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Abstract

In many optimization problems, a feasible solution induces a multi-dimensional cost vector. For exam-

ple, in load-balancing a schedule induces a load vector across the machines. In k-clustering, opening

k facilities induces an assignment cost vector across the clients. Typically, one seeks a solution which

either minimizes the sum- or the max- of this vector, and these problems (makespan minimization, k-

median, and k-center) are classic NP-hard problems which have been extensively studied.

In this paper we consider the minimum norm optimization problem. Given an arbitrary monotone,

symmetric norm, the problem asks to find a solution which minimizes the norm of the induced cost-

vector. These functions are versatile and model a wide range of problems under one umbrella. We give

a general framework to tackle the minimum norm problem, and illustrate its efficacy in the unrelated

machine load balancing and k-clustering setting. Our concrete results are the following.

• We give constant factor approximation algorithms for the minimum norm load balancing problem

in unrelated machines, and the minimum norm k-clustering problem. To our knowledge, our

results constitute the first constant-factor approximations for such a general suite of objectives.

• In load balancing with unrelated machines, we give a 2-approximation for the problem of finding

an assignment minimizing the sum of the largest ℓ loads, for any ℓ. We give a (2+ε)-approximation

for the so-called ordered load-balancing problem.

• For k-clustering, we give a (5 + ε)-approximation for the ordered k-median problem significantly

improving the constant factor approximations from Byrka, Sornat, and Spoerhase (STOC 2018)

and Chakrabarty and Swamy (ICALP 2018).

• Our techniques also imply O(1) approximations to the best simultaneous optimization factor for

any instance of the unrelated machine load-balancing and the k-clustering setting. To our knowl-

edge, these are the first positive simultaneous optimization results in these settings.

At a technical level, our main insight is connecting minimum-norm optimization to what we call min-

max ordered optimization. The main ingredient in solving the min-max ordered optimization is deter-

ministic, oblivious rounding of linear programming relaxations for load-balancing and clustering, and

this technique may be of independent interest.
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1 Introduction

In many optimization problems, a feasible solution induces a multi-dimensional cost vector. For example,

in the load balancing setting with machines and jobs, a solution is an assignment of jobs to machines, and

this induces a load on every machine. In a clustering setting with facilities and clients, a solution is to open

k facilities and connecting clients to the nearest open facilities, which induces an assignment cost on every

client. This multi-dimensional vector dictates the quality of the solution. Depending on the application,

oftentimes one minimizes either the sum of the entries of the cost vector, or the largest entry of the cost

vector. For example, in the load balancing setting, the largest entry of the load vector is the makespan of

the assignment, and minimizing makespan has been extensively studied [34, 40, 20, 41, 15, 28]. Similarly,

in the clustering setting, the problem of minimizing the sum of assignment costs is the k-median problem,

and the problem of minimizing the largest assignment cost is the k-center problem. Both of these are classic

combinatorial optimization problems [26, 23, 18, 17, 27, 35, 12]. However, the techniques to study the

sum-versions and max-versions are often different, and it is a natural and important to investigate what the

complexity of these problems become if one is interested in a different statistic of the cost vector.

In this paper, we study a far-reaching generalization of the above two objectives. We study the minimum

norm optimization problem, where given an arbitrary monotone, symmetric norm f , one needs to find a

solution which minimizes the norm f evaluated on the induced cost vector. In particular, we study (a) the

minimum norm load balancing problem which asks to find the assignment of jobs to (unrelated) machines

which minimizes f(
−−→
load) where

−−→
load is the induced load vector on the machines, and (b) the minimum norm

k-clustering problem which asks to open k-facilities minimizing f(~c) where ~c is the induced assignment

costs on the clients.

Our main contribution is a framework to study minimum norm optimization problems. Using this, we

give constant factor approximation algorithms for the minimum norm unrelated machine load balancing and

the minimum norm k-clustering problem (Theorem 8.1 and Theorem 9.1). To our knowledge our results

constitute the first constant-factor approximations for a general suite of objectives in these settings. We

remark that the above result is contingent on how f is given. We need a ball-optimization oracle (see (B-O)

for more details), and for most norms it suffices to have access to a first-order oracle which returns the

(sub)-gradient of f at any point.

Monotone, symmetric norms capture a versatile collection of objective functions. We list a few relevant

examples below and point to the reader to [10, 11, 4] for a more comprehensive list of examples.

• ℓp-norms. Perhaps the most famous examples are ℓp norms where f(~v) := (
∑n

i=1 ~v
p
i )

1/p
for p ≥ 1.

Of special interest are p = {1, 2,∞}. For unrelated machines load-balancing, the p = 1 case is trivial

while the p = ∞ case is makespan minimization. This has a 2-approximation [34, 40] which has been

notoriously difficult to beat. For the general ℓp norms, Azar and Epstein [7] give a 2-approximation,

with improvements given by [31, 37]. For the k-clustering setting, the p = {1, 2,∞} norms have been

extensively studied over the years [23, 26, 18, 17, 27, 12, 1]. One can also derive an O(1)-approximation

for general ℓp-norms using most of the algorithms1 for the k-median problem.

• Top-ℓ norms and ordered norms. Another important class of monotone, symmetric norms is the Top-ℓ-
norm, which given a vector ~v returns the sum of the largest ℓ elements. These norms are another way to

interpolate between the ℓ1 and the ℓ∞ norm.

A generalization of the Top-ℓ norm optimization is what we call the ordered norms. The norm is defined

1We could not find an explicit reference for this. The only work which we found that explicitly studies the ℓp-norm minimization

in the k-clustering setting is by Gupta and Tangwongsan [24]. They give a O(p)-approximation using local-search and prove that

local-search can’t do any better. However, ℓpp-“distances” satisfy relaxed triangle inequality, in that, d(u, v) ≤ 2p(d(u,w) +
d(w, v)). The algorithms of Charikar et al [18] and Jain-Vazirani [27] need triangle inequality with only “bounded hops” and thus

give Cp-approximations for the ℓpp “distances”. In turn this implies a constant factor approximation for the ℓp-norm.
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by a non-increasing, non-negative vector w ∈ Rn
+ with w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. Given these weights,

the w-ordered, or simply, ordered norm of a vector ~v ∈ Rn
+ is defined as cost(w;~v) :=

∑n
i=1wi~v

↓
i where

~v ↓ is the entries of ~v written in non-increasing order itself. It is not hard to see that the ordered norm is a

non-negative linear combination of the Top-ℓ norms.

For load balancing in unrelated machines, we are not aware of any previous works studying these

norms. We give a 2-approximation for the Top-ℓ-load balancing, and a (2+ε)-approximation for ordered

load balancing (Theorem 8.2 and Theorem 8.3). Note that the case of ℓ = 1 for Top-ℓ-load balancing

corresponds to makespan minimization for which beating factor 2 is an open problem.

In k-clustering, the Top-ℓ optimization problem is called the ℓ-centrum problem, and the ordered-

norm minimization problem is called the ordered k-median problem. Only recently, a 38-factor [13] and

18+ ε-factor [16] approximation algorithm was given for the ordered k-median problem. We give a much

improved (5 + ε)-factor approximation algorithm for the ordered k-median problem (Theorem 9.3).

• Min-max ordered norm. Of particular interest to us is what we call the min-max ordered optimization

problem. In this, we are given N non-increasing, non-negative weight vectors w(1), . . . , w(N) ∈ Rn
+, and

the goal is to find a solution ~v which minimizes maxNr=1 cost(w
(r);~v). This is a monotone, symmetric

norm since it is a maximum over a finite collection of monotone, symmetric norms.

One of the main insights of this paper is that the minimum norm problem reduces to min-max ordered

optimization (Theorem 5.4). In particular, we show that the value of any monotone, symmetric norm can

be written as the maximum of a collection of (possibly infinite) ordered norms; this result may be of

independent interest in other applications involving such norms [4, 11].

• Operations. One can construct monotone, symmetric norms using various operations such as (a) taking a

nonnegative linear combination of monotone, symmetric norms; (b) taking the maximum over any finite

collection of monotone, symmetric norms; (c) given a (not-necessarily symmetric) norm g : Rn → R+,

setting f(v) := g(v ↓), or f(v) := Expπ[g
(
{vπ(i)}i∈[n]

)
] where π is a random permutation of [n]; (d)

given a monotone, symmetric norm g : Rk → R+, where k ≤ n, setting f(v) =
∑

S⊆[n]:|S|=k g({vi}i∈S).
The richness of these norms makes the minimum-norm optimization problem a versatile and appealing

model which captures a variety of optimization problems under one umbrella.

As an illustration, consider the following stochastic optimization problem in the clustering setting (this

is partly motivated by the stochastic fanout model described in [29] for a different setting). We are

given a universe of plausible clients, and a symmetric probability distribution over actual client instances.

Concretely, say, each client materializes i.i.d with probability p ∈ (0, 1). The problem is to open a set

of k facilities such that the expected maximum distance of an instantiated client to an open facility is

minimized. The expectation is indeed a norm (apply part (d) operation above) and thus we can get a

constant factor approximation for it. In fact, the expected maximum for the i.i.d case is an ordered-norm,

and so we can get a (5 + ε)-approximation for this particular stochastic optimization problem.

• General Convex Functions. One could ask to find a solution minimizing a general convex function

of the cost vector. In general, such functions can be arbitrarily sharp and this precludes any non-trivial

approximation. For instance in the clustering setting, consider the convex function C(~c) which takes the

value 0 if the sum of ~cj’s (that is the k-median objective) is less than some threshold, and∞ otherwise; for

this function, it is NP-hard to get a finite solution. Motivated thus, Goel and Meyerson [21] call a solution

~v an α-approximate solution if C(~v/α) ≤ opt where ~v is the induced cost vector, ~v/α is the coordinate-

wise scaled vector, and opt = min~w C(~w). It is not hard to see2 that a constant factor approximation

for monotone, symmetric norm-minimization implies a constant-approximate solution for any monotone,

symmetric convex function. In particular, for the load-balancing and clustering setting we achieve this.

2Consider the monotone, symmetric norm f(x) := min{t : C(|x|/t) ≤ opt}. By definition f(~o) = 1, and so a α-approximate

min-norm solution ~v satisfies f(~v) ≤ α, implying C(~v/α) ≤ opt . The definition requires knowing the value of opt which can be

guessed using binary search.
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Connections and implications for simultaneous/fair optimization. In the minimum-norm optimization

problem, we are given a fixed norm function f and we wish to find a solution minimizing f(~v) where ~v is the

cost-vector induced by the solution. In simultaneous optimization [30, 21], the goal is to find a solution ~v,

which simultaneously approximates all norms/convex functions. Such solutions are desirable as they possess

certain fairness properties. More precisely, the goal is to find a solution inducing a cost vector ~v which is

simultaneous α-approximate, that is, g(~v) ≤ α · opt(g) for all monotone, symmetric norms g : Rn
+ → R+,

where opt(g) := min~w g(~w).
Simultaneous optimization is clearly a much stronger goal than what we are shooting for, in that, if one

can find a solution which is simultaneous α-approximate, then this solution is clearly an α-approximation

for a fixed norm. It is rather remarkable that in the setting of load balancing with identical jobs, and even

in the restricted assignment setting where the jobs have fixed load but can be allocated only on a subset

of machines, one can always achieve [3, 8, 21] a simultaneous 2-approximate solution. Unfortunately, for

unrelated (even related) machines [8] and k-clustering [30], there are impossibility results ruling out the

existence of any simultaneous α-approximate solutions for constant α. These impossibilities also show that

the techniques used in [3, 8, 21] are not particularly helpful when trying to optimize a fixed norm, which is

the main focus in our paper.

Nevertheless, the techniques we develop give O(1) approximations to the best simultaneous approxima-

tion factor possible in any instance of unrelated machines load-balancing and k-clustering (Theorem 10.5).

Fix an unrelated machines load balancing instance I . Let α∗I be the smallest α for which there is a solution

to I which is simultaneous α-approximate. Note that α∗I could be a constant for a nice instance I; the im-

possibility result mentioned above states α∗I can’t be a constant for all instances. It is natural, and important,

to ask whether for such nice instances can one get constant factor simultaneous approximate solutions? We

answer this in the affirmative. We give an algorithm which, for any instance I , returns a solution inducing

a load vector ~v′ such that g(~v′) ≤ O(α∗I) · opt(g) for all monotone, symmetric norms simultaneously. We

can also obtain a similar result for the k-clustering setting. These seem to be the first positive results on

simultaenous optimization in these settings. We remark that our algorithm is not a generic reduction to the

minimum norm optimization, but is an artifact of our techniques developed to tackle the problem.

Other related work. The ordered k-median and the ℓ-centrum problem have been extensively studied in

the Operations Research literature for more than two decades (see, e.g. the books [38, 32]); we point the

interested reader to these books, or the paper by Aouad and Segev [5], and references within for more

information on this perspective. From an approximation algorithms point of view, Tamir [42] gives the

first O(log n)-approximation for the ℓ-centrum problem, and Aouad and Segev [5] give the first O(log n)-
approximations for the ordered k-median problem. Very recently, Byrka, Sornat, and Spoerhase [13] and

our earlier paper [16] give the first constant-factor approximations for the ℓ-centrum and ordered k-median

problems. Another recent relevant work is of Alamdari and Shmoys [2] who consider the k-centridian

problem where the objective is a weighted average of the k-center and the k-median objective (a special

case of the ordered k-median problem); [2] give a constant-factor approximation algorithm for this problem.

In the load balancing setting, research has mostly focused on ℓp norms; we are not aware of any work

studying the Top-ℓ optimization question in load balancing. For the ℓp-norm Awerbuch et al. [6] give a

Θ(p)-approximation for unrelated machines; their algorithm is in fact an online algorithm. Alon et al. [3]

give a PTAS for the case of identical machines. This paper [3] also shows a polynomial time algorithm

in the case of restricted assignment (jobs have fixed processing times but can’t be assigned everywhere)

with unit jobs which is optimal simultaneously in all ℓp-norms. Azar et al. [8] extend this result to get a 2-

approximation algorithm simultaneously in all ℓp norms in the restricted assignment case. This is generalized

to a simultaneous 2-approximation in all symmetric norms (again in the restricted assignment situation) by

Goel and Meyerson [21]. As mentioned in the previous subsection, Azar et al. [8] also note that even in the

related machine setting, no constant factor approximation is possible simultaneously even with the ℓ1 and
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ℓ∞ norm. For unrelated machines, for any fixed ℓp norm Azar and Epstein [7] give a 2-approximation via

convex programming. The same paper also gave a
√
2-approximation for the p = 2 case. These factors

have been improved (in fact for any constant p the approximation factor is < 2) by Kumar et al. [31] and

Makarychev and Sviridenko [37]. We should mention that the techniques in these papers are quite different

from ours and in particular these strongly use the fact that the ℓpp cost is separable. Finally, in the clustering

setting, Kumar and Kleinberg [30] and Golovin et al. [22] give simultaneous constant factor approximations

in all ℓp norms, but their results are bicriteria results in that they open O(k log n) and O(k
√
log n) facilities

instead of k.

2 Technical overview and organization

We use this section to give an overview of the various technical ideas in this paper and point out the reader

to where more details can be found.

First approach and its failure. Perhaps the first thing one may try for the minimum-norm optimization

problem is to write a convex program min f(~v) where ~v ranges over fractional cost vectors, ideally, convex

combinations of integral cost vectors. If there were a deterministic rounding algorithm which given an

optimal solution ~v∗ could return a solution ~v such that for every coordinate ~vj ≤ ρ~v∗j , then by homogeneity

of f , we would get a ρ-approximation. Indeed, for some optimization problems such a rounding is possible.

Unfortunately, for both unrelated load balancing and k-clustering, this strategy is a failure as there are simple

instances for both problems, where even when ~v∗ is a convex combination of integer optimum solutions, no

such rounding, with constant ρ, exists. In particular, the integrality gaps of these convex programs are

unbounded.

