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Abstract

We present new tradeoffs between space and query-time for exact distance oracles in directed
weighted planar graphs. These tradeoffs are almost optimal in the sense that they are within
polylogarithmic, sub-polynomial or arbitrarily small polynomial factors from the näıve linear
space, constant query-time lower bound. These tradeoffs include: (i) an oracle with space1

Õ(n1+ε) and query-time Õ(1) for any constant ε > 0, (ii) an oracle with space Õ(n) and
query-time Õ(nε) for any constant ε > 0, and (iii) an oracle with space n1+o(1) and query-time
no(1).

4/3 23/2 5/31

1/4

1/3

1/2

1

0

lgS/ lg n

lgQ/ lg n

F
O
C
S‘
01

[2
0]

W
G
‘96

[15]

ESA
‘96

[1]

WG‘96 [15]

STOC‘00 [11]
SODA‘06 [6]

F
O
C
S‘17

[12]

SODA‘12 [37]

SO
D
A
‘18

[22]

Our result

Figure 1: Tradeoff of the space (S) vs. the query time (Q) for exact distance oracles in planar graphs
on a doubly logarithmic scale, hiding subpolynomial factors. The previous tradeoffs are indicated by
solid black lines and points, while our new tradeoff is indicated by the red point at the bottom left.

∗This work was partially supported by the Israel Science Foundation under grant number 592/17.
1The Õ(·) notation hides polylogarithmic factors.
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1 Introduction

Computing shortest paths is one of the most fundamental and well-studied algorithmic problems,
with numerous applications in various fields. In the data structure version of the problem, the goal
is to preprocess a graph into a compact representation such that the distance (or a shortest path)
between any pair of vertices can be retrieved efficiently. Such data structures are called distance
oracles. Distance oracles are useful in applications ranging from navigation, geographic information
systems and logistics, to computer games, databases, packet routing, web search, computational
biology, and social networks. The topic has been studied extensively; see for example the survey by
Sommer [42] for a comprehensive overview and references.

The two main measures of efficiency of a distance oracle are the space it occupies and the time it
requires to answer a distance query. To appreciate the tradeoff between these two quantities consider
two näıve oracles. The first stores all Θ(n2) pairwise distances in a table, and answers each query
in constant time using table lookup. The second only stores the input graph, and runs a shortest
path algorithm over the entire graph upon each query. Both of these oracles are not adequate when
working with mildly large graphs. The first consumes too much space, and the second is too slow
in answering queries. A third quantity of interest is the preprocessing time required to construct
the oracle. Since computing the data structure is done offline, this quantity is often considered less
important. However, one approach to dealing with dynamic networks is to recompute the entire
data structure quite frequently, which is only feasible when the preprocessing time is reasonably
small.

One of the ways to design oracles with small space is to consider approximate distance oracles
(allowing a small stretch in the distance output). However, it turns out that one cannot get both
small stretch and small space. In their seminal paper, Thorup and Zwick [44] showed that, assuming
the girth conjecture of Erdős [17], there exist dense graphs for which no oracle with size less than
n1+1/k and stretch less than 2k − 1 exists. Pǎtraşcu and Roditty [41] showed that even sparse
graphs with Õ(n) edges do not have distance oracles with stretch better than 2 and subquadratic
space, conditioned on a widely believed conjecture on the hardness of set intersection. To bypass
these impossibility results one can impose additional structure on the graph. In this work we follow
this approach and focus on distance oracles for planar graphs.

Distance oracles for planar graphs. The importance of studying distance oracles for planar
graphs stems from several reasons. First, distance oracles for planar graphs are ubiquitous in
real-world applications such as geographical navigation on road networks [42] (road networks are
often theoretically modeled as planar graphs even though they are not quite planar due to tunnels
and overpasses). Second, shortest paths in planar graphs exhibit a remarkable wealth of structural
properties that can be exploited to obtain efficient oracles. Third, techniques developed for shortest
paths problems in planar graphs often carry over (because of intricate and elegant connections) to
maximum flow problems. Fourth, planar graphs have proved to be an excellent sandbox for the
development of algorithms and techniques that extend to broader families of graphs.

As such, distance oracles for planar graphs have been extensively studied. Works on exact
distance oracles for planar graphs started in the 1990’s with oracles requiring Õ(n2/Q) space and
Õ(Q) query-time for any Q ∈ [1, n] [1, 15]. Note that this includes the two trivial approaches
mentioned above. Over the past three decades, many other works presented exact distance oracles
for planar graphs with increasingly better space to query-time tradeoffs [1, 6, 11, 12, 15, 20, 22, 37, 39].
Figure 1 illustrates the advancements in the space/query-time tradeoffs over the years. Until
recently, no distance oracles with subquadratic space and polylogarithmic query time were known.
Cohen-Addad et al. [12], inspired by Cabello’s use of Voronoi diagrams for the diameter problem in
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planar graphs [7], provided the first such oracle. The currently best known tradeoff [22] is an oracle
with Õ(n3/2/Q) space and Õ(Q) query-time for any Q ∈ [1, n1/2]. Note that all known oracles with
nearly linear (i.e. Õ(n)) space require Ω(

√
n) time to answer queries.

The holy grail in this area is to design an exact distance oracle for planar graphs with both
linear space and constant query-time. It is not known whether this goal can be achieved. We do
know, however, (for nearly twenty years now) that approximate distance oracles can get very close.
For any fixed ε > 0 there are (1 + ε)-approximate distance oracles that occupy nearly-linear space
and answer queries in polylogarithmic, or even constant time [9, 23,26, 28,29,43,45]. However, the
main question of whether an approximate answer is the best one can hope for, or whether exact
distance oracles for planar graphs with linear space and constant query time exist, remained a wide
open important and interesting problem.

Our results and techniques. In this paper we approach the optimal tradeoff between space and
query time for reporting exact distances.We design exact distance oracles that require almost-linear
space and answer distance queries in polylogarithmic time. Specifically, given a planar graph of
size n, we show how to construct in roughly O(n3/2) time a distance oracle admitting any of the
following 〈space, query-time〉 tradeoffs (see Theorem 7 and Corollary 8 for the exact statements).

(i) 〈Õ(n1+ε),O(log1/ε n)〉, for any constant 1/2 ≥ ε > 0;

(ii) 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;

(iii) 〈n1+o(1), no(1)〉.

Voronoi diagrams. The main tool we use to obtain this result is point location in Voronoi
diagrams on planar graphs. The concept of Voronoi diagrams has been used in computational
geometry for many years (cf. [2, 13]). We consider graphical (or network) Voronoi diagrams [19, 34].
At a high level, a graphical Voronoi diagram with respect to a set S of sites is a partition of
the vertices into |S| parts, called Voronoi cells, where the cell of site s ∈ S contains all vertices
that are closer (in the shortest path metric) to s than to any other site in S. Graphical Voronoi
diagrams have been studied and used quite extensively, most notably in applications in road networks
(e.g., [14, 16,25,40]).

Perhaps the most elementary operation on Voronoi diagrams is point location. Given a point
(vertex) v, one wishes to efficiently determine the site s such that v belongs to the Voronoi cell of s.
Cohen-Addad et al. [12], inspired by Cabello’s [7] breakthrough use of Voronoi diagrams in planar
graphs, suggested a way to perform point location that led to the first exact distance oracle for
planar graphs with subquadratic space and polylogarithmic query time. A simpler and more efficient
point location mechanism for Voronoi diagrams in planar graphs was subsequently developed in [22].
In both oracles, the space efficiency is obtained from the fact that the size of the representation of a
Voronoi diagram is proportional to the number of sites and not to the total number of vertices.

To obtain our result, we add two new ingredients to the point location mechanism of [22]. The
first is the use of what might be called external Voronoi diagrams. Unlike previous constructions,
instead of working with Voronoi diagrams for every piece in some partition (r-division) of the graph,
we work with many overlapping Voronoi diagrams, representing the complements of such pieces.
This is analogous to the use of external dense distance graphs in [5,37]. This approach alone leads to
an oracle with space Õ(n4/3) and query time O(log2 n) (see Section 3). The obstacle with pushing
this approach further is that the point location mechanism consists of auxiliary data for each piece,
whose size is proportional to the size of the complement of the piece, which is Θ(n) rather than the
much smaller size of the piece. We show that this problem can be mitigated by using recursion, and
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storing much less auxiliary data at a coarser level of granularity. This approach is made possible by
a more modular view of the point location mechanism which we present in Section 2, along with
other preliminaries. The proof of our main space/query-time tradeoffs is given in Section 4 and the
algorithm to efficiently construct these oracles is given in Section 5.

