
Pseudorandom Generators for Width-3 Branching Programs

Raghu Meka
∗

UCLA

Los Angeles, CA, USA

raghum@cs.ucla.edu

Omer Reingold
†

Stanford University

Stanford, CA, USA

reingold@stanford.edu

Avishay Tal
‡

Stanford University

Stanford, CA, USA

avishay.tal@gmail.com

ABSTRACT
We construct pseudorandom generators of seed length Õ(log(n) ·
log(1/ϵ)) that ϵ-fool ordered read-once branching programs

(ROBPs) of width 3 and length n. For unordered ROBPs, we

construct pseudorandom generators with seed length Õ(log(n) ·
poly(1/ϵ)). This is the rst improvement for pseudorandom

generators fooling width 3 ROBPs since the work of Nisan

[Combinatorica, 1992].

Our constructions are based on the “iterated milder restrictions”

approach of Gopalan et al. [FOCS, 2012] (which further extends the

Ajtai-Wigderson framework [FOCS, 1985]), combinedwith the INW-

generator [STOC, 1994] at the last step (as analyzed by Braverman

et al. [SICOMP, 2014]). For the unordered case, we combine iterated

milder restrictions with the generator of Chattopadhyay et al. [CCC,

2018].

Two conceptual ideas that play an important role in our analysis

are: (1) A relabeling technique allowing us to analyze a relabeled

version of the given branching program, which turns out to be

much easier. (2) Treating the number of colliding layers in a

branching program as a progress measure and showing that it

reduces signicantly under pseudorandom restrictions.

In addition, we achieve nearly optimal seed-length Õ(log(n/ϵ))
for the classes of: (1) read-once polynomials on n variables, (2)

locally-monotone ROBPs of lengthn and width 3 (generalizing read-

once CNFs and DNFs), and (3) constant-width ROBPs of length n
having a layer of width 2 in every consecutive poly log(n) layers.

CCS CONCEPTS
• Theory of computation → Pseudorandomness and
derandomization.

KEYWORDS
epsilon-biased generator, pseudorandom generators for small-

space computation, pseudorandom generators for space-bounded

computation, random restrictions, read once branching programs

∗
Supported by NSF grant CCF-1553605.

†
Supported in part by NSF grant CCF-1763311.

‡
Supported by a Motwani Postdoctoral Fellowship and by NSF grant CCF-1763311.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specic permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316319

ACM Reference Format:
Raghu Meka, Omer Reingold, and Avishay Tal. 2019. Pseudorandom

Generators for Width-3 Branching Programs. In Proceedings of the 51st
Annual ACM SIGACT Symposium on the Theory of Computing (STOC ’19),
June 23–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3313276.3316319

1 INTRODUCTION
A central challenge in complexity theory is to understand the trade-

o between space and randomness as resources and in particular,

whether BPL = L. One of the main techniques we have for

approaching this question is to design pseudorandom generators

that fool tests computable in small space. The latter question can

be elegantly captured in the language of designing pseudorandom

generators for read-once branching programs; we dene these

objects next.

Denition 1.1. For w,n ∈ N, a read-once branching program
(ROBP) of widthw and length n is a layered directed graph B with
n+1 layers where all but the rst layer have at mostw nodes, the rst
layer has a single vertex designated the start vertex, and the vertices
in the last layer are either labeled accept or reject. Each vertex in the
rst n layers has exactly two outgoing edges to vertices in the next
layer with one labeled 1 and the other labeled −1.

Given a ROBP as above, it denes a function B : {±1}n → {±1}

naturally where on input x ∈ {±1}n starting from the start vertex,
you follow the edges labeled by xi for 1 ≤ i ≤ n and output −1 if the
last vertex reached is accepting and 1 otherwise.

Derandomizing space-bounded computations is fundamentally

related to designing pseudorandom generators (and hitting set
generators) for ROBPs as above.

Denition 1.2. Given a class of functions F = { f : {±1}n → R},
a functionG : {±1}r → {±1}n is a pseudorandom generator (PRG)
with error ε (or ε-fools) F if for every f ∈ F ,���� Pr

x ∈u {±1}n
[f (x)] − Pr

y∈u {±1}r
[f (G(y))]

���� ≤ ε .

We say the generator is log-space explicit if G can be computed
in space logarithmic in the output length n and refer to r as the
seed-length of the generator.

It is well-known by now that if there exists a log-space explicit

PRG (or even a hitting set generator) with constant error that fools

ROBPs of width n and length n with seed-length O(logn), then
BPL = L. In this vein, a seminal result of Nisan [Nis92] gave a log-

space explicit PRG that ε-fools ROBPs of widthw and length n with

seed-length r = O((logn) · log(wn/ε)). Despite signicant attention,
improving Nisan’s PRG has been a fundamental bottleneck in

pseudorandomness. For width w = 2, it is known that small-bias

626

https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1145/3313276.3316319
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3313276.3316319&domain=pdf&date_stamp=2019-06-23

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

spaces fool width two ROBPs ([SZ95, BDVY13]), leading to a PRG

with seed-length O(log(n/ε)). However, even for the case of ε a

constant and widthw = 3, the best provable PRG had seed-length

O(log2 n)–no better than what Nisan’s PRG gives for polynomial

width ROBPs. Nearly optimal hitting-sets generators for width-

3 ROBPs were given in [SZ11, GMR
+
12] while [BRRY14, KNP11,

De11] obtained PRGs with nearly optimal seed-length for special-

classes of constant-width ROBPs. In this work, we obtain the rst

improvement over Nisan’s PRG for width-3 ROBPs:

Theorem 1 (Main Theorem). For any ε > 0, there exists a log-
space explicit PRG that ε-fools width-3 ROBPs with seed-length1

Õ(log(n/ε)) +O(log(1/ε) · log(n)).

We in fact also obtain PRG’s with nearly optimal dependence

for constant error for the bigger class of unordered width-3 ROBPs,

which are functions computable by ROBPs under some unknown

permutation (see Section 3.3 for the formal denition). In this

regime, we improve the results of [SVW17] that gave a PRG with

seed-length Õ(log3 n).

Theorem 2. For any ε > 0, there exists a log-space explicit PRG
that ε-fools unordered width-3 ROBPs with seed-length Õ(log(n/ε))+
O(poly(1/ε) · log(n)).

A special class of unordered width-4 ROBPs that have received

recent attention are read-once polynomials (see [Tre10, LV17]) for
which we give a PRG with nearly optimal seed-length both in terms

of the error and input length (up to poly(log log) factors):

Theorem 3. There exists a log-space explicit ε-PRG for the class of
read-once polynomials on n variables with seed-length Õ(log(n/ε)).

In comparison, the best previous PRG for read-once polynomials

had seed-length Õ(log(n/ε)) · log(1/ε) [LV17], thus in particular

needed Õ(log2 n) seed-length to fool read-once polynomials with

polynomially small error.

Our results rely on several new conceptual ideas as well as

technical ingredients, including PRGs fooling other interesting

intermediate classes of ROBPs, that we believe could be useful

for other applications especially in the context of obtaining PRGs

for constant-width ROBPs. Our results rely on the framework

of iterative mild random restrictions introduced in [GMR
+
12]

and further developed in [RSV13, SVW17, GY14, GKM15, HLV17,

LV17], the latter two also present an elegant alternate view of the

technique as bounded-independence plus noise. We describe this

framework, our proof techniques next.

1.1 The Ajtai-Wigderson Framework
The Ajtai-Wigderson [AW85] framework, that was revived and re-

ned for ROBPs in the work of Gopalan, Meka, Reingold, Trevisan,

Vadhan [GMR
+
12], provides a “recipe” for constructing PRGs for

classes of functions that simplify under (pseudo)random restrictions.

Roughly speaking, in order to fool a class of functions C it suces

to fool C under pseudo-random restrictions keeping each variable

alive with probability p. Equivalently, it suces to pseudorandomly

assignp-fraction of the coordinates while approximately preserving

the acceptance probability (on average) of every function f ∈ C.

1
Henceforth, Õ (t) is used to denote O (t · poly log(t)).

Suppose we have such a pseudorandom partial assignment, and

assume that the class of functions C is closed under restrictions.

Then, iteratively applying a pseudorandom partial assignment on

the remaining coordinates until we assigned all of them gives us a

pseudorandom generator for C. We expect to assign all the coordi-

nates afterO(p−1 · logn) iterations, thus if each iteration requires at

most s random bits, we get a PRG with seed-lengthO(s ·p−1 · logn).
Naively, it seems impossible to achieve nearly-logarithmic seed

length using this approach, however this was obtained in the work

of [GMR
+
12] as explained next.

Achieving Near-Logarithmic Seed-Length. In the work of

[GMR
+
12] the Ajtai-Wigderson approach was used to construct

ε-PRGs for read-once CNFs (and read-once DNFs) with seed length

Õ(log(n/ε)). In order to achieve nearly-logarithmic seed-length

[GMR
+
12] showed that one can assign a constant fraction of the

coordinates while preserving the acceptance probability up to error

poly(ε/n) using only s = Õ(log(n/ε)) bits of randomness. Plugging

into the estimates abovewould give naively seed-length Õ(log(n/ε)·
log(n)). In order to avoid the additional factor of log(n), they prove

that after pseudorandomly assigning all but 1/poly log(n) of the
coordinates, the function simplies signicantly so that it can be

fooled using additional O(log(n/ε))-random bits.

We describe the approach more precisely. A p-pseudorandom
restriction against a class of functions C species a set T ⊆ [n] of

roughly p · n of the coordinates, and an assignment x ∈ {±1}T to

these coordinates, such that for any f ∈ C:

E
T ,x

E
y∈{±1}[n]\T

[f (x ◦ y)] = E
z∈{±1}n

[f (z)] ± ε

where (x ◦y) denotes the string whoseT -coordinates are taken from
x and other coordinates are taken from y. The main observation

of [GMR
+
12] is that given T , it suces that x would fool the Bias-

function, dened as

BiasT f (x) , E
y∈{±1}[n]\T

[f (x ◦ y)].