Reduction to min-max ordered optimization (Section 5). Given the above failure, at first glance, it may

seem hard to be able to reason about a general norm. One of the main insights of this paper is that the

monotone, symmetric norm minimization problem reduces to min-max ordered optimization. This is a

key conceptual step since it allows us a foothold in arguing about the rather general problem. Our result

may also be of interest in other settings dealing with symmetric norms. In particular, we show that given

any monotone, symmetric norm f , the function value at any point f(x) is equal to maxw∈C cost(w;x)
(Lemma 5.2) where C is a potentially infinite family of non-increasing subgradients on the unit-norm ball.

That is, f(x) equals the maximum over a collection of ordered norms. Thus, finding the x minimizing f(x)
boils to the min-max ordered-optimization problem. The snag is that collection of weight vectors could be

infinite. This is where the next simple, but extremely crucial, technical observation helps us.

Sparsification idea (Section 4). Given a non-increasing, non-negative weight vector w ∈ Rn
+, the ordered

norm of a vector ~v ∈ Rn
+ is cost(w;~v) :=

∑n
i=1 wi~v

↓
i . The main insight is that although w may have

all its n-coordinates distinct, only a few fixed coordinates matter. More precisely, if we focus only on the

coordinates POS := {1, 2, 4, 8, · · · , } and define a w̃-vector with w̃i = wi if i ∈ POS, and w̃i = wℓ where ℓ
is the nearest power of 2 larger than i, then it is not too hard to see cost(w̃;x) ≤ cost(w;x) ≤ 2cost(w̃;x).
Indeed, one can increase the granularity of the coordinates to (ceilings of) powers of (1+δ) to get arbitrarily

close approximations where the number of relevant coordinates is O(log n/δ).
The above sparsification shows that for the ordered norms, one can just focus on weight vectors which

have breakpoints in fixed locations independent of what the weight vectors are. Note that other kinds of

sparsification which round every coordinate of a weight vector to the nearest power of (1 + δ) don’t have

this weight-independence in the positions of breakpoints. This fixedness of the locations (and the fact that

there are only logarithmically many of them) allows us to form a polynomial sized ε-net of weight vectors.

More precisely, for any weight vector w, there is another weight vector w′ in this net such that for any vector
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~v, cost(w;~v) and cost(w′;~v) are within multiplicative (1±δ). In particular, this helps us bypass the problem

of “infinitely many vectors” in C described above.

Ordered optimization and proxy costs (Section 6). Now we focus on min-max ordered optimization.

First let us consider just simple ordered optimization, and in particular, just Top-ℓ optimization. To illustrate

the issues, let us fix the optimization problem to be load balancing on unrelated machines. One of the

main technical issues in tackling the Top-ℓ optimization problem is that one needs to find an assignment

such that sum of loads on a set of ℓ machines is minimized, but this set of machines itself depends on the

assignment. Intuitively, the problem would be easier (indeed, trivial) if we could sum the loads over all

machines. Or perhaps sum some function of the loads, but over all machines. Then perhaps one could write

a linear/convex program to solve this problem fractionally, and the objective function would be clear. This

is where the idea of proxy costs comes handy. We mention that this idea was already present in the paper of

Aouad and Segev [5], and then in different forms in Byrka et al [13] and our earlier paper [16].

The idea of this proxy cost is also simple. Suppose we knew what the ℓth largest load would be in the

optimal solution – suppose it was ρ. Then the Top-ℓ load can be written as ℓ·ρ+∑
i: all machines(load(i)−ρ)+,

where we use (z)+ := max(z, 0). This is the proxy-cost of the Top-ℓ norm given parameter ρ. Note that

the summation is over all machines; however, the summand is not the load of the machine but a function

hρ(load(i)) of the load. Furthermore, we could assume by binary search that we have a good guess of ρ.

For ordered optimization, first we observe that cost(w;~v) can be written as a non-negative linear com-

bination of the Top-ℓ norms (see Claim 6.4). In particular, if we have the guesses of the ℓth largest loads for

all ℓ, then we could write the proxy cost of cost(w;~v). However, guessing n of the ρℓ’s would be infeasible.

This is where the sparsification idea described above comes handy again. Since the only relevant positions

of w to define w̃ are the ones in POS, one just needs to guess approximations for ρℓs only in these positions

to define the proxy function. And this again can be done in polynomial time. Once again, what is key is

that positions are independent of the particular weight vector. This is key for min-max ordered optimization.

Even though there are N different weight functions, their sparsified versions have the same break points,

and their proxy functions are defined using these same, logarithmically many break points.

LP relaxations and deterministic oblivious rounding (Sections 7 to 9). One can use the proxy costs to

write linear programming relaxations for the problems at hand (in our case, load balancing and k-clustering).

Indeed, for k-clustering, this was the approach taken by Byrka et al. [13] and our earlier work [16] for

ordered k-median. With proxy costs, the LP relaxation for ordered k-median is the usual LP but the objective

has non-metric costs. Nevertheless, both the papers showed constant integrality gaps for these LPs (our

proxy costs were subtly different but within O(1)-factors). For load-balancing, the usual LP has a bad

gap, and one needs to add additional constraints. After this, however, we can indeed show the LP has an

integrality gap of ≤ 2 (this is established in Section 8.3).

However, it is not at all clear how to use this LP for min-max ordered problems with multiple weight

functions. The algorithms of Byrka et al [13] are randomized which bound the expected cost of the ordered

k-median; with multiple weights, this won’t help solve the min-max problem unless one can argue very

sharp concentration properties of the algorithm. The same is true for our load-balancing algorithm. These

algorithms can be derandomized, but these derandomizations lead to algorithms which use the (single)

weight function crucially, and it is not clear at all how to minimize the max of even two weight functions.

The primal-dual algorithm in [16] suffers from the same problem. Our approach in this paper is to consider

deterministic rounding of the LP solution which are oblivious to the weight vectors. We can achieve this for

the LP relaxations we write for load balancing and k-clustering (although we need to strengthen the latter

furthermore). We defer further technical overview to Section 7, and then give details for load-balancing

in Section 8 and for k-clustering in Section 9. After reading Section 7, the sections on load balancing and

clustering can be read in any order.

Extensions: connections to simultaneous optimization (Section 10). We end the paper by showing
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the power of deterministic, weight-oblivious rounding to give constant factor approximations to instance-

optimal algorithms for simultaneous optimization. The key idea stems from the result of Goel and Meyer-

son [21], which itself stems from the majorization theory of Hardy, Littlewood, and Polya [25], that if we

want to simultaneously optimize all monotone, symmetric, norms, then it suffices to simultaneously opti-

mize all the Top-ℓ norms. If the best simultaneous optimization for a given instance is α∗I , then one can cast

this as a multi-budgeted ordered optimization problem where we need to find a solution where the ordered-

norm with respect to the rth weight vector is at most some budget Br. Once again, if we have a good

deterministic, weight-oblivious rounding algorithm for the LP relaxation, the multi-budgeted ordered opti-

mization problem can also be easily solved. As a result, for any load-balancing and k-clustering instance,

we get O(1)-approximations to the best simultaneous optimization factor possible for that instance.

3 Preliminaries

Solutions to the optimization problems we deal with in this paper induce cost vectors. We use ~v to denote

them when talking about problems in the abstract. In load-balancing, the vector of the loads on machines is

denoted by
−−→
load, or

−−→
loadσ if σ is the assignment of jobs. In k-clustering, we the vector of assignment costs

of clients is denoted as ~c. We always use ~o to denote the cost vector in the optimum solution.

For an integer n, we use [n] to denote the set {1, . . . , n}. For a vector ~v ∈ Rn, we use ~v ↓ to denote

the vector v with coordinates sorted in non-increasing order. That is, we have ~v ↓i = ~vπ(i), where π is a

permutation of [n] such that ~vπ(1) ≥ ~vπ(2) ≥ . . . ~vπ(n).
Throughout the paper, we use w (with or without superscripts) to denote a non-increasing, non-negative

weight vector. The dimension of this vector is the dimension of the cost vector. In the abstract, we use n to

denote this dimension; so w ∈ Rn
+ and w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. We use w̃ to denote the “sparsified”

version of the weight vector w which is defined in Section 4.

Ordered and top-ℓ optimization. Given a weight vector w as above, the ordered optimization problem

asks to find a solution with induced cost vector ~v which minimizes cost(w;~v) :=
∑n

i=1 wi~v
↓
i . This is the

w-ordered norm, or simply ordered norm of ~v. We denote the special case of when w is a {0, 1} vector

Top-ℓ optimization. That is, if w1 = · · ·wℓ = 1 and wi = 0 otherwise, the problem asks to find a solution

~v minimizing the sum of the ℓ largest entries. We use the notation cost(ℓ;~v) to denote the cost of the Top-ℓ
optimization problem. In the literature in the k-clustering setting, the Top-ℓ optimization problem is called

the ℓ-centrum problem, and the ordered optimization problem is called the ordered k-median problem.

Min-max and multi-budgeted ordered optimization. In a significant generalization of ordered optimiza-

tion, we are given multiple non-increasing weight vectors w(1), . . . , w(N) ∈ Rn
+, and min-max ordered

optimization asks to find a solution with induced cost vector ~v which minimizes maxr∈[N ] cost(w
(r);~v).

A related problem called multi-budget ordered optimization has the same setting as min-max ordered op-

timization, but one is also given N budgets B1, . . . , BN ≥ 0. The objective is to find a solution inducing

cost vector ~v such that cost(w;~v) ≤ Br, for all r. This problem leads to the connections with simultaneous

optimization [30, 21]; we discuss these connections more in Section 10.

Minimum norm optimization. A function f : Rn → R is a norm if (i) f(x) = 0 iff x = 0; (ii) f(x+ y) ≤
f(x) + f(y) for all x, y ∈ Rn (triangle inequality); and (iii) f(λx) = |λ|f(x) for all x ∈ Rn, λ ∈ R

(homogeneity). Properties (ii) and (iii) imply that f is convex. f is symmetric if permuting the coordinates

of x does not affect its value, i.e., f(x) = f(x↓) for all x ∈ Rn. f is monotone if increasing its coordinate

cannot decrease its value 3. In minimum norm optimization problem we are given a monotone, symmetric

3Symmetric norms mayn’t be monotone. For instance, consider the set C ⊆ R2, which is the convex hull of the points

{(1, 1), (−1,−1), (0, 0.5), (0.5, 0), (0,−0.5), (−0.5, 0)}, and define f(x) to be the smallest λ such that x/λ ∈ C. It is not hard

to see that f is a symmetric norm over R2, f(0, 0.5) = 1, but f(0.5, 0.5) ≤ 0.5.
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norm f , and we have to find a solution inducing a cost vector ~v which minimized f(~v). Notice that Top-ℓ
optimization, ordered optimization, and min-max ordered optimization are special cases of this problem.

Load balancing and k-clustering problems. In the load balancing setting, we have m machines, n jobs,

and a processing time pij ≥ 0 of job j on machine i. The solution to the problem is an assignment σ of jobs

to machines. This induces a load loadσ(i) :=
∑

j:σ(j)=i pij on each machine. The vector
−−→
loadσ of these

loads is the cost-vector associated with the solution σ. Thus, the min-norm load balancing problem asks to

find σ minimizing f(
−−→
loadσ).

In the k-clustering setting, we have a metric space
(
D, {cij}i,j∈D

)
, and an integer k ≥ 0. The solution to

the problem is a set F ⊂ D, |F | = k of k open facilities This induces a cost-vector~c, where~cj := mini∈F cij
is the assignment cost of j to the nearest open facility. The min-norm k-clustering problem asks to find the

set F of facilities which minimizes f(~c).

4 Sparsifying weights

Let δ > 0 be a parameter. We show how to sparsify w ∈ Rn to a weight vector w̃ ∈ Rn (with non-increasing

coordinates) having O(log n/δ) distinct weight values, such that for any vector ~v, we have cost(w̃;~v) ≤
cost(w;~v) ≤ (1 + δ)cost(w̃;~v). Moreover, an important property we ensure is that the breakpoints of w̃—

i.e., the indices where w̃i > w̃i+1—lie in a set that depends only by n and δ and is independent of w. As

explained in Section 2, sparsification in two distinct places; one, to give a polynomial time reduction from

min-norm optimization to min-max ordered optimization (Section 5), and two, to specify proxy costs which

allow us to tackle min-max ordered optimization.

For simplicity, we first describe a sparsification that leads to a factor-2 loss (instead of 1 + δ), and then

refine this. For every index i ∈ [n], we set w̃i = wi if i = min{2s, n} for some integer s ≥ 0; otherwise, if

s ≥ 1 is such that 2s−1 < i < min{2s, n}, set w̃i = wmin{2s,n} = w̃min{2s,n}. Note that w̃ ≤ w coordinate

wise, and w̃1 ≥ w̃2 ≥ . . . w̃n.

Observe that, unlike a different sparsification based on, say, geometric bucketing of the wis, the spar-

sified vector w̃ is not component-wise close to w; in fact w̃i could be substantially smaller than wi for an

index i. Despite this, Claim 4.1 shows that cost(w̃;~v) and cost(w;~v) are close to each other.

Claim 4.1. For any ~v ∈ Rn
+, we have cost(w̃;~v) ≤ cost(w;~v) ≤ 2cost(w̃;~v).

Proof. Since w̃ ≤ w, it is immediate that cost(w̃;~v) ≤ cost(w;~v). The other inequality follows from a

charging argument. Note that for any s ≥ 2, we have
(
min{2s, n} − 2s−1

)
≤ 2

(
min{2s−1, n} − 2s−2

)
;

hence, the cost contribution
∑min{2s,n}

i=2s−1+1
wi~v

↓
i is at most twice the cost contribution in cost(ŵ; v) from the

indices i ∈
{
2s−2 + 1, . . . ,min{2s−1, n}

}
. The remaining cost w1~v

↓
1 + w2~v

↓
2 is at most 2w̃1~v

↓
1 .

For the refined sparsification that only loses a (1 + δ)-factor, we consider positions that are powers of

(1+ δ). Let POSn,δ :=
{
min{⌈(1 + δ)s⌉ , n} : s ≥ 0

}
. (Note that {1, n} ⊆ POSn,δ.) Observe that POSn,δ

depends only on n, δ and is oblivious of the weight vector. We abbreviate POSn,δ to POS in the remainder

of this section, and whenever n, δ are clear from the context. For ℓ ∈ POS, ℓ < n, define next(ℓ) to be the

smallest index in POS larger than ℓ. For every index i ∈ [n], we set w̃i = wi if i ∈ POS; otherwise, if

ℓ ∈ POS is such that ℓ < i < next(ℓ) (note that ℓ < n), set w̃i = wnext(ℓ) = w̃next(ℓ). The following is a

generalization of Claim 4.1.

Lemma 4.2. For any ~v ∈ Rn
+, we have cost(w̃;~v) ≤ cost(w;~v) ≤ (1 + δ)cost(w̃;~v).

Not to detract the reader, we defer the proof of Lemma 4.2 to Appendix A. We once again stress that the,

perhaps more natural, way of geometric bucketing (which is indeed used by [5, 13, 16]) where one ignores
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small wis and rounds down each remaining wi to the nearest power of 2 (or (1 + ε)), doesn’t work for our

purposes. With geometric bucketing, the resulting sparsified vector w′ is component-wise close to w (and so

cost(w′;~v) is close to cost(w;~v)). But the breakpoints of w′ depend heavily on w, whereas the breakpoints

of w̃ all lie in POS. As noted earlier, this non-dependence on w is extremely crucial for us.

5 Reducing minimum norm optimization to min-max ordered optimization

In this section we show our reduction of the minimum norm optimization problem to min-max ordered

optimization. We are given a monotone, symmetric norm f : Rn → R+, and we want to find a solution

to the underlying optimization problem which minimizes the f evaluated on the induced cost vector. Let ~o
denote the optimal cost vector and let opt = f(~o).