2 Preliminaries

In this section we review the main techniques required for describing our result. Throughout the
paper we consider as input a weighted directed planar graph G = (V (G), E(G)), embedded in
the plane. (We use the terms weight and length for edges and paths interchangeably throughout
the paper.) We use |G| to denote the number of vertices in G. Since planar graphs are sparse,
|E(G)| = O(|G|) as well. The dual of a planar graph G is another planar graph G∗ whose vertices
correspond to faces of G and vice versa. Arcs of G∗ are in one-to-one correspondence with arcs of
G; there is an arc e∗ from vertex f∗ to vertex g∗ of G∗ if and only if the corresponding faces f and
g of G are to the left and right of the arc e, respectively.

We assume that the input graph has no negative length cycles. We can transform the graph in
a standard [38] way so that all edge weights are non-negative and distances are preserved. With

another standard transformation we can guarantee, in O(n log2 n
log logn) time, that each vertex has

constant degree and that the graph is triangulated, while distances are preserved and without
increasing asymptotically the size of the graph. We further assume that shortest paths are unique;
this can be ensured in O(n) time by a deterministic perturbation of the edge weights [18]. Let
dG(u, v) denote the distance from a vertex u to a vertex v in G.

Multiple-source shortest paths. The multiple-source shortest paths (MSSP) data structure [30]
represents all shortest path trees rooted at the vertices of a single face f in a planar graph using a
persistent dynamic tree. It can be constructed in O(n log n) time, requires O(n log n) space, and can
report any distance between a vertex of f and any other vertex in the graph in O(log n) time. We
note that it can be augmented to also return the first edge of this path within the same complexities.
The authors of [22] show that it can be further augmented —within the same complexities— such
that given two vertices u, v ∈ G and a vertex x of f it can return, in O(log n) time, whether u is an
ancestor of v in the shortest path tree rooted at x as well as whether u occurs before v in a preorder
traversal of this tree.

Separators and recursive decompositions. Miller [35] showed how to compute, in a bicon-
nected triangulated planar graph with n vertices, a simple cycle of size O(

√
n) that separates the

graph into two subgraphs, each with at most 2n/3 vertices. Simple cycle separators can be used
to recursively separate a planar graph until pieces have constant size. The authors of [32] show
how to obtain a complete recursive decomposition tree A of G in O(n) time. A is a binary tree
whose nodes correspond to subgraphs of G (pieces), with the root being all of G and the leaves
being pieces of constant size. We identify each piece P with the node representing it in A. We
can thus abuse notation and write P ∈ A. An r-division [21] of a planar graph, for r ∈ [1, n], is a
decomposition of the graph into O(n/r) pieces, each of size O(r), such that each piece has O(

√
r)

boundary vertices, i.e. vertices that belong to some separator along the recursive decomposition
used to obtain P . Another desired property of an r-division is that the boundary vertices lie on a
constant number of faces of the piece (holes). For every r larger than some constant, an r-division
with few holes is represented in the decomposition tree A of [32]. In fact, it is not hard to see that
if the original graph G is triangulated then all vertices of each hole of a piece are boundary vertices.
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Throughout the paper, to avoid confusion, we use “nodes” when referring to A and “vertices” when
referring to G. We denote the boundary vertices of a piece P by ∂P . We refer to non-boundary
vertices as internal. We assume for simplicity that each hole is a simple cycle. Non-simple cycles do
not pose a significant obstacle, as we discuss at the end of Section 4.

It is shown in [32, Theorem 3] that, given a geometrically decreasing sequence of numbers
(rm, rm−1, . . . , r1), where r1 is a sufficiently large constant, ri+1/ri = b for all i for some b > 1, and
rm = n, we can obtain the ri-divisions for all i in time O(n) in total. For convenience we define the
only piece in the rm division to be G itself. These r-divisions satisfy the property that a piece in
the ri-division is a —not necessarily strict— descendant (in A) of a piece in the rj-division for each
j > i. This ancestry relation between the pieces of an r-division can be captures by a tree T called
the recursive r-division tree.

The boundary vertices of a piece P ∈ A that lie on a hole h of P separate the graph G into two
subgraphs G1 and G2 (the cycle is in both subgraphs). One of these two subgraphs is enclosed by
the cycle and the other is not. Moreover, P is a subgraph of one of these two subgraphs, say G1. We
then call G2 the outside of hole h with respect to P and denote it by P h,out. In the sections where
we assume that the boundary vertices of each piece lie on a single hole that is a simple cycle, the
outside of this hole with respect to P is G \ (P \ ∂P ) and to simplify notation we denote it by P out.

Additively weighted Voronoi diagrams. Let H be a directed planar graph with real edge-
lengths, and no negative-length cycles. Assume that all faces of H are triangles except, perhaps, a
single face h. Let S be the set of vertices that lie on h. The vertices of S are called sites. Each
site u ∈ S has a weight ω(s) ≥ 0 associated with it. The additively weighted distance between a
site s ∈ S and a vertex v ∈ V , denoted by dω(s, v) is defined as ω(s) plus the length of the s-to-v
shortest path in H.

Definition 1. The additively weighted Voronoi diagram of (S, ω) (VD(S, ω)) within H is a partition
of V (H) into pairwise disjoint sets, one set Vor(s) for each site s ∈ S. The set Vor(s), which is
called the Voronoi cell of s, contains all vertices in V (H) that are closer (w.r.t. dω(. , .)) to s than
to any other site in S.

There is a dual representation VD∗(S, ω) (or simply VD∗) of a Voronoi diagram VD(S, ω). Let
H∗ be the planar dual of H. Let VD∗0 be the subgraph of H∗ consisting of the duals of edges uv of
H such that u and v are in different Voronoi cells. Let VD∗1 be the graph obtained from VD∗0 by
contracting edges incident to degree-2 vertices one after another until no degree-2 vertices remain.
The vertices of VD∗1 are called Voronoi vertices. A Voronoi vertex f∗ 6= h∗ is dual to a face f such
that the vertices of H incident to f belong to three different Voronoi cells. We call such a face
trichromatic. Each Voronoi vertex f∗ stores for each vertex u incident to f the site s such that
u ∈ Vor(s). Note that h∗ (i.e. the dual vertex corresponding to the face h to which all the sites are
incident) is a Voronoi vertex. Each face of VD∗1 corresponds to a cell Vor(s). Hence there are at
most |S| faces in VD∗1. By sparsity of planar graphs, and by the fact that the minimum degree of a
vertex in VD∗1 is 3, the complexity (i.e., the number of vertices, edges and faces) of VD∗1 is O(|S|).
Finally, we define VD∗ to be the graph obtained from VD∗1 after replacing the node h∗ by multiple
copies, one for each occurrence of h as an endpoint of an edge in VD∗1. It was shown in [22] that
VD∗ is a forest, and that, if all vertices of h are sites and if the additive weights are such that each
site is in its own nonempty Voronoi cell, then VD∗ is a ternary tree. See Fig. 2 (also used in [22])
for an illustration.

Point location in Voronoi diagrams. A point location query for a node v in a Voronoi diagram
VD asks for the site s of VD such that v ∈ Vor(s) and for the additive distance from s to v.
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Figure 2: A planar graph (black edges) with four sites on the infinite face together with the dual
Voronoi diagram VD∗ (in blue). The sites are shown together with their corresponding shortest
path trees (in turquoise, red, yellow, and green).

Gawrychowski et al. [22] described a data structure supporting efficient point location, which is
captured by the following theorem.

Theorem 2 ([22]). Given an O(|H| log |H|)-sized MSSP data structure for H with sources S,
and after an O(|S|)-time preprocessing of VD∗, point location queries can be answered in time
O(log2 |H|).

We now describe this data structure. The data structure is essentially the same as in [22], but
the presentation is a bit more modular. We will later adapt the implementation in Section 4.

Recall that H is triangulated (except the face h). For technical reasons, for each face f 6= h of H

with vertices y1, y2, y3 we embed three new vertices vf1 , v
f
2 , v

f
3 inside f and add a directed 0-length

edge from yi to vfi . The main idea is as follows. In order to find the Voronoi cell Vor(s) to which a
query vertex v belongs, it suffices to identify an edge e∗ of VD∗ that is adjacent to Vor(s). Given e∗

we can simply check which of its two adjacent cells contains v by comparing the distances from the
corresponding two sites to v. The point location structure is based on a centroid decomposition of
the tree VD∗ into connected subtrees, and on the ability to determine which of the subtrees is the
one that contains the desired edge e∗.