This is due to the fact that��� E
z∈{±1}n

[f (z)] − E
x

E
y∈{±1}[n]\T

[f (x ◦ y)]
���

=

��� E
z∈{±1}T

[BiasT f (z)] − E
x
[BiasT f (x)]

���.
The observation that it suces to fool the bias-function instead

of just fooling the restricted functions, enabled [GMR
+
12] to use

“mild” restrictions with p = Ω(1) for the class of CNFs/DNFs. They
show that in this case, the average of the restricted functions (i.e.,

the bias-function) is much easier to fool than a typical restricted

function.

2 PROOF OVERVIEW
Similarly to [GMR

+
12], in order to achieve a PRG with nearly-

logarithmic seed-length fooling width-3 ROBPs, we show that:

(1) We can pseudorandomly assign half the input coordinates

while preserving the acceptance probability (on average)

of every width-3 ROBP up to error ε , using seed-length

Õ(log(n/ε)).

627

Pseudorandom Generators for Width-3 Branching Programs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

(2) After pseudorandomly assigning all but 1/poly log(n) of the
coordinates any width-3 ROBP simplies enough so that

it can be fooled using additional Õ(log(n) log(1/ε)) random
bits.

Both steps are involved and explained in greater detail in the next

two sections.

2.1 Pseudorandomly Assigning Half of the
Coordinates

In Section 4 we prove the following theorem showing that we

can pseudorandomly assign 1/poly log log(n/ε) of the coordinates
while changing the acceptance probability by at most ε .

Theorem 4. Let n ∈ N, ε > 0. There exists a log-space explicit
pseudorandom restriction assigning p = 1/O(log log(n/ε))6 fraction
of the variables using O(log(n/ε) log log(n/ε)) random bits, that
maintains the acceptance probability of any unordered width-3 length-
n ROBP up to error ε .

Given Theorem 4, we can assign half of the coordinates by

iteratively applying the pseudorandom restriction O(1/p) times.

This ultimately uses O(log(n/ε)(log log(n/ε))7) = Õ(log(n/ε))
random bits to assign half of the coordinates, as promised.

We describe the techniques that go into the proof of Theorem 4.

The proof proceeds in two steps. The rst step (described

in Section 4) reduces the task of generating a pseudorandom

restriction for width-3 ROBPs to the task of generating a

pseudorandom restriction for the XOR of short (logarithmic-length)

width-3 ROBPs. The second step (described in Section 5 of the full

version [MRT18]) is a pseudorandom restriction for the latter class

of Boolean functions.

2.1.1 Reducing width-3 ROBPs to the XOR of short width-3 ROBPs.
Next, we explain how we reduce fooling width-3 ROBPs to fooling

the XOR of short width-3 ROBPs. Let B be a ROBP of length-n
and width-3. We pick a set T0 ⊆ [n] of size ≈ n/2 using an almost

O(log(n/ε))-wise independent distribution. We wish to show that

for most choices of T0, we can pseudorandomly assign pn of the

coordinates in T0, while fooling the Bias-function BiasT0B. Our
main observation is that for most choices for T0, the bias-function
BiasT0B is the average of simpler width-3 ROBPs.

Recall that every layer of edges in a ROBP contains two sets of

edges, one corresponding to the transition made when the input bit

equals 1 and similarly one corresponding to the input bit equaling

−1. Observe that if the two sets of edges are the same, then the

layer is redundant and the value of the input bit does not aect

whether the ROBP accept or not. We thus assume without loss of

generality that there are no redundant layers. We say that a layer

of edges is a colliding layer if there are two edges marked by the

same label (i.e. both labeled 1 or both labeled −1) that enter the

same vertex in the next layer.

First, suppose (ideally) that all layers in a width-3 ROBP are

colliding. Then, under the pseudorandom restriction, with high

probability, in every O(log(n/ε)) consecutive layers we will have
a layer of edges whose corresponding variable is xed to a value

for which the edges in the layer collide, leaving at most 2 vertices

reachable in the next layer of vertices. Using a result of Bogdanov,

Dvir, Verbin, Yehudayo [BDVY13] such restricted ROBPs can be

written as linear combinations of functions of the following form:

XOR of width-3 ROBPs of length O(log(n/ε)) dened over disjoint

sets of variables. It thus suces to fool this XOR of short width-3

ROBPs in order to fool the restricted ROBP, as we do in Section 5

of the full version [MRT18].

The assumption that all layers in a width-3 ROBP are colliding is

not necessarily true. In fact, it can be the case that in every layer of

edges both the 1-edges and the (−1)-edges form a permutation

on the state space with no collisions. Indeed, such ROBPs are

known in the literature as permutation-ROBPs. (For example, the

MOD3(x1, . . . ,xn) function indicating whether (
∑
i xi ≡ 0 mod 3)

can be computed by width-3 permutation ROBP.) Nonetheless, as

mentioned earlier, it suces to fool the bias-function and this task

is easier than fooling each restricted function.

Relabeling Under The Bias Function: In the following, we consider
relabeling of a ROBP. Recall that in a ROBP every vertex has a

pair of outgoing edges: one labeled 1 and the other labeled −1. A

relabeling of a ROBP B is any ROBP B′
that can be achieved from

B by swapping the labels for some of these pairs of edges.

Our key observation is that the bias function BiasT B of a program

B does not depend on the labels of the edges associated with

the variables outside T . This is due to the fact that the value of

BiasT B(x) on a given partial input x ∈ {±1}T is the probability

of acceptance of B on a random assignment to the variables in

[n] \ T , and this value remains the same under any relabeling of

the edges associated with the variables in [n] \ T . Moreover, a

simple fact shows that any non-redundant layer of edges can be

relabeled so that it is colliding. Thus, for any ROBP B and any

xed T , we can relabel the edges associated with variables with

[n] \T so that they are colliding, yielding another width-3 ROBP,

denoted BT . We get that BiasT B = BiasT BT , and BT is a ROBP

in which all layers in [n] \T are colliding. We can thus apply the

previous argument and conclude that BiasT BT is the average of

width-3 ROBPs whose vast majority have a layer of vertices of

width-2 in every O(log(n/ε)) consecutive layers. These ROBPs are
then fooled by the pseudorandom partial assignment described in

the next section.

To sum up, since the bias-function is the average over all

restricted functions of B, it also equals the average over all restricted
functions of BT , and these restricted functions are simple enough

for us to fool.

Relabeling was previously used in [BV10, Ste13, CGR14] to show

that the best ROBPs distinguishing between certain distributions

and the uniform distribution must be “locally-monotone” (see

Section 3.3 for the formal denition). In general, it is unclear how

to argue locally monotone programs are the hardest ROBPs to fool.

Nevertheless, in [CHRT18], relabeling helped bounding the sum

of absolute values of Fourier coecients of small width ROBPs.

In comparison, we use a relabeling technique to note that in the

iterated random restrictions framework (when trying to fool the

bias-function), one might as well treat the restricted layers as if

they were locally monotone.

2.1.2 Pseudorandom restrictions for the XOR of short width-3 ROBPs.
Our main result in Section 5 of the full version [MRT18] is the

following:

628

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

Theorem 5. Let n,w,b ∈ N, ε > 0. There exists a log-space explicit
pseudorandom restriction assigning p = 1/O(log(b · log(n/ε)))2w

fraction of n variables usingO(w · log(n/ε) · (log log(n/ε) + log(b)))
random bits, that maintains the acceptance probability of any XOR of
ROBPs of width-w and length-b (dened on disjoint sets of variables)
up to error ε .

Recall that in the previous section, we reduced the case of width-

3 ROBPS to this case with w = 3 and b = O(log(n/ε)). Our proof
for Theorem 5 follows previous strategies by [GMR

+
12, GY14,

GKM15, LV17]. Indeed, the functions we are trying to fool are

a special case of product-functions that were recently studied

in [HLV17, LV17]. Product-functions are functions of the form

f (x) = f1(x) · f2(x) · · · fm (x) where each fi depends on a set Bi of
at most b variables, and {B1, . . . ,Bm } are pairwise-disjoint.

PRGs for product-functions were constructed in previous work,

however none achieve the parameters we need. Haramaty, Lee and

Viola [HLV17] and Lee and Viola [LV17] constructed PRGs with

seed length Õ(b +
√
mb log(1/ε)) and Õ((b + log(m/ε)) · log(1/ε))

respectively for such functions.While the latter is nearly optimal for

constant ε , we require ε to be smaller than 1/m, since the reduction

in the previous section from [BDVY13] incurs amultiplicative factor

ofm on the error. Gopalan, Meka and Kane [GKM15] achieve nearly

optimal seed-length Õ(log(n/ε)) but only for the case where the

blocks B1, . . . ,Bm are known.

The main reason we are able to achieve better seed-length is due

to the fact that we further assume that the functions f1, . . . , fm
are computed by constant-width ROBPs. We rely on the previous

work of Chattopadhyay, Hatami, Reingold, Tal [CHRT18] who

constructed PRGs for constant-width length-n ROBPs with seed-

length poly log(n). We observe that under an unusual setting of

parameters, namely when applying this result to constant-width

ROBPs of length poly log(n), one gets seed-length Õ(log(n/ε)). This
enables us to fool the XOR of any subset of poly log(n) of the
functions f1, . . . , fm using nearly-logarithmic seed-length. Relying

on the proof strategy laid by Gopalan and Yehudayo [GY14], we

bootstrap this into a pseudorandom restriction fooling the XOR of

f1, . . . , fm .

Due to lack of space we have not included the proof of

Theorem 5 in this extended abstract. Please see Section 5 in the full

version [MRT18].