We assume the following (approximate) ball-optimization oracle. Given any cost vector c ∈ Rn, we can

(approximately) optimize c⊤x over the ball B+(f) := {x ∈ Rn
+ : f(x) ≤ 1}.

Oracle A takes input c ∈ Rn
+ returns a κ-approximation to Bopt(c) := max{c⊤x : x ∈ B+(f)}

That is, A returns x̂ ∈ B+(f) such that c⊤x̂ ≥ Bopt(c)/κ
(B-O)

Note that under mild assumptions, the ball-optimization oracle can be obtained, via the ellipsoid method,

using a first-order oracle for f that returns the subgradient (or even approximate subgradient) of f . Recall,

d ∈ Rn is a subgradient of f at x ∈ Rn if we have f(y) − f(x) ≥ dT (y − x) for all y ∈ Rn. It is well

known that a convex function has a subgradient at every point in its domain.

We begin by stating some preliminary properties of norms, monotone norms, and symmetric norms. The

proof can be found in Appendix B.

Lemma 5.1. Let f : Rn → R+ be a norm and x ∈ Rn
+.

(i) If d is a subgradient of f at x, then f(x) = dTx and f(y) ≥ dT y for all y ∈ Rn. Also, d is a

subgradient of f at any point λx, where λ ≥ 0.

(ii) If f is monotone, there exists a subgradient d of f at x such that d ≥ 0.

(iii) Let f be symmetric, and d be a subgradient of f at x. Then, d and x are similarly ordered, i.e., if

di < dj then xi ≤ xj , and f(x) = cost(d↓;x). Moreover, for any permutation π : [n] → [n], the

vector d(π) :=
{
dπ(i)

}
i∈[n]

is a subgradient of f at x(π).

Motivated by the above lemma, we define the following set of non-increasing subgradients over points

on the unit norm-ball. This set is possibly infinite.

C =
{
d ∈ Rn

+ : d1 ≥ d2 ≥ . . . ≥ dn, d is a subgradient of f at some x ∈ B+(f)
}
.

As a warm up, Lemma 5.2 shows that min-norm optimization is equivalent to min-max ordered optimization

with an infinite collection of weight vectors. This establishes the reduction, however it is inefficient.

Lemma 5.2. Let x ∈ Rn
+. We have f(x) = maxw∈C cost(w;x).

Proof. We first argue that f(x) ≤ maxw∈C cost(w;x). By part (ii) (of Lemma 5.1), there is a subgradient

d ≥ 0 of f at x. By part (iii), there is a common permutation π that defines d↓ and x↓, and d̂ = d↓ is a

subgradient of f at x↓. By part (i), d̂ is also a subgradient of f at x↓/f(x↓) ∈ B+(f). So d̂ ∈ C. Also,

f(x) = cost(d̂;x) (by part (iii)), and so f(x) ≤ maxw∈C cost(w;x).
Conversely, consider any w ∈ C, and let it be a subgradient of f at z ∈ B+(f). We have f(x) = f(x↓) ≥

wTx↓ (by part (i) of Lemma 5.1), and so f(x) ≥ cost(w;x). Therefore, f(x) ≥ maxw∈C cost(w;x).
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To reduce to min-max ordered optimization, we need to find a polynomial-sized collection of weight

vectors. Next, we show how to leverage the weight sparsification idea in Section 4 and achieve this taking

a slight hit in the approximation factor. Let 0 < ε ≤ 0.5 be a parameter. The sparsification procedure

(Lemma 4.2) shows that, with an (1+ ε)-loss, we can focus on a set of O(log n/ε) coordinates and describe

the weight vectors by their values at these coordinates. For the ordered-optimization objective cost(w;x),
moving to the sparsified weight incurs only a (1 + ε)-loss. Furthermore, again taking a loss of (1 + ε),
we can assume these coordinates are set to powers of (1 + ε). Our goal (roughly speaking) is then only to

consider the collection consisting of the sparsified, rounded versions of vectors in C. Claim 5.3 implies that

we can enumerate all sparsified, rounded weight vectors in polynomial time.

But we also need to be able to determine if such a vector w̃ is “close” to a subgradient in C, and this is

where (B-O) is used. First note that d ∈ C iff4 Bopt(d) = 1. Thus to check if w̃ is “close” to a subgradient

in C, it suffices to (approximately) solve for Bopt(w̃) and check if the answer is within (1 ± ε) (or scaled

by κ if we only have an approximate oracle). We give the details next.

To make the enumeration go through we need to make the following mild assumptions. These assump-

tions need to be checked for the problems at hand, and are often easy to establish.

(A1) We can determine in polytime if ~o↓1 = 0. If ~o↓1 > 0 (so opt > 0), then ~o↓1 ≥ 1 (assuming integer data),

and we can compute an estimate hi such that ~o↓1 ≤ hi. In the sequel, assume that ~o↓1 ≥ 1.

(A2) We have bounds lb, ub > 0 such that lb ≤ opt ≤ ub. Then (A1) and Lemma 5.1 (i) imply that

d1 ≤ ub for all d ∈ C.

We take δ = ε in the sparsification procedure in Section 4. LetPOS = POSn,ε := {min{⌈(1 + ε)s⌉ , n} :
s ≥ 0}. Recall that next(ℓ) is the smallest index in POS larger than ℓ. The sparsified version of w ∈ Rn

is the vector w̃ ∈ Rn given by w̃i = wi if i ∈ POS; and w̃i = wnext(ℓ) otherwise, where ℓ ∈ POS is such

that ℓ < i < next(ℓ). Since w̃ is completely specified by specifying the positions in POS, we define the

|POS|-dimensional vector u := {w̃ℓ}ℓ∈POS. We identify w̃ with u ∈ RPOS
+ and say that w̃ is the expansion

of u.

Define W ′ ⊆ Rn
+ :=

{
expansion of u ∈ RPOS

+ : ∃ℓ∗ ∈ POS s.t. uℓ = 0 ∀ℓ ∈ POS with ℓ > ℓ∗,

u1, u2, . . . , uℓ∗ are powers of (1 + ε) (possibly smaller than 1)

u1 ∈
[

lb

n·hi , ub(1 + ε)
)
, u1 ≥ u2 ≥ . . . ≥ uℓ∗ ≥ εu1

n(1+ε)

}
.

Let 1n denote the all 1s vector in Rn. Now define

W :=
{
w ∈ W ′ : oracle A run on w returns x̂ ∈ B+(f) s.t. wT x̂ ∈

[
(1− ε)/κ, 1 + ε

]}
∪

{
lb

n·hi · 1n
}
.

The extra scaled all ones vector is added for a technical reason. We use the following enumeration claim.

Claim 5.3. There are at most (2e)max{N,k} non-increasing sequences of k integers chosen from {0, . . . , N}.
The following theorem establishes the reduction from the minimum norm problem to min-max ordered

optimization. The proof idea is as sketched above; we defer the details of the proof to Appendix B.

Theorem 5.4. For any ~v ∈ Rn
+, the following hold.

(i) maxw∈W cost(w;~v) ≤ max
{
κ(1+ε)f(~v), lb

n·hi

∑
i∈[n] ~vi

}
, (ii) f(~v) ≤ (1−ε)−1 maxw∈W cost(w;~v).

Hence, a γ-approximate solution ~v for the min-max ordered-optimization problem with objective

maxw∈W cost(w;~v) (where γ ≥ 1) satisfies f(~v) ≤ γκ(1 + 3ε)opt .

ConstructingW requires O
( logn

ε2
log(n·ub·hi

lb
)(nε )

O(1/ε)
)

calls to A, which is also a bound on |W|.
4If d ∈ C is the subgradient of f at y ∈ B+(f), d

Tx ≤ f(x) ≤ 1 ∀x ∈ B+(f), and dT y/f(y) = 1, so maxx∈B+(f) d
Tx = 1.

Alternately, if Bopt(d) = 1, then we have d⊤z = 1 for some f(z) ≤ 1 implying f(z) + d⊤(y − z) ≤ d⊤y for any y. If the LHS

is > f(y), then we would get d⊤(y/f(y)) > 1 contradicting Bopt(d) = 1.
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6 Proxy costs

As mentioned in Section 2, the key to tackling ordered optimization is to view the problem of minimizing

the sum of a suitably devised proxy-cost function over all coordinates. We describe this proxy in this section.

We first so so for Top-ℓ optimization. This will serve to motivate and illuminate the proxy-cost function that

we use for (general) ordered optimization. As usual, we use ~o to denote the cost vector corresponding to an

optimal solution, and opt to denote the optimal cost. Recall, cost(ℓ;~v) is the cost of the Top-ℓ optimization.

Define z+ := max{0, z} for z ∈ R. For any scalar ρ > 0, define hρ(z) := (z − ρ)+. The main insight

is that for any ~v ∈ Rn, we have cost(ℓ;~v) = minρ∈R ℓ · ρ+∑n
i=1 hρ(~vi).

Claim 6.1. For any ℓ ∈ [n], any ~v ∈ Rn, and any ρ ∈ R, we have cost(ℓ;~v) ≤ ℓ · ρ+∑n
i=1 hρ(~vi).

Proof. We have cost(ℓ;~v) =
∑ℓ

i=1 ~v
↓
i ≤ ℓ · ρ+∑ℓ

i=1(~v
↓
i − ρ)+ ≤ ℓ · ρ+∑n

i=1(~v
↓
i − ρ)+.

Claim 6.2. Let ℓ ∈ [n], and ρ be such that ~o↓ℓ ≤ ρ ≤ (1+ε)~o↓ℓ . Then ℓ·ρ+∑n
i=1 hρ(~oi) ≤ (1+ε)cost(ℓ;~o).

Proof. We have
∑n

i=1(~oi− ρ)+ ≤∑ℓ
i=1(~o

↓
i −~o↓ℓ ). Since ρ ≤ (1+ ε)~o↓ℓ , we have ℓ ·ρ+∑n

i=1(~oi− ρ)+ ≤
(1 + ε)

∑ℓ
i=1

(
~o↓ℓ + (~o↓i − ~o↓ℓ )

)
= (1 + ε)cost(ℓ;~o).

The above claims indicate that if we obtain a good estimate ρ of ~o↓ℓ , then ℓ · ρ+∑n
i=1 hρ(~vi) can serve

as a good proxy for cost(ℓ;~v), and we can focus on the problem of finding v minimizing
∑n

i=1 hρ(~vi). The

following properties will be used many times.

Claim 6.3. We have: (i) hρ(x) ≤ hρ(y) for any ρ, x ≤ y; (ii) hρ1(x) ≤ hρ2(x) for any ρ1 ≥ ρ2, and any x;

(iii) hρ1+ρ2(x+ y) ≤ hρ1(x) + hρ2(y) for any ρ1, ρ2, x, y.

Proof. Part (iii) is the only part that is not obvious. If hρ1+ρ2(x+ y) = 0, then the inequality clearly holds;

otherwise, hρ1+ρ2(x+ y) = x− ρ1 + y − ρ2 ≤ (x− ρ1)
+ + (y − ρ2)

+.

We remark that our proxy function for Top-ℓ optimization is similar to, but subtly stronger than, the

proxy function utilized in recent prior works on the ℓ-centrum and ordered k-median clustering prob-

lems [13, 16]. This strengthening (and its extension to ordered optimization) forms the basis of our signifi-

cantly improved approximation guarantees of (5 + ε) for ordered k-median (Section 9.3), which improves

upon the prior-best guarantees for both ℓ-centrum and ordered k-median [16]. Furthermore, this proxy

function also leads to (essentially) a 2-approximation for Top-ℓ load balancing and ordered load balancing

(Section 8.3).

Ordered optimization. We now build upon our insights for Top-ℓ optimization. Let w ∈ Rn be the

weight vector (with non-increasing coordinates) underlying the ordered-optimization problem. So, opt =
cost(w;~o) is the optimal cost. The intuition underlying our proxy function comes from the observation that

we can write cost(w;~v) =
∑n

i=1(wi −wi+1)cost(i;~v), where we define wn+1 := 0. Plugging in the proxy

functions for cost(i;~v) in this expansion immediately leads to a proxy function for cost(w;~v). The cost(i;~v)
terms that appear with positive coefficients in the above linear combination are those where wi > wi+1, i.e.,

corresponding to the breakpoints of w. Thus, the proxy function that we obtain for ordered optimization

will involve multiple ρ-thresholds, which are intended to be the estimates of the ~o↓i values corresponding

to breakpoints. However, we cannot afford to “guess” so many of these thresholds. An important step to

make this work is to first sparsify the weight vector w to control the number of breakpoints, and then utilize

the above expansion. As mentioned in Section 4, while geometric bucketing of weights would reduce the

number of breakpoints for a single weight function, for our applications to min-max ordered optimization,

we need the uniform way of sparsifying multiple weight vectors, and we therefore use the sparsification

procedure in Section 4.
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Let δ, ε > 0 be parameters. Let POS = POSn,δ := {min{⌈(1 + δ)s⌉ , n} : s ≥ 0}. Recall that next(ℓ)
is the smallest index in POS larger than ℓ. For notational convenience, we define next(n) := n+ 1, and for

~v ∈ Rn, define ~vn+1 := 0. We sparsify w to w̃ ∈ Rn by setting w̃i = wi if i ∈ POS, and w̃i = wnext(ℓ)

otherwise, where ℓ ∈ POS is such that ℓ < i < next(ℓ).

Our proxy function is obtained by guessing (roughly speaking) the thresholds ~o↓ℓ for all ℓ ∈ POS within

a multiplicative (1 + ε) factor, and rewriting cost(w̃;~v) in terms of these thresholds. Let ~t := {tℓ}ℓ∈POS be

a threshold vector. Define ~tn+1 := 0. We say that ~t is valid if tℓ ≥ tnext(ℓ) for all ℓ ∈ POS. (So this implies

that ~t ≥ 0.) A valid threshold vector ~t, defines the proxy function.

prox~t(w̃;~v) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)[
ℓ · tℓ +

n∑

i=1

htℓ(~vi)
]
=

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

n∑

i=1

h~t (w̃;~vi),

(1)

where, h~t (w̃; a) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
htℓ(a) (2)

Note that the above proxy functions are strict generalizations of the case of the Top-ℓ optimization in which

case POS = {ℓ}, and the weights are 1 till ℓ and 0 afterwards.

Throughout the rest of this section, we work with the sparsified weight vector w̃. Observe that h~t (w̃;x)
is a continuous, piecewise-linear, non-decreasing function of x. Our proxy for cost(w̃;~v) will be the function

prox~t(w̃;~v) for a suitably chosen threshold vector ~t. To explain the above definition, notice that (1) is the

expression obtained by plugging in the proxy functions (ℓ · ρ +
∑n

i=1(vi − ρ)+) defined for the cost(ℓ; ·)-
objectives in the expansion of cost(w̃; v) as a linear combination of cost(ℓ; v) terms.

Claim 6.4. For any ~v ∈ Rn, we have cost(w̃;~v) =
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
cost(ℓ;~v).

Proof. We have

cost(w̃;~v) =

n∑

i=1

w̃i~v
↓
i =

n∑

i=1

n∑

ℓ=i

(w̃ℓ−w̃ℓ+1)~v
↓
i =

n∑

ℓ=1

(w̃ℓ−w̃ℓ+1)

ℓ∑

i=1

~v ↓i =
∑

ℓ∈POS

(
w̃ℓ−w̃next(ℓ)

)
cost(ℓ;~v).

The last equality follows since w̃ℓ = w̃ℓ+1 for all ℓ ∈ [n] \ POS, and w̃ℓ+1 = w̃next(ℓ) for ℓ ∈ POS.

Claim 6.5. For any valid threshold vector ~t ∈ RPOS, and any ~v ∈ Rn, we have cost(w̃;~v) ≤ prox~t (w̃;~v).

Proof. We have prox~t (w̃;~v) =
∑

ℓ∈POS

(
w̃ℓ− w̃next(ℓ)

)(
ℓ · tℓ +

∑n
i=1 htℓ(~vi)

)
. The statement now follows

by combining Claim 6.4 and Claim 6.1, taking t = tℓ for each ℓ ∈ POS.

