holds for δy small enough.

Figure 8: Final 2→ 2 Transition.

The 2→ 2 move corresponding to the leftmost (see Figure 8) and bottommost set of points can
be shown to be implementable similarly.
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Part II

Elliptic Monotone Algorithm (EMA)
5 Canonical Forms Revisited
We note that to construct the unitaries involved in the bias 1/10 protocol we did not follow any
systematic recipe. We now switch gears and construct an algorithm that can generate the re-
quired unitary for any given Λ-valid function (see Definition 28). Note that corresponding to any
WCF protocol with valid functions, one can find a WCF protocol with strictly valid functions (see
Lemma 39). All strictly valid functions are Λ-valid for some finite Λ (see Lemma 37, Corollary 31).
Thus we do not lose generality by restricting to Λ-valid functions.

In this section we formalise the non-trivial constraint Equation (5) into two forms which we call
the Canonical Projective Form (CPF) and the Canonical Orthogonal Form (COF). The CPF is
always well defined but the corresponding COF may contain diverging eigenvalues. However since
we restrict to Λ-valid functions, as we will see, the COF will also always be well defined. We need
the COF as it is this that we use in the Elliptic Monotone Algorithm (EMA) algorithm.

We continue to use purple for the intuitive parts and start using blue for the proofs.

5.1 The Canonical Projective Form (CPF) and the Canonical Orthogonal Form
(COF)

We always use the convention pgi , phi > 0. This is important else in some of the statements one
can find trivial counter-examples. Recall Theorem 46 which formally states the main result of
Section 3. Note that the number of points initially, ng, and finally, nh, may differ. To facilitate
further discussion we formalise the aforesaid condition into an object and its property. First,
however, we define the following notation.

Definition 47 (Transition). Consider two finitely supported functions g, h : R≥ → R≥. A trans-
ition is defined as g =

∑ng
i=1 pgi [xgi ] → h =

∑nh
i=1 phi [xhi ] where [y](x) := δxy and pgi > 0, phi > 0.

Definition 48 (Canonical Projective Form (CPF) for a give transition). For a given transition
the Canonical Projective Form (CPF) is given by the set of m×m matrices Xh, Xg, U , D and m
dimensional vectors |v〉, |w〉 where

Xh :=
nh∑
i=1

xhi |hi〉 〈hi| , Xg :=
ng∑
i=1

xgi |gi〉 〈gi| ,

|w〉 :=
nh∑
i=1

√
phi |hi〉 , |v〉 :=

ng∑
i=1

√
pgi |gi〉 ,

D := Xh − EhUXgU
†Eh

and U is a unitary which satisfies
U |v〉 = |w〉

for Eh =
∑
|hi〉 〈hi|, orthonormal basis vectors

{
|g1〉 , |g2〉 . . .

∣∣gng〉 , |h1〉 , |h2〉 . . . |hnh〉
}
,m = ng+nh.

Definition 49 (legal CPF). A CPF is legal if D ≥ 0.
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In this language then our objective is to find a legal CPF for a given transition.
Surprising as it may seem it suffices to restrict to real unitaries viz. orthogonal matrices. This

will be justified in the next section but we already make this restriction in everything that follows
(unless stated otherwise). In this section we try to reach an equivalence between a legal CPF and
what we call the legal Canonical Orthogonal Form (COF).

The latter will be, roughly speaking, an inequality of the form Xh − OXgO
T ≥ 0 where Xh =

diag{xh1 , xh2 . . . , xhnh , ξ, ξ . . . } and Xg = diag{xg1 , xg2 . . . , xgng , 0, 0 . . . } for a large ξ. It is easy to
see that if we can find an O that satisfies the COF for a given transition then the same O would
satisfy the TEF inequality. It is almost trivial to note that a Λ valid function admit matrices of
the COF form but we will show this later. Proving the other way, i.e. every legal CPF entails
the corresponding COF must also be legal, is more non-trivial. Doing this requires handling the
infinities and the matrix sizes more carefully. We only sketch an argument for this as we do not
use it in the algorithm.

Definition 50 ((n, ξ) Canonical Orthogonal Form (COF) for a transition, ξ COF for a transition).
For a given transition and two numbers n ≥ max(nh, ng), ξ ≥ max(xh1 , xh2 . . . xhnh ) an (n, ξ)
Canonical Orthogonal Form (COF) is given by the set of n×n matrices Xh, Xg, O, D and vectors
|v〉, |w〉 where

Xh := diag{xh1 , xh2 . . . , xhnh , ξ, ξ . . . },

Xg := diag{xg1 , xg2 . . . , xgng , 0, 0 . . . },

|v〉 :=
ng∑
i=1

√
pgi |i〉 ,

|w〉 :=
nh∑
i=1

√
phi |i〉 ,

D := Xh −OXgO
T

and the matrix O is orthogonal which satisfies

O |v〉 = |w〉 .

A ξ Canonical Orthogonal Form (COF) is an (n, ξ) COF with n = nh + ng − 1.

Definition 51 (n legal COF, legal COF). An (n, ξ) COF is an n legal COF if D ≥ 0 in the limit
ξ →∞. A legal COF is a ξ COF such that D ≥ 0 in the limit ξ →∞.

Imagine you found a legal COF corresponding to some transition. One can then sandwich D
between a positive matrix as EDE to get


Xh

1
. . .

1

−



1
. . .

1
ξ−1/2

. . .
ξ−1/2


︸ ︷︷ ︸

:=E

UXgU
†



1
. . .

1
ξ−1/2

. . .
ξ−1/2


.
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Note that D ≥ 0 ⇐⇒ EDE ≥ 0 because E is diagonal (which means one can write EDE =
(E
√
D)(
√
DE) which in turn is of the ATA form). From the legality of the COF, D ≥ 0 in the

limit ξ → ∞ and in this limit E becomes a projector. After some relabelling (and appropriately
expanding the space to m = ng+nh dimensions) the inequality reduces to a CPF. This observation
readily extends to the n legal case where n ≤ ng + nh. It turns out that one can, and we show this
later, always express an n′ legal COF as an n legal COF with n ≤ ng + nh (in fact we can prove
that n ≤ ng + nh − 1). We have established the following statement.

Proposition 52. Consider a transition. If there exists an n legal COF corresponding to it then
there exists a legal CPF for the said transition.

How about the reverse? Given a legal CPF can we find the corresponding n legal COF? We are
given

D =


Xh

0
. . .

0

−



1
. . .

1
0

. . .
0


︸ ︷︷ ︸

=Eh

U

[
0

Xg

]
U †



1
. . .

1
0

. . .
0


≥ 0.

Replacing the appended diagonal zeros in the first matrix (one containing Xh) with 1s yields an
equivalent inequality. Next note that we can conjugate by a permutation matrix to get[

0
Xg

]
= Ũ

[
Xg

0

]
Ũ .

Finally we write the diagonal zeros in Eh as 1/ξ1/2 and use the reverse of the trick above to recover
an m legal COF where recall m := ng + nh. This sketches the proof of the following statement.

Proposition 53. Consider a transition. If there exists legal CPF corresponding to it then there
exists an m legal COF for the said transition (where recall m := ng + nh).

5.2 From EBM to EBRM to COF

We briefly summarise, at the cost being redundant, how Aharonov et al. prove that valid functions
are equivalent to the EBM functions (assuming the operator monotones are on/the spectrum of the
matrices is in [0,Λ]). They do this by showing that the set of EBM functions forms a convex cone
K. Then they take the dual of this cone to get K∗. This dual happens to be the set of operator
monotone functions. Then they find the bi-dual K∗∗ and define the objects in this to be valid
functions. They then show that K = K∗∗ which is to say that valid functions are equivalent to
EBM functions. Note that all of this is assuming the aforesaid [0,Λ] condition.

This is an extremely useful result because checking if a function is EBM is hard. Checking if a
function is valid is a piece of cake because mathematical wizards have neatly characterised the set
of operator monotone functions.

One can do even better. Instead of EBM functions, consider EBRM functions where the matrices
are additionally restricted to be real. Let this set be given by K ′. It turns out that its dual K ′∗
is also the set of operator monotone functions [18] viz. K ′∗ = K∗. Aharonov et al’s proof for
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K = K∗∗ can be applied to the real case as is to get K ′ = K∗∗ (granted we assume the same [0,Λ]
condition).

Since Mochon’s point games (and even the ones built later) use valid functions, the aforesaid
simplification justifies why it suffices to restrict to real matrices.

We use the definition of Prob (Definition 8), EBM line transition (Definition 9), EBM function
(Definition 14, Definition 15), Operator Monotone functions (Definition 22, Definition 23) and
their characterisation (Lemma 25, Lemma 26), Λ valid functions (Definition 28) and finally its
equivalence with EBM functions (Corollary 31).

Equivalence of EBM and EBRM

First we define EBRM transitions and EBRM functions similar to their EBM analogues except
with the further restriction that the matrices and vectors involved are real.

Definition 54 (EBRM transitions). Let g, h : [0,∞) → [0,∞) be two functions with finite sup-
ports. The transition g → h is EBRM if there exist two real matrices 0 ≤ G ≤ H and a (not
necessarily normalised) vector |ψ〉 such that g = prob[G,ψ] and h = prob[H,ψ].

Definition 55 (K ′, EBRM functions; K ′Λ, EBRM functions on [0,Λ] ). A function a : [0,∞)→ R
with finite support is an EBRM function if the transition a− → a+ is EBRM, where a+ : R≥0 → R≥0
and a− : R≥0 → R≥0 denote, respectively, the positive and the negative part of a (a = a+ − a−).
We denote by K ′ the set of EBRM functions.

For any finite Λ ∈ (0,∞), a function a : [0,Λ) → R with finite support is an EBRM function
with support on [0,Λ] if the transition a− → a+ is EBRM with its spectrum in [0,Λ], where a+ and
a− denote, respectively, the positive and the negative part of a (again, a = a+ − a−). We denote
by K ′Λ the set of EBRM functions with support on [0,Λ].

Definition 56 (Real operator monotone functions). A function f : (0,∞) → R is a real operator
monotone if for all real matrices 0 ≤ A ≤ B we have f(A) ≤ f(B).

A function f : (0,Λ)→ R is a real operator monotone on [0,Λ] if for all real matrices 0 ≤ A ≤ B
with spectrum in [0,Λ] we have f(A) ≤ f(B).

Lemma. K ′∗Λ is the set of real operator monotones on [0,Λ].

Proof sketch. Aharonov et al. showed thatK∗Λ (which is, recall, the dual of the set of EBM functions
on [0,Λ]) is the set of operator monotone functions on [0,Λ] (see Lemma 3.9 of [6]). Their proof
can be adapted here by restricting to real matrices which entails that K ′∗Λ is the set of real operator
monotone functions on [0,Λ].

Lemma 57. K∗Λ = K ′∗Λ and K∗ = K ′∗, i.e. the set of operator monotones on [0,Λ] equals the set of
real operator monotones on [0,Λ] and the set of operator monotones equals the set of real operator
monotones.

Corollary 58. K ′Λ = K ′∗∗Λ = K∗∗Λ = KΛ, i.e. the set of EBRM functions on [0,Λ] = the set of Λ
valid functions (dual of EBRM functions) = the set of Λ valid functions (dual of EBM functions)
= the set of EBM functions on [0,Λ].

Corollary 59. Any strictly valid function is EBRM.

We now sketch the proof of Lemma 57. It is clear that the set of real operator monotones must
contain the set of operator monotones because operator monotones are by definition required to
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work in the restricted real case as well. The set of real operator monotones might be bigger but
that does not happen to be the case. This is because we can encode an n × n hermitian matrix
into a 2n× 2n real symmetric matrix. This is achieved by replacing each complex number α + iβ
with the matrix

α

[
1

1

]
+ β

[
−1

1

]
.

Note that the matrices have the exact same properties as 1 and i respectively. This corresponds to
(after some permutation) writing a complex matrix W = W< + iW= as a real symmetric

W ′ =
[
W< −W=
W= W<

]

where W< and W= are real. For a Hermitian W † = W we must have W< = W T
< and W= = −W T

=
which makes W ′ = W ′T a symmetric matrix. The spectra of W and W ′ are the same. This is
established most easily by looking at the diagonal decomposition. W = USU † which would get
transformed to W ′ = U ′S′U ′†. Since S is real S′ is also real with doubly degenerate eigenvalues
(except for the degeneracy already present in S). Thus if we have 0 ≤ A ≤ B then we would also
have 0 ≤ A′ ≤ B′ as A−B and A′−B′ would have the same spectrum where we used A′ and B′ to
represent real symmetric analogues of the hermitian matrices A and B. The other way is trivial.
Hence we have an equivalence which means that requiring a function to be operator monotone on
complex matrices is the same as requiring it to be operator monotone on real symmetric matrices
of twice the size (at most). This means that the set of real operator monotones is the same as the
set of operator monotones.

EBRM to COF | Mochon’s Variant

We just saw how we can reduce our problem from the set of EBM transitions to the set of EBRM
transitions. We now show that each EBRM transition can be written in a standard form, which we
call the Canonical Orthogonal Form (COF). The following is actually due to Mochon/Kitaev [1]
but there was a minor mistake in one of the arguments which we have corrected. The interesting
part is showing that one can always restrict the matrices to a certain size which in turn depends
on the number of points involved in the transition.

Lemma 60. For every EBRM transition g → h with spectrum in [a, b] there exists an orthogonal
matrix O, diagonal matrices Xh, Xg (with no multiplicities except possibly those of a and b) of size
at most ng + nh − 1 such that

O



xg1
. . .

xgng
a

. . .


︸ ︷︷ ︸

:=Xg

OT ≤



xh1
. . .

xhnh
b

. . .


= Xh,

and the vector |ψ〉 :=
∑nh
i=1
√
phi |i〉 =

∑ng
i=1
√
pgiO |i〉.

Proof. An EBRM entails that we are given G ≤ H with their spectrum in [a, b] and a |ψ〉 such that

g = Prob[G, |ψ〉] =
ng∑
i=1

pgi [xgi ]
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and
h = Prob[H, |ψ〉] =

nh∑
i=1

phi [xhi ]

with pgi , phi > 0 and xgi 6= xgj , xhi 6= xhj for i 6= j but the dimension and multiplicities can be
arbitrary. First we show that one can always choose the eigenvectors |gi〉 of G with eigenvalue xgi
such that

|ψ〉 =
ng∑
i=1

√
pgi |gi〉 .

Consider Pgi to be the projector on the eigenspace with eigenvalue xgi . Note that

|gi〉 := Pgi |ψ〉√
〈ψ|Pgi |ψ〉

fits the bill. Similarly we choose/define |hi〉 so that

|ψ〉 =
nh∑
i=1

√
phi |hi〉 .

Consider now the projector onto the {|gi〉} space

Πg =
ng∑
i=1
|gi〉 〈gi| .

Note that this will not have all eigenvectors with eigenvalues ∈ {xgi}. Similarly we define

Πh =
nh∑
i=1
|hi〉 〈hi| .

We further define G′ := ΠgGΠg + a(I− Πg) and H ′ := ΠhHΠh + b(I− Πh). These definitions are
useful as we can show

G′ ≤ H ′.

From G = ΠgGΠg + (I−Πg)G(I−Πg) we can conclude that ΠgGΠg + a(I−Πg) ≤ G. This entails
G′ ≤ G. Using a similar argument one can also establish that H ≤ H ′. Combining these we get
G′ ≤ H ′.
Consider the projector

Π := projector on span{{|gi〉}
ng
i=1, {|hi〉}

nh
i=1}

and note that this has at most ng + nh− 1 dimension because |ψ〉 lives in the span of {|gi〉} and in
the span of {|hi〉} so one of the basis vectors at least is not independent. Now note that

G′′ := ΠG′Π ≤ ΠH ′Π =: H ′′

because we can always conjugate an inequality by a positive semi-definite matrix on both sides.
Note also that Π |ψ〉 = |ψ〉 which means the matrices and the vectors have the claimed dimension.
We now establish that Prob[H ′′, |ψ〉] = h and Prob[G′′, |ψ〉] = g. For this we first write the projector
tailored to the g basis as Π = Πg+Πg⊥ where Πg⊥ is meant to enlarge the space to the span{hi}nhi=1.
With this we evaluate

G′′ = (Πg + Πg⊥) [ΠgGΠg + a(I−Πg)] (Πg + Πg⊥)
= ΠgGΠg + aΠg⊥ .
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Manifestly then Prob[G′′, |ψ〉] = g. By a similar argument one can establish the h claim. Note that
that G′′ and H ′′ have no multiplicities except possibly in a and b respectively. Thus we conclude
we can always restrict to the claimed dimension and form.

Corollary 61. For every EBRM transition the corresponding COF is legal.

The COF is of interest because we can use it to interpret our inequalities geometrically and use
the tools thereof. We study this connection next.

6 Ellipsoids

6.1 The inequality as containment of ellipsoids

We try to show that the matrix inequality of the form 0 ≤ G ≤ H can be geometrically viewed as
the containment of a smaller ellipsoid inside a larger one.

Consider an unnormalised vector |u〉 =
∑
j uj |hj〉 with uj ∈ R. Note that the set

{|u〉 | 〈u|Xh |u〉 = 1}

describes the surface of an ellipsoid where Xh = diag(xh1 , xh2 . . . ). This is easy to see as the
constraint corresponds to

xh1u
2
1 + xh2u

2
2 + · · · = 1

which is of the form
u2

1
a2

1
+ u2

2
a2

2
+ · · · = 1

which, in turn, is the equation of an ellipsoid in the variables {ui} with axes a1 = 1/√xh1 , a2 =
1/√xh2 . . . . An inequality would correspond to points inside or outside the ellipsoid. It is also
useful to note that if we start with some arbitrary (even unnormalised) vector |u〉 then the point
on the ellipse along this direction are given by

Eh(|u〉) = |u〉√
〈u|Xh |u〉

.

Finally, note that the set
{
|u〉 | 〈u|UXgU

† |u〉 = 1
}
also corresponds to the equation of an ellipsoid

with axes
{

1/√xgi
}
except that it is rotated. This follows from the fact that if we use |u′〉 = U |u〉

then the equation reduces to the standard form in the u′i variables which can then be used to obtain
uis by the aforesaid relations which is a rotation. We can define a similar map from a vector |u〉 to
a point on the rotated ellipse as

Eg(|u〉) = |u〉√
〈u|UXgU † |u〉

.

With this understanding in place we are ready to get a visual interpretation of our equation. The
statement that

Xh − UXgU
† ≥ 0

⇐⇒ 〈u|Xh |u〉 − 〈u|UXgU
† |u〉 ≥ 0 ∀ |u〉

⇐⇒ 〈u|UXgU
† |u〉 ≤ 1 ∀ {|u〉 | 〈u|Xh |u〉 = 1}
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which in turn corresponds to the statement that every point denoted by |u〉 that is on the h ellipse
must be on or inside the g ellipse. Note that if 〈xh〉 − 〈xg〉 = 0 then for |u〉 = |w〉 the inequality
saturates. This in turn means that even for Eh(|w〉) the inequality is saturated as it is the same
vector up to a scaling. The difference is that Eh(|w〉) represents a point on the h ellipsoid. Since the
inequality is saturated it means that the ellipsoids must touch at this point. Thus Eg(|w〉) = Eh(|w〉)
which one can check explicitly as well.

The discussion so far can only give some intuition about the visualisation of our constraint
equation. This intuition, as was explained in Subsection 1.3, can be efficiently used but it requires
us to precisely specify the notion of curvature.

6.2 Convex Geometry Tools | Weingarten Map and the Support Function

Consider a curve in the plane. One can easily guess that the curvature must be related to the rate
of change of tangents. This means we must use the second derivative. This can be generalised to
arbitrary dimensions and in this case we obtain a matrix of the form ∂i∂jf for some function f
which describes the curve. The eigenvalues of this matrix would tell us the curvature along the
principle directions of curvature, given by the corresponding eigenvectors. It is possible to follow
this idea through for an ellipsoid but the result becomes rather cumbersome as one must choose a
coordinate system with its origin at the point of interest, aligned along the normal and re-express
all the quantities of interest.

A concise way of evaluating the same is based on a mathematically sophisticated method ap-
plicable to all convex bodies. We state the result for the convex body of interest, an ellipsoid.

For a normalised direction vector |u〉 the support function corresponding to an ellipsoid X is
given by

h(u) =
√
〈u|X−1 |u〉 =

√∑
x−1
i u2

i . (7)

The derivative of the support function yields the point on the ellipsoid where the tangent plane
corresponding to the direction |u〉 touches the said ellipsoid. It is

∂ih(u) = x−1
i ui
h(u) .