2.2 Simplication under Pseudorandom
Restrictions

Recall that our proof strategy is similar to that of [GMR
+
12]:

(1) For i = 0, . . . ,O(log logn): assign half of the remaining

coordinates pseudorandomly using Õ(log(n/ε)) random bits,

while changing the acceptance probability by at most ε .
(2) Pseudorandomly assign the remaining coordinates using

Õ(log(n/ε)) random bits.

The rst step was overviewed in the previous section. In order

to carry on the second step, we wish to nd some progress measure,

that would decrease in each iteration of the rst step. For the case of

CNFs theCNF-width (i.e., themaximal number of literals in a clause)

was a good progress measure for [GMR
+
12]. They showed that

without loss of generality the CNF-width is O(log(n/ε)) initially,
and that it decreases by a constant-factor in each iteration of Step 1.

Our analogous progressmeasure is the number of colliding layers.

We recall that in a ROBP, some layers of edges form permutations

on the state space, while others are colliding.

We show that after the rst application of step 1, with high prob-

ability the restricted ROBP can be written as a composition ofm
subprograms D1, . . . ,Dm where each Di has at most 2 vertices in

the rst and last layers and at most `0 = O(log(n/ε)) colliding lay-
ers. Intuitively, this happens since every colliding layer reduces the

width to 2 with constant probability and thus with high probability

in any O(log(n/ε)) consecutive colliding layers at least one would
be set to the value that reduces the width to 2. This motivates the

following denition.

Denition 2.1. We call a ROBP B a (w, `,m)-ROBP if B can be
written as D1 ◦ . . . ◦ Dm , with each Di being a widthw ROBP with
the rst and last layers having at most two vertices and each Di
having at most ` colliding layers.

We wish to show that the parameter ` (that bounds the maximal

number of colliding layer in a subprogram Di with width-2 in

the rst and last layers) reduces by a constant factor under any

iteration of step 1. That is, to show that after iteration i of step 1

we get with high probability a (3, `i ,mi)-ROBP where `i = `0/c
i

for some constant c < 1. As long asmi ≤ exp(O(`i)), an inductive

argument works since the colliding layers in each individual D j
reduces by a factor c with probability 1 − exp(−Ω(`i)) and we

can aord a union bound over allmi subprograms. However, we

cannot aord such a union bound ifmi � exp(`i). To handle this,

we prove the following structural result: any (3, `i ,mi)-ROBP can

be well-approximated by (3, `i ,C
`i)-ROBPs for some constant C .

Furthermore, we show that the error indicator of the approximator

can be written as the AND ofC`i
many (3, `i , 1)-ROBPs, and that its

expectation under the uniform distribution is doubly-exponentially

small in `i . This allows us to show that the error indicator is small

under the pseudo-random assignments as well, and we can safely

replace a (3, `i ,mi)-ROBP with its (3, `i ,C
`i)-ROBP approximator.

Applying the restriction and the structure result O(log logn)

times, we end up with a (3, `′,C`′) ROBP where `′ = O(log(1/ε)).

As a last step, we show that (3, `′,C`′)-ROBPs are fooled by the

INW generator [INW94] with seed-length Õ(log(n) log(1/ε)). This
follows from the results of [BRRY14]. For the unordered case, we

use the generator from the recent work of [CHHL18] for the last

step, with seed-length Õ(log(n)·poly(1/ε)) (using a structural result
by [SVW17]).

2.3 The Proof of Theorem 3
Theorem 3 is a special case of the following theorem

Theorem 6. Let n,w,b ∈ N, ε > 0. There exists a log-space explicit
pseudorandom generator that ε-fools any XOR of ROBPs of width-w
and length-b (dened on disjoint sets of variables), using seed-length
O(log(b) + log log(n/ε))2w+2 · log(n/ε).

We consider b as the progress measure, and wish to show that

this parameter reduces under pseudorandom restrictions. This is

analogous to the the number of colliding layers ` in the previous

629

Pseudorandom Generators for Width-3 Branching Programs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

section. However, here, in some cases, we cannot guarantee that

the application of the pseudorandom restriction from Theorem 5

would decrease b. The problematic cases are when we have the

XOR of more than exp(b) functions on b variables each. We show

that in such cases, an “aggressive” pseudorandom restriction,

assigning 1 − exp(−b) fraction of the variables, simplies the

function signicantly, while maintaining its acceptance probability.

Combining applications of mild-restrictions and aggressive-

restrictions in a “decision tree of random restrictions” results in

an assignment that fools the function. However, this does not give

a PRG as the decisions made along the tree depend adaptively

on the function we try to fool, and PRGs cannot depend on the

function they try to fool. We x this by taking the XOR of several

pseudorandom assignments, one per each path in this decision tree

in order to construct a PRG that fools this class of functions.

Due to lack of space we have not included this result in this

extended abstract. Please see Section 6 in the full version [MRT18]

for the proof.

2.4 Comparison with Forbes-Kelley
Independently and concurrently, Forbes and Kelley [FK18]

constructed PRGs that ε-fool unordered width-w length-n ROBPs

with seed lengthO(log(nw/ε) log2 n). For bounded widthw , which

is the main focus of our work, their seed-length improves to

Õ(w log(n/ε) logn). Their result is a signicant improvement to

the prior state of the art PRGs for unordered ROBPs by [IMZ12]

and [CHRT18]. In particular, they nearly match Nisan’s parameters

for constant width [Nis92].

We point out that our results are incomparable to those of Forbes-

Kelley [FK18]. Our main contribution is that we surpass Nisan’s

parameters for width-3 and get nearly optimal seed length Õ(logn)
for constant error (in fact, our results hold even for the case of

unordered ROBPs). In addition, we get nearly optimal dependency

on all parameters for read-once polynomials.

The work of Forbes and Kelley also rely on the two-step

approach outlined above: (1) pseudorandomly assign half the input

coordinates while preserving the acceptance probability, and (2)

repeat recursively until all input coordinates are assigned. For

constant width ROBPs they are able to perform step (1) with

nearly logarithmic seed-length Õ(log(n/ε)). This step can be seen

as a stronger alternative to our Theorem 4, since they can handle

any constant-width. However, [FK18] have no analogs to our

simplication under pseudorandom restriction results (Sections 5),

which necessitates using step (1) O(logn) times and prevents them

from breaking the O(log2 n) barrier.

3 PRELIMINARIES
Denote byUn the uniform distribution over {±1}n , and byUS for

S ⊆ [n] the uniform distribution over {±1}S . Denote by log the

logarithm in base 2. For any function f : {±1}n → R, we shorthand
by E[f] = Ex∼Un [f (x)] and byVar[f] = E[f 2]−E[f]2. For an event
E we denote by 1E its indicator function.

3.1 Restrictions
For a set T ⊆ [n] and two strings x ∈ {±1}T , y ∈ {±1}[n]\T we

denote by SelT (x ,y) the string with

SelT (x ,y)i =

{
xi , i ∈ T

yi , otherwise.

Denition 3.1 (Restriction). Let f : {±1}n → R be a function. A
restriction is a pair (T ,y) where T ⊆ [n] and y ∈ {±1}[n]\T . We
denote by fT |y : {±1}n → R the function f restricted according to
(T ,y), dened by fT |y (x) = f (SelT (x ,y)).

Denition 3.2 (Random Valued Restriction). Let n ∈ N. A random
variable (T ,y), distributed over restrictions of {±1}n is called random-
valued if conditioned on T , the variable y is uniformly distributed
over {±1}[n]\T .

Denition 3.3 (p-Random Restriction). A p-random restriction is
a random-valued restriction over pairs (T ,y) sampled in the following
way: For every i ∈ [n], independently, pick i to T with probability p;
Sample y uniformly from {±1}[n]\T . We denote this distribution of
restrictions by Rp .

Denition 3.4 (The Bias-Function). Let f : {±1}n → R. Let
T ⊆ [n]. We denote by BiasT (f) : {±1}n → R the function dened
by (BiasT (f))(x) = Ey∼U[n]\T [fT |y (x)]. When T is clear from the

context, we shorthand BiasT (f) as f̃ .

3.2 Small-biased Distributions
We say that a distribution D over {±1}n is δ -biased2 if for any

non-empty S ⊆ [n] it holds that |Ex∼D [
∏

i ∈S xi]| ≤ δ . [NN93,
AGHP92, ABN

+
92, BT13, Ta-17] show that δ -biased distributions

can be explicitly sampled using O(log(n/δ)) random bits.

Let p ∈ (0, 1]. We say that a distribution Dp over subsets of [n]
is δ -biased with marginals p if for any non-empty S ⊆ [n] it holds

that PrT∼Dp [S ⊆ T] = p |S | ± δ .

Claim 3.5. Let p = 2
−a for some integer a > 0, let D be an ε-

biased distribution over {±1}na . Dene Dp to be a distribution over
subsets of [n] as follows: Sample x ∼ D. Output T = {i ∈ [n] :∧
j ∈[a](x(i−1)a+j = 1)}. Then Dp is ε-biased with marginals p.

3.3 Branching Programs
A read-once branching program (ROBP) B of length n and width
w is a directed layered graph with n + 1 layers of vertices denoted
V1, . . . ,Vn+1. Each Vi consists ofwi ≤ w vertices {vi,1, . . . ,vi,wi },

and between every two consecutive layers Vi and Vi+1 there exists
a set of directed edges (from Vi to Vi+1), denoted Ei , such that any

vertex in Vi has precisely two out-going edges in Ei , one marked

by 1 and one marked by −1. The vertices in Vn+1 are marked with

either ‘accept’ and ‘reject’.