The preprocessing consists of just computing a centroid decomposition of VD∗. A centroid
of an n-node tree T is a node u ∈ T such that removing u and replacing it with copies, one for
each edge incident to u, results in a set of trees, each with at most n+1

2 edges. A centroid always
exists in a tree with at least one edge. In every step of the centroid decomposition of VD∗, we
work with a connected subtree T ∗ of VD∗. Recall that there are no nodes of degree 2 in VD∗. If
there are no nodes of degree 3, then T ∗ consists of a single edge of VD∗, and the decomposition
terminates. Otherwise, we choose a centroid c∗, and partition T ∗ into the three subtrees T ∗0 , T

∗
1 , T

∗
2

obtained by splitting c∗ into three copies, one for each edge incident to c∗. Clearly, the depth of the
recursive decomposition is O(log |S|). The decomposition can be computed in Õ(|S|) time and can
be represented as a ternary tree which we call the centroid decomposition tree, in O(|S|) space. Each
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non-leaf node of the centroid decomposition tree corresponds to a centroid vertex c∗, which is stored
explicitly. We will refer to nodes of the centroid decomposition tree by their associated centroid.
Each node also corresponds implicitly to the subtree of VD∗ of which c∗ is the centroid. The leaves
of the centroid decomposition tree correspond to single edges of VD∗, which are stored explicitly.

Point location queries for a vertex v in the Voronoi diagram VD are answered by employing
procedure PointLocate(VD∗, v) (Algorithm 1), which takes as input the Voronoi diagram, rep-
resented by the centroid decomposition of VD∗, and the vertex v. This in turn calls the recursive
procedure HandleCentroid(VD∗, c∗, v) (Algorithm 2), where c∗ is the root centroid in the centroid
decomposition tree of VD∗.

We now describe the procedure HandleCentroid. It gets as input the Voronoi diagram,
represented by its centroid decomposition tree, the centroid node c∗ in the centroid decomposition
tree that should be processed, and the vertex v to be located. It returns the site s such that
v ∈ Vor(s), and the additive distance to v. If c∗ is a leaf of the centroid decomposition, then its
corresponding subtree of VD∗ is the single edge e∗ we are looking for (Lines 1-6). Otherwise, c∗ is a
non-leaf node of the centroid decomposition tree, so it corresponds to a node in the tree VD∗, which
is also a vertex of the dual H∗ of H. Thus, c is a face of H. Let the vertices of c be y1, y2 and y3.
We obtain si, the site such that yi ∈ Vor(si), from the representation of VD∗ (Line 7). (Recall that
si 6= sk if i 6= k since c is a trichromatic face.) Next, for each i, we retrieve the additive distance
from si to v. Let sj be the site among them with minimum additive distance to v.

If v is an ancestor of the node yj in the shortest path tree rooted at sj , then v ∈ Vor(sj) and we
are done. Otherwise, handling c consists of finding the child c′∗ of c∗ in the centroid decomposition
tree whose corresponding subtree contains e∗. It is shown in [22] that identifying c′∗ amounts to
determining a certain left/right relationship between v and vcj . (Recall that vcj is the artificial vertex
embedded inside the face c with an incoming 0-length edge from yj .) We next make this notion
more precise.

Definition 3. For a tree T and two nodes x and y, such that none is an ancestor of the other,
we say that x is left of y if the preorder number of x is smaller than the preorder number of y.
Otherwise, we say that x is right of y.

It is shown in [22, Section 4] that given the left/right/ancestor relationship of v and vcj , one
can determine, in constant time, the child of c∗ in the centroid decomposition tree containing e∗.
We call the procedure that does this NextCentroid. Having found the next centroid in Line 15,
HandleCentroid moves on to handle it recursively.

The efficiency of procedure HandleCentroid depends on the time to compute distances
in H (Lines 4 and 9) and the left/right/ancestor relationship (Line 11). Given an MSSP data
structure for H, with sources S, each of these operations can be performed in time O(log |H|) and
hence Theorem 2 follows.

Algorithm 1 PointLocate(VD∗, v)

Input: The centroid decomposition of the dual representation VD∗ of a Voronoi diagram VD and a
vertex v.
Output: The site s of VD such that v ∈ Vor(s) and the additive distance from s to v.

1: c∗ ← root centroid in the centroid decomposition of VD∗

2: return HandleCentroid(VD∗, c∗, v)
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Algorithm 2 HandleCentroid(VD∗, c∗, v)

Input: The centroid decomposition of the dual representation VD∗ of a Voronoi diagram, a
centroid c∗ and a vertex v that belongs to the Voronoi cell of some descendant of c∗ in the centroid
decomposition of VD∗.
Output: The site s of VD such that v ∈ Vor(s) and the additive distance from s to v.

1: if c∗ is a leaf then
2: s1, s2 ← sites corresponding to c∗

3: for k = 1, 2 do
4: dk ← ω(sk) + dH(sk, v)

5: j ← argmink(dk)
6: return (sj , dj)

7: s1, s2, s3 ← sites corresponding to c∗

8: for k = 1, 2, 3 do
9: dk ← ω(sk) + dH(sk, v)

10: j ← argmink(dk)
11: a← left/right/ancestor relationship of v to vcj in the shortest path tree of sj in H
12: if v is an ancestor of vcj then
13: return (sj , dj)
14: else
15: c← NextCentroid(c, a)
16: return HandleCentroid(VD∗, c, v)

3 An Õ(n4/3)-space O(log2 n)-query oracle

We state the following result from [22] that we use in the oracle presented in this section.

Theorem 4 ([22]). For a planar graph G of size n, there is an O(n3/2)-sized data structure that
answers distance queries in time O(log n).

For clarity of presentation, we first describe our oracle under the assumption that the boundary
vertices of each piece P in the r-division of the graph lie on a single hole and that each such hole is
a simple cycle. Multiple holes and non-simple cycles do not pose any significant complications; we
explain how to treat pieces with multiple holes that are not necessarily simple cycles, separately.

Data Structure. We obtain an r-division for r = n2/3
√

log n. The data structure consists of the
following for each piece P of the r-division:

1. The O(|P |3/2)-space, O(log |P |)-query-time distance oracle of Theorem 4. These occupy
O(n
√
r) space in total.

2. Two MSSP data structures, one for P and one for P out, both with sources the nodes of ∂P .
The MSSP data structure for P requires space O(r log r), while the one for P out requires space

O(n log n). The total space required for the MSSP data structures is O(n
2

r log n), since there
are O(nr ) pieces.

3. For each node u of P :

• VD∗in(u, P ), the dual representation of the Voronoi diagram for P with sites the nodes of
∂P , and additive weights the distances from u to these nodes in G;
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• VD∗out(u, P ), the dual representation of the Voronoi diagram for P out with sites the nodes
of ∂P , and additive weights the distances from u to these nodes in G.

The representation of each Voronoi diagram occupies O(
√
r) space and hence, since each

vertex belongs to a constant number of pieces, all Voronoi diagrams require space O(n
√
r).

Query. We obtain a piece P of the r-division that contains u. Let us first suppose that v ∈ P .
We have to consider both the case that the shortest u-to-v path crosses ∂P and the case that it
does not. If it does cross, we retrieve this distance by performing a point location query for v in the
Voronoi diagram VDin(u, P ). If the shortest u-to-v path does not cross ∂P , the path lies entirely
within P . We thus retrieve the distance by querying the exact distance oracle of Theorem 4 stored
for P . The answer is the minimum of the two returned distances. This requires O(log2 n) time
by Theorems 2 and 4. Else, v 6∈ P and the shortest path from u to v must cross ∂P . The answer
can be thus obtained by a point location query for v in the Voronoi diagram VDout(u, P ) in time
O(log2 n) by Theorem 2. The pseudocode of the query algorithm is presented below as procedure
SimpleDist(u, v) (Algorithm 3).

Algorithm 3 SimpleDist(u, v)

Input: Two nodes u and v.
Output: dG(u, v).

1: P ← a piece of the r-division containing u
2: if v ∈ P then
3: d1 ← dP (u, v)
4: d2 ← PointLocate(VD∗in(u, P ), v)
5: return min(d1, d2)
6: else
7: return PointLocate(VD∗out(u, P ), v)

Dealing with holes. The data structure has to be modified as follows.

2. For each hole h of P , two MSSP data structures, one for P and one for P h,out, both with
sources the nodes of ∂P that lie on h.

3. For each node u of P , for each hole h of P :

• VD∗in(u, P, h), the dual representation of the Voronoi diagram for P with sites the nodes
of ∂P that lie on h, and additive weights the distances from u to these nodes in G;

• VD∗out(u, P, h), the dual representation of the Voronoi diagram for P h,out with sites the
nodes of ∂P that lie on h, and additive weights the distances from u to these nodes in G.

As for the query, if v ∈ P we have to perform a point location query in VDin(u, P, h) for each
hole h of P . Else v 6∈ P and we have to perform a point location query in VDout(u, P, h) for the
hole h of P such that v ∈ P h,out. We can afford to store the required information to identify this
hole explicitly in balanced search trees.