The most remarkable of all these is the fact is that

h∂j∂ih(u) =
(
−
x−1
j x−1

i uiuj

h2 + x−1
i δij

)
(8)

contains as eigenvalues the radii of curvature at the aforesaid point and as eigenvectors the directions
of principle curvature. If instead of the normal you know the point at which you would like to
evaluate this object then one can use the gradient to first find this normal and then apply the
aforesaid. The normal at a point of contact |c〉 =

∑
ci |i〉 is |u(c)〉 = N (

∑
xici |i〉) . The results

discussed here were deduced as special cases of those discussed in Section 2.5 of the book on convex
bodies by R. Schneider [19].

We have stated the basic results needed to proceed with the description of our algorithm.

7 Elliptic Monotone Align (EMA) Algorithm
Solving the weak coin flipping (WCF) problem can be reduced to finding explicit matrices for a
given EBM transition g =

∑ng
i=1 pgi [xgi ] → h =

∑nh
i=1 phi [xhi ] where g and h have disjoint support
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or, equivalently, for a given EBM function a = h − g =
∑nh
i=1 phi [xhi ] −

∑ng
i=1 pgi [xgi ]. Here we

describe our elliptic monotone align (EMA) algorithm, which runs by converting the given problem
into the same problem of one less dimension iteratively until it is solved.

7.1 Notation

This subsection might appear to be particularly dry as we almost exclusively only introduce defin-
itions; but it is a necessary evil. We try to motivate the definitions as we move along but things
would not make perfect sense until one reaches the description and analysis of the algorithm itself.

At step k of the iteration, the transition g → h and the associated function a = h−g used below
are given by g(k) → h(k) and a(k) respectively. It remains fixed for the said step. We therefore
do not write an explicit dependence on it in the following definitions. This is to facilitate the
discussion of the iterative algorithm. We consider the extended real line R̄ = R ∪ {∞,−∞} with
1/∞ = −1/∞ := 0. We also need the extended half line R̄≥ := R≥ ∪ {∞} and R̄> := R> ∪ {∞}.
These situations appear unavoidably in the analysis of certain transitions and correspond to one
of the directions of the ellipsoids having infinite curvature. We use N (|ψ〉) := |ψ〉 =

√
〈ψ|ψ〉. We

usually denote by [xmin, xmax] the smallest interval that contains supp(a). We call this interval the
support domain for a. Similarly, we would refer to the smallest interval containing supp(g)∪supp(h)
as the transition support domain for (the transition) g → h. We use the variables χ, ξ ∈ R to be
such that they denote an interval [χ, ξ] ⊇ [xmin, xmax]. As these χ and ξ would later be associated
with an interval containing the spectrum of relevant matrices, we would refer to this interval as the
spectral domain. The need for distinguishing the three is not hard to justify. A transition g → h
can be such that both g and h have a term pk[xk] for some pk > 0 and xk. This term would be
absent from a = h − g. Thus the transition support domain and the support domain would be
different in general. One might object to this as we started with the assumption that g and h have
disjoint support. The issue is that this assumption does not necessarily hold once the problem is
reduced to a smaller instance of itself. As for the spectral domain, this is defined from hindsight, as
we know we need to use COFs which (see Lemma 60) use matrices with spectra that would usually
be larger than the transition support domain.

Recall from the discussion of Subsection 1.3 that we intend to use operator monotone functions
to make the ellipsoids touch along a known direction. We already have a characterisation of operator
monotone functions (see Lemma 26). The function λx/(λ + x) can be turned into −1/(λ + x) by
adding a constant (we will do this carefully shortly). Further, the characterisation we have expects
the input matrices to have their spectrum in the range [0,Λ]. We must generalise this as this
assumption can not be made for smaller instances of the same problem which appear in subsequent
iterations. This motivates the following definitions.

Definition 62 (fλ on (α, β)). fλ : (α, β)→ R is defined for λ ∈ R\[−β,−α] as

fλ(x) := −1
λ+ x

.

Definition 63 (fλ on [α, β]). fλ : [α, β]→ R̄ is defined for λ ∈ R\(−β,−α). For λ ∈ R\[−β,−α]
we define

fλ(x) := −1
λ+ x

.
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For λ = −β and −α we retain the same definition as above except when x = β and α respectively
in which case we define

f−β(β) :=∞
f−α(α) := −∞.

Remark 64. Values for f−β(β) and f−α(α) are obtained by taking for x, respectively, the left limit
(approaching from the left to β) and right limit (approaching from the right to α). Also note that
the operator monotone f(x) = x is not included in the aforesaid family of functions.

We had to define fλ on the two intervals for technical reasons which we can’t quite motivate
here. We explicitly defined fλ to be ∞ or −∞ where it would be otherwise undefined (division by
zero). These infinities, however, will only appear in the denominator in our algorithm.

Again, from the discussion of Subsection 1.3, we recall that we have to expand the smaller
ellipsoid until it touches the larger ellipsoid. From Subsection 6.1 we can see that the ellipsoid
corresponding Xh, a positive diagonal matrix, is smaller than the one corresponding to γXh for 0 <
γ < 1. The Xh matrix would correspond to a function h. What would the corresponding function
be for γXh? The following definition of hγ formalises the answer. We also introduce lγ which helps
us check the validity condition for a transition (similar to Definition 28 and Corollary 31). The
basic idea is to take the inner product (sum over the finite support of a) of the function a with a
given operator monotone. If this is positive for every operator monotone, then the function a is
valid. From hindsight, since we already know the characterisation of these operator monotones, we
define lγ(λ) to be this inner product which must be positive, labelling the operator monotone by
λ and encoding the stretching of the h ellipsoid into γ. This plays a crucial role in our algorithm
as we have to make sure we use the right stretching, γ, without actually knowing the ellipsoids
completely. We do not expect the details of these statements to be clear just yet but we hope the
following definitions appear reasonable.

Definition 65 (lγ , l1γ , aγ). Consider the transition g → h and let a = h−g. For γ ∈ (0, 1] we define
the finitely supported functions hγ : R→ R≥ and aγ(x) : R→ R as

hγ(x) := h(x/γ)
aγ(x) := hγ(x)− g(x).

Let Sγ = [xmin(γ), xmax(γ)] be the support domain of aγ . We define lγ : R\[−xmax(γ),−xmin(γ)]→
R

lγ(λ) :=
∑

x∈supp(aγ)
aγ(x)fλ(x)

where fλ is defined on Sγ .
We define

l1γ :=
∑

x∈supp(aγ)
aγ(x)x.

Remark 66. hγ and g might have overlapping support for certain values of γ which justifies the ter-
minology distinguishing support domain and spectral support domain (introduced at the beginning
of the section).
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We now define a sort of indicator function, m, which tells us, given the transition g → h, if the
transition corresponding to the scaled ellipsoid g → hγ is valid. There are some extra parameters
this function needs. Consider the spectrum of the matrices which make this transition EBRM (they
must be EBRM if they are valid, similar to Corollary 31). These parameters encode the interval in
which this spectrum must be contained.

Definition 67 (m(γ, χ, ξ)). We define m : ((0, 1],R,R)→ {0, 1} to be

m(γ, χ, ξ) :=
{

0 if any of the following root conditions hold
1 else.

where the first root condition is satisfied if there exists a λ ∈ R\(−ξ,−χ) such that lγ(λ) = 0, and
the second root condition is satisfied if l1γ = 0.

As we are dealing with different representations of the same object, we define a relation between
the matrix instance of the problem (which involves matrices) and the function instance thereof
(which involves transitions and functions). The matrix instance contains all the information needed
and so in the discussion of the algorithm we pack everything into a matrix instance to keep things
palpable. The reader can glance through the following and later refer to them when they are used.

Definition 68 (Matrix Instance, X → Function Instance, x). For a Matrix Instance defined to be
the tuple X := (Xh, Xg, |w〉 , |v〉) where Xh, Xg are diagonal matrices and |w〉 , |v〉 are vectors on
Rn for some n with equal norm, i.e. 〈w|w〉 = 〈v|v〉, we define the Function Instance to be the tuple
x : (g, h, a) where h = Prob[Xh, |w〉], g = Prob[Xg, |v〉] and a = h− g.

Definition 69 (Attributes of the Function Instance, x). For a given tuple x := (g, h, a) as Defini-
tion 68 we define the attributes nh, ng, {pgi}, {phi}, {xgi}, {xhi} as they appear by declaring g → h
to be a transition, i.e.,

• nh as the number of times h is non-zero,

• ng as the number of times g is non-zero,

• {phi}, {xhi}, {pgi}, {xgi} implicitly as

h =
nh∑
i=1

phi [xhi ], g =
ng∑
i=1

pgi [xgi ]

(for phi , pgi > 0).

The support domain for a is denoted by [xmin, xmax], i.e., the attributes xmin, xmax are defined to
be such that [xmin, xmax] is the smallest interval containing supp(a).

Remark 70. Note that xmin and xmax may not be xmin = min{{xhi}, {xgi}} and xmax = max{{xhi}, {xgi}}
respectively because there can be cancellations in the evaluation of h− g = a.

Definition 71 (Attributes of the Matrix Instance, X). We associate the following with a matrix
instance.

• Spectral domain: For a tuple X as defined in Definition 68 we denote the spectral domain
by [χ, ξ] where the attributes χ, ξ are such that [χ, ξ] is the smallest interval containing
spec{Xg ⊕Xh}.
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• Solution: We say that O is a solution to the matrix instance X = (Xh, Xg, |w〉 , |v〉) if Xh ≥
OXgO

T and O |v〉 = |w〉.

• Notation: With respect to a standard orthonormal basis {|i〉}, we use the notation Xh :=∑k
i=1 yhi |i〉 〈i|, Xg :=

∑k
i=1 ygi |i〉 〈i|, |w〉 :=

∑k
i=1
√
qhi |i〉, |v〉 :=

∑k
i=1
√
qgi |i〉.

Remark 72. We index the Matrix Instance and the corresponding function instance as X(k) =(
X

(k)
h , X

(k)
g ,

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉)
and X(k) → x(k) =

(
h(k), g(k), a(k)

)
respectively. The associated attrib-

utes are implicitly assumed to be correspondingly indexed, e.g., as χ(k), ξ(k) and n(k)
h , n

(k)
g , x

(k)
min, x

(k)
max.

Remark 73. We introduce two different symbol sets p, x and q, y as it allows us to describe the
proof more neatly by allowing two ways of indexing the same object. We use p, x for x and q, y for
X which are essentially the same.

7.2 Lemmas for EMA

With the notation in place, we can now state and prove some results which we would need in
our algorithm. We do this in three steps. First, we generalise the results obtained by Aharonov
et al. about operator monotones and their relation with EBM functions. This is the workhorse
of our algorithm. Second, we prove some results which formalise our intuitive notion of tighten-
ing—stretching the smaller h ellipsoid until it touches the larger g ellipsoid. Finally, we prove a
generalisation thereof in the case where the curvature of the smaller h ellipsoid becomes infinite.

For a first reading, it might be better to focus on the statements, and come back to the proofs
after reading the algorithm.

7.2.1 Generalisations

Keep the bigger picture, Figure 9, in mind to retain a sense of direction. Our main objective here
would be twofold. First, we wish to generalise Corollary 58 from being restricted to matrices with
their spectrum in [0,Λ] to being applicable for matrices with their spectrum in [χ, ξ]. Second, we
wish to extend the result from valid functions to valid transitions, including the case of overlapping
support.

To establish the first, our strategy would be to find a relation between [0,Λ] valid functions
and [χ, ξ] valid functions (which we will define carefully soon) and then a relation between [0,Λ]
EBRM functions and [χ, ξ] EBRM functions. Then we use the link between [0,Λ] valid and [0,Λ]
EBRM functions to establish the equivalence of [χ, ξ] valid functions and [χ, ξ] EBRM functions.
Along the way we sharpen our understanding of operator monotone functions which should make
the definitions of fλ, l and m (see Definition 65 and Definition 67) obvious. The second objective
can be met with by a single, albeit, slightly long argument.

Let us start with extending our definition of the Canonical Orthogonal Form to accommodate
matrices with their spectrum in [χ, ξ].

Definition 74 (Canonical Orthogonal Form (COF) with spectrum in [χ, ξ]). For a given transition
g → h let [χ, ξ] be such that it contains supp(g) and supp(h). We define the Canonical Orthogonal
Form (COF) with its spectrum in [χ, ξ] by the set of n × n matrices Xh, Xg, O,D and vectors
|v〉 , |w〉 where

Xh := diag{xh1 , xh2 . . . , xhnh , ξ, ξ . . . },

Xg := diag{xg1 , xg2 . . . , xgng , χ, χ . . . },
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|v〉 :=
ng∑
i=1

√
pgi |i〉 ,

|w〉 :=
nh∑
i=1

√
phi |i〉 ,

D := Xh −OXgO
†,

the matrix O is orthogonal which satisfies

|v〉 = O |w〉

and n = ng + nh − 1.

Definition 75 (Legal COF with spectrum in [χ, ξ]). A COF with spectrum in [χ, ξ] is legal if
D ≥ 0.

We obviously need to generalise the notion of operator monotone functions to the range [χ, ξ]
as well to achieve our first objective.

Definition 76 (Operator monotone functions on [χ, ξ]). A function f : [χ, ξ] → R is operator
monotone on [χ, ξ] if for all real symmetric matrices H,G with spec(H ⊕ G) ∈ [χ, ξ] and H ≥ G
we have f(H) ≥ f(G).

What happens if we try to shift/translate the interval on which an operator monotone is defined?
This is a natural question to ask, an answer to which would also directly relate our new definition
to the previous one.
Claim 77. f(x) is an operator monotone function on [χ, ξ] if and only if f ′(x′) = f(x′ − x0) is an
operator monotone function on [χ+ x0, ξ + x0].

Proof. Consider real symmetric matrices H ≥ G with spec(H⊕G) ∈ [χ, ξ] and let f(x) be operator
monotone on [χ, ξ]. We must consider f ′(x′) = f(x = x′−x0) which is the same as f ′(x+x0) = f(x).
We show that f ′ is an operator monotone on [χ + x0, ξ + x0]. Note that H ′ := H + x0I and
G′ := G+x0I are such that H ′ ≥ G′ and spec(H ′⊕G′) ∈ [χ+x0, ξ+x0]. Note that f ′(H ′) = f(H)
and f ′(G′) = f(G) because

f ′(H ′) = f ′(H + x0I)
= Ohf

′(Hd + x0I)OTh
= Ohf(Hd)OTh
= f(H)

and similarly for G where H = OhHdO
T
h for Oh orthogonal and Hd diagonal. Since f is operator

monotone on [χ, ξ] we have f(H) ≥ f(G) which entails f ′(H ′) ≥ f ′(G′). Since this holds for all
H ′, G′ with their spec(H ′⊕G′) ∈ [χ+ x0, ξ+ x0] we can conclude that f ′ is an operator monotone
on [χ+ x0, ξ + x0]. The other way follows by setting χ+ x0 to χ, ξ + x0 to ξ, x0 to −x0 but since
all these were arbitrary to start with, the reasoning goes through unchanged.

We now note that from the characterisation of operator monotone functions we initially had
(see Lemma 26), we can construct one which is easier to shift/translate (in the aforesaid sense).
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Corollary 78 (Characterisation of operator monotone functions on [0,Λ]). Any operator monotone
function f : [0,Λ]→ R can be written as

f(x) = c0 + c1x−
∫ 1
λ+ x

dω̃(λ)

with the integral ranging over λ ∈ (−∞,−Λ) ∪ (0,∞) satisfying
∫ 1
λ(1+λ)dω̃(λ) <∞.

Proof. Consider the characterisation given in Lemma 26 according to which we had f(x) = c′0 +
c1x+

∫ λx
λ+xdω(λ) with

∫ λ
1+λdω(λ) <∞. We can write

f(x) = c′0 + c1x+
∫ (

λ− λ2

λ+ x

)
dω(λ)

= c0 + c1x−
∫
λ2dω(λ)
λ+ x

where with dω̃ = λ2dω(λ) we obtain the claimed form. Note that the finiteness of
∫ λ

1+λdω is
necessary to conclude that c0 = c′0 +

∫ λ
1+λdω is also finite.

Note that this form also makes it easier for us to handle any divergences as there is only the
denominator one has to deal with.

This can now be shifted/translated to allow for a characterisation of our shifted/translated
operator monotones.

Corollary 79 (Characterisation of operator monotone functions on [χ, ξ]). Any operator monotone
function f ′ : [χ, ξ]→ R can be written as

f ′(x′) = c′0 + c′1x
′ −

∫ 1
λ′ + x′

dω̃′(λ′)

with the integral ranging over λ′ ∈ (−∞,−ξ) ∪ (−χ,∞) satisfying
∫ 1

(λ′+χ)(1+λ′+χ)dω̃
′(λ′) <∞.

Proof. We follow the convention that x′ ∈ [χ, ξ] while the unprimed x ∈ [0, ξ − χ]. From Claim 77
we know that f(x) is operator monotone on [0, ξ − χ] if and only if f ′(x′) = f(x′ − χ) is operator
monotone on [χ, ξ] where x′ = x + χ. Since we already have a characterisation for f(x) we can
characterise f ′(x′) as f(x′ − χ). From Corollary 78 we have

f ′(x′) = c0 + c1(x′ − χ)−
∫

dω̃(λ)
λ+ x′ − χ

= c′0 + c1x
′ −

∫
dω̃′(λ′)
λ′ + x′

where λ′ = λ− χ. Since we had λ ∈ (−∞,−(ξ − χ)) ∪ (0,∞) it entails λ′ ∈ (−∞,−ξ) ∪ (−χ,∞).
The condition on the integral

∫ dω̃(λ)
λ(λ+x) <∞ can be expressed in terms of λ′ as

∫ dω̃′(λ′)
(λ′+χ)(1+λ′+χ) <∞

with dω̃′(λ′) = dω̃(λ′ + χ). With c1 = c′1 and c′0 = c0 − c1χ we obtain the claimed form.

We now generalise Definition 28 to (χ, ξ) valid functions (we intended (χ, ξ) to indicate a tuple
and not an open set so do not read too much into this notation).

Definition 80 ((χ, ξ) valid function). A finitely supported function a : R→ R with supp(a) ∈ [χ, ξ]
is (χ, ξ) valid if for every operator monotone function f on [χ, ξ] we have

∑
x∈supp(a) a(x)f(x) ≥ 0.
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Remark 81. Since in Corollary 79 dω̃′ is a measure, to establish (χ, ξ) validity of functions, it would
suffice to restrict our attention to operator monotones f ′(x′) = x′, f ′(x′) = − 1

λ′+x′ with x
′ ∈ [χ, ξ],

λ′ ∈ (−∞,−ξ) ∪ (−χ,∞).
By shifting/translating the characterisation of operator monotone functions we can shift/translate

valid functions as well.

Corollary 82 (a(x) is (χ, ξ) valid ⇐⇒ a(x′ − x0) is (χ+ x0, ξ + x0) valid). A finitely supported
function a : R → R with supp(a) ∈ [χ, ξ] is (χ, ξ) valid if and only if the function a′(x′) :=
a(x′ − x0) : R≥ → R is (χ− x0, ξ − x0) valid.

Proof. a is (χ, ξ) valid entails
∑
x∈supp(a) a(x)f(x) ≥ 0 for all f operator monotone on [χ, ξ]. We

can write the sum as
∑
a(x′ − x0)f(x′ − x0) ≥ 0. Using Claim 77 we note that f ′(x′) = f(x′ − x0)

is operator monotone on [χ + x0, ξ + x0]. For a′(x′) = a(x′ − x0) we thus have
∑
a′(x′)f ′(x′) ≥ 0

which means a′(x′) is a (χ+ x0, ξ + x0) valid function. The other way follows similarly.

In accordance with our strategy, we have established a relation between (0,Λ) valid functions
and (χ, ξ) valid functions (in fact we have a more general result). We now proceed with establishing
its analogue for EBRM functions.

Definition 83 (EBRM on [χ, ξ]). A finitely supported function a : R → R is EBRM on [χ, ξ] if
there exist real symmetric matrices H ≥ G with their spectrum in [χ, ξ] and a vector |w〉 such that
a = Prob[H, |w〉]− Prob[G, |w〉].

Corollary 84 (a(x) is EBRM on [χ, ξ] ⇐⇒ a(x+χ) is EBRM on [0, ξ−χ]). A finitely supported
function a : R → R with supp(a) ∈ [χ, ξ] is EBRM on [χ, ξ] if and only if the function a′(x) :=
(x+ χ) : R≥ → R is EBRM on [0, ξ − χ].

Proof. If a is EBRM on [χ, ξ] it follows that there exist real symmetric matrices with H ≥ G
and a vector |w〉 such that spec[H ⊕ G] ∈ [χ, ξ] and a = Prob[H, |w〉] − Prob[G, |w〉]. Clearly,
H ′ := H − χI ≥ G− χI =: G′ and a′(x) = Prob[H ′, |w〉]−Prob[G′, |w〉] = a(x+ χ) with spec[H ′ ⊕
G′] ∈ [0, ξ − χ]. This means a′ is EBRM on [0, ξ − χ]. The other way follows similarly.