Claim 6.6. Let ~t ∈ RPOS be a valid threshold vector such that ~o↓ℓ ≤ tℓ ≤ (1 + ε)~o↓ℓ for all ℓ ∈ POS. Then,

prox~t (w̃;~o) ≤ (1 + ε)cost(w̃;~o).

Proof. We have prox~t (w̃;~o) =
∑

ℓ∈POS

(
w̃ℓ− w̃next(ℓ)

)(
ℓ · tℓ+

∑n
i=1 htℓ(~o

↓
i )
)
. The statement now follows

by combining Claim 6.2, where we take t = tℓ for each ℓ ∈ POS, and Claim 6.4.

Claim 6.5 and Claim 6.6 imply that: (1) if we can obtain in polytime a valid threshold vector ~t ∈
RPOS satisfying the conditions of Claim 6.6, and (2) obtain a cost vector v that approximately minimizes∑n

i=1 h~t (vi), then we would obtain an approximation guarantee for the ordered-optimization problem.

We will not quite be able to satisfy (1). Instead, we will obtain thresholds that will satisfy a somewhat

weaker condition (see Lemma 6.8), which we show is still sufficient. The following claim, whose proof is

in Appendix C, will be useful.
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Claim 6.7. Let ~t, ~t′ ∈ RPOS be two valid threshold vectors with ~t ≤ ~t′ and ‖~t − ~t′‖∞ ≤ ∆. Then, for any

~v ∈ Rn, we have
∣∣prox~t (w̃;~v)− prox~t′ (w̃;~v)

∣∣ ≤ nw̃1∆.

Lemma 6.8. Let ~t ∈ RPOS be a valid threshold vector satisfying the following for all ℓ ∈ POS: ~o↓ℓ ≤ tℓ ≤
(1 + ε)~o↓ℓ if ~o↓ℓ ≥

ε~o↓
1

n , and tℓ = 0 otherwise. Then,

prox~t (w̃;~o) =
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

n∑

i=1

h~t (w̃;~oi) ≤ (1 + 2ε)cost(w̃;~o).

Proof. For ℓ ∈ POS, define t′ℓ = tℓ if ~o↓ℓ ≥
ε~o↓

1
n , and t′ℓ = ~o↓ℓ otherwise. Clearly, ~t ≤ ~t′ and ‖~t−~t′‖∞ ≤ ε~o↓

1
n ,

so by Claim 6.7, we have prox~t (w̃;~o
↓) ≤ prox~t′ (w̃;~o

↓) + εw̃1~o
↓
1 . The threshold vector ~t′ satisfies the

conditions of Claim 6.6, so prox~t′ (w̃;~o) ≤ (1 + ε)cost(w̃;~o). So prox~t (w̃;~o) ≤ (1 + 2ε)cost(w̃;~o).

Lemma 6.9 (Polytime enumeration of threshold vectors). Suppose that we can obtain in polynomial time

a (polynomial-size) set S ⊆ R containing a value ρ satisfying ~o↓1 ≤ ρ ≤ (1 + ε)~o↓1 . Then, in time O
(
|S| ·

|POS| · max{(nε )O(1/ε), n1/δ}
)
= O

(
|S|max{(nε )O(1/ε), nO(1/δ)}

)
, we can obtain a set A ⊆ RPOS

+ that

contains a valid threshold vector ~t satisfying the conditions of Lemma 6.8.

If ~o is integral, ~o↓1 > 0, and ρ is a power of (1+ε), then this ~t satisfies: for every ℓ ∈ POS, either tℓ = 0
or tℓ ≥ 1 and is a power of (1 + ε).

Proof. We first guess the largest index ℓ∗ ∈ POS such that ~o↓ℓ ≥
ε~o↓

1
n . For each such ℓ∗, and each t1 ∈ S,

we do the following. We guess tℓ for ℓ ∈ POS, 2 ≤ ℓ ≤ ℓ∗, where all the tℓs are of the form t1/(1 + ε)j

for some integer j ≥ 0 and are at least εt1
n(1+ε) , and the j-exponents are non-decreasing with ℓ. For ℓ ∈

POS with ℓ > ℓ∗, we set tℓ = 0, and add the resulting threshold vector ~t to A. Note that there are

at most 1 + log1+ε

(
n
ε

)
= O

(
1
ε log

n
ε

)
choices for the exponent j. So since we need to guess a non-

decreasing sequence of at most |POS| = O(log n/δ) exponents from a range of size O
(
1
ε log

n
ε

)
, there

are only exp
(
max{O(1ε log(

n
ε )), |POS|}

)
= O

(
max{(nε )O(1/ε), n1/δ}

)
choices (by Claim 5.3). So the

enumeration takes time O
(
|S| · |POS|max{(nε )O(1/ε), n1/δ}

)
, which is also an upper bound on |A|.

We now argue that A contains a desired valid threshold vector. First, note that by construction A only

contains valid threshold vectors. Consider the iteration when we consider t1 = ρ, and have guessed ℓ∗

correctly. For ℓ ∈ POS with 2 ≤ ℓ ≤ ℓ∗, we know that ~o↓ℓ ≥
ε~o↓

1
n ≥ εt1

n(1+ε) and ~o↓ℓ ≤ ~o↓1 ≤ t1. So we will

enumerate non-increasing values t2, . . . , tℓ∗ such that ~o↓ℓ ≤ tℓ ≤ (1 + ε)~o↓ℓ for each such ℓ. The remaining

tℓs are set to 0, so ~t satisfies the conditions of Lemma 6.8.

Finally, suppose ~o ∈ Zn
+ and ρ is a power of (1 + ε). If tℓ < 1, then ℓ ≥ ℓ∗, but ~o↓ℓ ≤ tℓ < 1, which

means that ~o↓ℓ = 0 contradicting that ~o↓ℓ ≥
ε~o↓

1
n . Also, tℓ = ρ/(1 + ε)j , so it is a power of (1 + ε).

The upshot of the above discussion is that it suffices to focus on the algorithmic problem of minimizing∑n
i=1 h~t (vi) for a given valid threshold vector. This is formalized by the following lemma whose proof is

in Appendix C.

Lemma 6.10. Let ~t ∈ RPOS be a valid threshold vector satisfying the conditions of Lemma 6.8. Let ~v ∈ Rn
+

be such that
∑n

i=1 hθ~t (w̃;~vi) ≤ γ ·∑n
i=1 h~t (w̃;~oi) + M , where γ, θ ≥ 1, M ≥ 0. Then, cost(w̃;~v) ≤

max{θ, γ}(1 + 2ε)cost(w̃;~o) +M , and hence cost(w;~v) ≤ (1 + δ)max{θ, γ}(1 + 2ε)opt + (1 + δ)M .
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7 Approach towards min-max ordered optimization

Given the reduction Theorem 5.4 in Section 5, we now discuss our approach for solving min-max-ordered

load balancing and clustering. Eventually, we will need to take a problem-dependent approach, but at a high

level, there are some common elements to our approaches for the two problems as we now elucidate.

As a stepping stone, we first consider ordered optimization (i.e., where we have one weight vector w),

and formulate a suitable LP-relaxation (see Section 8.1 and Section 9.1) for the problem of minimizing∑n
i=1 h~t(w̃;~vi), i.e., the ~v-dependent part of our proxy function for cost(w̃;~v) (see (1) and (2)), where w̃ is

the sparsified version of w. Our LP-relaxation will have the property that only its objective depends on w̃
and not its constraints. The LP for min-max ordered optimization is obtained by modifying the objective in

the natural way.

The technical core of our approach involves devising a deterministic, weight-oblivious rounding pro-

cedure for this LP (see Section 8.2 and Section 9.2). To elaborate, we design a procedure that given

an arbitrary feasible solution, say x, to this LP, rounds it deterministically, without any knowledge of

w, to produce a solution to the underlying optimization problem whose induced cost vector ~v satisfies

the following: for every sparsified weight vector w̃, we have (loosely speaking) cost(w̃, ~v) = O(1) ·
(LP-objective-value of x under w̃). We call this a deterministic, weight-oblivious rounding procedure. To

achieve this, we need to introduce some novel constraints in our LP, beyond the standard ones for load bal-

ancing and k-clustering. The benefit of such an oblivious guarantee is clear: if x is an optimal solution to

the LP-relaxation for min-max ordered optimization, then the above guarantee yields O(1)-approximation

for the min-max ordered-optimization problem. Indeed, this also will solve the multi-budgeted ordered

optimization problem.

We point out that it is important that the oblivious rounding procedures we design are deterministic,

which is also what makes them noteworthy, and we need to develop various new ideas to obtain such

guarantees. Using a randomized O(1)-approximation oblivious rounding procedure in min-max ordered

optimization would yield that the maximum expected cost cost(w(i); ṽ) under weight vectors w(i) in our

collection is O(opt); but what we need is a bound on the expected maximum cost. Therefore, without a

sharp concentration result, a randomized oblivious guarantee is insufficient for the purposes of utilizing

it for min-max ordered optimization. Also, note that derandomizing an oblivious randomized-rounding

procedure would typically cause it to lose its obliviousness guarantee. (We also remark that if we allow

randomization, then it is well-known that any LP-relative approximation algorithm can be used to obtain a

randomized oblivious rounding procedure (see [14].)

To obtain our deterministic oblivious rounding procedure, we first observe that
∑n

i=1 h~t (w̃;~vi) can be

equivalently written as
∑

ℓ∈POS
w̃next(ℓ)

∑n
i=1

(
min{~vi, tℓ} − tnext(ℓ)

)+
. In our LP-relaxation, we introduce

fractional variables to specify the quantities
∑n

i=1

(
min{~vi, tℓ} − tnext(ℓ)

)+
. If we can round the fractional

solution while roughly preserving these quantities (up to constant factors), then we can get the desired

oblivious guarantee. This is what we achieve (allowing for an O(1) violation of the thresholds) by, among

other things, leveraging our new valid constraints that we add to the LP. For instance, in load balancing, ~vi
denotes the load on machine i and the above quantity represents the portion of the total load on a machine

between thresholds tnext(ℓ) and tℓ, and we seek to be preserve this in the rounding.

Preserving the aforementioned quantities amounts to having multiple knapsack constraints, and round-

ing them so as to satisfy them with as little violation as possible. We utilize the following technical tool

to achieve this. We emphasize that the objective cT q below is not related to w̃, but encodes quantities

that arise in our rounding procedure. Theorem 7.1 is proved using iterative rounding, by combining ideas

from [9], which considered directed network design, and the ideas involved in an iterative-rounding based

2-approximation algorithm for the generalized assignment problem (see Section 3.2 of [33]). Similar results

are known in the literature, but we could not quite find a result that exactly fits our needs; we include a proof
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in Appendix D for completeness.

Theorem 7.1. Let q̂ be a feasible solution to the following LP:

min cT q A1q ≤ b1, A2q ≥ b2, Bq ≤ d, q ∈ RM
+ . (Q)

Suppose that: (i) A1, A2, B, b1, b2, d ≥ 0; (ii) A1, A2 are {0, 1}-matrices, and the supports of the rows of(
A1
A2

)
form a laminar family; (iii) b1, b2 are integral; and (iv) qj ≤ 1 is an implicit constraint implied by

A1q ≤ b1, A2q ≥ b2. Let k be the maximum number of constraints of Bq ≤ d that a variable appears in.

We can round q̂ to an integral (hence {0, 1}) solution
int

q satisfying: (a) cT
int

q ≤ cT q̂; (b) the support of
int

q

is contained in the support of q̂; (c) A1
int

q ≤ b1, A2
int

q ≥ b2; and (d) (B
int

q)i ≤ di + k(maxj:q̂j>0 Bij) for all i
ranging over the rows of B.

8 Load balancing

In this section, we use our framework to design constant factor approximation algorithms for the minimum-

norm load balancing problem. Let us recall the problem. We are given a set J of n jobs, a set of m
machines, and for each job j and machine i, the processing times pij ≥ 0 required to process j on machine

i. We have to output an assignment σ : J → [m] of jobs to machines. The load on machine i due to σ is

loadσ(i) :=
∑

j:σ(j)=i pij . Let
−−→
loadσ := {loadσ(i)}i∈[m] denote the load-vector induced by σ.

In the minimum-norm load-balancing problem, one seeks to minimize the norm of the load vector
−−→
loadσ

for a given monotone, symmetric norm. In the special case of ordered load-balancing problem, given

a non-negative, non-increasing vector w ∈ Rm
+ (that is, w1 ≥ w2 ≥ · · · ≥ wm ≥ 0), one seeks to

minimize cost
(
w;
−−→
loadσ

)
:= wT−−→load↓σ =

∑m
i=1 wi

−−→
load

↓
σ(i). In the Top-ℓ load balancing problem, one seeks

to minimize the sum of the ℓ largest loads in
−−→
loadσ.

Theorem 8.1. Given any monotone, symmetric norm f on Rm with a κ-approximate ball-optimization

oracle for f (see (B-O)), and for any ε > 0, there is a 38κ(1+5ε)-approximation algorithm for the problem

of finding an assignment σ : J → [m] which minimizes f
(−−→
loadσ

)
. The running time of the algorithm is

poly
(
input size, (mε )

O(1/ε)
)
.

We have not optimized the constants in the above theorem. For the special cases of Top-ℓ and ordered

load balancing, we can get much better results.

Theorem 8.2. There is a polynomial time 2-approximation for the Top-ℓ-load balancing problem.

Theorem 8.3. There is a polynomial time (2 + ε)-approximation for the ordered load balancing problem,

for any constant ε > 0.

As shown by the reduction in Section 5, the key component needed to tackle the norm-minimization

problem is an algorithm for the min-max multi-ordered load-balancing problem, wherein we are given mul-

tiple non-increasing weight vectors w(1), . . . , w(N) ∈ Rm
+ , and our goal is to find an assignment σ : J → [m]

to minimize maxr∈[N ] cost(w
(r);
−−→
loadσ).

Theorem 8.4. [Min-max ordered load balancing]

Given any non-increasing weight vectors w(1), . . . , w(N) ∈ Rm
+ , we can find 38(1 + δ)-approximation

algorithm to the min-max ordered load balancing problem of finding an assignment σ : J → [m] minimizing

maxr∈[N ] cost(w
(r);
−−→
loadσ). The algorithm runs in time poly

(
input size,mO(1/δ)

)
.
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As per the framework described in Section 7, in Section 8.1 we write an LP-relaxation for the (single)

ordered optimization problem. Then in Section 8.2 we describe a deterministic, weight-oblivious rounding

scheme which implies Theorem 8.4. Finally, in Section 8.3, we describe simpler and better rounding algo-

rithms proving Theorem 8.2 and Theorem 8.3. These rounding algorithms are randomized (and oblivious),

but their derandomizations are not. Nevertheless, we encourage the reader to first read Section 8.3 as a warm

up to the deterministic, weight-oblivious rounding.

8.1 Linear programming relaxation

We begin by restating some definitions from Section 6 in the load balancing setting. As usual, ~o will denote

the load-vector induced by an optimal assignment for the problem under consideration. Recall that POS =
POSm,δ := {min{⌈(1 + δ)s⌉ ,m} : s ≥ 0} is the sparse set of O(logm/δ) indices. For ℓ ∈ POS, next(ℓ)
is the smallest index in POS larger than ℓ if ℓ < m, and is m+1 otherwise. Given POS, recall the sparsified

weight vector w̃ of any weight vector w; every i ∈ [m], we set w̃i = wi if i ∈ POS; otherwise, if ℓ ∈ POS

is such that ℓ < i < next(ℓ), we set w̃i = wnext(ℓ).