A branching program B and an input x ∈ {±1}n naturally

describes a computation path in the layered graph: we start at

node v1 = v1,1 in V1. For i = 1, . . . ,n, we traverse the edge going
out fromvi marked by xi to get to a nodevi+1 ∈ Vi+1. The resulting
computation path isv1 → v2 → . . .→ vn+1. We say that B accepts

2
Note that the terms bias-function and small-biased distributions are unrelated.

630

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

x i the computation path dened by B and x reaches an accepting

node. Naturally B describes a Boolean function B : {±1}n → {±1}

whose value is −1 on input x i B accepts x .
Unordered branching programs are dened similarly, expect

that there exists a permutation π ∈ Sn such that in step i the
computation path follows the edge marked by xπi , for i ∈ [n].
We also consider unordered branching programs on [n] of shorter
length n′ ≤ n. In such case, the program stops after reading n′

input bits.
3

For two programsB1 andB2 dened over disjoint sets of variables
and having the end width of B1 equal the start width of B2, we
denote by B1 ◦ B2 the concatenation of B1 and B2, dened in the

natural way.

LocallyMonotone Branching Programs. LetB be awidth-w length-

n ROBP. For any vertexv in the ROBP, denote by βv the probability

to accept a uniformly random input starting from the vertexv . Since
renaming the vertices in each layer does not aect the functionality

of B, we may assume without loss of generality that the vertices

in Vi are ordered according to βv . That is, for every i ∈ [n + 1] we
have βvi,1 ≤ βvi,2 ≤ . . . ≤ βvi,wi . In case of equalities, we break

ties arbitrarily but commit to a strict ordering of the nodes in each

layer. B is called locally monotone if for any vertexv in B the vertex

reached from v using the 1-edge has larger or equal index than the

vertex reached from v using the (−1)-edge.

For i ∈ [n], denote by Ei,1 the set of edges in Ei marked by

1 and similarly dene Ei,−1. We say that Ei is a identity layer if
Ei,1 = Ei,−1 (in which case xi does not aect the output of of B).
We say that Ei is a permutation layer if both Ei,1 and Ei,−1 form a

matching betweenVi andVi+1 (i.e., |Vi | = |Vi+1 | and for b ∈ {−1, 1}

no two edges in Ei,b enter the same vertex in Vi+1). The following
is a key lemma from the work of [BV10].

Lemma 3.6 (Collision Lemma [BV10]). In a locally monotone
branching program, every permutation layer is an identity layer.

To see it, note that if we think of the vertices in each layer

{vi,1, . . . ,vi,wi } as written from top to bottom according to βv ,
then in a locally monotone program for any vertex v the 1-edge

leads to the same vertex or to a vertex below the one that follows the

(−1)-edge. Thus, assuming both Ei,−1 and Ei,1 form a matching, the

only way this could happen is if they both form the same matching.

The following is an immediate corollary of results from

[CHRT18] and [SVW17] (see the full version [MRT18] for more

details).

4 FROMWIDTH-3 ROBPS TO THE XOR OF
SHORT ROBPS

In the full version [MRT18, Section 5], we prove the following

theorem.

Theorem 5. Let n,w,b ∈ N, ε > 0. There exists a log-space explicit
pseudorandom restriction assigning p = 1/O(log(b · log(n/ε)))2w

fraction of n variables usingO(w · log(n/ε) · (log log(n/ε) + log(b)))
random bits, that maintains the acceptance probability of any XOR of
ROBPs of width-w and length-b (dened on disjoint sets of variables)
up to error ε .
3
Note that in the unordered case, the set of bits being read could be an arbitrary subset

of [n] of size n′
.

The pseudorandom restriction assigns p fraction of the variables

as follows:

(1) Choose a set of coordinatesT ⊆ [n] according to a δT -biased

distribution with marginals p, for δT := pO (log(n/ε))
.

(2) Assign the variables in T according to a δx -biased

distribution, for δx := (ε/n)O (logb)
.

Known constructions of small-biased distributions [NN93, AGHP92,

ABN
+
92, BT13, Ta-17] show that it suces to use O(log(n/δT) +

log(n/δx)) ≤ O(w · log(n/ε) · (log log(n/ε) + log(b))) random bits

to sample the restriction.

In this section, we show how to design pseudorandom

restrictions for unordered width-3 ROBPs from pseudorandom

restrictions to the XOR of many width-3 ROBPs of length

O(log(n/ε)). We get the following theorem.

Theorem 4. Let n ∈ N, ε > 0. There exists a log-space explicit
pseudorandom restriction assigning p = 1/O(log log(n/ε))6 fraction
of the variables using O(log(n/ε) log log(n/ε)) random bits, that
maintains the acceptance probability of any unordered width-3 length-
n ROBP up to error ε .

Proof Sketch. In this section, we shall show that under

pseudorandom restrictions leaving each variable alive with

probability 1/2, with high probability, the bias function of a ROBP

B can be written as a linear combination (up to a small error) over

functions of the form f1 · f2 · . . . · fm where each fi is a short

subprogram of the original program of length O(log(n/ε)), and
each fi is dened on a disjoint set of coordinates. Each function д
in the linear combination will have a weight αд ∈ [−1, 1], and the

sum of absolute values of weights over all functions participating

in the linear combination will be at most n. This will show that

any generator that ε/n-fools the XOR of short width-3 ROBPs also

ε-fools width-3 length-n ROBPs under random restrictions.

The reduction will rst establish that with high probability (over

the choice of the set of coordinates that are left alive) the bias

function of a ROBP B can be written as the average of width-3

length-n ROBPs, whose vast majority have at mostO(log(n/ε)) lay-
ers between every two layers with width-2. Then, we use a result of

Bogdanov, Dvir, Viola, Yehudayo [BDVY13] that reduces branch-

ing programs with many width-2 layers to the XOR of short ROBPs.

We focus on the rst part of the reduction. First, consider the

case when B is locally-monotone. In this case, every layer of edges

is either the identity layer or a colliding layer (Lemma 3.6). Assume

without loss of generality that there are no identity layers. Then,

under a pseudorandom restriction, with high probability, in every

O(log(n/ε)) consecutive layers we will have a layer of edges whose
corresponding variable is xed to the value on which the edges in

the layer collide, leaving at most 2 vertices reachable in the next

layer of vertices. Removing unreachable vertices, we get that with

high probability under the random restriction, in everyO(log(n/ε))
consecutive layers there is a layer of vertices with width-2.

However, in the case that B is not locally-monotone (e.g., when

B is a permutation ROBP) it could the case that the widths of all

layers of vertices remain 3 under the random restriction. Our main

observation is that since the bias function takes the average over all

assignments to the restricted variables, the bias function of B does

not depend on the labels of edges marked by the restricted variables.

631

Pseudorandom Generators for Width-3 Branching Programs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

More formally, for any T ⊆ [n], if B and C are two ROBPs with the

same graph structure that only dier on the labels on the edges in

layers [n] \T , then BiasT (B) = BiasT (C). Thus, once T is xed we

may relabel the layers in [n] \T so that they are locally-monotone,

yielding a new ROBP B′
, and then apply the bias function. Using the

analysis of the locally monotone case, we get that the bias function

of B′
(and thus the bias function of B) is the average of B′

over

all restrictions xing the coordinates in [n] \T , and we know that

most of these restricted ROBPs have width-2 in every O(log(n/ε))
consecutive layers.

Essentially, the bias function allows us to imagine as if we are

taking the average over restrictions of B′
rather than restrictions

of B, and restrictions of B′
are “simpler” to fool than restrictions of

B since they have many layers with width-2.

We defer the formal argument to the full version [MRT18].

5 PSEUDORANDOM GENERATORS FOR
WIDTH-3 ROBPS

In this section, we construct pseudorandom generators fooling

width-3 ROBPs (3ROBPs, in short) with seed-length Õ(logn). For
ordered width-3 ROBPs we can guarantee error 1/poly log(n) using

seed-length Õ(logn):

Theorem 1 (Main Theorem). For any ε > 0, there exists a log-
space explicit PRG that ε-fools width-3 ROBPs with seed-length4

Õ(log(n/ε)) +O(log(1/ε) · log(n)).

Note that in comparison, even for constant ε > 0, the best

previous generators had seed-lengthO(log2 n) for ordered 3ROBPs.

We also get similar improvements for unordered 3ROBPs but with

worse dependence on the error ε .

Theorem 2. For any ε > 0, there exists a log-space explicit PRG
that ε-fools unordered width-3 ROBPs with seed-length Õ(log(n/ε))+
O(poly(1/ε) · log(n)).

5.1 Proof Overview
We heavily rely on the pseudorandom restriction from Theorem 4

that assigns p = 1/poly log log(n) of the variables while changing
the acceptance probability by at most 1/poly(n). As a rst step we

assign a constant fraction of the coordinates.

Assigning most of the coordinates. The rst step is rather simple:

we apply iteratively O(1/p) times the pseudorandom restriction

from Theorem 4 to get the following result.

Claim 5.1. Let δ > 0. For all constants α ∈ (0, 1), there is a
pseudorandom restriction ρ = (T ,y) using Õ(log(n/δ)) random
bits, changing the acceptance probability of 3ROBPs by at most
δ . Furthermore, T is (δ/n)ω(1) biased with marginals α and y is
(δ/n)ω(1) biased.

The proof is the same as that of Claim 4.1 in the full version, and

is omitted.

Let ε > δ > 0. Let B be a 3ROBP of length-n. First, we claim that

after applying the pseudorandom restriction ρ in Claim 5.1, with

high probability (at least 1− poly(ε/n)), B |ρ has a simpler structure

4
Henceforth, Õ (t) is used to denote O (t · poly log(t)).

in that between any two width-2 layers the subprogram has at

mostO(log(n/ε)) colliding layers. Concretely, we use the following
denitions.

Denition 5.2. Given a ROBP B, we call a layer of edges colliding
if either the edges marked by −1 and the edges marked by 1 collide.

Denition 5.3. We call a ROBP B a (w, `,m)-ROBP if B can be
written as D1 ◦ . . . ◦ Dm , with each Di being a widthw ROBP with
the rst and last layers having at most two vertices and each Di
having at most ` colliding layers.