We have done all the hard work for meeting the first objective. We now simply combine our
results so far to prove the desired equivalence.

Lemma 85 (a(x) is (χ, ξ) valid function ⇐⇒ a(x) is EBRM on [χ, ξ]). A finitely supported
function a : R→ R with supp(a) ∈ [χ, ξ] being (χ, ξ) valid is equivalent to it being EBRM on [χ, ξ].

Proof. From Corollary 82 we know that a(x) being (χ, ξ) valid is equivalent to a(x + χ) being
Λ = ξ − χ valid. From Corollary 58 we know that a(x + χ) is equivalently EBRM on [0, ξ − χ].
Finally using Corollary 84 we know that a(x + χ) being EBRM on [0, ξ − χ] is equivalent to a(x)
being EBRM on [χ, ξ].

The second objective will be achieved in a single shot.

Lemma 86 (EBRM function ⇐⇒ EBRM transition even with common support). If we write
an EBRM function a with spectrum in [χ′, ξ′] as a = h − g with h, g : R≥ → R≥ which may
have common support then g → h is an EBRM transition with spectrum in [χ, ξ] and with (the
smallest) matrix size (at most) ng + nh − 1 where [χ, ξ] is the smallest interval containing [χ′, ξ′]
and supp(h) ∪ supp(g).

Conversely, if g → h is an EBRM transition with spectrum in [χ, ξ] with h, g : R≥ → R≥ which
may have common support then a = h − g is an EBRM function with its spectrum in [χ, ξ] (the
smallest) matrix size at most ng + nh − 1.
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Proof. To prove the first statement we write a = a+ − a− where a+ =
∑n′h
i=1 p

′
hi

[xhi ], a− =∑n′g
i=1 p

′
gi [xgi ], for a

+, a− : R≥ → R≥, represent the positive and the negative parts of a. Note that
a+ and a− by virtue of this definition can’t have any common support. Consider ∆ =

∑n∆
i=1 ci[xi] :

R≥ → R≥ to be such that h = a+ + ∆ and g = a−+ ∆. This is always the case because h− g = a.
Consider the case where supp(∆)∩supp(a) = ∅. In this case ng = n′g+n∆ and nh = n′h+n∆. Since
a is an EBRM function we have a legal COF, viz O′X ′gO′T ≤ X ′h and |w′〉 = O′ |v′〉, of dimension
(n′ = n′g + n′h − 1) from Lemma 60. To obtain the matrices corresponding to g → h we expand
the space to n = ng + nh − 1 dimensions and define Xg = X ′g ⊕ X, Xh = X ′h ⊕ X, O = O′ ⊕ I,
|v〉 = |v′〉 +

∑n
i=n′
√
ci+1−n′ |i〉 where X = diag{x1, x2 . . . xn∆}. This is just an elaborate way of

adding the points in ∆ to the matrices and the vectors in such a way that the part corresponding
to ∆ remains unchanged. The other cases can be similarly demonstrated with the only difference
being in the relation between ng, n

′
g and nh, n

′
h. Suppose ∆ is non-zero only at one point. If ∆

adds a point where a− had a point then it does not contribute to increasing the number of points
in g that is ng = n′g but it does increase the number in h that is nh = n′h + 1. This means that we
have one extra dimension to find the matrices certifying g → h is EBRM which is precisely what is
needed to append that extra idle point as described above. Similarly one can reason for adding a
point where a+ had a point and finally extend it to the most general case of supp(∆)∩ supp(a) 6= ∅
which may involve multiple points.

We now prove the converse. Since g → h is an EBRM transition from Lemma 60 we know that
it admits a legal COF, that is OXgO

T ≤ Xh and O |v〉 = |w〉 with dimension ng + nh − 1. To be
able to show that a = h−g = a+−a− (where a+ and a− are again the positive and negative part of
a) is an EBRM function it suffices to show that a is a valid function. This follows directly from the
COF and operator monotones as Of(Xg)OT ≤ f(Xh) implies 〈v| f(Xg) |v〉 ≤ 〈w| f(Xh) |w〉 which
in turn is

∑
h(x)f(x)−

∑
g(x)f(x) ≥ 0 and that is the same as

∑
a(x)f(x) ≥ 0 for all f operator

monotone on the spectrum of Xh ⊕Xg, viz. a is valid. From Lemma 85 we conclude that a is also
EBRM with size at most ng + nh − 1 (actually we can make a stronger statement by saying the
size should be at most n′g + n′h − 1 where

∣∣supp(a+)
∣∣ = n′h and |supp(a−)| = n′g).

This completes the first, and longest, step of our groundwork for discussing the algorithm. Our
achievement so far has been schematized in Figure 9.

7.2.2 For the finite part

For the second step, we state the following fact (see [17]). The proof of this statement is interesting
in its own right but here we only state it and use it for terminating our recursive algorithm.

Fact 87 (Weyl’s Monotonicity Theorem). If H is positive semi-definite and A is Hermitian then
λ↓j (A + H) ≥ λ↓j (A) for all j where λ↓j (M) represents the jth largest eigenvalue of the Hermitian
matrix M .

Corollary 88. If H ≥ G then λ↓j (H) ≥ λ↓j (G) for all j.

At some point, if the algorithm reaches a point where there is no vector constraint (that is the
vector |v〉 = |w〉 = 0) then one can use the aforesaid result to conclude that the solution, orthogonal
matrix O, must be a permutation matrix (this will become clear later, we mention it to motivate
the relevance of the result).

We now state a continuity condition which we subsequently use to establish that when we
stretch the h ellipsoid, there would always exist the perfect amount of stretching that makes the h
ellipsoid just touch the g ellipsoid. The non-triviality here is that we have to conclude this without
fully knowing the ellipsoids.
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a(x) is Corollary 58⇐⇒ a(x) is
Λ− valid Λ− EBRM

m Cor. 82 m Cor. 84

a(x′ − χ) is Lemma 85⇐⇒ a(x′ − χ) is
[χ, ξ]− valid [χ, ξ]− EBRM

m Lemma 86

h→ g is
[χ′, ξ′] EBRM Lemma 60=⇒

[χ′, ξ′]− COF
if a = h− g and trivial⇐=

[χ, ξ] ∪ spec(g + h) ⊂ [χ′, ξ′]

Figure 9: Generalisation schematized.

Claim 89 (Continuity of l). Let [xmin, xmax] be the smallest interval containing supp(a). l(λ) is
continuous in the intervals λ ∈ (−xmin,∞] and λ ∈ [−∞,−xmax) (see Definition 65).

Proof. Since l(λ) is just a rational function of λ it suffices to show that the denominator doesn’t
become zero in the said range. The roots of the denominator are of the form λ + x = 0 for
x ∈ {{xgi}, {xhi}}. Hence the largest root will be λ = −xmin and the smallest λ = −xmax. Neither
of the intervals defined in the statement contain any roots and therefore we can conclude that l(λ)
will be continuous therein. Note that the function fλ on [xmin, xmax] is not even defined for λ in
(−xmax,−xmin).

Lemma 90 (Tightening with the matrix spectrum unknown). Consider a finitely supported
valid function a. Let [xmin(γ), xmax(γ)] be the smallest interval containing supp(aγ). Consider
m(γ, xmin(γ), xmax(γ)) as a function of γ (see Definition 67). m has at least one root in the inter-
val (0, 1].

Proof. To prove the claim it suffices to show that lγ(λ) has a root in the range (0,∞) for some
γ ∈ (0, 1]. Note that we are given a valid function a which means supp(a) ∈ R≥.

We assume that lγ=1(λ) > 0 for all λ ∈ (0,∞) because if this was not the case then we trivially
have γ = 1 as a root, i.e. m(1, xmin(1), xmax(1)) = 0.

Notice that since
∑
h(x) =

∑
g(x) we have

λl(λ) =
∑

h(x)(λfλ(x) + 1)−
∑

g(x)(λfλ(x) + 1)

=
∑

h(x) x

λ+ x
−
∑

g(x) x

λ+ x
.

Therefore for the remainder of this proof we redefine fλ = 1
λ

x
λ+x without changing the value of l or

by extension lγ (the 1/λ factor is partly why we restricted λ to (0,∞) instead of the more general
(−xmin,∞)). Note that limγ→0+ lγ(λ) < 0 for all λ ∈ (0,∞) because hγ(x) = h(x/γ) which means
limγ→0

∑
hγ(x)fλ(x) = limγ→0

∑
h(x)fλ(γx) = 0 since limx→0 fλ(x) = 0. This in turn means

limγ→0+ lγ(λ) = −
∑
g(x)fλ(x) < 0.
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Further, each term constituting lγ(λ) is finite for λ ∈ (0,∞) since for λ > 0 the denominators
are of the form λ + x which are always positive. Hence lγ(λ) as a function of λ ∈ [0,∞) and
γ ∈ (0, 1] is continuous. By continuity then between γ = 0+ and γ = 1 there should be a root.

It remains to justify why we extended the range of λ from (0,∞) to (−∞,−xmax)∪ (−xmin,∞)
in the definition of m (see Definition 67) as it appears in the statement of the lemma. This is due
to the fact that lγ(λ) is continuous for λ in the stated range, see Lemma 89, and so there might be
a root which appears in the extended range. If this is the case we would like to use this possibly
higher value of γ (because for a small enough value a non-negative root must appear due to the
aforesaid reasoning). This can help us avoid infinities (we will explain this later).

Once we are guaranteed that there is at least one perfect stretching amount, we want to know
the spectrum of the matrices. We state a slightly more general result which is a direct consequence
of the results from the previous subsubsection. The difference is that it is stated in a form that
would be useful for the algorithm.

Lemma 91 (Matrix spectrum from a valid function). Consider a valid function a, i.e. an a
such that l(λ) ≥ 0 and l1 ≥ 0 for λ ∈ [0,∞) (see Definition 65) and let [χ, ξ] be such that for
λ ∈ [−∞,−ξ) ∪ (−χ,∞] we have l(λ) ≥ 0.

There exists a legal COF, corresponding to the function a, with its spectrum contained in [χ, ξ].

Proof. Since l(λ) ≥ 0 for λ ∈ (−∞,−ξ) ∪ (−χ,∞) and l1 ≥ 0 we know from Corollary 79 that a is
(χ, ξ) valid. From Lemma 85 we know that a is EBRM on [χ, ξ]. Finally from Lemma 60 we know
that there exists a legal COF with spectrum in [χ, ξ].

Recall that in Subsection 1.3 we said that we focus on operator monotone functions f with
the special property that f−1 is also an operator monotone. We now establish that fλs (see
Definition 63) have this property.

Lemma 92 (H ≥ G ⇐⇒ fλ(H) ≥ fλ(G)). Let H,G be real symmetric matrices and [χ, ξ] be the
smallest interval containing spec[H ⊕G] and fλ be on (χ, ξ). H ≥ G if and only if fλ(H) ≥ fλ(G).

Proof. H ≥ G =⇒ fλ(H) ≥ fλ(G) because fλ is an operator monotone function for matrices with
spectrum in [χ, ξ]. We prove the converse. We find the inverse function of fλ and show that it is
also an operator monotone. Start with recalling that for x ∈ [χ, ξ] we have

y = fλ(x) = −1
λ+ x

=⇒ x = −1
y
− λ

where λ ∈ R\[χ, ξ]. Thus f−1
λ (y) = − 1

y − λ. For a given λ either fλ(χ) and fλ(ξ) are both greater
than zero or both less than zero. Hence the operator monotones f ′λ′(y) on [fλ(χ), fλ(ξ)] permit
λ′ = 0. Consequently f ′λ′=0(y) = −1

y is an operator monotone on [fλ(χ), fλ(ξ)]. A constant is also
an operator monotone. Thus we conclude f−1

λ (y) is an operator monotone on the required interval
establishing the converse.

This completes the second step of the groundwork.
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7.2.3 For Wiggle-v; the infinite part

For the final step of the groundwork, we need to establish a result which lets us tackle the divergences
head-on. What is this divergence issue? Recall form our discussion in Subsection 1.3, our strategy
was to tighten (we saw hints of how that can be done in the previous sections) and then find the
operator monotone fλ for which the ellipsoids touch along the |w〉 direction. What happens if
one of the ellipsoids under the action of this operator monotone has infinite curvature along some
directions? One can in fact show that there are cases where this would necessarily happen. Having
infinite curvature means that the corresponding matrix has a divergence. It is like an ellipse gets
mapped to a line. Our algorithm will fail in this situation because the normal at the tip of a line
is ill defined.

Our strategy is to show that tightness is preserved under the action of fλ. This means that if
for some λ′ we consider the ellipsoids obtained by applying fλ′ and we find that they touch along
|w〉 then for some other λ′′ ( 6= λ′) they would continue to touch but along some other direction.
This allows us to consider the sequence leading to the divergence. We use this sequence in the
analysis of the algorithm.

Here we start by showing this result in the case where everything is well defined and then extend
it to the divergent case.

Lemma 93 (Strict inequality under fλ). H > G if and only if fλ(H) > fλ(G) where fλ is on
(χ, ξ) ⊃ spec[H ⊕G].

Proof. Note that H > G ⇐⇒ H ′ := H + λI > G+ λI =: G′ where λ ∈ R̄\[−ξ,−χ] (by definition
of fλ on (χ, ξ)). There can be two cases, either both the matrices are strictly positive or both are
strictly negative. Let us assume the former (the other follows similarly). We have

H ′ > G′ > 0
⇐⇒ I > H ′−1/2G′H ′−1/2

⇐⇒ I < H ′1/2G′−1H ′1/2

⇐⇒ H ′−1 < G′−1

where the first inequality follows from the fact that multiplication by a positive matrix doesn’t
affect the inequality (hint: it only changes the vectors |w〉 we use to show 〈w| (H ′ −G′) |w〉 > 0
but maps the set of rays to themselves as the norm of the vector might change), the second follows
from the fact that one can diagonalise the matrices (identity stays the same) and then it is just
a set of inequalities involving real numbers, and the third follows from again multiplication by a
positive matrix. The last one is the same as fλ(H) > fλ(G).

Corollary 94 (Tightness preservation under fλ). Let H ≥ G and fλ be on (χ, ξ) ⊃ spec[H ⊕ G].
There exists a |w〉 such that 〈w| (H −G) |w〉 = 0 if and only if there exists a |wλ〉 such that
〈wλ| (fλ(H)− fλ(G)) |wλ〉 = 0.

Proof. The contrapositive of the aforesaid condition is that fλ(H) > fλ(G) if and only if H > G
which holds due to Lemma 93.

Lemma 95 (Extending tightness preservation under fλ to apparently divergent situations). Let
Xh, Xg be diagonal matrices with spec[Xh] ∈ (χ, ξ], spec[Xg] ∈ [χ, ξ) and let fλ be on [χ, ξ]. Let,
further, O be an orthogonal matrix such that Xh ≥ OXgO

T .
There exists a vector |w〉 such that 〈w|

(
f−ξ(Xh)−Of−ξ(Xg)OT

)
|w〉 = 0 if and only if there

exists a |wλ〉 such that 〈wλ|
(
fλ(Xh)−Ofλ(Xg)OT

)
|wλ〉 = 0 for λ ∈ R\[χ, ξ].
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Similarly, there exists a vector |w〉 such that 〈w|
(
f−χ(Xh)−Of−χ(Xg)OT

)
|w〉 = 0 if and only

if there exists a |wλ〉 such that 〈wλ|
(
fλ(Xh)−Ofλ(Xg)OT

)
|wλ〉 = 0 for λ ∈ R\[χ, ξ].

Proof. The trouble with this version of the tightness statement is that Xh has an eigenvalue ξ (if it
doesn’t then it reduces to the previous statement) which means that f−ξ(Xh) is not well defined.
We assume that Xh can be expressed as

Xh =
[
X ′h

ξI′′

]

where X ′h has no eigenvalue equal to ξ and I′′ is the identity matrix in the subspace. We can write

Xh > OXgO
T

⇐⇒
[
fλ(X ′h)

fλ(ξI′′)

]
> Ofλ(Xg)OT forλ ∈ R\[−ξ,−χ]

⇐⇒
[
fλ(X ′h)

I′′

]
>

[
I′

fλ(ξI′′)−1/2

]
Ofλ(Xg)OT

[
I′

fλ(ξI′′)−1/2

]
forλ ∈ R\[−ξ,−χ]

where in the last line the expression has a well defined limit for λ = −ξ. This establishes the
contrapositive variant of the statement we wanted to prove (similar to the strategy used for proving
Corollary 94) once we note the following. If 〈w|

(
f−ξ(Xh)−Of−ξ(Xg)OT

)
|w〉 = 0 it is easy to

see that
[

0
I′′

]
|w〉 = 0 otherwise due to the constraint on the spectrum of Xg the aforesaid

expression would be ∞. This entails that

〈w|
([

f−ξ(X ′h)
I′′

]
−
[
I′

f−ξ(ξI′′)−1/2

]
Of−ξ(Xg)OT

[
I′

f−ξ(ξI′′)−1/2

])
|w〉 = 0.

One can similarly prove the case for f−χ(Xg).

7.3 The Algorithm

We now state our algorithm and formally state its correctness. Thereafter, we motivate each step
of the algorithm and prove its correctness.

Definition 96 (EMA Algorithm). Given a finitely supported function a (we assume it is Λ-valid)
proceed in the following three phases.

PHASE 1: INITIALISATION

• Tightening procedure: Let [xmin(γ′), xmax(γ′)] be the support domain for aγ′ . Let γ ∈ (0, 1]
be the largest root of m(γ′, xmin(γ′), xmax(γ′)). Let xmax := xmax(γ) and xmin := xmin(γ).

• Spectral domain for the representation: Find the smallest interval [χ, ξ] such that
lγ(λ) ≥ 0 for λ ∈ R̄\[χ, ξ]. If supp(g), supp(h) is not contained in [χ, ξ] then from all ex-
pansions of [χ, ξ] that contain the aforesaid sets, pick the smallest. Relabel this interval to
[χ, ξ].
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• Shift: Transform
a(x)→ a′(x′) := a(x′ + χ− 1)

where instead of 1 any positive constant would do (justified by Corollary 84). Similarly
transform

g(x)→ g′(x′) := g(x′ + χ− 1)
h(x)→ h′(x′) := h(x′ + χ− 1).

Relabel a′ to be a, g′ to be g and h′ to be h. (Remark: We do not deduce h and g from a
as its positive and negative part because they might now have common support due to the
tightening procedure.)

• The matrices: For n := ng + nh − 1 we define n× n matrices with spectrum in [χ, ξ] and n
dimensional vectors as

X(n)
g = diag[χ, χ, . . . xg1 , xg2 . . . , xgng ],

X
(n)
hγ

= diag[γxh1 , γxh2 , . . . , γxhnh , ξ, ξ, . . . ],∣∣∣v(n)
〉 .=

[
0, 0 . . . ,√pg1 ,

√
pg2 , . . . ,

√
pgng

]
,∣∣∣w(n)

〉 .=
[√
ph1 ,
√
ph2 , . . . ,

√
phnh , 0, 0 . . .

]
where g =

∑ng
i=1 pgi [xgi ] and h =

∑nh
i=1 phi [xhi ]. Note that ng and nh may be different.

• Bootstrapping the iteration:

– Basis:
{∣∣∣t(n+1)

hi

〉}
where

∣∣∣t(n+1)
hi

〉
:= |i〉 for i = 1, 2 . . . n where |i〉 refers to the standard

basis in which the matrices and the vectors were originally written.

– Matrix Instance: X(n) = {X(n)
h , X

(n)
g ,

∣∣∣w(n)
〉
,
∣∣∣v(n)

〉
}.

PHASE 2: ITERATION

• Objective: Find the objects
∣∣∣u(k)
h

〉
, Ō

(k)
g , Ō

(k)
h and s(k) (which together relate O(k) to O(k−1)

where O(k) solves X(k) and O(k−1) solves X(k−1) that is yet to be defined)

• Input: We will assume we are given

– Basis:
{∣∣∣t(k+1)

hi

〉}
– Matrix Instance: X(k) =

(
X

(k)
h , X

(k)
g ,

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉)
with attribute χ(k) > 0

– Function Instance: X(k) → x(k) =
(
h(k), g(k), a(k)

)
• Output:

– Basis:
{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
hi

〉}
– Matrix Instance: X(k−1) =

(
X

(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉)
with attribute χ(k−1) >

0
– Function Instance: X(k−1) → x(k−1) =

(
h(k−1), g(k−1), a(k−1)

)
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– Unitary Constructors: Either Ō(k)
g and Ō(k)

h are returned or Ō(k) is returned. If Ō(k) is
returned, set Ō(k)

g := Ō(k) and Ō(k)
h = I.