We thus obtain the following result.

Theorem 5. For a planar graph G of size n, there is an O(n4/3
√

log n)-sized data structure that
answers distance queries in time O(log2 n).
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4 An oracle with almost optimal tradeoffs

In this section we describe how to obtain an oracle with almost optimal space to query-time tradeoffs.
Consider the oracle in the previous section. The size of the representation we store for each Voronoi
diagram is proportional to the number of sites, while the size of an MSSP data structure is roughly
proportional to the size of the graph in which the Voronoi diagram is defined. Thus, the MSSP
data structures that we store for the outside of pieces of the r-division are the reason that the
oracle in the previous section requires Ω(n4/3) space. However, storing the Voronoi diagrams for the
outside of each piece is not a problem. For instance, if we could somehow afford to store MSSP data
structures for P and P out of each piece P of an nε-division using just O(nε) space, then plugging
r = nε into the data structure from the previous sections would yield an oracle with space O(n1+ε)
and query-time O(log2 n).

We cannot hope to have such a compact MSSP representation. However, we can use recursion to
get around this difficulty. We compute a recursive r-division, represented by a recursive r-division
tree T . We store, for each piece P ∈ T , the Voronoi diagram for P out. However, instead of storing
the costly MSSP for the entire P out, we store the MSSP data structure (and some additional
information) just for the portion of P out that belongs to the parent Q of P in T . Roughly speaking,
when we need to perform point location on a vertex of P out that belongs to Q we can use this MSSP
information. When we need to perform point location on a vertex of P out that does not belong to
Q (i.e., it is also in Qout), we recursively invoke the point location mechanism for Qout.

We next describe the details. For clarity of presentation, we assume that the boundary vertices
of each piece P in T lie on a single hole which is a simple cycle. We later explain how to remove
these assumptions. In what follows, if a vertex in a Voronoi diagram can be assigned to more than
one Voronoi cell, we assign it to the Voronoi cell of the site with largest additive weight. In other
words, since we define the additive weights as distances from some vertex u, and since shortest
paths are unique, we assign each vertex v to the Voronoi cell of the last site on the shortest u-to-v
path. In particular, this implies that there are no empty Voronoi cells as every site belongs to its
own cell. Thus VD∗ is a ternary tree (see [22]). We can make such an assignment by perturbing the
additive weights to slightly favor sites with larger distances from u at the time that the Voronoi
diagram is constructed.

The data structure. Consider a recursive (rm, . . . , r1)-division of G for some n = rm > · · · >
r1 = O(1) to be specified later. Recall that our convention is that the rm-division consists of G
itself. For convenience, we define each vertex v to be a boundary vertex of a singleton piece at
level 0 of the recursive division. Denote the set of pieces of the ri-division by Ri. Let T denote the
tree representing this recursive (rm, . . . , r0)-division (each singleton piece v at level 0 is attached as
the child of an arbitrary piece P at level 1 such that v ∈ P ).

We will handle distance queries between vertices u, v that have the same parent P in R1

separately by storing these distances explicitly (this takes O(n) space because pieces at level 1 have
constant size).

The oracle consists of the following for each 0 ≤ i ≤ m− 1, for each piece R ∈ Ri whose parent
in T is Q ∈ Ri+1:

1. If i > 0, two MSSP data structures for Q \ (R \ ∂R), with sources ∂R and ∂Q, respectively.

2. If i < m− 1, for each boundary vertex u of R:

• VD∗near(u,Q), the dual representation of the Voronoi diagram for Q \ (R \ ∂R) with sites the
nodes of ∂Q, and additive weights the distances from u to these nodes in Rout;
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• VD∗far(u,Q), the dual representation of the Voronoi diagram for Qout with sites the nodes of
∂Q, and additive weights the distances from u to these nodes in Rout;

• if i > 0, the coarse tree TRu , which is the tree obtained from the shortest path tree rooted at
u in Rout (the fine tree) by contracting any edge incident to a vertex not in ∂Q ∪ ∂R. Note
that the left/right/ancestor relationship between vertices of ∂Q ∪ ∂R in the coarse tree is the
same as in the fine tree. Also note that each (coarse) edge in TRu originates from a contracted
path in the fine tree. We preprocess the coarse tree TRu in time proportional to its size to
allow for O(1)-time lowest common ancestor (LCA)2 and level ancestor3 queries [3, 4]. In
addition, for every (coarse) edge of TRu , we store the first and last edges of the underlying
path in the fine tree. We also store the preorder numbers of the vertices of TRu .

Space. The space required to store the described data structure is O(n
∑

i
ri+1

ri
log ri+1). Part 1

of the data structure: At the ri-division, we have O( nri ) pieces and for each of them, we store two
MSSP data structures, each of size O(ri+1 log ri+1). Thus, the total space required for the MSSP
data structures is O(n

∑
i
ri+1

ri
log ri+1). Part 2 of the data structure: At the ri-division, we store,

for each of the O( n√
ri

) boundary nodes, the representation of two Voronoi diagrams and a coarse

tree, each of size O(
√
ri+1). The space for this part is thus O(n

∑
i(
ri+1

ri
)1/2).

Query. Upon a query dG(u, v) for the distance between vertices u and v in G, we pick the singleton
piece Q0 = {u} ∈ R0 and call the procedure Dist(u, v,Q0) presented below. In what follows we
denote by Qj the ancestor of Q0 in T that is in Rj .

The procedure Dist(u, v,Qi) (Algorithm 4) gets as input a piece Qi, a source vertex u ∈ ∂Qi
and a destination vertex v ∈ Qouti . The output of Dist(u, v,Qi) is a tuple (β, d), where d is the
distance from u to v in Qouti and β is a sequence of certain boundary vertices of the recursive
division that occur along the recursive query. (Note that Qout0 = G and thus Dist(u, v,Q0) returns
dG(u, v).) Let i∗ be the smallest index such that v ∈ Qi∗ . For every 1 ≤ i < i∗, the i’th element
in the list β is the last boundary vertex on the shortest u-to-v path that belongs to ∂Qi. As we
shall see, the list β enables us to obtain the information that enables us to determine the required
left/right/ancestor relationships during the recursion. Dist(u, v,Qi) works as follows.

1. If v ∈ Qi+1 \Qi, it computes the required distance by considering the minimum of the distance
from u to v returned by a query in the MSSP data structure for Qi+1 \ (Qi \ ∂Qi) with sources
∂Qi and the distance returned by a (vanilla) point location query for v in VDnear(u,Qi+1)
using the procedure PointLocate. The first query covers the case where the shortest path
from u to v lies entirely within Qi+1, while the second one covers the complementary case.
The time required in this case is O(log2 n).

2. If v 6∈ Qi+1, Dist performs a recursive point location query on VDfar(u,Qi+1) by calling the
procedure ModifiedPointLocate.

Since Dist returns a list of boundary vertices as well as the distance, PointLocate and
HandleCentroid must pass and augment these lists as well. The pseudocode for Modified-
PointLocate is identical to that of PointLocate, except it calls ModifiedHandleCentroid
instead of HandleCentroid; see Algorithm 5. In what follows, when any of the three procedures
is called with respect to a piece Qi, we refer to this as an invocation of this procedure at level i.

2An LCA query takes as input two nodes of a rooted tree and returns the deepest node of the tree that is an
ancestor of both

3A level ancestor query takes as input a node v at depth d and an integer ` ≤ d and returns the ancestor of v that
is at depth `.
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Algorithm 4 Dist(u, v,Qi)

Input: A piece Qi, a vertex u ∈ ∂Qi and a vertex v ∈ Qouti (v may belong to Qi if i = m).
Output: (s, d), where s is a list of (some) boundary vertices on the u-to-v shortest path in Qouti ,
and d is the u-to-v distance in Qouti .

1: if v ∈ Qi+1 then
2: (β, d)← (null, distance returned by querying the MSSP data structure for Qi+1 \ (Qi \ ∂Q))
3: (β′, d′)← PointLocate(VD∗near(u,Qi+1), v)
4: if d′ < d then
5: (β, d)← (β′, d′)

6: else if i = m− 2 then
7: (β, d)← PointLocate(VD∗far(u,Qm−1), v)
8: else
9: (β, d)←ModifiedPointLocate(VD∗far(u,Qi+1), v, i+ 1)

10: return (β, d)

Algorithm 5 ModifiedPointLocate(VD∗, v, i)

Input: The centroid decomposition of the dual representation VD∗ of a Voronoi diagram VD for
Qouti with sites ∂Qi and a vertex v ∈ Qouti .
Output: The site s of VD such that v ∈ Vor(s) and the additive distance from s to v.