Given a valid threshold vector ~t ∈ RPOS (i.e., tℓ is non-increasing in ℓ) we move from cost(w̃;
−−→
loadσ) to

the proxy

prox~t(w̃;
−−→
loadσ) :=

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

m∑

i=1

h~t
(
w̃; loadσ(i)

)
, where

h~t (w̃; a) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
(a− tℓ)

+. (Prox-LB)

Again, from Section 6, we know that for the right choice of ~t, this change of objective does not incur

much loss, and so our goal is to find σ : J → [m] that approximately minimizes
∑m

i=1 h~t
(
w̃; loadσ(i)

)

(see Lemma 6.10). We now describe the LP relaxation to minimize the proxy-cost. Our LP is parametrized

by the vector ~t.
Before describing the LP for the ordered load balancing, let us describe the LP for the special case of

Top-ℓ load balancing. In this case, not that POS = {ℓ}, and we have a guess t = tℓ of the ℓth largest load.

Also recall ht(loadσ(i)) is simply (loadσ(i) − t)+. The LP, as is usual, has variables xij to denote if j is

assigned machine i. This xij is split into yij+zij where zij denotes the fraction job j contributes to the load

of machine i in the interval [0, t). In the objective, for any machine i, we only consider the load “above the

threshold”, that is, only the pijyij portion.

min LPt(x, y, z) :=
∑

i

∑

j

pijyij (Top-ℓ-LB~t)

s.t.
∑

i

xij = 1 ∀j (T1)

xij = zij + yij ∀i, j, ∀ℓ ∈ POS (T2)
∑

j

pijzij ≤ t ∀i, ∀ℓ ∈ POS (T3)

pijyij ≥
(
pij − t

)
xij ∀i, j, ∀ℓ ∈ POS (T4)

xij, zij , yij ≥ 0 ∀i, j, ∀ℓ ∈ POS.

The following lemma shows that the above LP is a valid relaxation.

Lemma 8.5. For any t > 0 and any integral assignment σ, the value of the LP is at most
∑m

i=1 ht (loadσ(i)).
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Proof. Given any assignment σ, set xij = 1 iff σ(j) = i. For each i, j with xij = 1, set

zij =

{
1 if loadσ(i) < t

t
loadσ(i)

if loadσ(i) ≥ t

Set yij = xij − zij . We claim this (x, y, z) satisfies all constraints and has LP objective value equal to∑m
i=1 h~t(w̃; loadσ(i)).
Constraint (T1) is satisfied since all jobs are assigned. Constraint (T2) is satisfied by definition. For any

machine i, if loadσ(i) < t, then we get
∑

j pijzij = loadσ(i) < t. Otherwise, we get
∑

j pijzij = t. This

implies (T3) is satisfied. We also satisfy (T4). To see this, note the inequality is vacuous if zij = 1, and

otherwise it is satisfied with equality.

Finally note that (loadσ(i) − t)+ = loadσ(i)yij , for all i and for all j ∈ σ−1(i). If loadσ(i) < t, then

both sides are 0; otherwise, yij = 1 − t
loadσ(i)

for all j assigned to i by σ. Since the RHS is precisely∑
i,j pijyij , the LP objective is precisely

∑
i∈[m] ht(loadσ(i)).

At this point, we invite the reader to skip to Section 8.3 to see a rounding for just the Top-ℓ load balancing

problem. Next, we describe the LP for the general case by taking linear combinations of the above LP.

Now we write the LP for the ordered load balancing case. Again, we use variables xij to denote if

job j is assigned to machine i. Now for every i, j, and every ℓ ∈ POS, we have variables z
(ℓ)
ij , y

(ℓ)
ij to

denote respectively the portions of job j that lie “below” and “above” the tℓ threshold on machine i. More

precisely, given an integral assignment σ and an ordering of the jobs in σ−1(i), z
(ℓ)
ij denotes the fraction

of j that contributes to the load in the interval [0, tℓ) on machine i, and y
(ℓ)
ij denotes the fraction of j that

contributes to the load interval [tℓ,∞). Thus, for every ℓ, we have xij = z
(ℓ)
ij + y

(ℓ)
ij , and

∑
j pijy

(ℓ)
ij

represents
(
loadσ(i)− tℓ

)+
. Throughout i indexes the set [m] of machines, and j indexes the job-set J . To

keep notation simple, define z
(m+1)
ij = 0 for all i, j.

min LP~t(w̃;x, y, z) :=
∑

i

∑

ℓ∈POS

∑

j

(
w̃ℓ − w̃next(ℓ)

)
pijy

(ℓ)
ij (OLB-P~t)

s.t.
∑

i

xij = 1 ∀j (OLB1)

xij = z
(ℓ)
ij + y

(ℓ)
ij ∀i, j, ∀ℓ ∈ POS (OLB2)

z
next(ℓ)
ij ≤ z

(ℓ)
ij ∀i, j, ∀ℓ ∈ POS (OLB3)

∑

j

pij
(
z
(ℓ)
ij − z

(next(ℓ))
ij

)
≤ tℓ − tnext(ℓ) ∀i, ∀ℓ ∈ POS (OLB4)

pijy
(ℓ)
ij ≥

(
pij − tℓ

)
xij ∀i, j, ∀ℓ ∈ POS (OLB5)

xij , z
(ℓ)
ij , y

(ℓ)
ij ≥ 0 ∀i, j, ∀ℓ ∈ POS.

Lemma 8.6. For any valid threshold vector ~t and any integral assignment σ, the value of the LP is at most∑m
i=1 h~t (w̃; loadσ(i)).

Proof. Given any assignment σ, set xij = 1 iff σ(j) = i. For each ℓ ∈ POS and for i, j with xij = 1, set

z
(ℓ)
ij =

{
1 if loadσ(i) < tℓ

tℓ
loadσ(i)

if loadσ(i) ≥ tℓ
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Set y
(ℓ)
ij = xij − z

(ℓ)
ij . We claim this (x, y, z) satisfies all constraints and has LP objective value equal to∑m

i=1 h~t(w̃; loadσ(i)).
Constraint (OLB1) is satisfied since all jobs are assigned. Constraint (OLB2) is satisfied by definition,

and (OLB3) is satisfied since tℓ ≥ tnext(ℓ). For any machine i and ℓ ∈ POS, if loadσ(i) < tℓ, then we get
∑

j pijz
(ℓ)
ij = loadσ(i) < tℓ. Otherwise, we get

∑
j pijz

(ℓ)
ij = tℓ. This implies (OLB4) is satisfied since

tℓ ≥ tnext(ℓ). We also satisfy (OLB5). To see this, note the inequality is vacuous if z
(ℓ)
ij = 1, and otherwise

it is satisfied with equality.

Finally note that (loadσ(i) − tℓ)
+ = loadσ(i)y

(ℓ)
ij , for all i and for all j ∈ σ−1(i). If loadσ(i) < tℓ,

then both sides are 0; otherwise, y
(ℓ)
ij = 1 − tℓ

loadσ(i)
for all j assigned to i by σ. Since the RHS is precisely

∑
i,j pijy

(ℓ)
ij , the LP objective is precisely

∑
i∈[m] h~t(w̃; loadσ(i)).

In Section 8.3 (which, as we encourage, can be read before moving further), we show a simple ran-

domized rounding algorithm. As discussed in Section 7, we need a deterministic, weight-oblivious rounding

algorithm. The main technical contribution of this section is precisely such a rounding procedure.

Theorem 8.7. (Deterministic weight-oblivious rounding for load balancing.)

Let ~t be a valid threshold vector such that every tℓ is either a power of 2 or 0. There is a deterministic algo-

rithm which takes any solution (x, y, z) satisfying constraints (OLB1)-(OLB5), and produces an assignment

σ̃ : J → [m] such that, for any sparsified weight vector w̃, we have that

m∑

i=1

h10~t
(
w̃; loadσ̃(i)

)
≤ 2 · LP~t (w̃;x, y, z) + 4

∑

ℓ∈POS

w̃ℓtℓ (3)

Note that the algorithm doesn’t use the weights; rather the fixed output satisfies (3) for all weights

simultaneously. We prove this theorem in Section 8.2 which can be directly skipped to. In the remainder of

this section, we use the theorem to prove Theorem 8.4 and Theorem 8.1.

Proof of Theorem 8.4. We sparsify w(r) to w̃(r) for all r ∈ [N ]; recall POS = POSm,δ. Let ~o be the

load-vector induced by an optimal solution. Let opt := maxr∈[k] cost(w
(r);~o).

Using the enumeration procedure in Lemma 6.9 with ε = 1 and finding a ρ that is a power of 2 such that

~o↓1 ≤ ρ ≤ 2~o↓1 , we may assume that we have obtained a valid threshold vector ~t where all tℓs are powers of

2 or 0, and which satisfies the conditions: ~o↓ℓ ≤ tℓ ≤ 2~o↓ℓ if ~o↓ℓ ≥
~o↓
1
m , and tℓ = 0 otherwise.

We now solve an LP similar to (OLB-P~t) with the objective modified to encode the min-max-ness.

min λ : (x, y, z) satisfies (OLB1) - (OLB5) (4)
∑

ℓ∈POS

(w̃
(r)
ℓ − w̃

(r)
next(ℓ))ℓtℓ + LP~t(w̃

(r);x, y, z) ≤ λ ∀r ∈ [N ] (5)

Claim 8.8. Let λ∗ be the optimum solution to the LP above. Then, λ∗ ≤ 3opt .

Proof. Let σ∗ be the optimal integral assignment attaining opt and (x, y, z) be the assignment described by

this integral assignment as in the proof of Lemma 8.6. For any r ∈ [N ], we therefore get LP~t(w̃
(r);x, y, z) =∑m

i=1 h~t (w̃
(r);~o). Thus, from the definition of prox and using (5), we get λ∗ ≤ maxr∈[N ] prox~t(w̃

(r);~o↓).

Finally, Lemma 6.8 (with ε = 1) gives that for any r ∈ [N ], prox~t(w̃
(r);~o↓) ≤ 3cost(w̃(r);~o).

Given the optimal solution (x, y, z) to the above LP, we use Theorem 8.7 (since we have ensured that

the tℓ’s are powers of 2 or 0) to obtain an assignment σ̃ : J → [m]. We get for any r ∈ [N ],
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prox10~t
(
w̃(r);

−−→
loadσ̃

)
=

∑

ℓ∈POS

(
w̃

(r)
ℓ − w̃

(r)
next(ℓ)

)
ℓ · 10tℓ +

m∑

i=1

h10~t
(
w̃(r); loadσ̃(i)

)

≤ 10
∑

ℓ∈POS

(
w̃

(r)
ℓ − w̃

(r)
next(ℓ)

)
ℓ · tℓ + 2 · LP~t

(
w̃(r);x, y, z

)
+ 4

∑

ℓ∈POS

w̃
(r)
ℓ tℓ

≤ 10λ∗ + 4
∑

ℓ∈POS

w̃
(r)
ℓ tℓ ≤ 30opt + 4

∑

ℓ∈POS

w̃
(r)
ℓ tℓ (6)

where the first inequality follows from the obliviousness property of the rounding in Theorem 8.7. The

same rounded assignment works for all the weights simultaneously. The second inequality follows from

(5). The last inequality invokes Claim 8.8. Now we use the fact that tℓ ≤ 2~oℓ to get
∑

ℓ∈POS
w̃

(r)
ℓ tℓ ≤

2cost
(
w̃(r);~o

)
≤ 2cost

(
w(r);~o

)
≤ 2 · opt . The second-last inequality follows from the sparsification

property ( Lemma 4.2). Substituting in (6), we get that for any r ∈ [N ], prox10~t
(
w̃(r);

−−→
loadσ̃

)
≤ 38opt .

From Claim 6.5 and Lemma 4.2, we get for any r ∈ [N ],

cost(w(r);
−−→
loadσ̃) ≤ (1 + δ)cost(w(r);

−−→
loadσ̃) ≤ (1 + δ)prox10~t

(
w̃(r);

−−→
loadσ̃

)
≤ 38(1 + δ)opt

Proof of Theorem 8.1. This follows by combining Theorem 5.4 and Theorem 8.4 (taking δ = ε). We only

need to show that we can obtain the estimates hi, lb, ub in (A1), (A2), and they lead to the stated running

time. The approximation guarantee obtained is 38(1 + ε)κ(1 + 3ε) ≤ 38κ(1 + 5ε).
Let ~o↓ be the sorted cost vector induced by an optimal assignment. Let ei ∈ Rm denote the vector with

1 in coordinate i, and 0s everywhere else. We can determine in polytime if ~o↓1 = 0; if not, since the pijs are

integers, we have ~o↓1 ≥ 1, and opt ≥ f(~o↓1e1) ≥ lb := f(e1) since f is monotone. Consider the assignment

where σ(j) := argmini∈[m]pij for each job j. We have

opt ≤ f
(−−→
loadσ

)
≤

∑

j

f(pσ(j)jeσ(j)) = ub :=
∑

j

f(pσ(j)jei).

The second inequality follows from the triangle inequality; the third equality follows from symmetry.

This also means that ~o↓1 ≤ hi :=
∑

j pσ(j)j =
∑

j mini∈[m] pij , since by monotonicity, we have opt =

f(~o↓) ≥ f(~o↓1e1). So ub/lb = hi and log
(
n·ub·hi

lb

)
= poly(input size). So the running time of the re-

duction in Theorem 5.4, and the size of the simultaneous ordered-load-balancing problem it creates, are

poly
(
input size, (mε )

O(1/ε)
)
, and the entire algorithm runs in time poly

(
input size, (mε )

O(1/ε)
)
.

8.2 Deterministic weight oblivious rounding : proof of Theorem 8.7

We are given a solution (x, y, z) which satisfy constraints (OLB1)-(OLB5). It is convenient to do a change

of variables. First, define z
(m+1)
ij = 0 and z

(0)
ij = xij , and let y

(ℓ)
ij = xij − z

(ℓ)
ij for ℓ = 0,m + 1. For all

ℓ ∈ {0} ∪ POS and all i, j, define

q̄
(ℓ)
ij := z

(ℓ)
ij − z

(next(ℓ))
ij = y

(next(ℓ))
ij − y

(ℓ)
ij

which is nonnegative due to (OLB3). Now for any w̃, we can rewrite LP~t(w̃;x, y, z) as follows

∑

i,j

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
pijy

(ℓ)
ij =

∑

i,j,ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

) ∑

ℓ′∈{0}∪POS:ℓ′<ℓ

pij q̄
(ℓ′)
ij

=
∑

i,j,ℓ′∈{0}∪POS

pijq
(ℓ′)
ij w̃next(ℓ′) =: LP~t (w̃; q̄)

(7)
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We first give an overview of the rounding procedure. We begin by filtering q̄ to obtain q̂ ≤ 2q̄ with the

property that q̂
(ℓ)
ij = 0 if pij > 2tℓ for all i, j and all ℓ ∈ POS (Lemma 8.9). This relies on the constraints

(OLB5). Next, we set up an auxiliary LP (IR) similar to (OLB-P~t) using the same modified set of variables

q
(ℓ)
ij , which have the same intended meaning. We include constraints (OLB1), and (OLB4) but with the RHS

multiplied by 2. We also include constraints
∑

i,j pijq
(ℓ)
ij ≤ 2

∑
i,j pij q̄

(ℓ)
ij for all ℓ ∈ POS; the objective

of (IR) is to minimize
∑

i,j pijq
(0)
ij . The latter budget constraints and the objective of (IR) serve to ensure

that the objective values of q and q̄ under (7) are comparable. Notice that q̂ yields a feasible solution to

this auxiliary LP. We next use iterative rounding (that is, Theorem 7.1) on this system to produce an integral

point
int

q that assigns every job, satisfies the other budget constraints approximately, and whose objective value

under (IR) is at most that of q̂. We argue that the integral point
int

q yields the desired assignment σ̃ : J → [m],

where σ̃(j) is set to the unique i such that
∑

ℓ∈{0}∪POS

int

q
(ℓ)

ij = 1. We now describe the algorithm in detail

and proceed to analyze it.

Algorithm.