– Relation: If s(k) is not specified, define s(k) := 1.
If s(k) = 1 then use

O(k) := Ō
(k)
h

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)
g

else use
O(k) :=

[
Ō

(k)
h

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)
g

]T
.

• Algorithm:

– Boundary condition: If ng = 0 and nh = 0 then set k0 = k and jump to phase 3.

– Tighten: Define X(k)
hγ′

:= γ′X(k). Let γ be the largest root of m(γ′, χ(k)
γ′ , ξ

(k)
γ′ ) for a(k)

where χ(k)
γ′ , ξ

(k)
γ′ are such that [χ(k)

γ′ , ξ
(k)
γ′ ] is the smallest interval containing spec[X(k)

hγ′
⊕

X
(k)
g ]. Relabel X(k)

hγ
to X(k)

h , χ(k)
γ to χ(k) and ξ(k)

γ to ξ(k) for notational ease. Similarly
relabel a(k)

γ to a(k), h(k)
γ to h(k), l(k)

γ to l(k). Update xmin and xmax to be such that
supp(a(k)) ∈ [x(k)

min, x
(k)
max] is the smallest such interval. Define s(k) := 1.

– Honest align: If l1(k) = 0 then define η = −χ(k) + 1

X
′(k)
h := X

(k)
h + η, X ′(k)

g := Xg + η.

Else: Pick a root λ of the function l(k)(λ′) in the domain R\(−ξ(k),−χ(k)). In the
following two cases we consider the function fλ on [χ(k), ξ(k)].
∗ If λ 6= −χ(k) then: Let η = −fλ(χ(k)) + 1 where any positive constant could be
chosen instead of 1. Define

X
′(k)
h := fλ(X(k)

h ) + η, X ′(k)
g := fλ(X(k)

g ) + η.

∗ If λ = −χ(k) then: Update s(k) = −1. Let η = −fλ(ξ(k)) − 1 where any positive
constant could be chosen instead of 1. Define

X
′(k)
h := X ′′(k)

g , X ′(k)
g := X

′′(k)
h ,

where
X
′′(k)
h := −fλ(X(k)

h )− η, X ′′(k)
g := −fλ(X(k)

g )− η

and make the replacement ∣∣∣v(k)
〉
→
∣∣∣w(k)

〉
∣∣∣w(k)

〉
→
∣∣∣v(k)

〉
.

– Remove spectral collision: If λ = −χ(k) or λ = −ξ(k) then
1. Idle point: If for some j′, j, we have q(k)

gj′ = q
(k)
hj

and y(k)
gj′ = y

(k)
hj

then the solution
is given by Definition 98
Jump to End.
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2. Final Extra: If for some j, j′ we have q(k)
gj′ > q

(k)
hj

and y(k)
gj′ = y

(k)
hj

then the solution
is given by Definition 99
Jump to End.

3. Initial Extra: If for some j, j′ we have q(k)
gj′ < q

(k)
hj

and y(k)
gj′ = y

(k)
hj

then the solution
is given by Definition 100
Jump to End.

– Evaluate the Reverse Weingarten Map:

1. Consider the point
∣∣∣w(k)

〉
/
√〈

w(k)
∣∣X ′(k)

h

∣∣w(k)〉 on the ellipsoid X ′(k)
h . Evaluate the

normal at this point as
∣∣∣u(k)
h

〉
= N

(∑n
(k)
h
i=1

√
p

(k)
hi
x
′(k)
hi

∣∣∣t(k+1)
hi

〉)
. Similarly evaluate∣∣∣u(k)

g

〉
, the normal at the point

∣∣∣v(k)
〉
/
√〈

w(k)
∣∣X ′(k)

g

∣∣w(k)〉 on the ellipsoid X ′(k)
g .

2. Recall that for a given diagonal matrix X =
∑
i yi |i〉 〈i| > 0 and normal vector |u〉 =∑

i ui |i〉 the Reverse Weingarten map is given by Wij =
(
−y−1

j y−1
i uiuj

r2 + y−1
i δij

)
where r =

√∑
y−1
i u2

i . Evaluate the Reverse Weingarten maps W ′(k)
h and W

′(k)
g

along
∣∣∣u(k)
h

〉
and

∣∣∣u(k)
g

〉
respectively.

3. Find the eigenvectors and eigenvalues of the Reverse Weingarten maps. The ei-
genvectors of W ′h form the h tangent (and normal) vectors

{{∣∣∣t(k)
hi

〉}
,
∣∣∣u(k)
h

〉}
. The

corresponding radii of curvature are obtained from the eigenvalues
{
{r(k)
hi
}, 0
}

={
{c(k)−1
hi

}, 0
}
which are inverses of the curvature values. The tangents are labelled

in the decreasing order of radii of curvature (increasing order of curvature). Simil-
arly for the g tangent (and normal) vectors. Fix the sign freedom in the eigenvectors
by requiring

〈
t
(k)
hi
|w(k)

〉
≥ 0 and

〈
t
(k)
gi |v(k)

〉
≥ 0.

– Finite Method: If λ 6= −ξ(k) and λ 6= −χ(k), i.e. if it is the finite case then
1. Ō(k) :=

∣∣∣u(k)
h

〉〈
u

(k)
g

∣∣∣+∑k−1
i=1

∣∣∣t(k)
hi

〉〈
t
(k)
gi

∣∣∣
2.
∣∣∣v(k−1)

〉
:= Ō(k)

∣∣∣v(k)
〉
−
〈
u

(k)
h

∣∣∣ Ō(k)
∣∣∣v(k)

〉 ∣∣∣u(k)
h

〉
and

∣∣∣w(k−1)
〉

:=
∣∣∣w(k)

〉
−〈

u
(k)
h |w(k)

〉 ∣∣∣u(k)
h

〉
.

3. Define X(k−1)
h := diag{c(k)

h1
, c

(k)
h2
. . . , c

(k)
hk−1
}, X(k−1)

g := diag{c(k)
g1 , c

(k)
g2 . . . c

(k)
gk−1}.

4. Jump to End.
– Wiggle-v Method: If λ = −ξ(k) or λ = −χ(k) then

1.
∣∣∣u(k)
h

〉
is renamed to

∣∣∣ū(k)
h

〉
,
∣∣∣u(k)
g

〉
remains the same.

2. Let τ = cos θ :=
〈
u

(k)
g |v(k)

〉
/
〈
ū

(k)
h |w(k)

〉
. Let

∣∣∣t̄(k)
h

〉
be an eigenvector of X ′(k)−1

h

with zero eigenvalue (comment: this is also perpendicular to
∣∣∣w(k)

〉
). Redefine∣∣∣u(k)

h

〉
:= cos θ

∣∣∣ū(k)
h

〉
+ sin θ

∣∣∣t̄(k)
h

〉
,∣∣∣t(k)

hk

〉
= s

(
− sin θ

∣∣∣ū(k)
h

〉
+ cos θ

∣∣∣t̄(k)
h

〉)
where the sign s ∈ {1,−1} is fixed by demanding

〈
t
(k)
hk
|w(k)

〉
≥ 0.

3. Ō(k) and
∣∣∣v(k−1)

〉
,
∣∣∣w(k−1)

〉
are evaluated as step i and ii of the finite case (a).
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4. Define

X
′(k−1)
h := diag{c(k)

h1
, c

(k)
h2
, . . . , c

(k)
hk−1
}, X ′(k−1)

g := diag{c(k)
g1 , c

(k)
g2 , . . . , c

(k)
gk−1}.

Let [χ′(k−1), ξ′(k−1)] denote the smallest interval containing spec[X ′(k−1)
h ⊕X ′(k−1)

g ].
Let λ′ = −χ′(k−1) + 1 where instead of 1 any positive number would also work.
Consider fλ′′ on [χ′(k−1), ξ′(k−1)]. Let η = −fλ′(χ′(k−1)) + 1. Define

X
(k−1)
h := fλ′(X

′(k−1)
h ) + η, X(k−1)

g := fλ′(X ′(k−1)
g ) + η.

5. Jump to End.
– End: Restart the current phase (phase 2) with the newly obtained (k−1) sized objects.

PHASE 3: RECONSTRUCTION
Let k0 be the iteration at which the algorithm stops. Using the relation

O(k) = Ō(k)
g

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō

(k)
h

(or its transpose if s(k) = −1), evaluate O(k1) from O(k0) := Ik0 , then O(k2) from O(k1), then O(k3)

from O(k2) and so on until O(n) is obtained which solves the matrix instance X(n) we started with. In
terms of EBRM matrices, the solution is given by H = X

(n)
h , G = O(n)XgO

(n)T , and |w〉 =
∣∣∣w(n)

〉
.

Theorem 97 (Correctness of the EMA Algorithm). Given a Λ-valid function, the EMA algorithm
(see Definition 96) always finds an orthogonal matrix O of size at most n× n where n = ng + nh,
such that the constraints on O stated in Theorem 1 corresponding to the function a, are satisfied.

Definition 98 (Spectral Collision: Case Idle Point).

{∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
,
∣∣∣t(k)
h2

〉
, . . .

∣∣∣t(k)
hk−1

〉} componentwise:={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
,

Ō(k) :=
k∑
i=1
|ai〉

〈
t
(k+1)
hi

∣∣∣ ,
where

{|a1〉 , |a2〉 . . . |ak〉}
componentwise:=

{ ∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
,

. . . ,
∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
j < j′

{ ∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .∣∣∣t(k+1)

hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
j > j′

{∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hk

〉}
j = j′,
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and
X

(k−1)
h :=

∑
i 6=j

y
(k)
hi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣ ,
X(k−1)
g := Ō(k)X(k)

g Ō(k)T − yhj
∣∣∣t(k+1)
hj

〉〈
t
(k+1)
hj

∣∣∣ ,
∣∣∣w(k−1)

〉
= N

[∣∣∣w(k)
〉
−√phj

∣∣∣t(k+1)
hj

〉]
,
∣∣∣v(k−1)

〉
= N

[
Ō(k)

∣∣∣v(k)
〉
−√phj

∣∣∣t(k+1)
hj

〉]
.

(This specifies X(k−1) := {X(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
}.)

Definition 99 (Spectral Collision: Case Final Extra).
X(k−1) := (X(k−1)

h , X
(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) whereX(k−1)

h =
∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣,X(k−1)
g =∑k−1

i=1 y
(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, ∣∣∣v(k−1)
〉

= N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
= N

[∑k−1
i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
where the coordinates and weights are given by{

q
(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
, q

(k)
h2
. . . , q

(k)
hj−1

, q
(k)
hj+1

, . . . q
(k)
hk

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′
− q(k)

hj
, q(k)
gj′+1

, q(k)
gj′+2

. . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g2 , . . . y

(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hj−1

, y
(k)
hj+1

. . . , y
(k)
hk

}
,

the basis is given by {∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

The orthogonal matrices are given by Ō(k)
h :=

∑∣∣∣t(k+1)
hi

〉
〈ai| where

{|a1〉 , . . . |ak〉} →
{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
,

Ō
(k)
g := Õ(k)Ō

(k)
h where

Õ(k) :=N
[√

q
(k)
hj

∣∣∣u(k)
h

〉
+
√
q

(k)
gj′ − q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
g1

〈
u

(k)
h

∣∣∣+√
q

(k)
gj′

〈
t
(k)
hj′

∣∣∣]

+N
[√

q
(k)
gj′ − q

(k)
hj

∣∣∣u(k)
h

〉
−
√
q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
gj′

〈
u

(k)
h

∣∣∣−√q(k)
g1

〈
t
(k)
hj′

∣∣∣]
+

∑
i∈{1,...k}\j′

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣ .

Definition 100 (Spectral Collision: Case Initial Extra).
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X(k−1) := (X(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) whereX(k−1)

h =
∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣,X(k−1)
g =∑k−1

i=1 y
(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, ∣∣∣v(k−1)
〉

= N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
= N

[∑k−1
i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
where the coordinates and weights are given by{

q
(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
. . . , q

(k)
hj−1

, q
(k)
hj
− q(k)

gj′
, q

(k)
hj+1

, q
(k)
hj+2

. . . q
(k)
hk−1

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g1 , q

(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′+1

, . . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g1 , . . . y

(k)
gj′−1

, y(k)
gj′+1

. . . , y(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hk−1

}
,

the basis is given by {∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

The orthogonal matrices are given by Ō(k)
h := Õ(k)∑ |ai〉〈t(k+1)

hi

∣∣∣ where
{|a1〉 , . . . |ak〉}

componentwise=
{∣∣∣t(k)

h1

〉
,
∣∣∣t(k)
h2

〉
. . .
∣∣∣t(k)
hk−1

〉
,
∣∣∣u(k)
h

〉}
.

Õ(k) :=N
[√

q
(k)
gj′

∣∣∣u(k)
h

〉
+
√
q

(k)
hj
− q(k)

gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
hk

〈
u

(k)
h

∣∣∣+√
q

(k)
gj

〈
t
(k)
hj

∣∣∣]

+N
[√

q
(k)
hj
− q(k)

gj′

∣∣∣u(k)
h

〉
−
√
q

(k)
gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
gj

〈
u

(k)
h

∣∣∣−√q(k)
hk

〈
t
(k)
hj

∣∣∣]
+

∑
i∈{1,...k}\j

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣
and Ō(k)

h is given by the basis change
{∣∣∣t(k+1)

h1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→
{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
.

We start with motivating the exact step of the algorithm and then provide a proof or justification
for the claims made in that step.

7.3.1 Phase 1: Initialisation

We are given a Λ-valid transition g → h and the EBRM function a = h − g. (Remark: We use
below the notation used in the definition of a transition.)

Since the function is EBRM we know there are matrices H ≥ G and a vector |ψ〉 such that
a = Prob[H, |ψ〉]−Prob[G, |ψ〉]. We also know that the maximum matrix size we need to consider
is ng + nh − 1. We want to know the spectrum of the matrices involved to proceed.

The picture we have in mind is the following. We know that H ≥ G in terms of ellipsoids means
that the H ellipsoid is inside the G ellipsoid (the order gets reversed). We try to expand the H
ellipsoid (which means scaling down the matrix H) until it touches the G ellipsoid. When they
touch we know that the corresponding spectrum of the matrices is optimal in some sense. This
would be trivial if we already knew H and G but it serves as a good picture nonetheless.
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What we do know is the function a = h− g. We use the equivalence between EBRM and valid
functions to perform the aforesaid tightening procedure even without knowing the matrices. We
use aγ = hγ − g where hγ(x) = h(x/γ) and check if aγ stays valid as we shrink γ from one to zero.
We stop the moment we see any signature of tightness. Using this aγ we determine the spectrum
of the matrices certifying the EBRM claim.

We start with tightening till we find some operator monotone labelled by λ for which lγ′(λ)
disappears. This captures the notion of the ellipsoids touching as after applying this operator
monotone, along the |w〉 direction, the ellipsoids must touch.

Tightening procedure: Let [xmin(γ′), xmax(γ′)] be the support domain for aγ′ . Let γ ∈ (0, 1]
be the largest root of m(γ′, xmin(γ′), xmax(γ′)). Let xmax := xmax(γ) and xmin := xmin(γ).

First we must show that there would indeed be a root of m as a function of γ′ in the range
(0, 1]. This is a direct consequence of Lemma 90. Second we must show that if we can find the
matrices certifying aγ is EBRM we can find the matrices certifying a is EBRM. This follows from
the observation that γXh ≥ OXgO

T implies that Xh ≥ γXh ≥ OXgO
T .

We found a signature of tightness. Now we find the spectrum of the matrices involved.
Spectral domain for the representation: Find the smallest interval [χ, ξ] such that lγ(λ) ≥

0 for λ ∈ R̄\[χ, ξ]. If supp(g), supp(h) is not contained in [χ, ξ] then from all expansions of [χ, ξ]
that contain the aforesaid sets, pick the smallest. Relabel this interval to [χ, ξ].

The interval so obtained will contain the spectrum of the matrices that certify aγ is EBRM.
This is justified by Lemma 91 using the fact that l1γ ≥ 0 due to the previous step.

We need our matrices to be positive to be able to use the elliptic picture. We therefore shift
the spectrum of the matrices so that the smallest eigenvalue required is one (where we could have
used any positive number).

Shift: Transform
a(x)→ a′(x′) := a(x′ + χ− 1)

where instead of 1 any positive constant would do (justified by Corollary 84). Similarly transform

g(x)→ g′(x′) := g(x′ + χ− 1)
h(x)→ h′(x′) := h(x′ + χ− 1).

Relabel a′ to be a, g′ to be g and h′ to be h. (Remark: We do not deduce h and g from a as its
positive and negative part because they might now have common support due to the tightening
procedure.)

We use Corollary 84 to deduce that if a(x) is EBRM with spectrum in [χ, ξ] then a′(x′) =
a(x′ + χ − 1) is EBRM with spectrum in [1, ξ − χ + 1]. We must also show that if we can find
the matrices certifying a′ is EBRM then we can find the matrices certifying a is EBRM. This is a
direct consequence of the fact that X ′h ≥ OX ′gOT ⇐⇒ Xh− (χ− 1)I ≥ O(Xg − (χ− 1)I)OT . The
orthogonal matrix, O, which is of primary interest remains unchanged.

With the spectrum determined and adjusted to the elliptic picture, which we put to use soon,
we fix everything except the orthogonal matrix by using the Canonical Orthogonal Form (up to a
permutation).
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The matrices: For n := ng + nh − 1 we define n × n matrices with spectrum in [χ, ξ] and n
dimensional vectors as

X(n)
g = diag[χ, χ, . . . xg1 , xg2 . . . , xgng ],

X
(n)
hγ

= diag[γxh1 , γxh2 , . . . , γxhnh , ξ, ξ, . . . ],∣∣∣v(n)
〉 .=

[
0, 0 . . . ,√pg1 ,

√
pg2 , . . . ,

√
pgng

]
,∣∣∣w(n)

〉 .=
[√
ph1 ,
√
ph2 , . . . ,

√
phnh , 0, 0 . . .

]
where g =

∑ng
i=1 pgi [xgi ] and h =

∑nh
i=1 phi [xhi ]. Note that ng and nh may be different.

We use Lemma 86 to deduce that g → h is a valid transition from the validity of a. Then we
use Lemma 60 to write the diagonal matrices as described above given the valid transition g → h,
upto a permutation. Our objective is to find a matrix O(n) such that O(n)

∣∣∣v(n)
〉

=
∣∣∣w(n)

〉
while

satisfying the inequality X(n)
h ≥ O(n)X

(n)
g O(n)T .

We now remove all the redundant information and pack it into a form which we can iteratively
reduce to a simpler form.

Bootstrapping the iteration:

– Basis:
{∣∣∣t(n+1)

hi

〉}
where

∣∣∣t(n+1)
hi

〉
:= |i〉 for i = 1, 2 . . . n where |i〉 refers to the standard basis

in which the matrices and the vectors were originally written.

– Matrix Instance: X(n) = {X(n)
h , X

(n)
g ,

∣∣∣w(n)
〉
,
∣∣∣v(n)

〉
}.

7.3.2 Phase 2: Iteration

We take as input the matrices Xg, Xh together with the vectors |w〉 , |v〉 and churn out the same
objects with one less dimension. We also output objects that, once we have iteratively reduced the
problem to triviality, can be put together to find the orthogonal matrix O. See Figure 10 for a
schematic reference.

• Objective: Find the objects
∣∣∣u(k)
h

〉
, Ō

(k)
g , Ō

(k)
h and s(k) (which together relate O(k) to O(k−1)

where O(k) solves X(k) and O(k−1) solves X(k−1) that is yet to be defined)

• Input: We assume we are given

– Basis:
{∣∣∣t(k+1)

hi

〉}
– Matrix Instance: X(k) =

(
X

(k)
h , X

(k)
g ,

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉)
with attribute χ(k) > 0

– Function Instance: X(k) → x(k) =
(
h(k), g(k), a(k)

)
• Output:

– Basis:
{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
hi

〉}
– Matrix Instance: X(k−1) =

(
X

(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉)
with attribute χ(k−1) >

0
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Figure 10: Overview of the main step, the iteration, of the algorithm (excluding the boundary
condition).
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– Function Instance: X(k−1) → x(k−1) =
(
h(k−1), g(k−1), a(k−1)

)
– Unitary Constructors: Either Ō(k)

g and Ō(k)
h are returned or Ō(k) is returned. If Ō(k) is

returned, set Ō(k)
g := Ō(k) and Ō(k)

h = I.
– Relation: If s(k) is not specified, define s(k) := 1.

If s(k) = 1 then use

O(k) := Ō
(k)
h

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)
g

else use
O(k) :=

[
Ō

(k)
h

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)
g

]T
.