1: c∗ ← root centroid in the centroid decomposition of VD∗

2: return ModifiedHandleCentroid(VD∗, c∗, v, i)

The pseudocode of ModifiedHandleCentroid (Algorithm 6) is similar to that of the procedure
HandleCentroid, except that when the site s such that v ∈ Vor(s) is found, s is prepended to
the list. A more significant change in ModifiedHandleCentroid stems from the fact that, since
we no longer have an MSSP data structure for all of Qouti , we use recursive calls to Dist to obtain
the distances from the sites sk to v in Qouti in Lines 4 and 9. We highlight these changes in red
in the pseudocode provided below (Algorithm 6). We next discuss how to determine the required
left/right/ancestor relationships in VDfar (Line 11) in the absence of MSSP information for the
entire Qouti .

Left/right/ancestor relationships in VDfar. Let sj be the site among the three sites corre-
sponding to a centroid c∗ such that v is closest to sj with respect to the additive distances (see
Lines 7-10 of Algorithm 6). Recall that yj is the vertex of the centroid face c that belongs to Vor(sj)
and that vcj is the artificial vertex connected to yj and embedded inside the face c. In Line 11 of
ModifiedHandleCentroid we have to determine whether v is an ancestor of yj in the shortest
path tree rooted at sj in Qouti , and if not, whether the sj-to-v path is left or right of the sj-to-vcj
path. To avoid clutter, we will omit the subscript j in the following, and refer to sj as s, to vcj
as vc, and to the sequence of boundary vertices βj returned by the recursion as β. To infer the
relationship between the two paths we use the sites (boundary vertices) stored in the list β. We
prepend s to β, and, if v is not already the last element of β, we append v to β and use a flag to
denote that v was appended.

To be able to compare the s-to-v path with the s-to-vc path, we perform another recursive call
Dist(s, vc, Qi) (this call is implicit in Line 11). Let γ be the list of sites returned by this call. As
above, we prepend s to γ, and append vc if it is not already the last element. The intuition is that
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Algorithm 6 ModifiedHandleCentroid(VD∗, c∗, v, i)

Input: The centroid decomposition of the dual representation VD∗ of a Voronoi diagram VD for
Qouti with sites ∂Qi, a centroid c∗ and a vertex v ∈ Qouti that belongs to the Voronoi cell of some
descendant of c∗ in the centroid decomposition of VD∗.
Output: The site s of VD such that v ∈ Vor(s) and the additive distance from s to v.

1: if c∗ is a leaf then
2: s1, s2 ← sites corresponding to c∗

3: for k = 1, 2 do
4: (βk, dk)← Dist(sk, v,Qi)

5: j ← argmink(ω(sk) + dk)
6: return (prepend(sj , βj), ω(sj) + dj)

7: s1, s2, s3 ← sites corresponding to c∗

8: for k = 1, 2, 3 do
9: (βk, dk)← Dist(sk, v,Qi)

10: j ← argmink(ω(sk) + dk)
11: a← left/right/ancestor relationship of v to vcj in the shortest path tree of sj in Qouti

12: if v is an ancestor of vcj then
13: return (prepend(sj , βj), ω(sj) + dj)
14: else
15: c← NextCentroid(c, a)
16: return ModifiedHandleCentroid(VD∗, c, v, i)

the lists β and γ are a coarse representation of the s-to-v and s-to-vc shortest paths, and that we
can use this coarse representation to roughly locate the vertex where the two paths diverge. The
left/right relationship between the two paths is determined solely by the left/right relationship
between the two paths at that vertex (the divergence point). We can use the local coarse tree
information or the local MSSP information to infer this relationship.

Recall that s is a boundary vertex of the piece Qi at level i of the recursive division. More
generally, for any k ≥ 0, β[k] is a boundary vertex of Qi+k (except, possibly, when β[k] = v). To
avoid this shift between the index of a site in the list and the level of the corresponding piece in the
recursive r-division, we prepend i empty elements to both lists, so that now, for any k ≥ i, β[k]
is a boundary vertex of Qk. Let k be the largest integer such that β[k] = γ[k]. Note that k exists
because s is the first vertex in both β and γ.

Observation 6. The restriction of the shortest path from β[i] to β[i+ 1] in Qouti to the nodes of

∂Qi ∪ ∂Qi+1 is identical to the path from β[i] to β[i+ 1] in TQiβ[i].

We next analyze the different cases that might arise and describe how to correctly infer the
left/right relationship in each case. An illustration is provided as Fig. 3.

1. (β[k + 1] = v /∈ ∂Qk+1) or (γ[k + 1] = c /∈ ∂Qk+1). This corresponds to the case that in at
least one of the lists there are no boundary vertices after the divergence point. We have a few
cases depending on whether β[k + 1] and γ[k + 1] are in Qk or not.

a. If β[k + 1], γ[k + 1] ∈ Qk, then it must be that β[k + 1] = v and γ[k + 1] = c were
appended to the sequences manually. In this case we can query the MSSP data structure
for Qk \ (Qk−1 \ ∂Qk−1) with sources the boundary vertices of ∂Qk to determine the
left/right/ancestor relationship.
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b. If β[k+1], γ[k+1] 6∈ Qk, we can use the MSSP data structure stored for Qk+1 \(Qk \∂Qk)
with sources the nodes of ∂Qk. Let us assume without loss of generality that β[k + 1] =
v /∈ ∂Qk+1. We then define w to be γ[k+ 1] if γ[k+ 1] = c 6∈ ∂Qk+1 or the child w of the
root β[k] of the coarse TQkβ[k] that is an ancestor of γ[k + 1] otherwise. (In the latter case

we can compute w in O(1) time with a level ancestor query.) We then query the MSSP
data structure for the relation between v and the w. Note that the relation between the
s-to-v and s-to-c paths is the same as the relation between the s-to-v and s-to-w paths.

c. Else, one of β[k + 1], γ[k + 1] is in Qk and the other is not. Let us assume without loss
of generality that β[k + 1] = v ∈ Qk. We can infer the left/right relation by looking at
the circular order of the following edges: (i) the last fine edge in the root-to-β[k] path

in T
Qk−1

β[k−1], (ii) the first edge in the β[k]-to-β[k + 1] path, and (iii) the first edge in the

β[k]-to-w path, where w is defined as in Case 1(b). Edge (i) is stored in T
Qk−1

β[k−1] —note

that β[k − 1] exists since β[k + 1] ∈ Qk. Edge (ii) can be retrieved from the MSSP data
structure for Qk \ (Qk−1 \ ∂Qk−1) with sources the boundary vertices of ∂Qk, and edge
(iii) can be retrieved from the MSSP data structure for Qk+1 \ (Qk \ ∂Qk) with sources
the boundary vertices of ∂Qk.

2. β[k + 1], γ[k + 1] ∈ ∂Qk+1. We first compute the LCA x of β[k + 1] and γ[k + 1] in TQkβ[k].

a. If neither of β[k + 1], γ[k + 1] is an ancestor of the other in TQkβ[k] we are done by utilising

the preorder numbers stored in TQkβ[k].

b. Else, x is one of β[k + 1], γ[k + 1]. We can assume without loss of generality that
x = β[k+ 1]. Using a level ancestor query we find the child z of β[k+ 1] in TQkβ[k] that is a

(not necessarily strict) ancestor of γ[k + 1]. The x-to-z shortest path in Qoutk is internally
disjoint from ∂Qk+1; i.e. it starts and ends at ∂Qk+1, but either entirely lies inside Qk+1

or entirely outside Qk+1. If β[k+ 2] = v /∈ ∂Qk+2 let w be v; otherwise let w be the child

of the root in T
Qk+1

β[k+1] that is an ancestor of β[k + 2]. The x-to-w shortest path also lies
either entirely inside or entirely outside Qk+1. It remains to determine the relationship
of the x-to-w and the x-to-z paths.

i. If the shortest x-to-z path and the shortest x-to-w path lie on different sides of
∂Qk+1, we can infer the left/right relation by looking at the circular order of the
following edges: (i) the last edge on the coarse edge from β[k] to x in TQkβ[k], (ii) the

first edge on the x-to-z shortest path in Qoutk , and (iii) the first edge on the x-to-w
shortest path in Qoutk . Edges (ii) and (iii) can be retrieved from the MSSP data
structure.

ii. Else, the x-to-z and the x-to-w shortest paths lie on the same side, and we compute
the required relation using the MSSP data structure for this side, with sources the
sites of ∂Qk+1.