L1. Filtering. For every job j and machine i, we do the following. If pij ≤ 2tℓ for all ℓ ∈ POS, then set

q̂
(ℓ)
ij = q̄

(ℓ)
ij for all ℓ ∈ {0} ∪ POS. Otherwise, let ℓ ∈ POS be the smallest index for which pij > 2tℓ.

For every index ℓ ∈ {0}∪POS, we set q̂
(ℓ)
ij = 0 if pij > 2tℓ, and q̂

(ℓ)
ij = q̄

(ℓ)
ij ·xij/y

(ℓ)
ij otherwise (where

0/0 is defined as 0). Lemma 8.9 shows that q̂ ≤ 2q̄, and q̂ satisfies (8). We will produce an integral

point
int

q whose support is contained in that of q̂, so
int

q
(ℓ)

ij = 1 will imply that pij ≤ 2tℓ.

L2. Iterative rounding. Consider the following auxiliary LP.

min
∑

i,j

pijq
(0)
ij (IR)

s.t.
∑

i

∑

ℓ∈{0}∪POS

q
(ℓ)
ij = 1 ∀j (8)

∑

j

pijq
(ℓ)
ij ≤ 2

(
tℓ − tnext(ℓ)

)
∀i, ∀ℓ ∈ POS

∑

i,j

pijq
(ℓ)
ij ≤ 2

∑

i,j

pij q̄
(ℓ)
ij ∀ℓ ∈ POS

q
(ℓ)
ij ≥ 0 ∀i, j, ∀ℓ ∈ {0} ∪ POS.

We call the constraints, except for (8) and the non-negativity constraints, budget constraints. By

Lemma 8.9, q̂ is a feasible solution to (IR).

We round q̂ to an integral point
int

q using Theorem 7.1, taking A1 = A2 to be the constraint matrix

formed by constraints (8), where each equality constraint is written as a pair of ≤- and ≥- inequalities.

Define σ̃ : J → [m] by setting σ̃(j) to be the unique i such that
∑

ℓ∈{0}∪POS
b
(ℓ)
ij = 1. Return σ̃.

Analysis.

Lemma 8.9. The solution q̂ obtained after step L1 satisfies q̂ ≤ 2q̄ and constraints (8).

Proof. Fix a job j and a machine i. If xij =
∑

ℓ∈{0}∪POS
q̄
(ℓ)
ij = 0, or pij ≤ 2tℓ for all ℓ ∈ POS, then

we have q̂
(ℓ)
ij = q̄

(ℓ)
ij for all ℓ ∈ POS. So suppose otherwise. Let ℓ ∈ POS be the smallest index for which

p
(ℓ)
ij > 2tℓ. Constraint (OLB5) for i, j, ℓ implies that y

(ℓ)
ij ≥ 0.5xij > 0. It follows that q̂

(ℓ)
ij ≤ 2q̄

(ℓ)
ij for all
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ℓ ∈ {0} ∪POS. Also, since pij ≤ 2tℓ for ℓ ∈ {0} ∪POS iff ℓ < ℓ, we have y
(ℓ)
ij =

∑
ℓ∈{0}∪POS:pij≤2tℓ

q̄
(ℓ)
ij .

Therefore,
∑

ℓ∈{0}∪POS
q̂
(ℓ)
ij = xij , and so q̂ satisfies (8).

We summarize the properties satisfied by the integral point
int

q obtained by rounding q̂ using Theorem 7.1.

Lemma 8.10. The {0, 1}-point
int

q ≥ 0 obtained in step L2 satisfies
∑

i,j pij
int

q
(0)

ij ≤ 2
∑

i,j pij q̄
(0)
i,j , constraints

(8), and

∑

j

pij
int

q
(ℓ)

ij ≤ 0 ∀i, ∀ℓ ∈ POS : tℓ = tnext(ℓ) (9)

∑

j

pij
int

q
(ℓ)

ij ≤ 6tℓ − 2tnext(ℓ) ∀i, ∀ℓ ∈ POS : tℓ > tnext(ℓ) (10)

∑

i,j

pij
int

q
(ℓ)

ij ≤ 2
∑

i,j

pij q̄
(ℓ)
ij + 4tℓ ∀ℓ ∈ POS. (11)

Proof. These are all direct consequences of Theorem 7.1. Part (a) (of Theorem 7.1) shows that
∑

i,j pij
int

q
(0)

ij ≤∑
i,j pij q̂

(0)
ij ≤ 2

∑
i,j pij q̄

(0)
ij . Since (8) is encoded via the constraints involving A1, A2 in the setup of

Theorem 7.1, part (c) shows that (8) holds.

Every q
(ℓ)
ij variable appears in at most 2 budget constraints of (IR). If tℓ = tnext(ℓ), then q̄

(ℓ)
ij = q̂

(ℓ)
ij = 0

for all i, j. So since the support of
int

q is a subset of the support of q̂ (part (b)), we have
∑

j pij
int

q
(ℓ)

ij = 0. So

suppose tℓ > tnext(ℓ), and consider the budget constraint
∑

j pijq
(ℓ)
ij ≤ 2

(
tℓ− tnext(ℓ)

)
for a given machine i

and ℓ ∈ POS. If q̂
(ℓ)
ij > 0, we know that pij ≤ 2tℓ, so applying part (d), shows that (10) holds. Part (d) then

also shows that (11) holds.

Finishing up the proof of Theorem 8.7. We first show that for any i and any ℓ ∈ POS, we have that
∑

ℓ′∈POS:ℓ′≥ℓ

∑
j pij

int

q
(ℓ′)

ij ≤ 10tℓ. By Lemma 8.10, we have that
∑

ℓ′∈POS:ℓ′≥ℓ

∑
j pij

int

q
(ℓ′)

ij is at most∑
ℓ′∈POS:ℓ′≥ℓ,tℓ′>t

next(ℓ′)

(
6tℓ′ − 2tnext(ℓ′)

)
. Suppose that ℓ1 < ℓ2 < . . . < ℓa ∈ POS are all the indices

ℓ′ ∈ POS satisfying ℓ′ ≥ ℓ, tℓ1 > tnext(ℓ1). Then,

∑

ℓ′∈POS:ℓ′≥ℓ,tℓ′>t
next(ℓ′)

(
6tℓ′−2tnext(ℓ′)

)
≤

(
6tℓ1−2tnext(ℓ1)

)
+. . .+

(
6tℓa−2tnext(ℓa)

)
≤ 6tℓ1+4

(
tℓ2+tℓ3+. . .+tℓa

)

Recall that the tℓs are all powers of 2, or 0. So tℓ2 ≤ tℓ1/2, tℓ3 ≤ tℓ2/2, and so on. So the RHS above is at

most 6tℓ1 + 4tℓ1 ≤ 10tℓ. This implies that
(
loadσ̃(i)− 10tℓ

)+ ≤∑
ℓ′∈{0}∪POS:ℓ′<ℓ

∑
j pij

int

q
(ℓ′)

ij . Therefore,

h10~t
(
w̃; loadσ̃(i)

)
=

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)(
loadσ̃(i)− 10tℓ

)+

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

) ∑

ℓ′∈{0}∪POS:ℓ′<ℓ

∑

j

pij
int

q
(ℓ′)

ij =
∑

ℓ′∈{0}∪POS

w̃next(ℓ)

∑

j

pij
int

q
(ℓ′)

ij .

It follows that
∑m

i=1 h10~t
(
w̃; loadσ̃(i)

)
≤ ∑

ℓ∈{0}∪POS

∑
i,j w̃next(ℓ)pij

int

q
(ℓ)

ij . Using Lemma 8.10, we can

bound the RHS by

2
∑

ℓ∈{0}∪POS

∑

i,j

w̃next(ℓ)pij q̄
(ℓ)
ij + 4

∑

ℓ∈POS

w̃next(ℓ)tℓ ≤ 2 · LP(w̃; q̄) + 4
∑

ℓ∈POS

w̃ℓtℓ.
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8.3 Improved approximation for Top-ℓ and ordered load balancing problems

In this section we prove Theorem 8.2 and Theorem 8.3. Recall, in the (single) ordered load balancing

problem, we have only one non-increasing weight vector w and we wish to find an assignment σ minimizing

cost(w; loadσ). In the Top-ℓ problem, this weight vector is a 0, 1 vector.

We prove this by rounding (OLB-P~t) for a particular valid threshold vector. As usual, let ~o be the load

vector for the optimal assignment. For the ordered problem, we first sparsify w to get w̃ using Lemma 4.2

with δ = ε. Next, we use Lemma 6.9 to to get threshold vector ~t satisfying (a) ~o↓ℓ ≤ tℓ ≤ (1 + ε)~o↓ℓ if

~o↓ℓ ≥ ε~o↓1/n, and tℓ = 0 otherwise. This enumeration is what leads to the (1 + ε) loss. For the Top-ℓ load

balancing problem, we can in fact exactly guess the ~o↓ℓ , that is, the ℓth largest cost in the optimum solution.

Our improved approximation algorithms follow from oblivious, randomized rounding algorithm for

(OLB-P~t). In fact, the randomized algorithm would be oblivious of the guesses of tℓ’s (the tℓ’s will be

used only to solve (OLB-P~t)). However, being randomized, this algorithm doesn’t suffice to give good al-

gorithms for the min-max problem. Indeed, the derandomized version of these algorithms are not oblivious.

Without further ado, we state and analyze the randomized algorithm in the proof of the following lemma.

Lemma 8.11. There is an algorithm which takes as input xij ∈ [0, 1] for all i, j pairs, and returns a

random assignment σ̃ : J → [m] with the following property. For any t and any (yij, zij) satisfying (a)

yij + zij = xij for all i, j, (b)
∑

j pijzij ≤ t for all i, and (c) pijyij ≥ (pij − t)xij for all i, j, we get

Exp[
∑m

i=1(loadσ̃(i)− 2t)+] ≤ 2
∑

i,j pijyij

Proof. The algorithm is a randomized version of the Shmoys-Tardos algorithm [40] for the generalized

assignment problem. More precisely, for every machine i, we make ni =
⌈∑

j∈J xij

⌉
copies. Let Ic be

the union of the copies. Now we define a bipartite graph on the vertex set Ic ∪ J and define a fractional

(sub)-matching x on it. Fix a machine i and consider the ni copies. Arrange the jobs J in non-increasing

order of pij . We start with the first copy and call it active. Each job in the order tries to send xij units of

mass to the active copy till the total x-mass faced by the active copy equals 1. We then move to the next

copy and the job sends the remainder unit of its fraction to that copy. We continue till all jobs in J distribute

a total of
∑

j xij on the ni copies, and all but perhaps one of the ni copies face a fractional xij-mass of

exactly 1. In sum, at the end of this procedure for all machine, for every job we have
∑

k∈Ic
xkj = 1 while

for every machine copy k ∈ Ic, we have
∑

j∈J xkj ≤ 1. For each machine i, we let J
(i)
r be the set of jobs j

which have xkj > 0 for the rth copy of machine i. A standard result from matching theory [36] gives us the

following claim.

Claim 8.12. There is a distribution D on matchings in this bipartite graph such that for any copy k ∈ Ic
and any job j ∈ J , we have

Pr
M←D

[(k, j) ∈M ] ≤ xkj ≤ xij

The randomized rounding algorithm for load balancing samples a matching M from D described in

Claim 8.12, and then allocates to machine i all the jobs j such that (k, j) ∈M for any copy k of machine i.
Let σ̃ be this random assignment.

Analysis. For each machine i, let Zi denote the random variable indicating the load pij of the job j ∈ J
(i)
1

allocated to the first copy of machine i.

Claim 8.13. loadσ̃(i) ≤
∑

j∈J pijxij + Zi

Proof. Since the jobs are in descending order, the load of the random job allocated to the r + 1th copy of

machine i is at most
∑

j∈J
(i)
r

pijxij . Thus, the load on machine i due to all but the job allocated to its first

copy is at most
∑

j∈J pijxij . The claim follows now from the definition of Zi.
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Thus,

(loadσ̃(i)− 2t)+ ≤
(∑

j

pijxij − t
)+

+ (Zi − t)+ ≤
∑

j

pijyij + (Zi − t)+

where the last inequality uses assumptions (a) and (b) of the lemma. The proof of the lemma follows from

the following claim.

Claim 8.14. For any machine i, Exp[(Zi − t)+] ≤∑
j pijyij

Proof. If k is the first copy of machine i, then we get Exp[(Zi − t)+] =
∑

j∈J
(i)
1

PrM←D[(k, j) ∈ M ] ·
(pij − t)+ ≤ ∑

j(pij − t)+xij ≤
∑

j pijyij . The first inequality uses Claim 8.12, and the second uses

assumption (c) of the Lemma.

Proof of Theorem 8.3. As described above, using Lemma 4.2 and Lemma 6.9, we have a vector ~t with

which we solve (OLB-P~t). Given the solution x, we apply Lemma 8.11. Note that for all ℓ, the tu-

ple (tℓ, y
(ℓ)
ij , z

(ℓ)
ij ) satisfies the conditions of the lemma. Part (a) follows from (OLB2), part (b) follows

from adding up (OLB4) for all 1 ≤ ℓ′ ≤ ℓ, and part (c) follows from (OLB5). Therefore, we get that

for each ℓ, Exp[
∑m

i=1(loadσ̃(i) − 2tℓ)
+] ≤ 2

∑
i,j pijy

(ℓ)
ij . This in turn implies Exp[h2~t (w̃; loadσ̃)] ≤

2LP~t(w̃;x, y, z) ≤ 2
∑m

i=1 h~t(w̃;~o), where the last inequality follows from Lemma 8.6. Using Lemma 6.10,

we get that Exp[cost(w;
−−→
loadσ̃)] ≤ (2 + ε)opt .

Proof of Theorem 8.2. Note that the ε-loss over 2 in the previous theorem came from two sources: one

is in moving to the sparsified weight vector, and the other in the guess of ~o↓ℓ ’s. For the Top-ℓ version of

the problem, the position set POS = {ℓ} is the singleton position ℓ. The 0, 1 weight vector, in this case,

coincides with the sparsified vector. Indeed, we can just focus on the simpler (Top-ℓ-LB~t). Furthermore,

as we show below, we can guess ~o↓ℓ “exactly” via binary search. In particular, for any guess t of ~o↓ℓ , we

solve (Top-ℓ-LB~t) of value LPt. As per the previous proof, the algorithm described in Lemma 8.11 gives a

randomized algorithm with expected Top-ℓ cost ≤ 2(ℓt + LPt) for any t. Therefore, via binary search, we

find the t which minimizes (ℓt+LPt); this minimum value is≤ opt since for t = ~o↓ℓ , the value is≤ opt . For

this t, the randomized algorithm described in the proof of Theorem 8.3 returns an assignment with expected

cost ≤ 2opt .

Derandomization. Both the above algorithms above can be easily derandomized, but this comes at the

cost of obliviousness. We describe the derandomization for the Top-ℓ problem and the derandomization

of the ordered problem is similar. In particular, for any t we give a deterministic algorithm which returns

an assignment σ̃ with
∑m

i=1(loadσ̃(i) − 2t)+ ≤ 2LPt; this will imply a deterministic 2-approximation

using Lemma 6.10 as it did in the proof of Theorem 8.2.

In the proof of Lemma 8.11, when we construct the bipartite graph between jobs and the copies of the

machines, introduce a cost (pij−t)+ on the edges of the form (k, j) where k is the first copy of machine i and

j ∈ J
(i)
1 . Every other (k, j) edge has cost 0. Subsequently, find a minimum cost matching which matches

every job, and every copy of any machine which was also fractionally fully matched. The deterministic

assignment σ̃ is given by this matching as in the proof of the lemma. Also as in the proof, we get that

for any machine i, (loadσ̃(i) − 2t)+ ≤ ∑
j pijyij + (Zi − t)+ where Zi is the pkj of the job assigned

to the first copy. Since we have found the matching precisely minimizing this cost, the minimum value is

at most the expected value (given by any distribution, in particular, the distribution of Claim 8.12), which

was shown to be ≤ ∑
i,j pijyij in Claim 8.14. In sum, we can deterministically find an assignment σ with∑m

i=1(loadσ̃(i) − 2t)+ ≤ 2LPt.
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9 k-Clustering

In this section, we use our framework to design constant factor approximation algorithms for the minimum-

norm k-clustering problem. We are given a metric space
(
D, {cij}i,j∈D

)
, and an integer k ≥ 0. Let n = |D|.