We show that after applying the pseudorandom restriction ρ
in Claim 5.1, with high probability the restricting ROBP B |ρ is

a (3,O(log(n/ε)),m)-ROBPs. Now, we wish to iteratively apply

Claim 5.1, making the ROBP simpler in each step. We will have one

progress measures on the restricted ROBP: the maximal number

of colliding layers in a subprogram (denoted `). We show that the

number of colliding layers reduces by a constant-factor in each

iteration. To do so, we prove a structural result on (3, `,m)-ROBPs,

showing that such ROBPs can be well-approximated by (3, `,C`)-

ROBPs for some constant C . This allows us to not worry about the

number of sub-programs and use the number of colliding layers as a

progress measure. Applying the restriction and the structure result

O(log logn) times, we end up with a ROBP where ` = O(log(1/ε)).
We also show that ROBPs with few colliding layers are fooled by

the INW generator. This follows from the results of [BRRY14].

5.2 Reducing the Length of (3, `,m)-ROBPs
Here, we show that (3, `,m)-ROBPs can be approximated by

(3, `,C`)-ROBPs for some constantC . A crucial point in the analysis

is that we need the approximation to hold not just under the

uniform distribution but also under the pseudo-random distribution.

Fortunately, we are able to do so by arguing that the error function
detecting when our approximation is wrong is itself computable

by a conjunction of negations of width 3-ROBPs with few colliding

layers.

Lemma 5.4 (Main Structural Result). For any C ≥ 1 the following
holds. Any (3, `,m)-ROBP B can be written as B′ + E where B′ is
a (3, `,C`)-ROBP and either E ≡ 0 or for any x , |E(x)| ≤ F (x) =

∧C
`

i=1(¬Fi (x)) where Fi are non-zero events that can be computed by
(3, `, 1)-ROBPs on disjoint variables.

We shall also show (in the next claim) that any non-zero

event Fi that can be computed by (3, `, 1)-ROBP, happens with

probability at least 4
−(`+1)

under the uniform distribution. Thus,

Prx∼Un [∧
C `

i=1(¬Fi (x))] ≤ (1−4
−(`+1))C

`
≤ exp(4−(`+1) ·C`)which

is doubly-exponentially small in ` provided thatC is a large enough

constant.

For any vertex v in a ROBP, we denote by pv the probability to

reach v under a uniform random assignment to the inputs.

Claim 5.5. In a ROBP with widthw and at most ` colliding layers,
every vertex whose pv > 0 has pv ≥ 2

−(`+1)·(w−1).

We remark that this bound is sharp.

Proof. We prove by induction (on the length of the program)

that any program with width at most w , exactly ` colliding

632

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

layers and exactly t reachable states in the last layer, has pv ≥

2
−` ·(w−1)−(t−1)

for any reachable vertex v . Without loss of

generality all nodes in the program are reachable (otherwise, we

remove vertices that aren’t reachable).

Consider a program B of length n with parameters (t , `,w).

Removing the last layer gives a program B′
of length n − 1 with

parameters (t ′, `′,w). By the induction hypothesis for anyv ′
in the

last layer of B′
we have pv ′ ≥ δ for δ := 2

−`′ ·(w−1)−(t ′−1)
.

We perform a case analysis. The following simple bound will be

used in all cases. Let v be a vertex in the last layer of B. Assume

that e edges enter v from vertices in the second to last layer. Then,

pv ≥ 1

2
· δ · e . In particular, since we assumed all vertices are

reachable, any vertex in the last layer have pv ≥ δ/2.
If `′ = ` and t ′ = t , then the last layer of edges in B is regular,

i.e., any node in the last layer in B has exactly two ingoing edges.

In this case any vertex v in the last layer has pv ≥ 1

2
· δ · 2 = δ =

2
−` ·(w−1)−(t−1)

.

If `′ = `, then t ′ ≤ t , since there are no collisions in the last

layer of edges. Since we already handled the case t ′ = t , we may

assume t ′ ≤ t − 1. For any vertex v in the last layer we have pv ≥

δ/2 ≥ 1

2
· 2−`

′(w−1)−(t ′−1) ≥ 1

2
· 2−`(w−1)−(t−2) = 2

−`(w−1)−(t−1)
.

If `′ < `, then we consider two sub-cases: if t = 1 then only one

vertex is reachable in the last layer and its pv equals 1. Otherwise,

t ≥ 2 and t ′ ≤ w thus t ′ ≤ t + (w − 2) and for any vertex

v in the last layer we have pv ≥ δ/2 ≥ 1

2
· 2−`

′(w−1)−(t ′−1) ≥
1

2
· 2−(`−1)(w−1)−(t+(w−2)−1) = 2

−`(w−1)−(t−1)
. �

We say that two vertices v and v ′
in a ROBP are locally-

equivalent if the 1-edges exiting v and v ′
reach the same vertex

and the (−1)-edges exiting v and v ′
reach the same vertex. We say

that a ROBP has no-redundant vertices if any vertex in the program

is reachable, and there are no locally-equivalent vertices. In the

following, without loss of generality we can assume that ROBPs

have no-redundant vertices, because we can eliminate unreachable

vertices and merge locally-equivalent vertices.

Claim 5.6 (Colliding Layers =⇒ Colliding). Let B be a 3ROBP
with width-2 at the start and nish, at least one colliding layer and
no-redundant vertices. Let v1,1 and v1,2 be the two start nodes. Then,
there exists a string on which the two paths from v1,1 and v1,2 collide.

Proof. First consider the case that B has width 2. Then, there

exists a layer i and a value b ∈ {±1} such that the two edges marked

by b in the i-th layer collide. Any string whose i-th bit equals b
results in colliding paths.

For the rest of the proof assume that B has a layer with width

3. Let V1, . . . ,Vn+1 be the layers of vertices in B. Let i denote the
index of the last layer in B with width 3. Since B has width-2 at the

end, i < n + 1.
There are six edges between Vi and Vi+1: three edges marked

with xi = −1 and three edges marked with xi = 1. Since |Vi+1 | = 2,

by the Pigeon-hole principle, there are two edges marked with

xi = −1 going to some vertex v ∈ Vi+1, and two edges marked

with xi = 1 going to some vertex v ′ ∈ Vi+1 (v
′
is not necessarily

dierent from v). These two pairs of edges cannot be starting from

the same two nodes in Vi since then the two nodes will be locally-

equivalent. By renaming the nodes in Vi , we can assume that the

two edges from vi,1,vi,2 ∈ Vi marked with −1 go to v ∈ Vi+1 and
the two edges from vi,2,vi,3 ∈ Vi marked with 1 go to v ′ ∈ Vi+1.

Since vi,2 is reachable, there is an input (x1, . . . ,xi−1) that leads
from v1,1 or v1,2 to vi,2. Without loss of generality, we assume

that vi,2 is reachable from v1,1. Let ṽ ∈ Vi be the vertex reached by

following the same input (x1, . . . ,xi−1) starting from the other start

vertexv1,2. If ṽ = vi,2, then we already found a collision. If ṽ = vi,1
then for the choice xi = −1 the two paths dened by (x1, . . . ,xi)
starting fromv1,1 andv1,2 collide onv ∈ Vi+1. Similarly, if ṽ = vi,3,
then for the choice xi = 1 the two paths collide on v ′ ∈ Vi+1. �

Claim 5.7 (“First Collisions” can be detected by 3ROBPs). Let B be
a 3ROBP with 2 vertices at the rst layer, denoted v1,1,v1,2. Suppose
there are at most ` colliding layers in B and that there exists a string
on which the two paths from v1,1 and v1,2 collide. Let u be the rst
vertex on which a collision can occur, and let E be the event that a
collision happened on u. Then, E can be computed by another width-3
ROBP with at most `-colliding layers.

Proof. To simulatewhether the paths starting fromv1,1 andv1,2
collide at u, we consider the 3ROBP that keeps the unordered pair

corresponding to the states of the two paths during the computation.

In each layer until u, we have only states corresponding to

{0, 1}, {0, 2} or {1, 2}. When we reach the layer of u we have two

states: “accept” (corresponding to a collision on u) and “reject”

(corresponding to anything else). Observe that any non-colliding

layer in the original program denes a non-colliding layer in the

new branching program (as a permutation over a nite set also

denes a permutation over unordered pairs from this set). Thus,

there are at most ` colliding layers in the 3ROBP computing E. �

We are now ready to prove the main structural lemma –

Lemma 5.4. In the following, we consider branching programs with

two initial nodes v1,1,v1,2. We interpret the value of the program

on input x as its average value on the two paths starting from v1,1
and v1,2. That is, the program can get value 1, 0 or −1 depending

on whether the two paths from v1,1 and v1,2 accept or not.
Throughout this section we think of the error terms as {0, 1}-

indicators (instead of the usual {±1}-notation for other Boolean

functions). We shall use A ∧ B and A to denote the standard AND

and negation of these Boolean values.

Lemma 5.8. Let B = D1 ◦ . . . ◦ Dm be a ROBP where each Di
is a width-3 ROBP with at most 2 vertices on the rst and last
layers. Then, for any j ∈ {2, . . .m} we can write B(x) as the sum of
(D j ◦ . . .◦Dm)(x) and an error term E(x), that is bounded in absolute
value by FColj (x)∧ . . .∧FColm (x) where FColi (x) denotes the event
that the two paths in Di collide on input x at the rst vertex on which
it is possible to collide in Di .