Our task is to solve the matrix instance X(k), i.e. find a real unitary O(k) such that
X

(k)
h ≥ O(k)X

(k)
g O(k)T and O(k)

∣∣∣v(k)
〉

=
∣∣∣w(k)

〉
. We assume that the solution exists and

show that the solution to the smaller instance, denoted by X(k−1) must also exist. More
precisely, we show that O(k) must have the form O(k) =

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k) (for

a solution to exist) which satisfies the aforesaid constraints granted we can find O(k−1)

which acts on a k − 1 dimensional Hilbert space orthogonal to
∣∣∣u(k)
h

〉
and satisfies con-

straints of the same form in the smaller dimension, viz. X(k−1)
h ≥ O(k−1)X

(k−1)
g O(k−1)T

and O(k−1)
∣∣∣v(k−1)

〉
=
∣∣∣w(k−1)

〉
. Hence the assumption that O(k) has a solution allows

us to deduce that O(k−1) must also have a solution. This allow us to iteratively solve
the problem.
In certain trivial cases, where a point appears both before and after a transition viz. X(k)

g

andX(k)
h have a common eigenvalue, the solution has the formO(k) = Ō

(k)
h

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō

(k)
g .

Finally, in one of the “infinite” cases denoted by the “Wiggle-v method” the solution
will have the form O(k) =

[(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)

]T
.

• Algorithm:

If we reach a stage where the vector constraints have disappeared then we can simply stop.

– Boundary condition: If ng = 0 and nh = 0 then set k0 = k and jump to phase 3.

We assumed that an O(k) satisfying the constraints (listed right after the input/output
section) exists. In this case it means that there exists an O(k) such that X(k)

h ≥
O(k)X

(k)
g O(k)T as there is no vector

∣∣∣v(k)
〉
,
∣∣∣w(k)

〉
to impose further constraints. Us-

ing Corollary 88 with H = X
(k)
h and G = O(k)X

(k)
g O(k)T we conclude that O(k) need

only be a permutation matrix. Note that this step can never be entered right after
the X(n) instance as we start with assuming ng, nh > 0. Further, since the protocol by
construction always returns Xh and Xg in the ascending order the permutation matrix
will be I.
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Finally, we deal with the interesting case. We again use the picture where the H ellipsoid is
contained inside the G ellipsoid. We expand the H ellipsoid (which corresponds to shrinking
the H matrix) until it touches the G ellipsoid as before by working with the function a.

– Tighten: Define X(k)
hγ′

:= γ′X(k). Let γ be the largest root of m(γ′, χ(k)
γ′ , ξ

(k)
γ′ ) for a(k)

where χ(k)
γ′ , ξ

(k)
γ′ are such that [χ(k)

γ′ , ξ
(k)
γ′ ] is the smallest interval containing spec[X(k)

hγ′
⊕

X
(k)
g ]. Relabel X(k)

hγ
to X(k)

h , χ(k)
γ to χ(k) and ξ(k)

γ to ξ(k) for notational ease. Similarly
relabel a(k)

γ to a(k), h(k)
γ to h(k), l(k)

γ to l(k). Update xmin and xmax to be such that
supp(a(k)) ∈ [x(k)

min, x
(k)
max] is the smallest such interval. Define s(k) := 1.

Our burden again is to show that m as a function of γ′ has a root. Unlike the first
tightening procedure this time we know the spectrum of the matrices involved. Since
we are given (by assumption) that the matrix instance has a solution we know that
lγ′=1(λ) ≥ 0 and l1γ′=1 ≥ 0 for λ ∈ R̄\[χ(k)

γ′=1, ξ
(k)
γ′=1] using Lemma 85. We also know that

χ
(k)
γ′ > 0 which means that a(k) (as deduced from the function instance of X(k)) is a valid

function. This observation lets us conclude that m as a function of γ′ has a root in the
required range because the reasoning behind a similar claim proved in Lemma 90 goes
through unchanged.
The tightening procedure guarantees we will be able to find a λ which corresponds to an
operator monotone such that after applying this function the ellipsoids, which we do not
even know completely yet, must touch along the |w〉 direction. This piece of information
is key to reducing the problem to a smaller instance of itself. Recall the picture with the
H ellipsoid contained inside the G ellipsoid. If we know that they, in addition, touch at
some known point then it must be so that the inner ellipsoid is more curved than the
outer ellipsoid. When expressed algebraically, this condition essentially becomes that
requirement that an ellipsoid H(k−1) that encodes the curvature of the ellipsoid H(k) at
the point of contact must be contained inside the corresponding G(k−1) ellipsoid which
encodes the curvature of the G(k) ellipsoid. The vector condition also reduces similarly.
Subtleties arise when λ happens to have boundary values in its allowed range as this
yields infinities and this has an interesting consequence.

– Honest align: If l1(k) = 0 then define η = −χ(k) + 1

X
′(k)
h := X

(k)
h + η, X ′(k)

g := Xg + η.

Else: Pick a root λ of the function l(k)(λ′) in the domain R\(−ξ(k),−χ(k)). In the
following two cases we consider the function fλ on [χ(k), ξ(k)].
∗ If λ 6= −χ(k) then: Let η = −fλ(χ(k)) + 1 where any positive constant could be
chosen instead of 1. Define

X
′(k)
h := fλ(X(k)

h ) + η, X ′(k)
g := fλ(X(k)

g ) + η.

∗ If λ = −χ(k) then: Update s(k) = −1. Let η = −fλ(ξ(k)) − 1 where any positive
constant could be chosen instead of 1. Define

X
′(k)
h := X ′′(k)

g , X ′(k)
g := X

′′(k)
h ,

where
X
′′(k)
h := −fλ(X(k)

h )− η, X ′′(k)
g := −fλ(X(k)

g )− η
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and make the replacement ∣∣∣v(k)
〉
→
∣∣∣w(k)

〉
∣∣∣w(k)

〉
→
∣∣∣v(k)

〉
.

If we have λ = −χ(k) or −ξ(k) it means that at least one of the matrices (among X(k)
g and

X
(k)
h under fλ) would diverge. We must remove eigenvalues common to both matrices

as isolating the divergence makes it easier to handle.
– Remove spectral collision: If λ = −χ(k) or λ = −ξ(k) then

If it so happens that the coordinate and the probability associated is the same we
must leave the associated vector unchanged (up to a relabelling). The following simply
formalises this procedure and encodes the remaining non-trivial part into a problem of
one less dimension.

1. Idle point: If for some j′, j, we have q(k)
gj′ = q

(k)
hj

and y(k)
gj′ = y

(k)
hj

then the solution
is given by {∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
,
∣∣∣t(k)
h2

〉
, . . .

∣∣∣t(k)
hk−1

〉} componentwise:={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
,

Ō(k) :=
k∑
i=1
|ai〉

〈
t
(k+1)
hi

∣∣∣ ,
where

{|a1〉 , |a2〉 . . . |ak〉}
componentwise:=

{ ∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
,

. . . ,
∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
j < j′

{ ∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .∣∣∣t(k+1)

hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
j > j′

{∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hk

〉}
j = j′,

and
X

(k−1)
h :=

∑
i 6=j

y
(k)
hi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣ ,
X(k−1)
g := Ō(k)X(k)

g Ō(k)T − yhj
∣∣∣t(k+1)
hj

〉〈
t
(k+1)
hj

∣∣∣ ,
∣∣∣w(k−1)

〉
= N

[∣∣∣w(k)
〉
−√phj

∣∣∣t(k+1)
hj

〉]
,
∣∣∣v(k−1)

〉
= N

[
Ō(k)

∣∣∣v(k)
〉
−√phj

∣∣∣t(k+1)
hj

〉]
.

(This specifies X(k−1) := {X(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
}.)

Jump to End.
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In this proof by xhi we mean yhi , similarly by xgi we mean yhi ; we apologise for
the inconvenience. We want to find an O(k) such that X(k)

h ≥ O(k)X
(k)
g O(k)T and

O(k)
∣∣∣v(k)

〉
=
∣∣∣w(k)

〉
. We do this in two stages. First, we re-arrange the entries

of X(k)
g as X ′(k)

g := O
(k)
p X

(k)
g O

(k)T
p and define

∣∣∣v(k)
p

〉
:= O

(k)
p |v〉 for an O

(k)
p to be

specified later. The re-arrangement will be such that xgj′ sits at the j, j location
while the rest of the elements of X ′(k)

g are arranged in the increasing order. Second,
we solve our initial problem under the assumption that j = j′. The non-trivial part
here would be showing that we can take O(k) to have the form

(
|j〉 〈j|+O(k−1)

)
Ō(k)

without loss of generality.
Let us start with the first step. We denote the orthogonal matrix O =

∑
i |bi〉 〈ai| by

{|a1〉 , |a2〉 , . . . |ak〉} → {|b1〉 , |b2〉 , . . . |bk〉} where {|bi〉} and {|ai〉} each constitute
an orthonormal basis. Using this notation then for the case j < j′, we define O(k)

p

by {∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→{∣∣∣t(k+1)

h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
, . . . ,

∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
,

for j′ < j we define it by {∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→{∣∣∣t(k+1)

h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj′−1

〉
,
∣∣∣t(k+1)
hj′+1

〉
. . .
∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj′

〉
,
∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
hj+1

〉
. . .
∣∣∣t(k+1)
hk

〉}
and if j′ = j we set O(k)

p = I(k).
For the second step, we solve the main problem under the assumption that j′ = j.
We are given X

′(k)
g = diag{x′g1 , x

′
g2 . . . x

′
gk
} and X

(k)
h = diag{xh1 , xh2 . . . xhk}

which are such that xhj = x′gj ;
∣∣∣v′(k)

〉 .= (
√
q′g1 ,

√
q′g2 , . . .

√
q′gk)T and∣∣∣w(k)

〉 .= (√qh1 ,
√
qh2 , . . .

√
qhk)T are such that qhj = q′gj . Let us define

the matrix instance to be X′(k) = {X(k)
h , X

′(k)
g ,

∣∣∣v′(k)
〉
,
∣∣∣w(k)

〉
}. We have

to find an O′(k) such that X
(k)
h ≥ O′(k)X

′(k)
g O′(k)T and O′(k)

∣∣∣v′(k)
〉

=

|w〉. Let X′(k−1) =
{
X

(k−1)
h , X

′(k−1)
g ,

∣∣∣v′(k−1)
〉
,
∣∣∣w(k−1)

〉}
be the mat-

rix instance obtained after removing the jth entry from the vectors, viz.∣∣∣v′(k−1)
〉

:=
∑
i 6=j
√
q′gi

∣∣∣t(k+1)
hi

〉
,
∣∣∣w(k−1)

〉
:=

∑
i 6=j
√
qhi

∣∣∣t(k+1)
hi

〉
and sim-

ilarly defining X
′(k−1)
g = diag{x′g1 , x

′
g2 . . . x

′
gj−1 , x

′
gj+1 , . . . xgk}, X

(k−1)
h =

diag
{
xh1 , xh2 . . . xhj−1 , xhj+1 , . . . xhk

}
. Note that a(k) = a(k−1) as the jth point gets

cancelled. This means that if there is an O′(k) satisfying the aforementioned con-
straints a(k) is EBRM on the spectral domain of X(k). Since a(k) = a(k−1) we know
that a(k−1) is also EBRM on the same domain. From Lemma 86 (we will justify
that k is large enough separately) we conclude that there must also exist an O′(k−1)

which satisfies X(k−1)
h ≥ O′(k−1)X

′(k−1)
g O′(k−1)T and O′(k−1)

∣∣∣v′(k−1)
〉

=
∣∣∣w(k)

〉
.

With all this in place we can claim that without loss of generality we can write
O′(k) =

∣∣∣thj〉〈thj ∣∣∣ + O′(k−1) because if we can find some other Õ′(k) which satisfies
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the required constraints then there exists an O′(k−1) which satisfies the correspond-
ing constraints in the smaller dimension and that means we can show O′(k) also
satisfies the required constraints,

X
(k)
h = xhj

∣∣∣t(k+1)
hj

〉〈
t
(k+1)
hj

∣∣∣+X
(k−1)
h ≥

xgj

∣∣∣t(k+1)
hj

〉〈
t
(k+1)
hj

∣∣∣+O′(k−1)X ′(k−1)
g O′(k−1) =(∣∣∣t(k+1)

hj

〉〈
t
(k+1)
hj

∣∣∣+O′(k−1)
)
X ′(k)
g

(∣∣∣t(k+1)
hj

〉〈
t
(k+1)
hj

∣∣∣+O′(k−1)
)T

=

O′(k)X ′(k)
g O′(k)T ,

along with

O′(k)
∣∣∣v′(k)

〉
=
√
q′gj

∣∣∣t(k+1)
hj

〉
+O′(k−1)

∣∣∣v′(k−1)
〉

=
√
q′gj

∣∣∣t(k+1)
hj

〉
+
∣∣∣w(k−1)

〉
=
∣∣∣w(k−1)

〉
.

It remains to combine the two steps to produce the matrix Ō(k), the vectors{∣∣∣n(k)
h

〉
,
{∣∣∣t(k)

hi

〉}}
, along with X(k−1). We use X ′(k)

g = O
(k)
p X

(k)
g O

(k)T
p from the

first step and substitute it in the inequality which we showed would hold, i.e.

X
(k)
h ≥ O′(k)X ′(k)

g O′(k)T = O′(k)O(k)
p XgO

(k)T
p O′(k)T

and using O(k)
p

∣∣∣v(k)
〉

=
∣∣∣v′(k)

〉
we have

O′(k)
∣∣∣v′(k)

〉
= O′(k)O(k)

p

∣∣∣v(k)
〉

=
∣∣∣w(k)

〉
.

Comparing the inequality to the form X
(k)
h ≥ O(k)X

(k)
g O(k)T , O(k)

∣∣∣v(k)
〉

=
∣∣∣w(k)

〉
for

O(k) =
(∣∣∣n(k)

h

〉〈
n

(k)
h

∣∣∣+O(k−1)
)
Ō(k)

we get Ō(k) = O
(k)
p ,

∣∣∣n(k)
h

〉
=
∣∣∣t(k+1)
hj

〉
and O(k−1) = O′(k−1). Note that this O(k) is

consistent with comparing the equality with O(k)
∣∣∣v(k)

〉
=
∣∣∣w(k)

〉
. The basis for the

sub-problem, i.e. the (k − 1) dimensional problem, was the same as before except
for the fact that we removed

∣∣∣t(k+1)
hj

〉
. Thus we define

{∣∣∣t(k)
h1

〉
,
∣∣∣t(k)
h2

〉
. . .
∣∣∣t(k)
hk−1

〉}
={

t
(k+1)
h1

, t
(k+1)
h2

. . . t
(k+1)
hj−1

, t
(k+1)
hj+1

, . . . t
(k+1)
hk

}
. Identifying

X(k−1) =
{
X

(k−1)
h , X(k−1)

g ,
∣∣∣v(k−1)

〉
,
∣∣∣w(k−1)

〉}
with

X′(k−1) =
{
X

(k−1)
h , X ′(k−1)

g ,
∣∣∣v′(k−1)

〉
,
∣∣∣w(k−1)

〉}
completes the argument since O(k−1) was already identified with O′(k−1) so we are
just labelling here.

2. Final Extra: If for some j, j′ we have q
(k)
gj′ > q

(k)
hj

and y
(k)
gj′ = y

(k)
hj

then
the solution is given by X(k−1) := (X(k−1)

h , X
(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) where

X
(k−1)
h =

∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, X(k−1)
g =

∑k−1
i=1 y

(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, ∣∣∣v(k−1)
〉

=
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N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
= N

[∑k−1
i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
where the coordin-

ates and weights are given by{
q

(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
, q

(k)
h2
. . . , q

(k)
hj−1

, q
(k)
hj+1

, . . . q
(k)
hk

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′
− q(k)

hj
, q(k)
gj′+1

, q(k)
gj′+2

. . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g2 , . . . y

(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hj−1

, y
(k)
hj+1

. . . , y
(k)
hk

}
,

the basis is given by {∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

The orthogonal matrices are given by Ō(k)
h :=

∑∣∣∣t(k+1)
hi

〉
〈ai| where

{|a1〉 , . . . |ak〉} →
{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
,

Ō
(k)
g := Õ(k)Ō

(k)
h where

Õ(k) :=N
[√

q
(k)
hj

∣∣∣u(k)
h

〉
+
√
q

(k)
gj′ − q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
g1

〈
u

(k)
h

∣∣∣+√
q

(k)
gj′

〈
t
(k)
hj′

∣∣∣]

+N
[√

q
(k)
gj′ − q

(k)
hj

∣∣∣u(k)
h

〉
−
√
q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
gj′

〈
u

(k)
h

∣∣∣−√q(k)
g1

〈
t
(k)
hj′

∣∣∣]
+

∑
i∈{1,...k}\j′

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣ .
Jump to End.

We are given X(k) = (X(k)
h , X

(k)
g ,

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉
) where X

(k)
h =∑k

i=1 y
(k)
hi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣, X
(k)
g =

∑k
i=1 y

(k)
gi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣, ∣∣∣v(k)
〉

=∑k
i=1 q

(k)
gi

∣∣∣t(k+1)
hi

〉
,
∣∣∣w(k)

〉
=

∑k
i=1 q

(k)
hi

∣∣∣t(k+1)
hi

〉
which means the correspond-

ing function instance x(k) = (h(k), g(k), a(k)) where, in particular we have,
a(k) =

∑
i∈{1,...k}\j q

(k)
hi

[yhi ] −
∑
i∈{1,...k}\j′ q

(k)
gi [ygi ] − (q(k)

gj′ − q
(k)
hj

)[yhj ]. Since we
assume X(k) has a solution it follows that a(k) is [χ, ξ] valid. Thus the trans-
ition g(k−1) := a

(k)
− → a

(k)
+ =: h(k−1) is also [χ, ξ] valid where g(k−1) comprises

n
(k−1)
g = n

(k)
g points and h(k−1) comprises n(k−1)

h = n
(k)
h − 1 points (using the

attributes corresponding to the function instance (h(k−1), g(k−1), h(k−1) − g(k−1));
The notation would be of the form g =

∑ng
i=1 pgi [xgi ] and h =

∑nh
i=1 phi [xhi ]). Since

k = n
(k)
g + n

(k)
h − 1 the aforesaid relation yields k − 1 = n

(k−1)
g + n

(k−1)
h − 1.

We conclude that X(k−1) := (X(k−1)
h , X

(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) where

X
(k−1)
h =

∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, X
(k−1)
g =

∑k−1
i=1 y

(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣,
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∣∣∣v(k−1)
〉

= N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
= N

[∑k−1
i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
has

a solution for{
q

(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
, q

(k)
h2
. . . , q

(k)
hj−1

, q
(k)
hj+1

, . . . q
(k)
hk

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′
− q(k)

hj
, q(k)
gj′+1

, q(k)
gj′+2

. . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g2 , . . . y

(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hj−1

, y
(k)
hj+1

. . . , y
(k)
hk

}
as the corresponding function instance x(k−1) is indeed given by
(h(k−1), g(k−1), a(k−1) = a(k)). Here {

∣∣∣t(k)
hi

〉
} constitute an orthonormal basis

which we relate to
∣∣∣t(k+1)
hi

〉
shortly. We used the fact that q(k)

g1 = 0 as y(k)
g1 = χ (To

see this note that k−1 > n
(k−1)
g which means that many qgi are zero; by convention

we write the smallest eigenvalue, χ first to increase the matrix size so the first
i = 1, 2 . . .