For notational similarity with facility-location problems, let F := D, denote the candidate set of facilities.5

A feasible solution opens a set F ⊆ F of at most k facilities, and assigns each client j ∈ D to a facility

i(j) ∈ F . This results in the assignment-cost vector ~c := {ci(j)j}j∈D.

In minimum-norm k-clustering, the goal is to minimize the norm of~c under a given monotone, symmetric

norm. The ordered k-median6 problem is the special case where we are given non-increasing weights

w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, and the goal is to minimize cost(w;~c) = wT~c↓. The ℓ-centrum problem is the

further special case, where w1 = 1 = . . . = wℓ and the remaining wis are 0. That is, we want to minimize

the sum of the ℓ largest assignment costs.

Theorem 9.1. Given any monotone, symmetric norm f on Rm with a κ-approximate ball-optimization

oracle for f (see (B-O)), and for any ε > 0, there is a κ
(
408 + O(ε)

)
-approximation algorithm for the

problem of finding F ⊆ F with |F | ≤ k such that the resulting assignment-cost vector ~c minimizes f
(
~c
)
.

The running time of the algorithm is poly
(
input size, (nε )

O(1/ε)
)
.

As shown by the reduction in Section 5, the key component needed to tackle the norm-minimization

problem is an algorithm for the min-max ordered k-median problem, wherein we are given multiple non-

increasing weight vectors w(1), . . . , w(N) ∈ Rm
+ , and our goal is to find an assignment σ : J → [m] to

minimize maxr∈[N ] cost(w
(r);
−−→
loadσ).

Theorem 9.2. [Min-max ordered k-median]

Given any non-increasing weight vectors w(1), . . . , w(N) ∈ Rn
+, we can find a

(
408+O(ε)

)
-approximation

algorithm for the Min-Max Ordered k-median problem of finding a F ⊆ F with |F | ≤ k such that the re-

sulting assignment-cost vector ~c minimizes maxr∈[N ] cost(w
(r);~c). The running time of the algorithm is

poly
(
input size, nO(1/ε)

)
.

As per the framework described in Section 7, we first write (in Section 9.1) an LP-relaxation for the

(single) ordered k-median problem. We then show a deterministic, weight-oblivious rounding scheme (in

Section 9.2) which implies Theorem 9.2.

We have not optimized the constant in the approximation factor for easier exposition of ideas. For the

special case of the (single) ordered k-median problem we can obtain a much better approximation factor.

Specifically, this improves upon the factors from [16, 13]. Our technique for this, however, is different

from LP-rounding. Instead we give a combinatorial, primal-dual algorithm for the LP (as in our previous

work [16]) and our improvement stems from the better notion of proxy costs.

Theorem 9.3. There is a polynomial time (5+ ε)-approximation for the ordered k-median problem, for any

constant ε > 0.

9.1 Linear programming relaxation

We begin by restating some notions from Sections 4 and 6 in the clustering setting. As always, we let

~o denote the costs induced by an optimal solution. For convenience, we use δ = 1 in the sparsification

described in Section 4. Therefore, the relevant positions for us is POS = POSn,1 := {min{2s, n} : s ≥ 0}.
For ℓ ∈ POS, recall that next(ℓ) is the smallest index in POS larger than ℓ if ℓ < n, and is n+ 1 otherwise.

5Our results either directly extend, or can be adapted, to the setting where F 6= D.
6Ideally, we would have called this the ordered k-clustering problem since k-median is a special case. We stick to the ordered

median name since this is what it is called in the literature.
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Given a weight vector w ∈ Rn
+ (with non-increasing coordinates), we sparsify it to w̃, that is, for every r ∈

[n], we set w̃r = wr if r ∈ POS; otherwise, if ℓ ∈ POS is such that ℓ < r < next(ℓ), we set w̃r = wnext(ℓ).

Recall from Claim 4.1 that for any vector v ∈ Rn
+, we have cost(w̃; v) ≤ cost(w; v) ≤ 2cost(w̃; v).

Given any valid threshold vector ~t ∈ RPOS
+ with non-increasing coordinates, we have the proxy function

prox~t(w̃; v) :=
(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

∑

j∈D

h~t(w̃; vj), where

h~t(w̃; a) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
(a− tℓ)

+ (12)

From Section 6, we know that for the right choice of ~t, the above proxies well-approximate opt . In

particular, since ~o↓1 takes at most n2 values, we may assume that we know ρ = ~o↓1 ; so by Lemma 6.9, we

may assume that we have ~t that satisfies: ~o↓ℓ ≤ tℓ ≤ (1 + ε)~o↓ℓ for all ℓ ∈ POS with ~o↓ℓ ≥
ε~o↓

1
n , and tℓ = 0

for all other ℓ ∈ POS. In this section, it will be convenient to set tℓ =
εt1
n whenever tℓ = 0. Then, we have

~o↓ℓ ≤ tℓ ≤ (1 + ε)~o↓ℓ + εt1
n for all ℓ ∈ POS, and ~o↓1 ≤ t1 ≤ (1 + ε)~o↓1 (in particular); if these conditions

hold then we say that ~t well-estimates ~o↓. As per Lemma 6.10, we focus on the problem of finding an

assignment-cost vector ~c that (approximately) minimizes
∑

j∈D h~t(w̃;~cj). Our LP relaxation below for this

is parametrized by the threshold vector ~t.

We augment the standard k-median LP for this non-metric k-median problem. A key extra feature is the

set of valid constraints (OCl-4). These are crucially exploited in the rounding algorithm. In the sequel, we

always use i to index F and j to index D.

min CLP~t(w̃; y) :=
∑

j,i

h~t(w̃; cij)xij (OCl-P~t)

s.t.
∑

i

xij ≥ 1 for all j (OCl-1)

0 ≤ xij ≤ yi for all i, j (OCl-2)
∑

i

yi ≤ k. (OCl-3)

∑

i:cij≤r

yi ≥ 1 ∀j, r : ∃ℓ ∈ POS s.t.
∣∣{k ∈ D : cjk ≤ r − tℓ}

∣∣ > ℓ (OCl-4)

Remark 9.4. We note that the fractional setting of the y-variables implies the setting of the x-variables: if

cij < ci′j , then we use i fully before using i′, that is, if xi′j > 0 then xij = yi. Given y, this is the optimal

setting of x since the order of the cij’s and h~t(cij)’s are the same.

Lemma 9.5. Let ~t be threshold vector that well-estimates ~o↓. Then CLP~t (w̃; y) ≤ h~t (w̃;~o).

Proof. Consider the optimal solution whose assignment costs are ~o. Consider the solution y∗i = 1 for every

opened facility, and y∗i = 0 otherwise. x∗ij = 1 if client j is assigned facility i. Note that CLP~t(w̃; y
∗) is

precisely h~t (w̃;~o). Constraints (OCl-1)–(OCl-3), the standard k-median constraints, are clearly satisfied.

We now show that (OCl-4) are also satisfied by y∗. whenever ~t well-estimates ~o↓. Consider any j, r,

and index ℓ ∈ POS. Since tℓ ≥ ~o↓ℓ , at most ℓ clients have assignment cost larger than tℓ in this optimal

solution. If no facility is opened within the ball {i : cij ≤ r}, then all the clients k with cjk ≤ r − tℓ will

incur assignment cost larger than tℓ; if there are more than ℓ such clients then this cannot happen for this

optimal solution, so (OCl-4) holds for this optimal solution.
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As discussed in Section 7, our approach to min-max ordered optimization is via deterministic, weight-

oblivious rounding of an LP for the ordered optimization problem. The theorem below formalizes this for

the clustering problem.

Theorem 9.6. (Deterministic weight-oblivious rounding for k-clustering.)

Let ~t be a valid threshold vector that well-estimates ~o↓. There is a deterministic, weight-oblivious

rounding procedure which given a solution (x, y) satisfying (OCl-1)–(OCl-4), produces a set F ⊆ F with

|F | ≤ k and a resulting assignment-cost vector ~c which has the property that for any sparsified weight

vector w̃, we have
∑

j∈D h44~t(w̃;~cj) ≤ 44 · CLP~t(w̃; y) + 40
∑

ℓ∈POS
w̃ℓnext(ℓ)tℓ.

The theorem implies that (x, y) is an optimal solution to (OCl-P~t), then we obtain an O(1)-approximation

for ordered k-median. We remark that Byrka et al. [13] show that a randomized rounding procedure of

Charikar and Li [19] for the standard k-median LP has the property that it produces an assignment-cost vec-

tor ~c satisfying Exp[
∑

j∈D(~cj−19ρ)+] ≤∑
j,i(cij−ρ)+xij for every ρ ∈ R+; that is, it gives a threshold-

oblivious rounding for ℓ-centrum. Since cost(w; v) is a nonnegative linear combination of cost(ℓ; v) terms,

this also gives a randomized weight-oblivious rounding for ordered k-median. However, as noted earlier,

this randomized guarantee is insufficient for the purposes of utilizing it for min-max ordered k-median (and

consequently min-norm k-clustering). The deterministic property in Theorem 9.6 is crucial and is a key

distinction between our guarantee and the one in [13]. Indeed, we need to develop various new ideas to

obtain our result.

We prove Theorem 9.6 in Section 9.2. In the remainder of this section, we show how this leads to an

O(1)-approximation for both min-max ordered k-median, and minimum-norm k-clustering.

Proof of Theorem 9.2. We let opt = maxr∈[N ] cost(w
(r);~o↓). We sparsify each w(r) to w̃(r) for all r ∈

[k], where recall that we set δ = 1 in the procedure of Section 4; so every ℓ ∈ POS = POSn,1 is of the form

min{2s, n}. As described above (before the description of the LP), in polynomial time we have access to

a threshold vector ~t which well-estimates the optimal assignment-cost vector ~o↓. More precisely, we have

a polynomial sized set of guesses which contains a well-estimating vector, and for each such guess we do

what we describe next, and return the best solution.

We solve an LP similar to (OCl-P~t) with the objective modified to encode the min-max-ness.

min λ : (x, y) satisfies (OCl-1) - (OCl-4)
∑

ℓ∈POS

(w̃
(r)
ℓ − w̃

(r)
next(ℓ))ℓtℓ + CLP~t (w̃

(r); y) ≤ λ ∀r ∈ [N ]

Let (x, y) be an optimal solution to the above LP. Let ~c be the assignment-cost vector obtained by

applying Theorem 9.6 to round (x, y). Then, for every r ∈ [N ], we have

prox44~t
(
w̃(r);~c

)
=

∑

ℓ∈POS

(
w̃

(r)
ℓ − w̃

(r)
next(ℓ)

)
ℓ · 44tℓ +

∑

j∈D

h44~t
(
w̃(r);~cj

)

≤
∑

ℓ∈POS

(
w̃

(r)
ℓ − w̃

(r)
next(ℓ)

)
ℓ · 44tℓ + 44 · CLP~t

(
w̃(r); y

)
+ 40

∑

ℓ∈POS

w̃
(r)
ℓ next(ℓ)tℓ. (13)

The next claim bounds the third term in (13).

Claim 9.7.
∑

ℓ∈POS
w̃

(r)
ℓ next(ℓ)tℓ ≤ (4 + 10ε)opt .

Proof. We first show
∑

ℓ∈POS
w̃

(r)
ℓ next(ℓ)tℓ ≤ 4(1 + ε)cost

(
w̃(r);~o↓

)
+ 3εw̃

(r)
1 t1. This is because every

ℓ ∈ POS is of the form min{2s, n}; so if ℓ′ is such that next(ℓ′) = ℓ, we have next(ℓ) ≤ 4(ℓ − ℓ′).
Furthermore, ~t well-estimates ~o↓. Therefore, for any ℓ,

w̃
(r)
ℓ next(ℓ)tℓ ≤ 4(1 + ε)(ℓ− ℓ′)w̃

(r)
ℓ ~o↓ℓ +

εt1
n
· w̃(r)

1 next(ℓ) (14)
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When we add for all ℓ ∈ POS, the second terms add up to ≤ 3εt1w̃
(r)
1 since

∑
ℓ∈POS

next(ℓ) ≤ 3n (again,

we use every ℓ is a power of 2 except one in n). Since t1 ≤ (1 + ε)~o↓1 , we get the second terms add up to

≤ 3ε(1 + ε)opt ≤ 6εopt since ε ≤ 1. To argue about the first terms, note

(ℓ− ℓ′)w̃
(r)
ℓ ~o↓ℓ =

ℓ∑

j=ℓ′+1

w̃
(r)
ℓ ~o↓ℓ ≤

ℓ∑

j=ℓ′+1

w̃
(r)
j ~o↓j

where we have used the non-increasing property of both w̃(r) and ~o↓. Therefore, the first terms of (14)

telescope to ≤ 4(1 + ε)cost(w̃(r);~o↓) ≤ 4(1 + ε)opt .

Plugging the above in (13) and combining with Lemmas 6.5 and 6.8, we obtain that

max
r∈[N ]

cost
(
w̃(r);~c

)
≤ max

r∈[N ]
prox44~t

(
w̃(r);~c

)

≤ 44 · max
r∈[N ]

( ∑

ℓ∈POS

(
w̃

(r)
next(ℓ) − w̃

(r)
ℓ

)
ℓ · tℓ + CLP~t

(
w̃(r); y

))
+ (160 + 400ε)opt

≤ 44 · max
r∈[N ]

( ∑

ℓ∈POS

(
w̃

(r)
next(ℓ) − w̃

(r)
ℓ

)
ℓ · tℓ + h~t

(
w̃(r);~o↓

))
+ (160 + 400ε)opt

= 44 · max
r∈[N ]

prox~t
(
w̃(r);~o↓

)
+ (160 + 400ε)opt

≤ 44(1 + 2ε) · max
r∈[N ]

cost
(
w̃(r);~o↓

)
+ (160 + 400ε)opt ≤

(
204 +O(ε)

)
· opt .

The first inequality above is due to Claim 6.5; the second follows by expanding prox and using (13). The

third inequality follows from Lemma 9.5. The next equality is simply the definition of prox; the last two

inequalities follow from Lemmas 6.8 and 4.2 respectively. Again applying Lemma 4.2 (with δ = 1) gives

that maxr∈[L] cost
(
w(r);~c

)
≤ 2

(
204 +O(ε)

)
· opt .

Proof of Theorem 9.1. We combine Theorem 5.4 and Theorem 9.2. We only need to show that we can

obtain the estimates hi, lb, ub in (A1), (A2), and they lead to the stated running time. The approximation

guarantee obtained is
(
408 +O(ε)

)
κ(1 + 3ε) = κ

(
408 +O(ε)

)
.

By scaling, we may assume that cij ≥ 1 for every non-zero cij . Let ~o↓ be the sorted cost vector induced

by an optimal solution. Let ei ∈ Rm denote the vector with 1 in coordinate i, and 0s everywhere else.

We can determine in polytime if ~o↓1 = 0; if not, we have ~o↓1 ≥ 1, and opt ≥ f(~o↓1e1) ≥ lb := f(e1)
since f is monotone. In any solution, the assignment cost of any client j is at most maxi∈F cij . So opt ≤
f
(
{maxi cij}j∈D

)
≤ ub :=

∑
j f

(
(maxi cij)e1

)
. This also means that ~o↓1 ≤ hi :=

∑
j maxi∈F cij , since

by monotonicity, we have opt = f(~o↓) ≥ f(~o↓1e1). So ub/lb = hi and log
(
n·ub·hi

lb

)
= poly(input size). So

the running time of the reduction in Theorem 5.4, and the size of the min-max ordered-k-median problem it

creates, are poly
(
input size, (nε )

O(1/ε)
)
, and the entire running time is poly

(
input size, (nε )

O(1/ε)
)
.