Query Correctness. Let us consider an invocation of Dist at level i. We first show that if
such a query is answered without invoking ModifiedPointLocate (Line 9 of Algorithm 4) then
the distance it returns is correct. Indeed, let us recall that the input to Dist is a piece Qi, a vertex
u ∈ ∂Qi and a vertex v ∈ Qouti and the desired output is the u-to-v distance in Qouti (along with
some vertices on the u-to-v shortest path in Qouti ). Let us now look at the cases in which Dist
does not call ModifiedPointLocate (Lines 1-7). If v ∈ Qi+1 then we have two cases: either the
shortest u-to-v path in Qouti crosses ∂Qi+1 or it does not. In the first case the answer is obtained by
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(a) Case 1.a. (b) Case 1.b.

(c) Case 1.c. (d) Case 2.a.

(e) Case 2.b.i. (f) Case 2.b.ii

Figure 3: An illustration of the different cases that arise in determining the left/right/ancestor
relationship of β[k+ 1] and γ[k+ 1] in the shortest path tree rooted at s in Rout. The s-to-v path is
red, the s-to-c path is blue, and their common prefix is purple.
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a point location query in the graph Qi+1 \ (Qi \ ∂Qi) with sites the vertices of ∂Qi+1 and additive
weights the distances from u to these vertices in Qouti , while in the second case by a query on the
MSSP data structure for this graph with sources the vertices of ∂Qi. Else, if v 6∈ Qi+1 and i = m−2,
the shortest path must cross ∂Qi+1. We can thus obtain the distance by performing a point location
query in the Voronoi diagram for Qoutm−1 with sites the vertices of ∂Qi+1 and additive weights the
distances to these vertices from u in Qoutm−2. Note that in both the cases that we perform point
location queries, we have MSSP information for the underlying graph on which the Voronoi diagram
is defined and hence the correctness of the answer follows from the correctness of the point location
mechanism designed in [22].

We now observe that if invocations of Dist at level i+ 1 return the correct answer, then so does
the invocation of ModifiedPointLocate at line 9 of the invocation of Dist at level i, since the
only other requirement for the correctness of ModifiedPointLocate is is the ability to resolve
the left/right/ancestor relationship; this follows from inspecting the cases analyzed above. It follows
that invocations of Dist at level i also return the correct answer. The correctness of the query
algorithm then follows by induction.

Query time. We initially call Dist at level 0. A call to Dist at level i, either returns the
answer in O(log2 n) time by using MSSP information and/or invoking PointLocate (Lines 1-7),
or makes a call to ModifiedPointLocate at level i + 1 (Line 9). For the latter to happen it
must be that i ≤ m − 3. This call to ModifiedPointLocate at level i + 1 invokes a call to
ModifiedHandleCentroid at level i+ 1. Then, ModifiedHandleCentroid makes O(log ri+1)
calls to Dist at level i+ 1, while going down the centroid decomposition of a Voronoi diagram with
O(
√
ri+1) sites.

Let D[i] be the time required by a call to Dist at level i and C[i, t] be the time required by a
call to ModifiedHandleCentroid at level i, where the size of the subtree of VD∗ corresponding
to the input centroid is t. We then have the following:

D[i] =

{
C[i+ 1, ri+1] +O(log n+ log2 ri+1) If i < m− 2

O(log2 n) If i = m− 2

(The additive O(log n) factor comes from the possible existence of multiple holes, see Section 4.1.)

C[i, k] =

{
O(D[i] + log n) + C[i, k/2] If k > 1

2D[i] If k = 1

(The additive O(log n) factor comes from resolving the left/right/ancestor relationship.)
Hence, for i < m− 2, D[i] = O(log ri+1(D[i+ 1] + log n)). The total time complexity of the query

is thus D[0] = O(log2 n
m−3∏
i=1

c log ri+1) = O(cm logm−1 n), where c > 0 is a constant.

Retrieving the shortest path. First of all, let us recall that given an MSSP data structure
for a planar graph H of size n with sources the nodes of a face f , we can construct the shortest
path from a node x in f to any node y of H, backwards from y in O(log log n) per reported edge
(cf. [31]). We can easily retrieve one by one the edges of the coarse trees TQiβ[i] corresponding to
paths whose concatenation would give us the shortest u-to-v path. The shortest path is in fact
the concatenation of the β[i]-to-β[i+ 1] paths in TQiβ[i], plus perhaps an extra final leg, which lies

entirely in Qj \ (Qj−1 \ ∂Qj−1) for some j, if v was appended to β. Our MSSP data structures for

each i allow us to refine those coarse edges of TQiβ[i] when their underlying shortest path lies entirely

within Qi+1 \ (Qi \ ∂Qi). For an edge (x, y) of TQiβ[i] that corresponds to a path lying entirely in

Qouti+1, we use the x-to-y path in T
Qi+1
x , which we can refine using the MSSP information we have

15



for Qi+2 \ (Qi+1 \ ∂Qi+1). We then proceed inductively on coarse edges whose underlying path is
entirely in Qouti+2. In each step we obtain and refine an edge from a node in ∂Qi to a node in ∂Qj ,
j ∈ {i− 1, i, i+ 1} using the local MSSP information. To summarize, we retrieve one by one the
edges of the coarse trees TQiβ[i], corresponding to portions of the actual shortest path that lie entirely

in Qi \ (Qi−1 \ ∂Qi−1) in O(1) time each. We then use the local MSSP information to obtain the
actual edges of each coarse edge in O(log log n) time per actual edge.

We prove in Section 5 that the time bound for the construction of the data structure is
Õ(n

∑
i
ri+1√
ri

). We summarize our main result in the following theorem.

Theorem 7. Given a planar graph G of size n, for any decreasing sequence n = rm > rm−1 >
· · · > r1, where r1 is a sufficiently large constant and m ≥ 3, there is a data structure of size
O(n

∑
i
ri+1

ri
log ri+1) that answers distance queries in time O(cm logm−1 n), where c > 0 is a

constant. This data structure can be constructed in time Õ(n
∑

i
ri+1√
ri

). The shortest path can be

retrieved backwards from v to u, at a cost of O(log log n) time per edge.

We next present three specific tradeoffs that follow from this theorem.

Corollary 8. Given a planar graph G of size n, we can construct a distance oracle admitting any
of the following 〈space, query-time〉 tradeoffs:

(a) 〈O(n log2+1/ε n), Õ(nε)〉, for any constant ε > 0;

(b) 〈n1+o(1), no(1)〉;

(c) 〈Õ(n1+ε),O(log1/ε n)〉, for any constant 1/2 ≥ ε > 0.

The construction time is Õ(n3/2 log1/2ε n), n3/2+o(1) and Õ(n3/2+ε), respectively.

Proof. Let ρi denote ri+1

ri
; we will set all ρi to be equal to a value ρ. We get tradeoffs (a), (b) and

(c) by setting ρ = log1/ε n, ρ = 2
√
logn and ρ = nε, respectively.

We provide the arithmetic below.

(a) If we set ρ = log1/ε n, then the depth of the recursive r-division is m = logρ n+ 1 = logn
log ρ + 1 =

ε log n/ log log n+ 1. Then, the space required is O(nmρ log n) = O(n log2+1/ε n) and the time
required to answer a distance query is Õ((c log n)logρ n) = Õ(nε).

(b) If we set ρ = 2
√
logn, then the depth of the recursive r-division is m = logρ n+ 1 = logn

log ρ + 1 =
√

log n + 1. Then, the space required is O(nmρ log n) = n1+o(1) and the time required to

answer a distance query is Õ(loglogρ n n) = Õ(log
√
logn n) = Õ(2

√
logn log logn) = no(1).

(c) If we set ρ = nε, then the depth of the recursive r-division is m = logρ n+ 1 = 1/ε+ 1. Then,
the space required is O(nmρ log n) = O(n1+ε log n) and the time required to answer a distance
query is O(loglogρ n n) = O(log1/ε n).

4.1 Dealing with multiple holes

We now remove the assumption that all boundary vertices of each piece lie on a single hole.
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Data Structure. The oracle consists of the following for each 0 ≤ i ≤ m − 1, for each piece
R ∈ Ri whose parent in T is Q ∈ Ri+1:

1. If i > 0, for each pair of holes h of R and g of Q, such that g lies in Rh,out, two MSSP data
structures for Rh,out ∩ Q, one with sources the vertices of ∂R that lie on h, and one with
sources the vertices of ∂Q that lie on g.

2. If i < m− 1, for each boundary vertex u of R that lies on a hole h of R:

• For each hole g of Q that lies in Rh,out:

– VD∗near(u,Q, g), the dual representation of the Voronoi diagram for Rh,out ∩Q with
sites the nodes of ∂Q that lie on g, and additive weights the distances from u to
these nodes in Rh,out;

– VD∗far(u,Q, g), the dual representation of the Voronoi diagram for Qg,out with sites
the nodes of ∂Q that lie on g, and additive weights the distances from u to these
nodes in Rh,out;

• If i > 0, the coarse tree TR,hu , which is the tree obtained from the shortest path tree
rooted at u in Rh,out by contracting any edge incident to a vertex that is neither in h nor
in ∂Q, preprocessed as in the single hole case.