(
k − 1− n(k−1)

g

)
qis are zero.). This means that there must exist an

O(k−1) which solves X(k−1).
Let us take a moment to note the following basis change manoeuvre. Note that
X ′h ≥ O′X ′gO

′T with O′ |v′〉 = |w′〉 is equivalent to Xh ≥ OXgO
T with O |v〉 = |w〉

where O = ŌThO
′Ōg, Ōg |v〉 = |v′〉, Ōh |w〉 = |w′〉, ŌhXhŌ

T
h = X ′h, ŌXgŌ

T
g = X ′g

which is easy to see by a simple substitution.
We first expand the matrix X(k−1) to k dimensions as follows. We already had
X

(k−1)
h ≥ O(k−1)X

(k−1)
g O(k−1)T with O(k−1)

∣∣∣v(k−1)
〉

=
∣∣∣w(k−1)

〉
which we expand

as

y
(k)
hj

∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+X
(k−1)
h︸ ︷︷ ︸

:=X′(k)
h

≥

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)

︸ ︷︷ ︸
:=O′(k)

(
y

(k)
hj

∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+X(k−1)
g

)
︸ ︷︷ ︸

:=X′(k)
g

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)T

with
∣∣∣v′(k)

〉
= N

[√
q

(k)
hj

∣∣∣u(k)
h

〉
+
∣∣∣v(k−1)

〉]
and

∣∣∣w′(k)
〉

=

N
[√

q
(k)
hj

∣∣∣u(k)
h

〉
+
∣∣∣w(k−1)

〉]
. Note that the matrix instance X′(k) :=

(X ′(k)
h , X

′(k)
g ,

∣∣∣v′(k)
〉
,
∣∣∣w′(k)

〉
) yields x′(k) = x(k). We can now use the equival-

ence we pointed out above to establish a relation between X
(k)
h ≥ O(k)X

(k)
g O(k)T

andX ′(k)
h ≥ O′(k)X

′(k)
g O′(k)T by finding Ōg and Ōh. We define, somewhat arbitrarily,{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

We require Ō
(k)
h

∣∣∣w(k)
〉

to be
∣∣∣w′(k)

〉
. This is simply a permutation matrix

given by
{∣∣∣t(k+1)

h1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→

{∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
. Note that this
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yields Ō(k)T
h X

′(k)
h Ō

(k)
h = X

(k)
h . It remains to find Ō

(k)
g which we demand must

satisfy Ō
(k)
g

∣∣∣v(k)
〉

=
∣∣∣v′(k)

〉
. Observe first that Ō

(k)
h

∣∣∣v(k)
〉

=
√
q

(k)
g1

∣∣∣u(k)
h

〉
+∑k

i=2

√
q

(k)
gi

∣∣∣t(k)
hi−1

〉
. We must now apply

Õ(k) :=N
[√

q
(k)
hj

∣∣∣u(k)
h

〉
+
√
q

(k)
gj′ − q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
g1

〈
u

(k)
h

∣∣∣+√
q

(k)
gj′

〈
t
(k)
hj′

∣∣∣]

+N
[√

q
(k)
gj′ − q

(k)
hj

∣∣∣u(k)
h

〉
−
√
q

(k)
hj

∣∣∣t(k)
hj′

〉]
N
[√

q
(k)
gj′

〈
u

(k)
h

∣∣∣−√q(k)
g1

〈
t
(k)
hj′

∣∣∣]
+

∑
i∈{1,...k}\j′

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣
to get Ō(k)

g

∣∣∣v(k)
〉

=
∣∣∣v′(k)

〉
where we defined Ō

(k)
g := Õ(k)Ō

(k)
h . (Note the expres-

sion could be simplified by using qg1 = 0 which in fact is necessary for probability
conservation.) Using y(k)

hj
= y

(k)
gj′ we can also see that Ō(k)T

g X
′(k)
g Ō

(k)
g is essentially

X
(k)
g with χ(k) at

∣∣∣t(k+1)
h1

〉
replaced by ygj′ (= yhj ). One can conclude therefore that

X
′(k)
g ≥ Ō(k)

g X
(k)
g Ō

(k)T
g . Following the substitution manoeuvre we have

X
′(k)
h ≥ O′(k)X ′(k)

g O′(k)T ≥ O′(k)Ō(k)
g X(k)

g Ō(k)T
g O′(k)T

⇐⇒ Ō
(k)T
h X

′(k)
h Ō

(k)
h ≥ Ō(k)T

h O′(k)Ō(k)
g︸ ︷︷ ︸

:=O(k)

X(k)
g Ō(k)T

g O′(k)T Ō
(k)
h

⇐⇒ X
(k)
h ≥ O(k)X(k)

g O(k)T

and similarly

O′(k)
∣∣∣v′(k)

〉
=
∣∣∣w′(k)

〉
⇐⇒ O′(k)Ō(k)

g

∣∣∣v(k)
〉

= Ō
(k)
h

∣∣∣w(k)
〉

⇐⇒ O(k)
∣∣∣v(k)

〉
=
∣∣∣w(k)

〉
.

This completes the proof.

3. Initial Extra: If for some j, j′ we have q
(k)
gj′ < q

(k)
hj

and y
(k)
gj′ = y

(k)
hj

then
the solution is given by X(k−1) := (X(k−1)

h , X
(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) where

X
(k−1)
h =

∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, X(k−1)
g =

∑k−1
i=1 y

(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, ∣∣∣v(k−1)
〉

=

N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
= N

[∑k−1
i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
where the coordin-

ates and weights are given by{
q

(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
. . . , q

(k)
hj−1

, q
(k)
hj
− q(k)

gj′
, q

(k)
hj+1

, q
(k)
hj+2

. . . q
(k)
hk−1

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g1 , q

(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′+1

, . . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g1 , . . . y

(k)
gj′−1

, y(k)
gj′+1

. . . , y(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hk−1

}
,
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the basis is given by {∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

The orthogonal matrices are given by Ō(k)
h := Õ(k)∑ |ai〉〈t(k+1)

hi

∣∣∣ where
{|a1〉 , . . . |ak〉}

componentwise=
{∣∣∣t(k)

h1

〉
,
∣∣∣t(k)
h2

〉
. . .
∣∣∣t(k)
hk−1

〉
,
∣∣∣u(k)
h

〉}
.

Õ(k) :=N
[√

q
(k)
gj′

∣∣∣u(k)
h

〉
+
√
q

(k)
hj
− q(k)

gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
hk

〈
u

(k)
h

∣∣∣+√
q

(k)
gj

〈
t
(k)
hj

∣∣∣]

+N
[√

q
(k)
hj
− q(k)

gj′

∣∣∣u(k)
h

〉
−
√
q

(k)
gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
gj

〈
u

(k)
h

∣∣∣−√q(k)
hk

〈
t
(k)
hj

∣∣∣]
+

∑
i∈{1,...k}\j

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣
and Ō

(k)
h is given by the basis change

{∣∣∣t(k+1)
h1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→{∣∣∣u(k)

h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
.

Jump to End.

This proof will be very similar to the previous one. We are given
X(k) = (X(k)

h , X
(k)
g ,

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉
) where X

(k)
h =

∑k
i=1 y

(k)
hi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣, X(k)
g =∑k

i=1 y
(k)
gi

∣∣∣t(k+1)
hi

〉〈
t
(k+1)
hi

∣∣∣, ∣∣∣v(k)
〉

=
∑k
i=1 q

(k)
gi

∣∣∣t(k+1)
hi

〉
,
∣∣∣w(k)

〉
=
∑k
i=1 q

(k)
hi

∣∣∣t(k+1)
hi

〉
which

means the corresponding function instance x(k) = (h(k), g(k), a(k)) where, in particular
we have,

a(k) =
∑

i∈{1,...k}\j
q

(k)
hi

[yhi ] + (q(k)
hj
− q(k)

gj′
)[yhj ]−

∑
i∈{1,...k}\j′

q(k)
gi [ygi ].

Since we assume X(k) has a solution it follows that a(k) is [χ, ξ] valid. Thus the
transition g(k−1) := a

(k)
− → a

(k)
+ =: h(k−1) is also [χ, ξ] valid where g(k−1) comprises

n
(k−1)
g = n

(k)
g − 1 points and h(k−1) comprises n(k−1)

h = n
(k)
h points (using the at-

tributes corresponding to the function instance (h(k−1), g(k−1), h(k−1) − g(k−1)); The
notation would be of the form g =

∑ng
i=1 pgi [xgi ] and h =

∑nh
i=1 phi [xhi ]). Since

k = n
(k)
g +n(k)

h −1 the aforesaid relation yields n(k−1)
g +n(k−1)

h −1 = k−1. We conclude that
X(k−1) := (X(k−1)

h , X
(k−1)
g ,

∣∣∣w(k−1)
〉
,
∣∣∣v(k−1)

〉
) where X(k−1)

h =
∑k−1
i=1 y

(k−1)
hi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣,
X

(k−1)
g =

∑k−1
i=1 y

(k−1)
gi

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣, ∣∣∣v(k−1)
〉

= N
[∑k−1

i=1

√
q

(k−1)
gi

∣∣∣t(k)
hi

〉]
,
∣∣∣w(k−1)

〉
=
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N
[∑k−1

i=1

√
q

(k−1)
hi

∣∣∣t(k)
hi

〉]
have a solution for

{
q

(k−1)
h1

, . . . q
(k−1)
hk−1

} componentwise=
{
q

(k)
h1
. . . , q

(k)
hj−1

, q
(k)
hj
− q(k)

gj′
, q

(k)
hj+1

, q
(k)
hj+2

. . . q
(k)
hk−1

}
{
q(k−1)
g1 , . . . q(k−1)

gk−1

} componentwise=
{
q(k)
g1 , q

(k)
g2 . . . , q(k)

gj′−1
, q(k)
gj′+1

, . . . q(k)
gk

}
{
y(k−1)
g1 , . . . y(k−1)

gk−1

} componentwise=
{
y(k)
g1 , . . . y

(k)
gj′−1

, y(k)
gj′+1

. . . , y(k)
gk

}
{
y

(k−1)
h1

, . . . y
(k−1)
hk−1

} componentwise=
{
y

(k)
h1
, . . . y

(k)
hk−1

}
,

as the corresponding function instance x(k−1) is indeed given by (h(k−1), g(k−1), a(k−1) =
a(k)). Here {

∣∣∣t(k)
hi

〉
} constitute an orthonormal basis which we relate to

∣∣∣t(k+1)
hi

〉
shortly.

We used the fact that q(k)
hk

= 0 as y(k)
hk

= ξ. (To see this note that k − 1 > n
(k−1)
h

which means that many qhi are zero; by convention we write the smallest eigenvalue,
xh1 first all the way till xhnh and then to increase the matrix size we append zeros so
the i = nh, nh + 1 . . . k yield qhi = 0.) This means that there must exist an O(k−1) which
solves X(k−1).
Let us take a moment to note the following basis change manoeuvre. X ′h ≥ O′X ′gO

′T

with O′ |v′〉 = |w′〉 is equivalent to Xh ≥ OXgO
T with O |v〉 = |w〉 where O = ŌThO

′Ōg,
Ōg |v〉 = |v′〉, Ōh |w〉 = |w′〉, ŌhXhŌ

T
h = X ′h, ŌXgŌ

T
g = X ′g which is easy to see by a

simple substitution.
We first expand the matrix X(k−1) to k dimensions as follows. We already had X(k−1)

h ≥
O(k−1)X

(k−1)
g O(k−1)T with O(k−1)

∣∣∣v(k−1)
〉

=
∣∣∣w(k−1)

〉
which we expand as

y
(k)
hj

∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+X
(k−1)
h︸ ︷︷ ︸

:=X′(k)
h

≥

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)

︸ ︷︷ ︸
:=O′(k)

(
y

(k)
hj

∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+X(k−1)
g

)
︸ ︷︷ ︸

:=X′(k)
g

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)T

with
∣∣∣v′(k)

〉
= N

[√
q

(k)
gj′

∣∣∣u(k)
h

〉
+
∣∣∣v(k−1)

〉]
and

∣∣∣w′(k)
〉

= N
[√

q
(k)
gj′

∣∣∣u(k)
h

〉
+
∣∣∣w(k−1)

〉]
.

Note that the matrix instance X′(k) := (X ′(k)
h , X

′(k)
g ,

∣∣∣v′(k)
〉
,
∣∣∣w′(k)

〉
) yields x′(k) = x(k).

We can now use the equivalence we pointed out above to establish a relation between
X

(k)
h ≥ O(k)X

(k)
g O(k)T and X ′(k)

h ≥ O′(k)X
′(k)
g O′(k)T by finding Ōg and Ōh. We define,

somewhat arbitrarily, {∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉} componentwise={∣∣∣t(k+1)
hj

〉
,
∣∣∣t(k+1)
h1

〉
,
∣∣∣t(k+1)
h2

〉
, . . .

∣∣∣t(k+1)
hj−1

〉
,
∣∣∣t(k+1)
hj+1

〉
,
∣∣∣t(k+1)
hj+2

〉
. . .
∣∣∣t(k+1)
hk

〉}
.

We require Ō
(k)
g

∣∣∣v(k)
〉

to be
∣∣∣v′(k)

〉
. This is simply a permutation matrix given

by
{∣∣∣t(k+1)

h1

〉
, . . .

∣∣∣t(k+1)
hk

〉}
→

{∣∣∣u(k)
h

〉
,
∣∣∣t(k)
h1

〉
. . .
∣∣∣t(k)
hk−1

〉}
. Note that this yields

Ō
(k)T
g X

′(k)
g Ō

(k)
g = X

(k)
g as y(k)

hj
= y

(k)
gj′ . It remains to find Ō

(k)
h which we demand must

80



satisfy Ō
(k)
h

∣∣∣w(k)
〉

=
∣∣∣w′(k)

〉
. Let us define Ō(k)

h = Õ(k)
(∑k

i=1 |ai〉
〈
t
(k+1)
hi

∣∣∣). Observe

that for Õ(k) = I we have Ō(k)
h

∣∣∣w(k)
〉

= q
(k)
hk

∣∣∣u(k)
h

〉
+
∑k−1
i=1 q

(k)
hi

∣∣∣t(k)
hi

〉
where

{|a1〉 , . . . |ak〉}
componentwise=

{∣∣∣t(k)
h1

〉
,
∣∣∣t(k)
h2

〉
. . .
∣∣∣t(k)
hk−1

〉
,
∣∣∣u(k)
h

〉}
.

If we define

Õ(k) :=N
[√

q
(k)
gj′

∣∣∣u(k)
h

〉
+
√
q

(k)
hj
− q(k)

gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
hk

〈
u

(k)
h

∣∣∣+√
q

(k)
gj

〈
t
(k)
hj

∣∣∣]

+N
[√

q
(k)
hj
− q(k)

gj′

∣∣∣u(k)
h

〉
−
√
q

(k)
gj′

∣∣∣t(k)
hj

〉]
N
[√

q
(k)
gj

〈
u

(k)
h

∣∣∣−√q(k)
hk

〈
t
(k)
hj

∣∣∣]
+

∑
i∈{1,...k}\j

∣∣∣t(k)
hi

〉〈
t
(k)
hi

∣∣∣
we get Ō

(k)
h

∣∣∣w(k)
〉

=
∣∣∣w′(k)

〉
as desired. We can also see that Ō

(k)T
h X

′(k)
g Ō

(k)
h is

essentially Xg with ξ(k) at
∣∣∣t(k+1)
hk

〉
replaced by yhj . We therefore conclude that

X
′(k)
g ≥ Ō(k)

g X
(k)
g Ō

′(k)
g . Following the substitution manoeuvre we have

X
′(k)
h ≥ O′(k)X ′(k)

g O′(k)T ≥ O′(k)Ō(k)
g X(k)

g Ō(k)T
g O′(k)T

⇐⇒ Ō
(k)T
h X

′(k)
h Ō

(k)
h ≥ Ō(k)T

h O′(k)Ō(k)
g︸ ︷︷ ︸

:=O(k)

X(k)
g Ō(k)T

g O′(k)T Ō
(k)
h

⇐⇒ X
(k)
h ≥ O(k)X(k)

g O(k)T

and similarly

O′(k)
∣∣∣v′(k)

〉
=
∣∣∣w′(k)

〉
⇐⇒ O′(k)Ō(k)

g

∣∣∣v(k)
〉

= Ō
(k)
h

∣∣∣w(k)
〉

⇐⇒ O(k)
∣∣∣v(k)

〉
=
∣∣∣w(k)

〉
.

This completes the proof.

– Evaluate the Reverse Weingarten Map:

1. Consider the point
∣∣∣w(k)

〉
/
√〈

w(k)
∣∣X ′(k)

h

∣∣w(k)〉 on the ellipsoid X ′(k)
h . Evaluate the

normal at this point as
∣∣∣u(k)
h

〉
= N

(∑n
(k)
h
i=1

√
p

(k)
hi
x
′(k)
hi

∣∣∣t(k+1)
hi

〉)
. Similarly evaluate∣∣∣u(k)

g

〉
, the normal at the point

∣∣∣v(k)
〉
/
√〈

w(k)
∣∣X ′(k)

g

∣∣w(k)〉 on the ellipsoid X ′(k)
g .

2. Recall that for a given diagonal matrix X =
∑
i yi |i〉 〈i| > 0 and normal vector |u〉 =∑

i ui |i〉 the Reverse Weingarten map is given by Wij =
(
−y−1

j y−1
i uiuj

r2 + y−1
i δij

)
where r =

√∑
y−1
i u2

i . Evaluate the Reverse Weingarten maps W ′(k)
h and W

′(k)
g

along
∣∣∣u(k)
h

〉
and

∣∣∣u(k)
g

〉
respectively.
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3. Find the eigenvectors and eigenvalues of the Reverse Weingarten maps. The ei-
genvectors of W ′h form the h tangent (and normal) vectors

{{∣∣∣t(k)
hi

〉}
,
∣∣∣u(k)
h

〉}
. The

corresponding radii of curvature are obtained from the eigenvalues
{
{r(k)
hi
}, 0
}

={
{c(k)−1
hi

}, 0
}
which are inverses of the curvature values. The tangents are labelled

in the decreasing order of radii of curvature (increasing order of curvature). Simil-
arly for the g tangent (and normal) vectors. Fix the sign freedom in the eigenvectors
by requiring

〈
t
(k)
hi
|w(k)

〉
≥ 0 and

〈
t
(k)
gi |v(k)

〉
≥ 0.

– Finite Method: If λ 6= −ξ(k) and λ 6= −χ(k), i.e. if it is the finite case then
1. Ō(k) :=

∣∣∣u(k)
h

〉〈
u

(k)
g

∣∣∣+∑k−1
i=1

∣∣∣t(k)
hi

〉〈
t
(k)
gi

∣∣∣
2.
∣∣∣v(k−1)

〉
:= Ō(k)

∣∣∣v(k)
〉
−
〈
u

(k)
h

∣∣∣ Ō(k)
∣∣∣v(k)

〉 ∣∣∣u(k)
h

〉
and

∣∣∣w(k−1)
〉

:=
∣∣∣w(k)

〉
−
〈
u

(k)
h |w(k)

〉 ∣∣∣u(k)
h

〉
.

3. Define X(k−1)
h := diag{c(k)

h1
, c

(k)
h2
. . . , c

(k)
hk−1
}, X(k−1)

g := diag{c(k)
g1 , c

(k)
g2 . . . c

(k)
gk−1}.

4. Jump to End.
Our first burden is to prove that O(k) must have the form(∣∣∣u(k)

h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k) for Ō(k) :=

∣∣∣u(k)
h

〉〈
u

(k)
g

∣∣∣ +
∑k−1
i=1

∣∣∣t(k)
hi

〉〈
t
(k)
gi

∣∣∣ if
O(k) is to be a solution of the matrix instance X(k). This is best explained by
imagining that Arthur is trying to find the orthogonal matrix and Merlin already
knows the orthogonal matrix but has still been following the steps performed so
far. Recall that we are now at a point where∑

a′(x)x = 〈w|X ′h |w〉 − 〈v|X ′g |v〉

= 〈w|X ′h |w〉 − 〈w|OX ′gOT |w〉
= 0.

From Merlin’s point of view along the |w〉 direction the ellipsoids X ′h and OX ′gOT
touch. Suppose he started with the ellipsoids X ′h, X ′g and only subsequently rotated
the second one. He can mark the point along the direction |v〉 on the X ′g ellipsoid as
the point that would after rotation touch the X ′h ellipsoid because as X ′g → OX ′gO

T

the point along the |v〉 direction would get mapped to the point along the direction
O |v〉 = |w〉. Now, since the ellipsoids touch it must be so, Merlin deduces, that the
normal of the ellipsoid X ′g at the point |v〉 /

√
〈v|X ′g |v〉 is mapped to the normal of

the ellipsoid X ′h at the point |w〉 /
√
〈w|X ′h |w〉 when X ′g is rotated to OX ′gOT , i.e.