Proof. Assume without loss of generality that no layer of

vertices has width-1 except for maybe the rst. For j = 2, . . . ,m, let

vj,1 and vj,2 be the two nodes at the rst layer of the subprogram

D j . If D1 has two nodes at the rst layer, then denote them by v1,1
andv1,2, otherwise denote the single node byv1,1. Let x be an input

to the branching program B. If the two paths dened by x from

{vj,1,vj,2} collide at some point, then the value of B(x) equals
the value of (D j ◦ . . . ◦ Dm)(x). If the two paths do not collide,

then (D j ◦ . . . ◦ Dm)(x) = 0, since it is the average of two paths

633

Pseudorandom Generators for Width-3 Branching Programs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

with dierent outcomes, thus E(x) = B(x) − (D j ◦ . . . ◦ Dm)(x)
is at most 1 in absolute value. Furthermore, in such a case, for

all i ∈ {j, . . . ,m} it holds that both paths in the subprogram

Di starting from vi,1 and vi,2 on input x do not collide, i.e.,

FColi (x) = 0. Overall, we got that B(x) = E(x)+ (D j ◦ . . . ◦Dm)(x),

and E(x) , 0, it holds that FColj (x) ∧ . . . ∧ FColm (x) = 1 (i.e.,

|E(x)| ≤ FColj (x) ∧ . . . ∧ FColm (x)). �

Proof of Lemma 5.4. LetB be a (3, `,m)-ROBPB = D1◦. . .◦Dm .

If B has no colliding layers, then there is nothing to prove since

B itself is a (3, `, 1)-ROBP. If B has colliding layers, then without

loss of generality each Di has at least one colliding layer (since

otherwise we can merge subprograms with no colliding layers

with their successors or predecessors). Ifm ≤ C`
, there is nothing

to prove and we can take B′ = B and E = 0. Suppose that

m > C`
. Let j = m − C` + 1 > 1. Let B′ = D j ◦ · · · ◦ Dm and

let F (x) = FColj (x) ∧ . . . ∧ FColm (x) where FColi (x) denotes the
event that the two paths in Di collide on input x at the rst vertex

on which it is possible to collide in Di . Then, by the previous claim,

we can write B = B′ + E where for any input x , |E(x)| ≤ F (x).
We argue that this gives the desired decomposition. Indeed, By

Claim 5.7, for i ∈ {j, . . . ,m} the event FColi (x) can be computed

by a (3, `, 1)-ROBP. Further, by Claim 5.6 each Di has a possible

collision, and thus each FColi is a non-zero event. �

5.3 PRGs for ROBPs with Few Colliding Layers
In this section we show that we can ε-fool ordered ROBPs with at

most `-colliding layers with Õ(log(`/ε) · log(n)) seed-length.

Theorem 5.9. For any ε > 0, there is a log-space explicit PRG that
ε-fools ordered widthw-ROBPs with length n and at most ` colliding
layers using seed length

O((log logn + log(1/ε) + log(`) +w) · logn.

The above relies on the PRGs for regular branching programs and

generalizations of them due to Braverman, Rao, Raz, and Yehudayo

[BRRY14]. In the following, we say that a read-once branching

program B is δ -reachable if for all reachable verticesv in B we have

pv (B) ≥ δ , where

pv (B) := Pr
x∼Un

[reaching v on the walk on B dened by x].

We start by quoting a result by Braverman, Rao, Raz,

Yehudayo [BRRY14].

Theorem 5.10 ([BRRY14]). There is a log-space explicit PRG that
ε-fools all δ -reachable ROBPs of length-n and width-w using seed
length

O(log logn + log(1/ε) + log(1/δ) + log(w)) · logn.

Next, we reduce the task of fooling ROBPs with at most `-

colliding layers to the task of fooling δ -reachable ROBPs. The

reduction is similar to that in [CHRT18]. The main dierence is

that we simulate a ROBP with widthw by a δ -reachable ROBP of

widthw + 1 by adding a new sink state that should be thought of as

“immediate stop”. This change seems essential in our case, and the

reduction from [CHRT18] does not seem to satisfy the necessary

properties here.

Lemma 5.11. Let δ ≤ 2
−(w−1). Let D be a distribution on {±1}n

that ε-fools all δ -reachable ROBPs of length n and widthw + 1. Then,
D also fools width-w ROBPs with at most ` colliding layers with error
at most (`w + 1) · ε + (2ww`) · δ .

Proof. Let D be a distribution on {±1}n that ε-fools all δ -
reachable ROBPs of length-n and width-w . The rst observation is

that D also fools prexes of these programs. This reason is simple:

to simulate the prex of length-k of a δ -reachable ROBP B, one can
just reroute the last n − k layers of edges in B so that they would

“do nothing”, i.e. that they would be the identity transformation

regardless of the values of xk+1, . . . ,xn .
Let B be a length n width-w ROBP with at most ` colliding layers.

Next, we introduce B′
, a δ -reachable ROBP of length-n and width-

(w + 1), that would help bound the dierence between

B(Un) := Pr
x∼Un

[B(x) = 1] and B(D) := Pr
x∼D

[B(x) = 1] ,

where Un is the uniform distribution over {±1}n . Let B′
be the

the following modied version of B. To construct B′
we consider a

sequence of `+1 branching programs B0, . . . ,B` where B0 = B and

B′ = B` . Let i1, . . . , i` be the colliding layers in B. For j = 1, . . . , `

we take Bj to be Bj−1 except we may reroute some of the edges in

the i j -th layer. We explain the rerouting procedure. For j = 1, . . . , `

we calculate the probability to reach vertices in layer Vi j of Bj−1. If

some vertexv in the i j -th layer has probability smaller than 2
w−1 ·δ ,

then we reroute the two edges going from the vertex v to go to

“immediate stop”. We denote by Vsmall the set of vertices for which

we rerouted the outgoing edges from them.

First, we claim that any reachable vertex v in B` has pv ≥ δ . Let
i`+1 = n+ 1 for convenience. We apply induction and show that for

j = 0, 1, . . . , ` any vertex reachable by Bj in layers 1, . . . , i j+1 has
pv ≥ δ . The base case holds because up to layer i1 the branching
program has no colliding layers and we may apply Claim 5.5 to get

that pv ≥ 2
−(w−1) ≥ δ . To apply induction assume the claim holds

for Bj−1 and show that it holds for Bj . The claim obviously holds for

all vertices in layers 1, . . . , i j in Bj since we didn’t change any edge
in those layers going from Bj−1 to Bj . Letv be a reachable vertex in

layer i where i j < i ≤ i j+1 in Bj . It means that there is a vertex v ′

withpv ′(Bj) ≥ 2
w−1 ·δ in the i j -th layer of Bj (and also in Bj−1) and

a path going from v ′
to v . Looking at the subprogram from v ′

to v
we note that this is a subprogram with no colliding edges (only the

rst layer has the potential to be colliding, but in a ROBP the rst

layer can never be colliding as there is only one edge marked by

(−1) and only one edge marked by −1). By Claim 5.5 the probability

to get fromv ′
tov is at least 2

−(w−1)
. Thus, the probability to reach

v is at leastpv ′(Bj) ·Pr[reach v |reached v ′] ≥ 2
w−1 ·δ ·2−(w−1) = δ .

Next, we bound |B(Un) − B(D)| by using the triangle inequality

|B(Un) − B(D)|

≤ |B(Un) − B′(Un)| + |B′(Un) − B′(D)| + |B′(D) − B(D)| (1)

and bounding each of the three terms separately.

(1) The rst term is bounded by the probability of reaching one

of the nodes in Vsmall in B′
when taking a uniform random

walk. This follows since if the path dened by x didn’t pass

throughVsmall then we would end up with the same node in

both B and B′
(since no rerouting aected the path). Each

634

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

vertexv inVsmall has pv (B
′) < 2

w−1 ·δ . By union bound, the

probability to pass throughVsmall is at most |Vsmall | ·2
w−1 ·δ .

(2) The second term is at most ε since the program B′
is δ -

reachable.

(3) Similarly to the rst term, the third term is bounded by the

probability of reaching one of the nodes inVsmall in B
′
when

taking a walk sampled by D.

|B′(D) − B(D)|

≤ Pr
x∼D

[reaching Vsmall on the walk on B′
dened by x]

≤
∑

v ∈Vsmall

Pr
x∼D

[reaching v on the walk on B′
dened by x]

However since D is pseudorandom for prexes of B′
, for

each v ∈ Vsmall the probability of reaching v when walking

according to D is ε-close to the probability of reaching v
when walking according toUn .

|B′(D) − B(D)|

≤
∑

v ∈Vsmall

(ε + Pr
x∼Un

[reaching v on the walk on B′
dened by x])

=
∑

v ∈Vsmall

(
ε + pv (B

′)
)
≤ |Vsmall | · (ε + 2

w−1δ)

Summing the upper bound on the three terms in Eq. (1) gives:

|B(Un) − B(D)| ≤ |Vsmall | · (ε + 2
wδ) + ε ≤ `w · (ε + 2wδ) + ε . �

Proof of Theorem 5.9. Take ε ′ = ε/(2(`w + 1)) and δ = ε ′/2w .

Take the generator from Theorem 5.10 with parameters δ and ε ′.
Applying Lemma 5.11, the error of this generator on the class of

ROBPs with width w length n and at most ` colliding layers is at

most (`w + 1) · ε ′+ (2w ·w · `) ·δ ≤ ε/2+ ε/2 = ε . By Theorem 5.10,

its seed length is

O(log logn + log(1/ε ′) + log(1/δ) + log(w)) · log(n)

which is at most O(log logn + log(1/ε) + log(`) +w) · log(n). �

5.4 Proof of Theorem 1
We are now ready to prove our main result on fooling 3ROBPs.

Our generator is obtained by applying Claim 5.1 iteratively

O(log logn) times and then using a PRG fooling 3ROBPs with at

mostO(poly(1/ε)) colliding layers as in Theorem 5.9. The intuition

is as follows.