Query. If v ∈ Qi+1 \ Qi then in Line 3 of Dist, we need to consider O(1) Voronoi diagrams
VD∗near(u,Qi+1, g), one for each hole of Qi+1, instead of just one. If not, we find the correct hole h

of Qi+1 such that v ∈ Qh,outi+1 , and recurse on VD∗far(u,Qi+1, h).
We can find the correct hole by storing some information for each hole of each piece. It is not

hard to see that each separator of the O(log n) ancestors of a piece P ∈ A lies in P h,out for some
hole h of P . For each piece P ∈ A, we store, for each separator of an ancestor of P in A, the hole h
of P such that P h,out contains that separator. Then, by performing an LCA query for the constant
size piece of A containing v and Qi+1 in A we find the separator that separated v from Qi+1 and
we can thus find the appropriate hole of Qi+1 in O(1) time.

Obtaining the left/right/ancestor information is essentially the same as in the single hole case.
There is one additional case that needs to be considered, in which the vertex at which the s-to-v
path and the s-to-vc path diverge is located inside a hole. In this case we may have to look into
finer and finer coarse trees until we get to a level of resolution where we can either deduce the
left/right relationship from the coarse tree at that level, or from the MSSP data structure at that
level. This refining process has O(log n) levels and takes constant time per level, except for the last
level where we use the MSSP data structure in O(log n) time as in the single hole case. Therefore,
the asymptotic query time is unchanged.

As for retrieving the edges of the shortest path in O(log log n) time each, the presence of multiple
holes does not pose any further complications.

Dealing with holes that are non-simple cycles Non-simple holes do not introduce any
significant difficulties. The technique to handle non-simple holes is the one described in [27,
Section 5.1, pp. 27]. We make an incision along the non-simple boundary of a hole to turn it into a
simple cycle. Making this incision creates multiple copies of vertices that are visited multiple times
by the non-simple cycle. However, the total number of copies is within a constant of the original
number of boundary vertices along the hole. These copies do not pose any problems because, for
our purposes, they can be treated as distinct sites of the Voronoi diagram.
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5 Construction Time

In this section we show how to construct our oracles in the Õ(n
∑

i
ri+1√
ri

) time stated in Theorem 7.

Before doing so, we give some preliminaries on dense distance graphs.

Dense distance graphs and FR-Dijkstra. The dense distance graph of a piece P , denoted
DDGP is a complete directed graph on the boundary vertices of P . Each edge (u, v) has weight
dP (u, v), equal to the length of the shortest u-to-v path in P . DDGP can be computed in time
O(|∂P |2 + |P | log |P |) using the multiple source shortest paths (MSSP) algorithm [8, 30]. Over
all pieces of the recursive decomposition this takes time O(n log2 n) in total and requires space
O(n log n). We refer to the aforementioned (standard) DDGs as internal; the external DDG of a
piece P is the complete directed graph on the vertices of ∂P , with the edge (u, v) having weight
equal to dP out(u, v). There is an efficient implementation of Dijkstra’s algorithm (nicknamed FR-
Dijkstra [20]) that runs on any union of DDGs. The algorithm exploits the fact that, due to
planarity, a DDG’s adjacency matrix M satisfies a Monge property (namely, for any i 6= j we have
that M [i + 1, j] + M [i, j + 1] ≤ M [i + 1, j + 1] + M [i, j]). We next give a –convenient for our
purposes – interface for FR-Dijkstra which was essentially proved in [20], with some additional
components and details from [27,38].

Theorem 9 ([20,27,38]). A set of DDGs with O(M) vertices in total (with multiplicities), each
having at most m vertices, can be preprocessed in time and space O(M logm) in total. After this
preprocessing, Dijkstra’s algorithm can be run on the union of any subset of these DDGs with O(N)
vertices in total (with multiplicities) in time O(N log2m).

The construction. For ease of presentation we present the construction algorithm assuming
pieces have only one hole. Generalizing to multiple holes does not pose any new obstacles. Recall
that for each piece R in the recursive decomposition whose parent in T is Q we need to compute
two MSSP data structures, and for each boundary vertex u of R we need to compute VD∗near(u,Q),
VD∗far(u,Q), and the coarse tree TRu .

Computing the MSSP data structures takes nearly linear time in the total size of these data
structures. To be able to compute the distances between vertices in the same piece of the r1 division,
additive distances for all Voronoi diagrams, and the coarse trees TRu , we compute the internal and
external dense distance graphs of every piece in the recursive r-division. This can be done in nearly
linear time [37]. We also compute the dense distance graph of ∂R ∪ ∂Q. This is done by running
MSSP twice in Q \ (R \ ∂R), and then querying all pairwise distances. For a piece R of the ri
division, this takes Õ(ri+1) time, so a total of Õ(

∑
i n

ri+1

ri
) time overall.

We then compute the distances from each vertex in G to all other vertices in the same piece
R of the r1-division in time O(1), using FR-Dijkstra on R and the external DDG of R. To
compute the additive weights for the Voronoi diagrams VD∗near(u,Q) and VD∗far(u,Q), as well

as the coarse tree TRu , we need to compute distances from u to ∂Q ∪ ∂R in Rout. This can
be done in time O(|∂Q| log2 |∂Q|) by running FR-Dijkstra from u on the union of the DDG of
Q \ (R \ ∂R) and the external DDG of Q. The total time to compute all such additive weights is

thus O(
∑

i n
√

ri+1

ri
log2 ri+1).

To compute each Voronoi diagram VD∗near(u,Q) we compute the primal Voronoi diagram
VDnear(u,Q) with a single-source shortest path computation in Q from an artificial super-source s
connected to all vertices ∂Q with edges whose weights are the additive weights. This can be done in
linear O(|Q|) time [24]. In O(|Q|) time it is then easy to obtain the dual VD∗near(u,Q) from the
primal VDnear(u,Q). The total time to compute all such diagrams is therefore O(

∑
i n

ri+1√
ri

).
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It remains to compute the diagram VD∗far(u,Q). Here we cannot afford to make an explicit
computation of the primal Voronoi diagram VDfar(u,Q). Instead, we will compute just the
tree structure and the trichromatic faces of VDfar(u,Q). These suffice as the representation of
VD∗far(u,Q) since all we need for point location is the centroid decomposition of VD∗far(u,Q). The
main idea is to use FR-Dijkstra to locate the trichromatic faces. Let K be a star with center u and
leaves ∂Q, where for each vertex w ∈ ∂Q, the length of the arc uw is the additive distance of w
in VD∗far(u,Q). We start by computing a shortest path tree T rooted at u in the union of K and
the DDGs of all siblings of pieces in the complete recursive decomposition tree A that contain Q.
We shall prove that, by inspecting the restriction of T to the DDG of each piece P , we can infer
whether P contains a trichromatic face or not. If P contains a trichromatic face we refine T inside
P by replacing the DDG of P with the DDGs of its two children in A, and recomputing the part
of T inside P using FR-Dijkstra. We continue doing so until we locate all O(|∂Q|) trichromatic
faces. The tree structure of VDfar(u,Q) is captured by the structure of the shortest path tree in the
DDGs of all the pieces at the end of this process. The total time to locate all the trichromatic faces
is proportional, up to polylogarithmic factors, to the total number of vertices in all of the DDGs
involved in all these computations. Since the total number of vertices in all DDGs containing a
particular face is O(

√
n), the total time for finding all trichromatic faces as well as the tree structure

is Õ(
√
n ·

√
|Q|). A more careful analysis that takes into account double counting of large pieces

(cf. [10]) bounds this time by Õ(
√
n
√
|Q|). Since there are n/

√
ri boundary vertices at level i of the

recursive r-division, the total time to compute all Voronoi diagrams VD∗far(u,Q) for a single level is

Õ( n√
ri
·
√
nr

1/4
i ) = O(n3/2). This is dominated by the O(

∑
i n

ri+1√
ri

) term for any choice of ri’s.

The only missing part in the explanation above is showing we can infer whether a piece P
contains a trichromatic face just by inspecting the restriction of T to P . Our choice of additive
distance guarantees that each vertex of ∂Q is a child of u in T . We label each vertex w of T by
its unique ancestor in T that belongs to ∂Q. Note that the label of a vertex w corresponds to the
Voronoi cell containing w in VD∗far(u,Q). Consider the restriction of T to the DDG of P . We use a
representation of size O(|∂P |) of the edges of T embedded as curves in P , such that each edge of T
is homologous (w.r.t. the holes of P ) to its underlying shortest path in P . See [33,36] for details on
such a representation. We make incisions in the embedding of P along the edges of T (the endpoints
of edges of T are duplicated in this process). Let P be the set of connected components of P after
all incisions are made.