O |ug〉 = |uh〉.
From Arthur’s point of view, who has been following Merlin’s reasoning, in addition
to knowing that O must satisfy O |v〉 = |w〉 he now knows that it must also satisfy
O |ug〉 = |uh〉.
Merlin further concludes that the curvature of the X ′g ellipsoid at the point
|v〉 /

√
〈v|X ′g |v〉 must be more than the curvature of the X ′h ellipsoid at the point

|w〉 /
√
〈w|X ′h |w〉. To be precise, he needs to find a method for evaluating this

curvature. He knows that the brute-force way of doing this is to find a coordinate
system with its origin on the said point and then imagining the manifold, locally, as
a function from n−1 coordinates to one coordinate, call it xn(x1, x2 . . . xn−1) (think
of a sphere centred at the origin; it can be thought of, locally, as a function from x
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and y to z given by z =
√
x2 + y2). The curvature of this object is a generalisation

of the second derivative which forms a matrix with its elements given by ∂xi∂xjxn.
Since this matrix is symmetric he knows it can be diagonalised. The directions of
the eigenvectors of this matrix he calls the principle directions of curvature where
the curvature values are the corresponding eigenvalues. He recalls that there is a
simpler way of evaluating these principle directions and curvatures which uses the
Weingarten map. The eigenvectors of the Reverse Weingarten map W ′h, evaluated
for X ′h at |w〉, yield the normal and tangent vectors with the corresponding eigen-
values zero and radii of curvature respectively. Curvature is the inverse of the radius
of curvature. Similarly for the Reverse Weingarten map W ′g evaluated for X ′g at |v〉.
With this knowledge Merlin deduces that he can write, for some Õij ∈ R such that∑
j ÕijÕjk = δik,

O(k) = |uh〉 〈ug|+
∑
i,j

Õij |thi〉
〈
tgj

∣∣∣

=

|uh〉 〈uh|+
∑
i,j

Õij |thi〉
〈
thj

∣∣∣
︸ ︷︷ ︸

=O(k−1)



|uh〉 〈ug|+
∑
i

|thi〉 〈tgi |︸ ︷︷ ︸
=Ō(k)


where he re-introduced the superscript in the orthogonal operators. He then
turns to his intuition about the curvature of the smaller ellipsoid being more
than that of the larger ellipsoid. He observes that equivalently, the radius of
curvature of the smaller ellipsoid must be smaller than that of the larger el-
lipsoid. To make this precise he first notes that the Weingarten map W ′g gets
transformed to OW ′gO

T when X ′g is rotated as OX ′gOT . He considers the point
|w〉 /

√
〈w|X ′h |w〉, which is shared by both the X ′h and the OX ′gOT ellipsoid. It

must be so, he reasons, that along all directions in the tangent plane, the X ′h el-
lipsoid (the smaller one, remember larger X ′h means smaller ellipsoid) must have a
smaller radius of curvature than the OX ′gOT ellipsoid, i.e. for all |t〉 ∈ span{|thi〉},
〈t|W ′h |t〉 ≤ 〈t|OW ′gOT |t〉. Restricting his attention to the tangent space he de-
duces the statement is equivalent to W ′h ≤ OW ′gOT . He writes this out explicitly as∑
c−1
hi
|thi〉 〈thi | ≤

∑
c−1
gi O |tgi〉 〈tgi |O

T . Now he uses the form of O he had deduced
to obtain

∑
c−1
hi
|thi〉 〈thi | ≤

∑
c−1
gi O

(k−1) |thi〉 〈thi |O(k−1)T . From this he is able to
deduce that the inequality X(k−1)

h ≥ O(k−1)X
(k−1)
g O(k−1)T must hold.

Merlin’s reasoning entails, Arthur summarises, that O(k) must always have the form

O(k) =
(∣∣∣u(k)

h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)

and that O(k−1) must satisfy the constraint

X
(k−1)
h ≥ O(k−1)X(k−1)

g O(k−1)T .

Merlin, surprised by the similarity of the constraint he obtained with the
one he started with, extends his reasoning to the vector itself. He
knows that O(k)

∣∣∣v(k)
〉

=
∣∣∣w(k)

〉
but now he substitutes for O(k) to obtain
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(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō(k)

∣∣∣v(k)
〉

=
∣∣∣w(k)

〉
. He observes that O(k−1) can not influ-

ence the
∣∣∣u(k)
h

〉
component of the vector Ō(k)

∣∣∣v(k)
〉
. He thus projects out the

∣∣∣u(k)
h

〉
component to obtain

O(k−1)
(
Ō(k)

∣∣∣v(k)
〉
− 〈uh| Ō(k)

∣∣∣v(k)
〉
|uh〉

)
︸ ︷︷ ︸

=|v(k−1)〉

=
∣∣∣w(k)

〉
−
〈
u

(k)
h |w

(k)
〉 ∣∣∣u(k)

h

〉
︸ ︷︷ ︸

=|w(k−1)〉

.

With this, Arthur realises, he can reduce his problem involving a k-dimensional
orthogonal matrix into a smaller problem in k−1 dimensions with exactly the same
form. Since Merlin’s orthogonal matrix was any arbitrary solution, and since the
constraints involved do not depend explicitly on the solution (only on the initial
problem), Arthur concludes that this reduction must hold for all possible solutions.

– Wiggle-v Method: If λ = −ξ(k) or λ = −χ(k) then
The aforesaid method relies on matching the normals. It works well so long as the correct
operator monotone (the monotone that yields X ′h and X ′g for which |w〉 /

√
〈w|X ′h |w〉

is a point on both X ′h and OX ′gO
T ) doesn’t yield infinities. If the operator monotone

yields infinities it means that one of the directions involved has infinite curvature which
in turn means that the component of the normal along this direction can be arbitrary. To
see this, imagine having a line contained inside an ellipsoid (both centred at the origin)
touching its boundaries. The line can be thought of as an ellipse with infinite curvature
along one of the directions. The normal of the line at its tip is arbitrary and therefore
we can’t require the usual condition that normals of the two curves must coincide. The
solution is to consider the sequence leading to the aforesaid situation.

1.
∣∣∣u(k)
h

〉
is renamed to

∣∣∣ū(k)
h

〉
,
∣∣∣u(k)
g

〉
remains the same.

2. Let τ = cos θ :=
〈
u

(k)
g |v(k)

〉
/
〈
ū

(k)
h |w(k)

〉
. Let

∣∣∣t̄(k)
h

〉
be an eigenvector of X ′(k)−1

h

with zero eigenvalue (comment: this is also perpendicular to
∣∣∣w(k)

〉
). Redefine∣∣∣u(k)

h

〉
:= cos θ

∣∣∣ū(k)
h

〉
+ sin θ

∣∣∣t̄(k)
h

〉
,∣∣∣t(k)

hk

〉
= s

(
− sin θ

∣∣∣ū(k)
h

〉
+ cos θ

∣∣∣t̄(k)
h

〉)
where the sign s ∈ {1,−1} is fixed by demanding

〈
t
(k)
hk
|w(k)

〉
≥ 0.

3. Ō(k) and
∣∣∣v(k−1)

〉
,
∣∣∣w(k−1)

〉
are evaluated as step 1 and 2 of the finite case.

4. Define

X
′(k−1)
h := diag{c(k)

h1
, c

(k)
h2
, . . . , c

(k)
hk−1
}, X ′(k−1)

g := diag{c(k)
g1 , c

(k)
g2 , . . . , c

(k)
gk−1}.

Let [χ′(k−1), ξ′(k−1)] denote the smallest interval containing spec[X ′(k−1)
h ⊕X ′(k−1)

g ].
Let λ′ = −χ′(k−1) + 1 where instead of 1 any positive number would also work.
Consider fλ′′ on [χ′(k−1), ξ′(k−1)]. Let η = −fλ′(χ′(k−1)) + 1. Define

X
(k−1)
h := fλ′(X

′(k−1)
h ) + η, X(k−1)

g := fλ′(X ′(k−1)
g ) + η.

5. Jump to End.
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We start with the case λ = −ξ(k). The other case with λ = −χ(k) follows analogously.
For the moment just imagine η = 0 for simplicity; for η 6= 0 the argument goes
through essentially unchanged. Note that because 〈w| f−ξ(Xh) |w〉 − 〈v| f−ξ(Xg) |v〉
is zero we can conclude that y(k)

hi
= ξ implies qhi = 0. After the application of the

map f−ξ these y
(k)
hi

s and y(k)
gi s would become infinities but

〈
t
(k+1)
hi

|w
〉
and

〈
t
(k+1)
gi |v

〉
would be zero where we suppressed the superscripts for

∣∣∣v(k)
〉
and

∣∣∣w(k)
〉
. Since the

eigenvalues are arranged in the ascending order in X(k)
h (in the

{∣∣∣t(k+1)
hi

〉}
basis) we

have y(k)
hk

= ξ and the corresponding vector is
∣∣∣t(k+1)
hk

〉
=:
∣∣t̄h〉. It would be useful

to define
∣∣t̃hi〉 = |thi〉 for i = 1, 2, . . . j − 1 and

∣∣t̄hl〉 = |thi〉 for i = j, j + 1, . . . k,
l = (i− j) + 1 where j is the smallest i for which xhi = ξ (their existence is a
straight forward consequence of dimension counting, k ≥ ng + nh − 1). This allows
us to speak of the subspace with eigenvalue ξ of X(k)

h easily. We focus on the two
dimensional plane spanned by |w〉 and

∣∣t̄h〉.
Consider the M-view (Merlin’s point of view). Since Merlin has a solution O(k) to
the matrix instance

X(k) = {X(k)
h , X(k)

g ,
∣∣∣w(k)

〉
,
∣∣∣v(k)

〉
}

his solution is also a solution to the matrix instance

X(k)(λ) :=
{
fλ(X(k)

h ), fλ(X(k)
g ),

∣∣∣w(k)
〉
,
∣∣∣v(k)

〉}
for λ ≤ −ξ but close enough to −ξ such that fλ(Xh), fλ(Xg) > 0. This is a
consequence of fλ being operator monotone. Using Corollary 94 and Lemma 95
we know that since the ellipsoids corresponding to the matrix instance X(−ξ)
touch along |w〉 (as we are given that 〈w| f−ξ(Xh) |w〉 − 〈w|Of−ξ(Xg)OT |w〉 =
〈w| f−ξ(Xh) |w〉 − 〈v| f−ξ(Xg) |v〉 = 0) there must also exist some vector |c(λ)〉 such
that 〈c(λ)| fλ(Xh) |c(λ)〉 − 〈c(λ)|Ofλ(Xg)OT |c(λ)〉 = 0 that is the ellipsoids cor-
responding to the matrix instance X(λ) touch along the said direction. (Caution:
Do not confuse |c(λ)〉 with chi/cgi . The latter are used for curvature values and
the former refers to the contact vector just defined.) Note that to match the other
conditions of the lemma it suffices to assume that Xh and Xg do not have a common
eigenvalue which in turn is guaranteed by the “remove spectral collision” part.
It is easy to convince oneself that limλ→−ξ |c(λ)〉 = |w〉 (hint: argue along the lines
fλ(Xh) is very close to f−ξ(Xh) and so the vectors should also be very close which
satisfy the condition). Note that we can write

|w〉 =
j−1∑
i=1

qhi
∣∣t̃hi〉

because
〈
t̄hi |w

〉
= 0. There is no such restriction on |c(λ)〉 which can have the

more general form |c(λ)〉 =
∑j−1
i=1 c(λ)i

∣∣t̃hi〉 +
∑k
i=j c(λ)i

∣∣t̄hl〉 where l = (i − j) +
1. Restating one of the limit conditions, for i = j, j + 1 . . . k, we must have the
limλ→−ξ c(λ)i = 0. At this point we use the fact that if O is a solution it entails
that

Ó(λ) :=

j−1∑
i=1

∣∣t̃hi〉 〈t̃hi ∣∣+ k−j+1∑
i,m=1

Q(λ)im
∣∣t̄hi〉 〈t̄hm ∣∣

O
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is also a solution, where Q(λ) is an orthogonal matrix in the space spanned by{∣∣t̄hi〉}. This is a consequence of the fact that {
∣∣t̄hi〉} spans an eigenspace (with

the same eigenvalue, fλ(ξ),) of fλ(Xh). We can use this freedom to ensure that the
point of contact always has the form

|c(λ)〉 =
j−1∑
i=1

c(λ)i
∣∣t̃hi〉+ c̄(λ)

∣∣t̄h〉
where c̄(λ) =

√∑k
i=j c(λ)2

i which must vanish in the limit λ→ −ξ as its constituents
disappear in the said limit. Similarly limλ→−ξ c(λ)i = qhi .
Next we evaluate the normals |uh(λ)〉 at |c(λ)〉 for the ellipsoid represented by fλ(Xh)
and similarly the normal |ūh〉 at |w〉 for the ellipsoid represented by f−ξ(Xh) to show
that limλ→−ξ |uh(λ)〉 6= |ūh〉 (see Figure 11). Notice that the right-most term in
|uh(λ)〉 = N

[∑j−1
i=1 fλ(yhi)c(λ)i

∣∣t̃hi〉+ fλ(ξ)c̄(λ)
∣∣t̄h〉] has fλ(ξ) approaching infinity

and c̄(λ) approaching zero as λ tends to −ξ. This is why it can have a finite
component along

∣∣t̄h〉. On the other hand, |ūh〉 = N
[∑j−1

i=1 f−ξ(yhi)qhi
∣∣t̃hi〉] which

has no component along
∣∣t̄h〉. Since limλ→−ξ fλ(yhi) = f−ξ(yhi) and limλ→−ξ c(λ)i =

qhi for i ∈ {1, 2 . . . j − 1}, we can write

lim
λ→−ξ

|uh(λ)〉 = cos θ |ūh〉+ sin θ
∣∣t̄h〉 := |uh〉 .

Evidently, we must use |uh〉 instead of |ūh〉 to be able to use the reasoning of the
finite method. However, we do not know cos θ yet.
Our strategy is to proceed as in the finite method with the assumption that |c(λ)〉
is known (which it isn’t as we only know it exists and how it behaves in the limit
of λ → −ξ) and then use a consistency condition to find cos θ in terms of known
quantities. At this point we re-introduce the superscripts as we will reduce the
dimension of the problem as we proceed. Let the normal and tangents at OT |c(λ)〉
for fλ(Xg) be given by

{∣∣∣u(k)
g (λ)

〉
,
{
t
(k)
gi (λ)

}}
. Similarly at |c(λ)〉 for fλ(Xh) the

normal and tangents are
{∣∣∣u(k)

h (λ)
〉
,
{
t
(k)
hi

(λ)
}}

. From the finite method we know

that O(k)(λ) :=
(
|uh(λ)〉 〈uh(λ)|+O(k−1)

)
Ō(k) where Ō(k) =

∣∣∣u(k)
h (λ)

〉〈
u

(k)
g (λ)

∣∣∣ +∑
i

∣∣∣t(k)
hi

〉〈
t
(k)
gi

∣∣∣ can be used to reduce the problem into a smaller instance of itself. In

particular, we must have
〈
u

(k)
h (λ)|w

〉
=
〈
u

(k)
h (λ)

∣∣∣O(k)(λ) |v〉 =
〈
u

(k)
g (λ)|v

〉
because

O(k−1) can influence only the subspace spanned by
{∣∣∣t(k)

hi

〉}
and the component of

the vectors |w〉 and O(k) |v〉 along
∣∣∣u(k)
h (λ)

〉
must match for consistency.

We can determine cos θ by taking the limit of the aforesaid condition as 〈uh|w〉 =
〈ug|v〉 where we again suppressed the superscripts. Substituting |uh〉 = cos θ |ūh〉+
sin θ

∣∣t̄h〉 we obtain

cos θ = 〈ug|v〉
〈ūh|w〉

.

It now remains to find the limit of the reverse Weingarten maps. The reverse
Weingarten map for fλ(Xg) along the normal |ug(λ)〉 is not of concern because it
has a well defined limit as λ→ −ξ. We consider the case for fλ(Xh) along the normal
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|uh(λ)〉. Note that the support function as defined in Equation (7) is finite in the
limit λ → −ξ (use the definition of the normal to get

∑
x−1
i u2

i =
∑
x−1
i x2

i c
2
i =∑

xic
2
i = 〈c|X |c〉, plug in |c〉 = |w〉, X = f−ξ(Xh) and then use the fact that

〈w| f−ξ(Xh) |w〉 − 〈v| f−ξ(Xg) |v〉 = 0 which means both must be finite by noting
that we already dealt with the troublesome case of ∞−∞ in the “remove spectral
collision” part). Let us denote it by h(λ). Now the reverse Weingarten map as
defined in Equation (8) is given by

(Wh(λ))im = − 1
h(λ)2

uhi(λ)uhm(λ)
fλ(yhi)fλ(yhm) + δim

fλ(xhi)
.

Since limλ→−ξ |u(λ)〉 is well defined, limλ→−ξ h(λ) is finite, we only need to show
that limλ→−ξ 1/fλ(yhi) is well defined. (We assumed η is zero so f−ξ(yhi) 6= 0. If η is
not zero we must consider f−ξ(yhi) + η everywhere but that changes no argument.)
For i = 1, 2 . . . j − 1, f−ξ(yhi) is finite but for i = j, j + 1 . . . k, f−ξ(yhi) is not well
defined however 1/f−ξ(yhi) = 0. We therefore conclude that

lim
λ→−ξ

(Wh(λ))im =

−
1
h2

uhiuhm
f−ξ(yhi )f−ξ(yhm ) + δim

f−ξ(yhi )
i,m ∈ {1, 2 . . . j − 1}

0 i,m ∈ {j, j + 1 . . . k}
:= (Wh)im

which is simply the reverse Weingarten map evaluated for f−ξ(Xh) along |uh〉 =
cos θ |ūh〉 + sin θ

∣∣t̄h〉 and cos θ = 〈ug|v〉 / 〈ūh|w〉. It remains to relate Wh with the
reverse Weingarten map, W̄h, evaluated for f−ξ(Xh) along |ūh〉. Surprisingly, it is
easy to see that Wh = W̄h because only the cos θ |ūh〉 part contributes to the non-
zero portion of Wh and the cos θ factor gets cancelled due to the h2 term. Further,
recall that the normal vector is always an eigenvector of the reverse Weingarten map
evaluated along it, with eigenvalue zero. This tells us that if there is(are) tangent(s)
with zero radius of curvature then the normal is not uniquely defined. This confirms
what we already knew. Now since both |ūh〉,

∣∣t̄h〉 have zero eigenvalues for W̄h(= Wh)
and |u〉 = cos θ |ūh〉+ sin θ

∣∣t̄h〉 we define |th〉 := s
(
sin θ |ūh〉 − cos θ

∣∣t̄h〉) to span the
same space so that |u〉 is the correct normal vector (as we deduced earlier in our
discussion) and |th〉 is the correct tangent vector corresponding to the point |w〉 of
f−ξ(Xh).
The final step is to convert the condition on the reverse Weingarten map into a
condition on the Weingarten map (inverse of the reverse Weingarten map). After
extracting the tangent vectors appropriately, one simply needs to add a constant
before inverting to obtain the Weingarten map condition. This is done in the last
step. This completes the proof of the wiggle-v method for λ = −ξ.
To see how the same reasoning applies to the λ = −χ case first note that for
λ ≥ −χ we have fλ(Xh), fλ(Xg) < 0 (assuming η = 0 as before). The condition
fλ(Xh) ≥ Ofλ(Xg)OT can then be expressed as −fλ(Xg) ≥ −OT fλ(Xh)O with
OT |w〉 = |v〉 which can now be reasoned analogous to the aforementioned analysis.

– End: Restart the current phase (phase 2) with the newly obtained (k−1) sized objects.
We end with giving the dimension argument. The dimension after every iteration is
k− 1 ≥ n(k−1)

g +n
(k−1)
h − 1 if we start with the assumption that k ≥ n(k)

g +n
(k)
h − 1. The

reason is that either n(k−1)
g = n

(k)
g − 1 or = n

(k)
g . Similarly, either n(k−1)

h = n
(k)
h − 1 or
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Figure 11: A sequence leading to infinite curvature.

= n
(k)
h . Justification of this is simply that we remove at least one component from the

two vectors (from the n(k)
g for the usual wiggle-v). To see this, note that in the finite case

we remove one from both as we write express the vector in a new basis. This new basis
is the space where the vector has finite support. We then remove one of the components
in the sub-problem. In the infinite case, it is possible that we remove one and add one
for n(k−1)

h , assuming it is the usual wiggle-v, but we necessarily reduce n(k−1)
g as this is

similar to the finite case. For the other wiggle-v, g and h get swapped but the counting
stays the same.

7.3.3 Phase 3: Reconstruction

Let k0 be the iteration at which the algorithm stops. Using the relation

O(k) = Ō(k)
g

(∣∣∣u(k)
h

〉〈
u

(k)
h

∣∣∣+O(k−1)
)
Ō

(k)
h

(or its transpose if s(k) = −1), evaluate O(k1) from O(k0) := Ik0 , then O(k2) from O(k1), then O(k3)

from O(k2) and so on until O(n) is obtained which solves the matrix instance X(n) we started with. In
terms of EBRM matrices, the solution is given by H = X

(n)
h , G = O(n)XgO

(n)T , and |w〉 =
∣∣∣w(n)

〉
.
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8 Conclusion
In the first part, we described a framework which we used to construct the unitaries required to
implement the bias 1/10 protocol. In the second part, we described the EMA algorithm which
allows us to find the unitaries corresponding to arbitrary Λ-valid moves, which combined with the
framework, allows us to numerically find quantum WCF protocols with arbitrarily small bias.

A preliminary implementation of the EMA algorithm on python [20], which is usable but not
automated enough for an end-user, has already yielded the following interesting results and future
research directions.