Let B be a 3ROBP and let ρ0 be a pseudorandom restriction as

in Claim 5.1. We rst show that with probability at least 1 − ε/n
over ρ0, B

0 = B |ρ0 is a (3, `0,m)-ROBP for `0 = O(log(n/ε)). Let

B0 = D0

1
◦ · · · ◦ D0

m where each D0

i has at most `0 colliding

layers and begins and ends with width two layers. Let ρ1 be

an independent pseudo-random restriction as in Claim 5.1. Then

B1 ≡ B0 |ρ1 = D0

1
|ρ1 ◦ · · · ◦ D0

m |ρ1 and it is easy to check that

with probability at least 1 − 2
−Ω(`0)

, each D0

i |ρ1 has at most `0/2

colliding layers. Ideally, we would like to apply a union bound over

the dierent D0

i and conclude that B1 is a (3, `0/2,m)-ROBP. In the

rst step, this approach works sincem ≤ C`0
for a large enough

constant C (by the denition on `0), and we can aord a union

bound. We get that with probability at least 1 − 2
−Ω(`0)

, B1 is a

(3, `0/2,m1)-ROBP (for some m1 ≤ m). Continuing this process

by induction, at step i we have that Bi is a (3, `0/2
i ,mi)-ROBP.

To carry the union bound in the i-th step we need mi ≤ C`0/2
i
,

howevermi could be much larger than that. Nevertheless, we know

that we can always approximate Bi with a (3, `0/2
i ,C`0/2

i
)-ROBP

by Lemma 5.4. This approximation allows us to apply the union

bound and conclude that the number of colliding layers in each

block decreases by a factor of 2. We iterate this approach until the

maximal number of colliding layers in a subprogram is at most

O(log(1/ε)), and then use the PRG from Theorem 5.9.

To carry the induction forward as outlined above, we need the

following lemma that shows that the error terms simplify as well

under the pseudorandom restrictions.

Lemma 5.12. For any constant C ≥ 20, there exists α ∈ (0, 1)

such that the following holds. Let `,n ∈ N be suciently large and
m = C` ≤ n. Let F = FCol1 ∧ . . . ∧ FColm where FColi (x) are
non-zero events on disjoint variables computed by (3, `, 1)-ROBPs. Let
ρ be a pseudorandom restriction as in Claim 5.1 with parameter α and
error parameter δ ≤ 1/n5. Then, with probability at least 1 − 2C−`/2,
we have F |ρ ≤ FCol′i ∧ . . . ∧ FCol′√

m
where FCol′i (x) are non-zero

events on disjoint variables computed by (3, `/2, 1)-ROBPs.

Due to lack of space, we defer the proof of Lemma 5.12 to the

full version.

We are now ready to prove the main theorem, Theorem 1.

Proof of Theorem 1. Let C ≥ 20. Let α ∈ (0, 1) be a constant

to be chosen later. Let `0 = O(log(n/ε)). Let k be a parameter to be

chosen later and let `i = `0/2
i
for 1 ≤ i ≤ k .

Our generator is as follows. First choose ρ0, ρ1, . . . , ρk
independent pseudo-random restrictions as in Claim 5.1 with

parameter α and δ = ε/n10. After iteratively applying the

restrictions ρ0, ρ1, . . . , ρk , we set the remaining bits using the

generator from Theorem 5.9 for a parameter ` = `k ·C`k and error

parameter ε ′ to be chosen later. Let Y be the output distribution of

the generator.

Let B0 = B |ρ0 . We rst claim that B0 is a (3, `0,m)-ROBP with

high probability. In the following let X be uniformly random over

{±1}n .

Claim 5.13. With probability at least 1 − ε/n, B |ρ0 is a (3, `0,m)-
ROBP and Eρ0,X [B |ρ0 (X)] = EX [B(X)] ± δ .

For 0 ≤ i ≤ k , let ρi , ρ0 ◦ · · · ρi . We will show the following

claim by induction on i .

Claim 5.14. For 0 ≤ i ≤ k , with probability at least 1− ε
n −4i ·C−`i ,

B |ρ i can be written as B
i +E0+E1+ · · ·+Ei where Bi is a (3, `i ,C`i)-

ROBP and the error terms E j for 0 ≤ j ≤ i satisfy: Either Ej ≡ 0 or
|E j (x)| ≤ F j (x) with F j (x) = ∧

mj
h=1(¬F

j
h (x)) where F

j
h are non-zero

events computed by (3, `i , 1)-ROBPs on disjoint sets of variables and
mj = C

`i .
Furthermore, Eρ i ,X [B |ρ i (X)] = EX [B(X)] ± (i + 1)δ .

A crucial point in the above is that the functions F 0, . . . , F i

bounding the error terms are conjunctions of negations of (3, `i , 1)-

ROBPs and there exactly C`i
in each of them.

Proof. For i = 0, the claim follows immediately by applying

Lemma 5.4 to B |ρ0 . Now, suppose the claim is true for i . Suppose,

635

Pseudorandom Generators for Width-3 Branching Programs STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

we can write B |ρ i = Bi +Ei , where Ei = E0+E1+ · · ·+Ei as in the

claim. By the induction hypothesis, this happens with probability

at least 1 − ε
n − 4i ·C−`i

.

Clearly, B |ρ i+1 = Bi |ρi+1 + Ei |ρi+1 . Let B
i = D1 ◦ · · · ◦ Dm′ be a

decomposition where each D j has at most `i colliding layers, starts

and ends with width-2 layers andm′ ≤ C`i
.

Now, observe that as each D j has at most `i colliding layers, the

probability that at least `i/2 of these colliding layers are unxed

under ρi+1 is at most

(`i
`i /2

)
· (α `i /2 + (ε/n)ω(1)) ≤ 2

`iα `i /2
by

Claim 5.1. Thus, by a union bound over 1 ≤ j ≤ m′
, with probability

at least 1 − 2
`iα `i /2 · C`i ≥ 1 − C−`i

(for a suitable choice of α),
over ρi+1, B

i |ρi+1 is a (3, `i/2,C
`i)-ROBP. Now, conditioning on

this event, by Lemma 5.4, we can write Bi |ρi+1 as B
i+1+Ei+1, where

Bi+1 is a (3, `i+1,C
`i+1)-ROBP and Ei+1 satises the conditions of

the claim. Thus, with probability at least 1 − ε
n − 4i ·C−`i −C−`i

,

B |ρ i+1 = Bi |ρi+1 + Ei |ρi+1

= Bi+1 + Ei |ρi+1 + E
i+1,

where Bi+1, and Ei+1 satisfy the conditions of the claim.

We just need to argue that Ei |ρi+1 can be written in the requisite

form. To this end, note that for 0 ≤ j ≤ i , |E j |ρi+1 | ≤ F j |ρi+1 . By

the induction hypothesis, we either have E j ≡ 0 or we can write

|E j | ≤ F j = ∧
mj
h=1(¬F

j
h (x))where F

i
h are (3, `i , 1)-ROBPs on disjoint

sets of variables andmj = C
`i
. We can now apply Lemma 5.12 to

conclude that with probability at least 1 − 2C−`i /2
, we can write

F j |ρi+1 = ∧
m′
j

h=1(¬H
j
h (x)) where H

j
h are non-zero events computed

by (3, `i/2, 1)-ROBPs on disjoint sets of variables andm′
j = C

`i /2
.

This satises the constraints of the claim.

Adding up the failure probabilities over the choice of ρi+1, we
get the desired decomposition for i + 1 with probability at least

1−
ε

n
− 4i ·C−`i −C−`i − (i + 1) · 2C−`i /2 ≥ 1−

ε

n
− 4(i + 1)C−`i+1 .

(since 2C−`i ≤ C−`i+1
). The furthermore part follows immediately

from Claim 5.1. The claim now follows by induction. �

We are now ready to prove the theorem. By the above claim, we

have that with probability at least 1 − ε
n − 4kC−`k over the choice

of ρ0, ρ1, . . . , ρk , we can write

B |ρk = Bk + E0 + · · · + Ek ,

where Bk is a (3, `k ,C
`k)-ROBP and E0, . . . ,Ek can be bounded

by functions F 0, . . . , Fk that are conjunctions of negations of C`k

non-zero events computed by (3, `k , 1)-ROBPs.

Note that each such F j can be written as a width-4 ROBP, sayH j
,

by adding an additional layer to compute the conjunction and that

the number of collisions in the width 4 ROBP is at most `k ·C`k .

Therefore, if we let Y be the output distribution of the generator

from Theorem 5.9 with ` = `k ·C`k and error parameter ε ′, we get
that for all 0 ≤ j ≤ k , and X uniformly random over {±1}n ,

E[Bk (X)] = E[Bk (Y)] ± ε ′

E[|E j (Y)|] ≤ E[H j (Y)] ≤ E[H j (X)] + ε ′ ≤ (1 − 4
−(`k+1))C

`k
+ ε ′

where we used Claim 5.5 to bound E[H j (X)]. Since C ≥ 20,

E[|E j (Y)|] ≤ exp(−2`k) + ε ′.
Combining the above inequalities we get that with probability

at least 1 − ε
n − 4kC−`k over the choice of ρ0, ρ1, . . . , ρk��� E

X
[B |ρk (X)] − E

Y
[B |ρk (Y)]

��� ≤ ε ′ + (k + 1) · (exp(−2`k) + ε ′).

Finally, as we also have that��� E
ρ0, ...,ρk

[B |ρk (X)] − E[B(X)]

��� ≤ (k + 1) · δ ,

we get ��� E
ρ0, ...,ρk

[B |ρk (Y)] − E[B(X)]

���
≤ ((k + 1) · δ) +

(ε
n
+ 4kC−`k

)
+

(
ε ′ + (k + 1) · (exp(−2`k) + ε ′)

)
.

To get `k = log log log(n) + log(1/ε) we set k = log(`0/`k) =

O(log logn). Furthermore, setting δ = ε/n10 and ε ′ = ε/4k , the
above error bound becomes��� E

ρ0, ...,ρk
[B |ρk (Y)] − E[B(X)]

��� ≤ ε .

Finally, we estimate the seed-length of our generator. Choosing

the random restrictions takes Õ(log(n/δ)) = Õ(log(n/ε)) random
bits. Sampling Y requires seed-length

O(log logn + log(1/ε ′) + log(`k ·C`k) + 4) · logn

= O(log logn + log(1/ε)) · logn.