Lemma 10. P contains a trichromatic face if and only if some connected component C in P
contains boundary vertices of P with more than two distinct labels.

Intuitively, for each connected component C in P, each label appears as the label of boundary
vertices along at most a single sequence of consecutive boundary vertices along the boundary of
C. Consider the component C ′ obtained from C by connecting an artificial new vertex to all the
boundary vertices with the same label. Since these boundary vertices form a single consecutive
interval on the boundary of C, C ′ is also a planar graph when the new vertices are embedded in the
infinite face of C. Now C ′ has a new infinite face where every vertex on that face has a distinct label,
and there are more than two labels. The Voronoi diagram of C ′ necessarily contains a trichromatic
face.

Proof. Let C be a connected component in P . Note that the vertices of ∂Q either do not belong to
C or they are incident to a single face f of C. In the former case, let f be the face of C such that
∂Q is embedded in f . We think of f as the infinite face of C. Note that, because any path from ∂Q

19



z
<latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit><latexit sha1_base64="V61ahDJnnWKPVhpM/yuf77m1lKo=">AAAB6HicbZBNS8NAEIYn9avWr6pHL4tF8FQSEfQkBS8eW7Af0Iay2U7atZtN2N0INfQXePGgiFd/kjf/jds2B219YeHhnRl25g0SwbVx3W+nsLa+sblV3C7t7O7tH5QPj1o6ThXDJotFrDoB1Si4xKbhRmAnUUijQGA7GN/O6u1HVJrH8t5MEvQjOpQ85IwaazWe+uWKW3XnIqvg5VCBXPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXYuSRqj9bL7olJxZZ0DCWNknDZm7vycyGmk9iQLbGVEz0su1mflfrZua8NrPuExSg5ItPgpTQUxMZleTAVfIjJhYoExxuythI6ooMzabkg3BWz55FVoXVc9y47JSu8njKMIJnMI5eHAFNbiDOjSBAcIzvMKb8+C8OO/Ox6K14OQzx/BHzucP6A+M+g==</latexit>

y
<latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit><latexit sha1_base64="k2E7geM6EpzwHg6AXJpYg82YvKU=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjreZ0UK54NW8hsg5+ARUo1BiUv/rDhGUxSsME1brne6kJcqoMZwJnbrWfaUwpm9AR9ixKGqMO8sWmM1K1zpBEibJPGrJw3V8TOY21nsah7YypGevV2tz8r9bLTHQb5FymmUHJlh9FmSAmIfOzyZArZEZMLVCmuF2WsDFVlBkbjmtT8FdvXof2Vc233Lyu1O+KPEpwDhdwCT7cQB0eoAEtYIDwDK/w5kycF+fd+Vi2bjjFzBn8kfP5A0vFjSQ=</latexit>

u
<latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit><latexit sha1_base64="rezAWKkdjTLXShLFd/Wl6eaKQ9E=">AAAB6XicbZBNS8NAEIYnftb4VfXoZbEUPJVEBD1JwYvHFuwHtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+1sbG5t7+yW9tz9g8Oj4/LJaVsnmWLYYolIVDekGgWX2DLcCOymCmkcCuyEk/t5vfOESvNEPpppikFMR5JHnFFjrWY2KFe8mrcQWQe/gAoUagzKX/1hwrIYpWGCat3zvdQEOVWGM4Ezt9rPNKaUTegIexYljVEH+WLTGalaZ0iiRNknDVm47q+JnMZaT+PQdsbUjPVqbW7+V+tlJroNci7TzKBky4+iTBCTkPnZZMgVMiOmFihT3C5L2JgqyowNx7Up+Ks3r0P7quZbbl5X6ndFHiU4hwu4BB9uoA4P0IAWMEB4hld4cybOi/PufCxbN5xi5gz+yPn8AUWxjSA=</latexit>

q
<latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit><latexit sha1_base64="bdGUh2GFhz17H0BtMF+W9k6UzbQ=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkIuhJCl48tmA/oA1ls520SzebuLsRSukv8CQoiFd/kif/jds2B219YeHhnRl25g1TwbXxvG+nsLG5tb1T3HX39g8Oj0rHJy2dZIphkyUiUZ2QahRcYtNwI7CTKqRxKLAdju/m9fYTKs0T+WAmKQYxHUoecUaNtRqP/VLZq3oLkXXwcyhDrnq/9NUbJCyLURomqNZd30tNMKXKcCZw5lZ6mcaUsjEdYteipDHqYLrYdEYq1hmQKFH2SUMWrvtrYkpjrSdxaDtjakZ6tTY3/6t1MxPdBFMu08ygZMuPokwQk5D52WTAFTIjJhYoU9wuS9iIKsqMDce1KfirN69D67LqW25clWu3eR5FOINzuAAfrqEG91CHJjBAeIZXeHPGzovz7nwsWwtOPnMKf+R8/gA/nY0c</latexit>
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Figure 4: Illustration for the proof of Lemma 10. Some pieces in a graph G are shown. The piece Q
(in bold) is a piece of some ri-division in the recursive r-division of G. The piece P (bold boundary,
horizontal stripes) is some piece in the complete recursive decomposition of G that lies outside Q.
The shortest path tree T is shown in blue, the connected component C in yellow, and the cycle D
in gray. Vertices x and y have the same label q. The vertices w, z between x and y (on the cyclic
walk F along the infinite face of C) must also be labeled q.

to any vertex of C must intersect f , the set of labels of the vertices of f is identical to the set of
labels of all of C.

We first claim that the vertices of f that have the same label are consecutive in the cyclic order
of f . To see this, consider any two distinct vertices x, y of f that have the same label q. Note
that, by the incision process defining C, if x is an ancestor of y in T (or vice versa) then all the
vertices between x and y on f are on the x-to-y path in T , and hence all have the label q. Assume,
therefore, that neither is an ancestor of the other (as illustrated in Figure 4), and consider the (not
necessarily simple) cycle D (in Qout) formed by the unique x-to-y path in T , and the x-to-y path F
of f such that D does not enclose C. Observe that D is non self crossing, and that D encloses no
vertices of ∂Q except, perhaps, q itself. Suppose some vertex of F has a label q′ 6= q, and let w be a
rootmost such vertex in T . Since D does not enclose q′, the q′-to-w path in T is not enclosed by
D, and hence must intersect C. But then C should have been further dissected when the incisions
along T were performed, a contradiction.

The argument above established that the vertices of f that have the same label are consecutive
in the cyclic order of f . For every unique label q of a vertex of f we embed inside f an artificial
vertex and connect it to every vertex w of f that has label q with an edge whose length is the
q-to-w distance in T . By the consecutiveness property above, this can be done without violating
planarity. We connect the artificial vertices by infinite length edges, according to the cyclic order of
the labels along f , so that resulting graph C ′ has a new infinite face containing just the artificial
vertices. Consider now the additively weighted Voronoi diagram VD(C ′) with the artificial vertices
as sites, where the additive weight of an artificial vertex with label q is equal to the additive weight
of the corresponding site q in VD∗far(u,Q). Note that, by construction, the additive distances in
VD(C ′) and in VD∗far(u,Q) are the same, so the restrictions of both diagrams to C are identical. It
therefore suffices to prove that VD(C ′) has a trichromatic face in C.
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Since C has boundary vertices of P with more than two distinct labels, C ′ has more than two
sites. Since all the vertices on the infinite face of C ′ are sites, and since every site is in its own
Voronoi cell, VD(C ′) has at least two trichromatic faces [7, 22] (one being the infinite face of C ′).
Observe that all the newly introduced faces of C ′ (those created by the edges connecting artificial
vertices to vertices of f or to each other) have either a single label (in case the face is a triangle
formed by an artificial vertex and two consecutive vertices of f with the same label), or two labels
(in case the face has size 4, and is formed by two artificial vertices and two consecutive vertices of f
with two distinct labels). It follows that VD(C ′) must have a trichromatic face of C, and so does
VD∗far(u,Q).

6 Final remarks

The main open question is whether there exists a distance oracle occupying linear (or nearly linear)
space and requiring constant (or polylogarithmic) time to answer queries. Note that currently, any
oracle with Õ(n) space requires polynomial query time. In particular, the fastest known oracles with
strictly linear space [37, 39] require Ω(n1/2+ε) query time. Another important question concerns the
construction time. Is there a nearly-linear time algorithm to construct our oracle, or oracles with
comparable space to query-time tradeoffs?
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