1. Mochon’s denominator needs neither padding nor operator monotones. For assignments given
by Mochon’s denominator, it is known that 〈xh〉 = 〈xg〉 which means that for the first itera-
tion of the algorithm, we need not use any operator monotone function. This was clear. The
surprising result of the numerical implementation was that even for subsequent iterations one
need not use operator monotones, which also explains why6 we did not need padding, i.e.
the (solution) orthogonal matrix has size n = ng = nh. An interesting open question is to
analytically prove this as Mochon’s denominator based assignment is very close to the kind
of assignments used in Mochon’s protocols. If analytic expressions for the unitaries corres-
ponding to the former (Mochon’s denominator) can be found, the unitaries corresponding to
the assignments used in Mochon’s protocols would be a small perturbation thereof. Hence,
this might lead us to analytic expressions for the unitaries involved in games with arbitrarily
low biases.

2. Moves in the bias 1/18 protocol do not need padding (no wiggle-v). We already know ana-
lytically that there are specific cases where padding is required. However, when we tried to
numerically implement the moves involved in Mochon’s protocols going as low as ε = 1/18,
to our surprise, we found that in no case was padding necessary (which means the wiggle-v
method was never invoked). It would be interesting to see if this can be proven to be the case
for all of Mochon’s moves. There is another class of games that achieve arbitrarily low bias
due to Pelchat and Høyer [21] whose moves are also worth investigating in this regard, and
even otherwise.

3. Trick to improve the precision of the EMA algorithm. The algorithm tries to find a λ such
that 〈w| fλ(Xh) |w〉−〈v| fλ(Xg) |v〉 = 0. In the finite case, one must also have for consistency,
〈w|nh(λ)〉 = 〈v|ng(λ)〉 (this is because in subsequent steps, the space orthogonal is affected
so if the component of the honest states along the normals is not mapped correctly, it would
not get fixed later; this would mean there is no solution as we are only imposing necessary
conditions). We observed that, numerically, we get a better precision if we use the latter
condition for fine-tuning the result (after applying the former for obtaining a more course-
grained solution). While analytically, the first condition implies the latter exactly, this ceases
to be the case numerically due to the finiteness of precision. A careful error analysis of the
EMA algorithm would be required to fully understand this behaviour. As a first step, we
can understand this improvement as a direct consequence of the fact that the honest state is
explicitly mapped correctly (up to the precision of the machine, which is about 16 floating
points for most computers) if we use the method involving normals while in the latter, this
should happen implicitly.

6To see this, note that the only time we spill over to the extra dimensions, is when we use the wiggle-v method.
Otherwise, we stay inside the first max(ng, nh) dimensions.
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Limitations of the current implementation.

1. Limited wiggle-v. We have not fully implemented the Wiggle-v method which means that it
would be cumbersome to apply it to the general merge and split, for instance. However, for
them we already give the explicit Blinkered Unitaries. For the rest, as we already saw, it does
not even seem necessary.

2. Minor pending issues. Sometimes due to noise (arising from finiteness of the precision) our
global minimiser gets trapped into local minima and has to be guided manually by looking
at the graph. This means that a refined algorithm should also be able to solve the problem.
Further, we did not implement the systematic method defined by the EMA algorithm for
finding the spectrum of the matrices it uses but it appears that almost any guess works for
Mochon’s assignments.

An important open problem that remains is to account for noise in the quantum formalism itself.
We assumed all along that the unitary is applied exactly. Now there are two possible effects of the
unitary being noisy. The first effect is on the coordinates of the points. This can be accounted for
by raising all the points a little bit (proportional to the noise). Doing this for each move would
yield a cumulative effect on the final point, that is, the bias. This should not be very hard to
evaluate. The second effect is on the weights of the points. This must be handled with care as
most of the games rely on a cancellation of weight across different moves. One way to proceed
would be to imagine, after a lossy operation, the remaining game/protocol is implemented with a
slightly scaled down weight but with the same relative proportion. The rest of the weight should
be collected in the end and merged with the final point to get a small raise. This would quantify
the effect of this type of noise on the bias.
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A Blinkered m→ n Transition
Recall that the unitary we had described was of the form U = |w〉 〈v| + |v〉 〈w| +

∑
|vi〉 〈vi| +∑

|wi〉 〈wi|. It is evident that having a scheme for generating these |vi〉 and |wi〉 will be useful as
we explore more complicated transitions. More precisely, we need to complete a set containing one
vector into a complete orthonormal basis. Let us do this first and then return to the analysis of a
3→ 2 merge.

Completing an Orthonormal Basis

Consider an orthonormal complete set of basis vectors {|gi〉}, and a vector |v〉 =
∑

i

√
pi|gi〉√∑
i
pi

. We

describe a scheme for constructing vectors |vi〉 s.t. {|v〉 , {|vi〉}} is a complete orthonormal set of
basis vectors. Formally, we can do this inductively. Instead, we do this by examples for that makes
it intuitive and demonstrates the generalisable argument right away. The first we define to be

|v1〉 =
√
p1 |g1〉 − p1√

p2
|g2〉√

p1 + p2
1
p2

(
=
√
p1 |g1〉 −

√
p2 |g2〉√

p1 + p2
, the familiar one

)

which is manifestly normalised and orthogonal to |v〉, i.e. 〈v|v1〉 = p1 − p1 = 0. The next vector is

|v2〉 =
√
p1 |g1〉+√p2 |g2〉 − (p1+p2)√

p3
|g3〉√

p1 + p2 + (p1+p2)2

p3

which is again manifestly normalised and orthogonal to |v1〉 because 〈v2|v1〉 = 〈v|v1〉. 〈v|v2〉 =
p1 + p2 − (p1 + p2) = 0. Similarly one can construct the (k + 1)th basis vector as

|vk〉 =
∑k
i=1
√
pk |gk〉 −

∑k

i=1 pk√
pk+1

|gk+1〉
Nk

where the Nk =
√∑k

i=1 pk + (
∑k

i=1 pk)2

pk+1
and obtain the full set.

The Analysis

Back to the analysis. Recall that the constraint equation was∑
xhi |hii〉 〈hii|︸ ︷︷ ︸

I

+xI{gii}︸ ︷︷ ︸
II

≥
∑

xgiU |gii〉 〈gii|U †︸ ︷︷ ︸
III

where we have introduced the notation |hii〉 = |hihi〉 in the interest of efficiency. The g1, g2, g3 →
h1, h2 transition requires us to know

U = |v〉 〈w|+ |w〉 〈v|+ |v1〉 〈v1|+ |v2〉 〈v2|+ |w1〉 〈w1| .
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Using the procedure above we can evaluate the vectors of interest

|v〉 =
√
pg1 |g11〉+√pg2 |g22〉+√pg3 |g33〉

Ng

|v1〉 =
√
pg1 |g11〉 −

pg1√
pg2
|g22〉

Ng1

|v2〉 =
√
pg1 |g11〉+√pg2 |g22〉 −

(pg1+pg2)√
pg3

|g33〉
Ng2

|w〉 =
√
ph1 |h11〉+√ph2 |h22〉

Nh

|w1〉 =
√
ph2 |h11〉 −

√
ph1 |h22〉

Nh

where Ng, Ng1 , Ng2 , Nh are normalisations. In fact we want to express the constraints in this basis.
To evaluate the first term we use the above to find

|h11〉 =
√
ph1 |w〉+√ph2 |w1〉

Nh

|h22〉 =
√
ph2 |w〉 −

√
ph1 |w1〉

Nh

which leads to

I = xh1 |h11〉 〈h11|+ xh2 |h22〉 〈h22|

= xh1

N2
h

 〈w| 〈w1|
|w〉 ph1

√
ph1ph2

|w1〉
√
ph1ph2 ph2

+ xh2

N2
h

 〈w| 〈w1|
|w〉 ph2 −√ph1ph2

|w1〉 −
√
ph1ph2 ph1


= 1
N2
h

 〈w| 〈w1|
|w〉 ph1xh1 + ph2xh2

√
ph1ph2(xh1 − xh2)

|w1〉
√
ph1ph2(xh1 − xh2) ph2xh1 + ph1xh2

 .
(Remark: We had made a mistake in this term which was causing the matrix to sometimes be-
come negative; after correction, the matrix seems to be positive for Mochon’s f-function based
construction) Evaluation of II is nearly trivial for identity can be expressed in any basis and that
yields

II = x(|v〉 〈v|+ |v1〉 〈v1|+ |v2〉 〈v2|)

=


〈v| 〈v1| 〈v2|

|v〉 x
|v1〉 x
|v2〉 x

 .
For the last term

III = xg1U |g11〉 〈g11|U †︸ ︷︷ ︸
(i)

+xg2U |g22〉 〈g22|U †︸ ︷︷ ︸
(ii)

+xg3U |g33〉 〈g33|U †︸ ︷︷ ︸
(iii)
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We evaluate

U |g11〉 =
√
pg1

Ng
|w〉+

√
pg1

Ng1
|v1〉+

√
pg1

Ng2
|v2〉

U |g22〉 =
√
pg2

Ng
|w〉+

(
− pg1√

pg2

)
Ng1

|v1〉+
√
pg2

Ng2
|v2〉

U |g33〉 =
√
pg3

Ng
|w〉+ 0 |v1〉+

(
−pg1+gg2√

pg3

)
Ng2

|v2〉 .

We must now find each sub term, starting with the most regular

(i) = xg1pg1


〈v1| 〈v2| 〈w|

|v1〉 1
N2
g1

1
Ng1Ng2

1
Ng1Ng

|v2〉 1
Ng2Ng1

1
N2
g2

1
Ng2Ng

|w〉 1
NgNg1

1
NgNg2

1
N2
g

 .

For the second term, we re-write U |g22〉 = √pg2

(
1
Ng
|w〉 − 1

N ′g1
|v1〉+ 1

Ng2
|v2〉

)
where we have

defined
N ′g1 = pg2

pg1
Ng1

to obtain

(ii) = xg2pg2


〈v1| 〈v2| 〈w|

|v1〉 1
N ′2g1

− 1
N ′g1Ng2

− 1
N ′g1Ng

|v2〉 − 1
Ng2N

′
g1

1
N2
g2

1
Ng2Ng

|w〉 − 1
NgN ′g1

1
NgNg2

1
N2
g


and finally U |g33〉 = √pg3

(
1
Ng
|w〉+ 0 |v1〉 − 1

N ′g2
|v2〉

)
with

N ′g2 = pg3

pg1 + pg2

to get

(iii) = xg3pg3


〈v1| 〈v2| 〈w|

|v1〉
|v2〉 1

N ′2g2
− 1
N ′g2Ng

|w〉 − 1
NgN ′g2

1
N2
g

 .
Now we can combine all of these into a single matrix and try to obtain some simpler constraints.

M
def
=



〈v| 〈v1| 〈v2| 〈w| 〈w1|
|v〉 x

|v1〉 x−
xg1pg1
N2

81
−
xg2pg2
N′2
g1

−
xg1pg1
Ng1Ng2

+
xg2pg2
N′
g1
Ng2

−
xg1pg1
Ng1Ng

+
xg2pg2
N′
g1
Ng

|v2〉 −
xg1pg1
Ng2Ng1

+
xg2pg2
Ng2N

′
g1

x−
xg1pg1
N2
g2

−
xg2pg2
N2
g2

−
xg3pg3
N′2
g2

−
xg1pg1
Ng2Ng

−
xg2pg2
Ng2Ng

+
xg3pg3
N′
g2
Ng

|w〉 −
xg1pg1
NgNg1

+
xg2pg2
NgN

′
g1

−
xg1pg1
NgNg2

−
xg2pg2
NgNg2

+
xg3pg3
NgN

′
g2

ph1xh1 +ph2xh2
N2
h

− 1
N2
g

∑
i
xgipgi

√
ph1ph2

N2
h

(xh1 − xh2 )

|w1〉

√
ph1ph2

N2
h

(xh1 − xh2 )
ph2xh1 +ph1xh2

N2
h


≥ 0.
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Despite this appearing to be a complicated expression, we can conclude that it will always be
so that larger the x looser will be the constraint. To show this and to simplify this calculation,
note that M can be split into a scalar condition, x ≥ 0 (from the |v〉 〈v| part) and a sub-matrix
which we choose to write as

〈v1| 〈v2| 〈w| 〈w1|
|v1〉
|v2〉

C BT

|w〉
|w1〉

B A

≥ 0.

Now since
[
C BT

B A

]
≥ 0 ⇐⇒

[
A B
BT C

]
≥ 0 ⇐⇒ C ≥ 0, A−BC−1BT ≥ 0, (I−CC−1)BT =

0 using Shur’s Complement condition for positivity where C−1 is supposed to be the generalised
inverse. Since x is in our hands, we can take it to be sufficiently large so that C > 0 and thereby
make sure that I− CC−1 = 0. Evidently then, the only condition of interest is

A−BC−1BT ≥ 0.

We can do even better than this actually. Note that if C > 0 then C−1 > 0 and that the second
term is of the form[

a b
0 0

]
︸ ︷︷ ︸

B

[
α γ
γ β

]
︸ ︷︷ ︸

C−1

[
a 0
b 0

]
︸ ︷︷ ︸

BT

=


[
a b

] [ α γ
γ β

] [
a
b

]
0

0 0

 ≥ 0

because C−1 > 0. We can therefore write the constraint equation as

A ≥ BC−1BT ≥ 0

and note that A ≥ 0 is a necessary condition. This also becomes a sufficient condition in the limit
that x → ∞ because C−1 → 0 in that case. We have thereby reduced the analysis to simply
checking if  ph1xh1+ph2xh2

N2
h

− 1
N2
g

∑
i xgipgi

√
ph1ph2
N2
h

(xh1 − xh2)
√
ph1ph2
N2
h

(xh1 − xh2) ph2xh1+ph1xh2
N2
h

 ≥ 0.

This being a 2 × 2 matrix can be checked for positivity by the trace and determinant method.
Another possibility is the use of Schur’s Complement conditions again. Here, however, we intend
to use a more general technique (similar to the one used in the split analysis). Let us introduce

〈xg〉
def= 1

N2
g

∑
i

xgipgi ,

〈 1
xh

〉
def= 1

N2
h

∑
i

phi
xhi

and recall/note that term (I) and one element from term (III) constitute matrix A, which can also
be written as

A = xh1 |h11〉 〈h11|+ xh2 |h22〉 〈h22| − 〈xg〉 |w〉 〈w|

=
〈h11| 〈h22|

|h11〉 xh1

|h22〉 xh2

− 〈xg〉 |w〉 〈w|
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Note that this now has the exact same form as that of the split constraint with xg1 → 〈xg〉.
We use the same F − M ≥ 0 ⇐⇒ I −

√
F
−1
M
√
F
−1 ≥ 0 for F > 0 technique to obtain

I ≥ 〈xg〉 |w′′〉 〈w′′| where |w′′〉 =

√
ph1
xh1
|h11〉+

√
ph2
xh2
|h22〉

Nh
. Normalising this one gets |w′〉 = |w′′〉√〈

1
xh

〉
which entails I ≥ 〈xg〉

〈
1
xh

〉
|w′〉 〈w′| and that leads us to the final condition

1
〈xg〉

≥
〈 1
xh

〉
.

In fact all the techniques used in reaching this result can be extended to the m→ n transition case
as well and so the aforesaid result should hold in general.

B Mochon’s Assignments
Lemma (Mochon’s Denominator).

∑n
i=1

1∏
j 6=i(xj−xi)

= 0 for n ≥ 2.

Proof. We prove this by induction (following Mochon’s proof, just optimised for clarity instead of
space). For n = 2

1
(x2 − x1) + 1

(x1 − x2) = 0.

Now we show that if the result holds for n− 1 and it would also hold for n which would complete
the inductive proof. We start with noting that

1
(xn − xi)(x1 − xi)

= 1
xn − x1

[ 1
x1 − xi

− 1
xn − xi

]
.

This is useful because it helps breaking the product into a sum. My strategy would be to pull off
one common term so that we can apply the result to the remaining n− 1 terms. The expression of
interest is

n∑
i=1

1∏
j 6=i(xj − xi)

= 1∏
j 6=1(xj − x1) +

n−1∑
i=2

1∏
j 6=i(xj − xi)

+ 1∏
j 6=n(xj − xn)

where notice that the ith term in the sum (of the second term) can be written as

1
(xn − xi)(x1 − xi)

∏
j 6=i,1,n(xj − xi)

= 1
xn − x1

[
1∏

j 6=i,n(xj − xi)
− 1∏

j 6=1,i(xj − xi)

]
.

The first term can be written as

1
(xn − x1)

∏
j 6=1,n(xj − x1)

while the last can be written as

−1
(xn − x1)

∏
j 6=n,1(xj − xn) .
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Putting all these together, we get
n∑
i=1

1∏
j 6=i(xj − xi)

= 1
(xn − x1)

 1∏
j 6=1,n(xj − x1) +

n−1∑
i=2

1∏
j 6=i,n(xj − xi)︸ ︷︷ ︸−

n−1∑
i=2

1∏
j 6=1,i(xj − xi)

− 1∏
j 6=1,n(xj − xn)︸ ︷︷ ︸


= 1

(xn − x1)

[
n−1∑
i=1

1∏
j 6=i,n(xj − xi)

−
n∑
i=2

1∏
j 6=1,i(xj − xi)

]

where both sums disappear if the result holds for n− 1. This completes the proof.

Lemma (Mochon’s f-assignment Lemma).
∑n
i=1

f(xi)∏
j 6=i(xj−xi)

= 0 where f(xi) is of order k ≤ n−2.

Proof. Again we do this by induction on k. For k = 0 the result holds by the previous result. We
assume it holds for order k− 1 and show using this that it also holds for order k (this proof is also
Mochon’s). Let g(xi) be a polynomial of order k − 1 s.t.

n∑
i=1

f(xi)∏
j 6=i(xj − xi)

=
n∑
i=1

(x1 − xi)(x2 − xi) . . . (xk − xi)− g(xi)∏
j 6=i(xj − xi)

.

Notice that the first part of the sum disappears for all 1 ≤ i ≤ k because of the numerator.
Consequently we can write the aforesaid as

=
n∑

i=k+1

(x1 − xi)(x2 − xi) . . . (xk − xi)∏
j 6=i(xj − xi)

−
n∑
i=1

g(xi)∏
j 6=i(xj − xi)

=
n∑

i=k+1

1∏
j 6=i,1,2...,k(xj − xi)

= 0

where in the first step, the second term becomes zero by assuming the result holds for k− 1 and in
the second step the sum disappears because of the previous result (Mochon’s Denominator). Note
that k ≤ n − 2 for the aforesaid argument to work because otherwise the last step would become
invalid.

Lemma.
∑n
i=1

xn−1
i∏

j 6=i(xj−xi)
= (−1)n−1 for n ≥ 2.

Proof. Let us define d(n) :=
∑n
i=1

xn−1
i∏

j 6=i(xj−xi)
to proceed inductively. We can then write

d(2) = x1
x2 − x1

+ x2
x1 − x2

= x1(x1 − x2) + x2(x2 − x1)
(x2 − x1)(x1 − x2) = −1.
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We assume the result holds for d(n) and write

d(n+ 1) =
n+1∑
i=1

xni∏
j 6=i(xj − xi)

=
n+1∑
i=1

−(xn+1 − xi)(xn−1
i ) + xn+1x

n−1
i∏

j 6=i(xj − xi)

= −
n+1∑
i=1

(xn+1 − xi)
xn−1
i∏

j 6=i(xj − xi)
+ xn+1

n+1∑
i=1

xn−1
i∏

j 6=i(xj − xi)︸ ︷︷ ︸
=0 (Mochon’s Denominator)

= −
n∑
i=1��

��
��(xn+1 − xi)

(xn+1 − xi)
xn−1
i∏

j 6=i,n+1(xj − xi)
+
��

���
���:0

(xn+1 − xn+1)
xn−1
n+1∏

j 6=n+1(xj − xn+1)

= −d(n).

Proposition. 〈xh〉 − 〈xg〉 = 1
N2
h

= 1
N2
g

for a Mochon’s TDPG assignment with k = n − 2 and
coefficient of xn−2 ±1 in f(x). As above here 〈xh〉 = 1

N2
h

∑
phixhi and 〈xg〉 = 1

N2
g

∑
pgixgi.

Proof. Note, to start with, that the coefficient of xn−2 being ±1 is not an artificial requirement
because for killing n− 2 points f(x) will have the form

f(x) = (xk1 − x)(xk2 − x) . . . (xkn−2 − x) = (−1)n−2xn−2 + f̃(x)

where f̃ is a polynomial of order n− 2. Observe that

N2
h (〈xh〉 − 〈xg〉) =

n∑
i=1

p(xi)xi = −
n∑
i=1

xif(xi)∏
j 6=i(xj − xi)

= −
n∑
i=1

xi(−1)n−2xn−2
i∏

j 6=i(xj − xi)
−
∑
i

f̃(xi)∏
j 6=i(xj − xi)

= −(−1)n−2
n∑
i=1

xn−1
i∏

j 6=i(xj − xi)

= 1

where the second term in the second step vanishes because of Mochon’s f-assignment Lemma and
the last step follows from the previous result.
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