Thus, the nal seed-length is Õ(log(n/ε)) +O(log(1/ε)(logn)). The
theorem follows. �

5.5 Proof of Claim 5.13
Claim. With probability at least 1 − ε/n, B |ρ0 is a (3, `0,m)-ROBP
and Eρ0,X [B |ρ0 (X)] = EX [B(X)] ± δ .

Proof. The second part follows from Claim 5.1. We are left to

prove the rst part.

Let ρ0 = (T ,y) be the pseudorandom restriction, where T ⊆ [n]

and y ∈ {±1}[n]\T . Assume there are L colliding layers in B and

let i1, i2, . . . , iL be their indices. For j ∈ [L], call a layer i j “good”
under the choice of (T ,y) if i j ∈ [n] \T and the edges in the i j -layer
of B marked by yi j collide.

For j ∈ {1, . . . ,L − `0 + 1} let Ej be the event that none of

layers {i j , i j+1, . . . , i j+(`0−1)} is good. Recall thatT is sampled from

a (ε/n)ω(1)
-biased distribution with marginals α , and y is sampled

from a (ε/n)ω(1)
-biased distribution. For Ej to happen, we must

have a partition S1∪S2 = {j, j+1, . . . , j+`0−1} such that all layers

i j′ for j
′ ∈ S1 are in T and all layers i j′′ for j

′′ ∈ S2 are in [n] \ T
but the edged marked by yi j′′ in the i j′′-th layer do not collide. For

any xed j and xed partition S1 ∪ S2 = {j, j + 1, . . . , j + `0 − 1},

the above event happens with probability at most

(α |S1 | + (ε/n)ω(1)) · (2−|S2 | + (ε/n)ω(1)) ≤ 2 · α |S1 | · 2−|S2 |

= 2 · α |S1 | · 2−(`0−|S1 |)

636

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA Raghu Meka, Omer Reingold, and Avishay Tal

(using |S1 | + |S2 | = `0 = O(log(n/ε))). Overall,

Pr[Ej] ≤
∑

S1⊆{j, ..., j+`0−1}

(2 · α |S1 | · 2−(`0−|S1 |)

= 2 · (1
2
+ α)`0 ≤ ε/n2

assuming α > 0 is a suciently small constant and `0 = c log(n/ε)
for a suciently large constant c > 0. By the union bound,

Pr[E1 ∨ E2 ∨ . . . ∨ EL−`0+1] ≤ (L − `0 + 1) · ε/n
2 ≤ ε/n.

Under the event that all Ej are false, we get that B |ρ can be written

as D1 ◦ . . . ◦ Dm where each Di is a width-3 ROBP with at most `0
colliding layers and at most 2 vertices on the rst and last layer. �

5.6 Pseudorandom Generator for Unordered
3ROBPs

In this section, using the recent generator of Chattopadhyay,

Hatami, Hosseini, Lovett [CHHL18], and a Fourier bound by

Steinke, Vadhan and Wan [SVW17], we show that we can also

handle unordered 3ROBPs, thus proving Theorem 2.

Lemma 5.15 (Lemma 3.14 [SVW17]). Let ` ∈ N and let B be a
width-w ROBP with at most ` colliding layers. Then, for all k =
1, . . . ,n it holds that L

1,k (f) ≤ O(w3 · `)k .

Theorem 5.16 (Theorem 4.5 [CHHL18]). Let F be a family of n-
variate Boolean functions closed under restrictions. Assume that for
all f ∈ F for all k = 1, . . . ,n, L

1,k (f) ≤ a · bk . Then, for any ε > 0,
there exists a log-space explicit PRG which fools F with error ε , whose
seed length is O(log(n/ε) · (log log(n) + log(a/ε)) · b2).

Corollary 5.17. There is a log-space explicit PRG that ε-fools
unordered ROBPs with width w , length n and at most ` colliding
layers using seed length

O(log(n/ε) · (log log(n) + log(1/ε)) ·w6`2)

Proof of Theorem 2. The proof is essentially the same as

that of Theorem 1, where instead of using the generator from

Theorem 5.9 to set the bits after the pseudorandom restrictions,

we use the generator from the above corollary. The nal seed-

length has a worse dependence on ε as we need to set ` =

C log(1/ε)+log log log(n) = poly(1/ε) · poly log log(n) in Cor. 5.17. �

ACKNOWLEDGEMENTS
We would like to thank Oded Goldreich and Salil Vadhan for very

helpful comments on an earlier version of this manuscript.

REFERENCES
[ABN

+
92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. Construction of

asymptotically good low-rate error-correcting codes through pseudo-

random graphs. IEEE Trans. Information Theory, 38(2):509–516, 1992.
[AGHP92] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of

almost k-wise independent random variables. Random Structures and
Algorithms, 3(3):289–304, 1992.

[AW85] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic

constant depth circuits. In FOCS, pages 11–19, 1985.
[BDVY13] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayo. Pseudorandomness

for width-2 branching programs. Theory of Computing, 9:283–293, 2013.
[BRRY14] M. Braverman, A. Rao, R. Raz, and A. Yehudayo. Pseudorandom

generators for regular branching programs. SIAM J. Comput., 43(3):973–
986, 2014.

[BT13] A. Ben-Aroya and A. Ta-Shma. Constructing small-bias sets from algebraic-

geometric codes. Theory of Computing, 9:253–272, 2013.
[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for

branching programs. In Proceedings of the 51st annual FOCS, pages 30–39,
2010.

[CGR14] G. Cohen, A. Ganor, and R. Raz. Two sides of the coin problem. In

APPROX-RANDOM, pages 618–629, 2014.

[CHHL18] E. Chattopadhyay, P. Hatami, K. Hosseini, and S. Lovett. Pseudorandom

generators from polarizing random walks. In CCC, volume 102 of LIPIcs,
pages 1:1–1:21. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018.

[CHRT18] E. Chattopadhyay, P. Hatami, O. Reingold, and A. Tal. Improved

pseudorandomness for unordered branching programs through local

monotonicity. In STOC, pages 363–375. ACM, 2018.

[De11] A. De. Pseudorandomness for permutation and regular branching

programs. In Proceedings of the 26th Annual IEEE Conference on
Computational Complexity, CCC 2011, pages 221–231, 2011.

[FK18] M. A. Forbes and Z. Kelley. Pseudorandom generators for read-once

branching programs, in any order. In FOCS, 2018.
[GKM15] P. Gopalan, D. M. Kane, and R. Meka. Pseudorandomness via the discrete

fourier transform. In FOCS, pages 903–922, 2015.
[GMR

+
12] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. P. Vadhan. Better

pseudorandom generators from milder pseudorandom restrictions. In

FOCS, pages 120–129, 2012.
[GY14] P. Gopalan and A. Yehudayo. Inequalities and tail bounds for elementary

symmetric polynomial. CoRR, abs/1402.3543, 2014.
[HLV17] E. Haramaty, C. H. Lee, and E. Viola. Bounded independence plus noise

fools products. In 32nd Computational Complexity Conference, CCC 2017,
pages 14:1–14:30, 2017.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from

shrinkage. In FOCS, pages 111–119, 2012.
[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for

network algorithms. In Proceedings of the 26th annual STOC, pages 356–364,
1994.

[KNP11] M. Koucký, P. Nimbhorkar, and P. Pudlák. Pseudorandom generators for

group products: extended abstract. In STOC, pages 263–272, 2011.
[LV17] C. H. Lee and E. Viola. More on bounded independence plus noise:

Pseudorandom generators for read-once polynomials. ECCC, 24:167, 2017.
[MRT18] R. Meka, O. Reingold, and A. Tal. Pseudorandom generators for width-3

branching programs. Electronic Colloquium on Computational Complexity
(ECCC), 25:112, 2018.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation.

Combinatorica, 12(4):449–461, 1992.
[NN93] J. Naor and M. Naor. Small-bias probability spaces: Ecient constructions

and applications. SIAM J. on Computing, 22(4):838–856, 1993.
[RSV13] O. Reingold, T. Steinke, and S. Vadhan. Pseudorandomness for regular

branching programs via Fourier analysis. In APPROX-RANDOM, pages

655–670. 2013.

[Ste13] J. P. Steinberger. The distinguishability of product distributions by read-

once branching programs. In Proceedings of the 28th Conference on
Computational Complexity, CCC 2013, pages 248–254, 2013.

[SVW17] T. Steinke, S. P. Vadhan, and A. Wan. Pseudorandomness and fourier-

growth bounds for width-3 branching programs. Theory of Computing,
13(1):1–50, 2017.

[SZ95] M. Saks and D. Zuckerman. Personal Communication, 1995.

[SZ11] J. Síma and S. Zák. Almost k-wise independent sets establish hitting sets

for width-3 1-branching programs. In CSR, pages 120–133, 2011.
[Ta-17] A. Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In

Proceedings of the 49th Annual ACM SIGACT STOC 2017, pages 238–251,
2017.

[Tre10] L. Trevisan. Open problems in unconditional derandomization.

Presentation at China Theory Week, 2010.

637

	Abstract
	1 Introduction
	1.1 The Ajtai-Wigderson Framework

	2 Proof Overview
	2.1 Pseudorandomly Assigning Half of the Coordinates
	2.2 Simplification under Pseudorandom Restrictions
	2.3 The Proof of Theorem 3
	2.4 Comparison with Forbes-Kelley

	3 Preliminaries
	3.1 Restrictions
	3.2 Small-biased Distributions
	3.3 Branching Programs

	4 From Width-3 ROBPs to the XOR of Short ROBPs
	5 Pseudorandom Generators for Width-3 ROBPs
	5.1 Proof Overview
	5.2 Reducing the Length of (3,,m)-ROBPs
	5.3 PRGs for ROBPs with Few Colliding Layers
	5.4 Proof of Theorem 1
	5.5 Proof of Claim 5.13
	5.6 Pseudorandom Generator for Unordered 3ROBPs

	References