9.2 Deterministic weight oblivious rounding : proof of Theorem 9.6

Fix a sparsified vector w̃. This is used only in the analysis. Define C̄j :=
∑

i cijxij , and CLPj :=∑
i h~t(w̃; cij)xij for every client j. For a set S ⊆ F , and a vector v ∈ RF , we define v(S) :=

∑
i∈S vi. For

any p ∈ F ∪ D and S ⊆ F ∪ D, define c(p, S) := minr∈S cpr.
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Overview. We proceed by initially following the template of the k-median LP-rounding algorithm by

Charikar et al. [18, 19], with some subtle but important changes. We cluster clients around nearby centers

(which are also clients) as in [18, 19] to ensure that every non-cluster center k is close to some cluster center

j = ctr(k) (step C1). Let D be the set of cluster centers. For j ∈ D, let Fj be the set of facilities that are

nearer to j than to any other cluster center, nbr(j) be the cluster-center (other than itself) nearest to j, and

let aj := cjnbr(j). We will eventually ensure that we open a set F of facilities such that c(j, F ) = O(aj)
for every j ∈ D. So for a non-cluster center k for which actr(k) = O(C̄k) we have c(k, F ) = O(C̄k), and

this will also imply that hα~t
(
w̃; c(k, F )

)
= O(1) ·CLPk for some constant α (see Lemma 9.10 ). This turns

out to be true for non-cluster centers k which are “far away” from their respective cluster centers j. So we

can focus on the point that are “near” to their corresponding cluster centers; in the algorithm we use Nj (for

“near”) the points near the center j.

Moving each “near” non-cluster center k to ctr(k) yields a consolidated instance, where at each j ∈
D, we have dj clients (including j) co-located at j. Clearly, (x, y) also induces a fractional k-median

solution to this consolidated instance. However, unlike in standard k-median, it is not in general true that

the LP-objective-value
∑

j∈D,i djh~t(w̃; cij)xij of the solution to the consolidated instance is at most the

LP-objective-value of (x, y). The reason is that while the clustering ensures that C̄j ≤ C̄k if j = ctr(k), this

does not imply that
∑

i h~t(w̃; cij)xij ≤
∑

i h~t(w̃; cik)xik. Nevertheless, we show that an approximate form

of this inequality holds, and a good solution to the consolidated instance does translate to a good solution to

the original instance (see Lemma 9.9).

We now focus on rounding the solution to the consolidated instance. As in [18, 19], we can obtain a

more-structured fractional solution to this consolidated instance, where every cluster-center j is served to

an extent of ŷj = y(Fj) ≥ 0.5 by itself, and to an extent of 1 − ŷj by nbr(j). We now perform another

clustering step (step C2), where we select some (j, nbr(j)) pairs with the property that every k ∈ D that is

not part of a pair is close to a some j that belongs to a pair, and aj ≤ ak. For standard k-median, it suffices

to ensure that: (1) we open at most k facilities, and (2) we open at least one facility in each pair.

However, for the oblivious guarantee, we need to impose more constraints, and this is where we diverge

substantially from [18, 19]. Define t0 :=∞ and next(0) = 1. Note that we want to compare the cost of the

rounded solution for the consolidated instance to the cost
∑

j∈D djhα~t(w̃; aj)(1−ŷj) of the above structured

fractional solution, where α is a suitable constant. The LP solution can be used to define variables q̂
(ℓ)
j for

all ℓ ∈ {0} ∪ POS, where aj q̂
(ℓ)
j is intended to represent (roughly speaking) (1 − ŷj) ×

(
min{aj , αtℓ} −

αtnext(ℓ)
)+

, so that
∑

ℓ∈{0}∪POS
w̃next(ℓ)aj q̂

(ℓ)
j is O

(
hα~t(w̃; aj)(1− ŷj)

)
. This latter term can be charged to

the LP-cost (see Lemma 9.11).

Now in addition to properties (1), (2), following the template in Section 7, we also seek to assign each

j ∈ D where a center is not opened to a single threshold tℓ where tℓ = Ω(aj), tnext(ℓ) ≤ aj , so that:

(3) for every ℓ ∈ {0} ∪ POS, the total djaj cost summed over all j ∈ D that are not open and assigned

to tℓ is (roughly speaking) comparable to
∑

j∈D djaj q̂
(ℓ)
j . We apply Theorem 7.1 on a suitable system to

round q̂ to an integral solution (which specifies both the open facilities and the assignment of clients to

thresholds) satisfying the above properties. An important property that we need in order to achieve this is,

is an upper bound on dj , and this is the key place where we exploit constraint (OCl-4). Properties (1)–(3)

will imply that, for a suitable constant α, the resulting assignment-cost vector ~c for the consolidated instance

satisfies
∑

j∈D djhα~t(w̃;~cj) is O(cost of fractional solution for consolidated instance). Finally, Lemma 9.9

(iii) transfers this guarantee to the original instance. We now give the details.

Algorithm.

C1. Clustering I. Let S ← D, and D ← ∅. While S 6= ∅, we do the following. We pick j ∈ S with

smallest C̄j . We add j to D. For every k ∈ S (including j) such that cjk ≤ 4max{C̄j , C̄k}, we remove

k from S, and set ctr(k) = j.
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At the end of the above loop, for every j ∈ D, define the following quantities. Let Fj = {i : cij =
minj′∈D cij′} with ties broken arbitrarily, and ŷj := min{1, y(Fj)}.
Define nbr(j) = argmink∈D:k 6=jcjk if ŷj < 1, again with arbitrary tie-breaking, and nbr(j) = j
otherwise. Let aj := cjnbr(j) denote the distance of j to nbr(j). We define the “near” set Nj := {k ∈
D : ctr(k) = j, cjk ≤ 3aj/10}, and let dj := |Nj |. Let N :=

⋃
j∈D Nj . The consolidated instance

consists of the clients in D, each of which has demand dj . That is, in the consolidated instance, for

every j ∈ D, we move each k ∈ N to ctr(k), and drop all other clients.

C2. Clustering II for consolidated instance. We create a collection C of disjoint clusters, where each

cluster consists of at most two nodes of D, as follows. Initialize S ← D, C ← ∅. While S 6= ∅, pick

j ∈ S with smallest aj; break ties in favor of nodes with ŷj = 1. Add {j, nbr(j)} to C, and remove

every k ∈ S with {k, nbr(k)} ∩ {j, nbr(j)}6=∅.
C3. Auxiliary LP, iterative Rounding, and facility opening. Recall that t0 = ∞ and next(0) = 1. For

every j ∈ D, do the following. If aj ≤ 20tℓ for all ℓ ∈ {0}∪POS, set q̂
(ℓ)
j = (1− ŷj)

(
min{aj , 10tℓ}−

10tnext(ℓ)
)+

/aj for all ℓ ∈ POS. Otherwise, let ℓ ∈ POS be the smallest index such that aj > 20tℓ. For

every ℓ ∈ {0}∪POS, set q̂
(ℓ)
j = 0 if aj > 20tℓ, and q̂

(ℓ)
j = (1− ŷj)

(
min{aj , 10tℓ}−10tnext(ℓ)

)+
/(aj−

10tℓ) otherwise.

Next we consider the following auxiliary LP which we round to open our facilities.

min
∑

j∈D

djajq
(0)
j (IR2)

s.t.
∑

ℓ∈{0}∪POS

q
(ℓ)
j ≤ 1 ∀j (15)

∑

j∈C

∑

ℓ∈{0}∪POS

q
(ℓ)
j ≤ 1 ∀C ∈ C (16)

∑

j∈D

∑

ℓ∈{0}∪POS

q
(ℓ)
j ≥ |D| − k (17)

∑

j∈D

djajq
(ℓ)
j ≤

∑

j∈D

djaj q̂
(ℓ)
j ∀ℓ ∈ POS (18)

q ≥ 0.

Later, in Lemma 9.11 we show that q̂ is a feasible solution the above LP. We next use Theorem 7.1 to

round q̂ to an integral point
int

q taking A1, A2 to be the constraint matrix of the constraints (15)–(17). We

open centers at F = {j ∈ D :
∑

ℓ∈{0}∪POS

int

q
(ℓ)

j = 0}. This ends the description of our algorithm.

Analysis. The analysis proceeds in a few steps. In each step we state the main lemmas and prove them

later in Section 9.2.1. The first step is to show that moving to the consolidated instance doesn’t cost is much,

We start with a standard claim from [18] and its implication on ŷj’s.

Lemma 9.8. If j, k ∈ D, then cjk ≥ 4max{C̄j , C̄k}.

This implies that for any j ∈ D and i /∈ Fj , cij > 2C̄j , which in turn implies ŷj ≥ 1/2. The next lemma

shows that consolidating the clients doesn’t cost much; again note that unlike the standard k-median case,

the LP-cost of a non-cluster point mayn’t be less than of the cluster center. Nevertheless, the following

lemma shows a charging is possible.
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Lemma 9.9. If k ∈ D and j = ctr(k), then
∑

i h5~t(w̃; cij)xij ≤ 5 · CLPk.

In our consolidation step, we dropped the “far” away clients. The first statement in the following lemma

justifies this; as we show later, our algorithm eventually open a subset F ⊆ F such that for every client

j ∈ D, c(j, F ) ≤ 2aj (Lemma 9.12). The second statement shows that if the consolidated instance has a

“good” solution, then the clients in N also have “small” connection costs.

Lemma 9.10. Let F ⊆ F be such that c(j, F ) ≤ 2aj for all j ∈ D. Then, for any k ∈ D \ N ,

we have h31~t
(
w̃; c(k, F )

)
≤ 31 · CLPk. Also, for any θ ≥ 0, we have

∑
k∈N h(θ+4)~t

(
w̃; c(k, F )

)
≤∑

j∈D djhθ~t
(
w̃; c(j, F )

)
+ 4 ·∑k∈N CLPk.

Thus, we need to bound the connection costs of the consolidated instance. This is the heart of the proof.

First, we show that the q̂
(ℓ)
j variables defined in C3 satisfies two properties. The first property is that it is a

feasible solution to the auxiliary LP (IR2). The second property shows how the w-weighted combination of

these variables corresponding to a client j ∈ D, can be upper bounded by its fractional contribution to the

original linear program.

Lemma 9.11. The vector q̂ satisfies the following two conditions. For any j ∈ D, we have

1. q̂
(ℓ)
j ’s are a feasible solution to (IR2).

2.
∑

ℓ∈{0}∪POS
w̃next(ℓ)aj q̂

(ℓ)
j ≤ 4 ·∑i h5~t(w̃; cij)xij

Since
int

q is obtained by rounding q̂ using Theorem 7.1, constraint (17) ensures that the number of facilities

we finally open |F | ≤ k. We first establish that every client in D is at bounded distance from F (as promised

earlier). For brevity, we use ~cj to denote c(j, F ).

Lemma 9.12. We have F ∩ C 6= ∅ for every C ∈ C, and hence, ~cj ≤ 2aj for every j ∈ D.

Proof. Since
int

q in step C3 is obtained by rounding q̂ using Theorem 7.1, it satisfies (16), and its support

is contained in that of q̂. Since
int

q satisfies (16), if C ∈ C is such that |C| = 2, then it is immediate that

F ∩ C 6= ∅. If |C| = 1, say C = {k}, then we must have ŷk = 1, and so
∑

ℓ∈{0}∪POS
q̂
(ℓ)
k = 0. Therefore,

∑
ℓ∈{0}∪POS

int

q
(ℓ)

k = 0, and so k ∈ F .

Consider j ∈ D, and suppose j /∈ F . Then, there is some some C = {j′, nbr(j′)} ∈ C with aj′ ≤ aj
and {j, nbr(j)} ∩ {j′, nbr(j′} 6= ∅. There is some i ∈ F ∩ C , and cij ≤ cjnbr(j) + cj′nbr(j′) ≤ 2aj . So

c(j, F ) ≤ 2aj .

The next lemma upper bounds the connection cost
∑

j∈D djhθ~t
(
w̃;~cj

)
for some suitable constant θ, by the

w-weighted cost of the solution
int

q . Then using Lemma 9.11, as a corollary, this is bounded by the LP-cost.

Lemma 9.13.

∑

j∈D

djh40~t(w̃;~cj) ≤ 2 ·
∑

ℓ∈{0}∪POS

w̃next(ℓ) ·
∑

j∈D

djaj q̂
(ℓ)
j + 40 ·

∑

ℓ∈POS

w̃next(ℓ)next(ℓ)tℓ.

Corollary 9.14.

∑

j∈D

djh40~t(w̃;~cj) ≤ 40
∑

k∈N

CLPk + 40 ·
∑

ℓ∈POS

w̃next(ℓ)next(ℓ)tℓ.
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Proof. Using Lemma 9.11.(ii) for all j ∈ D, we get

∑

j∈D

dj
∑

ℓ∈{0}∪POS

w̃next(ℓ)aj q̂
(ℓ)
j ≤ 4

∑

j∈D

∑

k∈Nj

∑

i

h5~t(w̃; cij)xij ≤ 20
∑

j∈D

∑

k∈Nj

CLPk

where in the first inequality we have used dj = |Nj | and Lemma 9.11.(ii), and in the second we have used

Lemma 9.9.

Proof of Theorem 9.6. We need to upper bound
∑

j∈D h44~t(w̃;~cj). We start by splitting the clients in D
into those in N and those not in N , and apply Lemma 9.10 to get the following.

∑

j∈D

h44~t(w̃;~cj) ≤
∑

k∈N

h44~t(w̃;~ck) +
∑

k∈D\N

h31~t(w̃;~ck)

≤
∑

j∈D

djh40~t(w̃;~cj) + 4
∑

k∈N

CLPk + 31 ·
∑

k∈D\N

CLPk

≤ 44
∑

k∈N

CLPk + 31
∑

k/∈N

CLPk + 40 ·
∑

ℓ∈POS

w̃next(ℓ)next(ℓ)tℓ.

where the last inequality follows from Corollary 9.14.

9.2.1 Proofs of the Lemmas

Proof of Lemma 9.8. This is standard: suppose that j was added to D before k. If cjk < 4max{C̄j , C̄k},
then k would have been removed from S at this point, and would never have been added to D.

Proof of Lemma 9.9. For the proof of this lemma, and indeed that of Lemma 9.10, one inequality that we

will use repeatedly is that for any client k, and any ρ ≥ 0, we have (C̄k − ρ)+ ≤ ∑
i(cik − ρ)+xik, since

xik’s (ranging over i) form a probability distribution and the (z)+ function is convex. In particular, this

implies ∑

ℓ∈POS

(w̃ℓ − w̃next(ℓ))(C̄k − tℓ)
+ ≤ CLPk. (19)

Now, since j = ctr(k), we have cjk ≤ 4C̄k. From Remark 9.4, we get that for any ρ ≥ 0,
∑

i(cij −
ρ)+xij ≤

∑
i(cij − ρ)+xik. So we have

∑

i

h5~t(w̃; cij)xij =
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)∑

i

(cij − 5tℓ)
+xij ≤

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)∑

i

(cij − 5tℓ)
+xik

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)∑

i

(cik + 4C̄k − 5tℓ)
+xik

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)∑

i

(cik − tℓ)
+xik + 4 ·

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
(C̄k − tℓ)

+.

The penultimate and final inequalities follow from Claim 6.3. Using (19), the final expression above is at

most 5 · CLPk.

Proof of Lemma 9.10. First consider k ∈ D\N with j = ctr(k). By definition, we have
3aj
10 ≤ cjk ≤ 4C̄k.

Since c(j, F ) ≤ 2aj , we get c(j, F ) ≤ 40
3 C̄k. In turn, this implies and c(k, F ) ≤ 4C̄k+c(j, F ) ≤ 92

3 · C̄k ≤
31·C̄k . So h31~t

(
w̃; c(k, F )

)
≤ 31·∑ℓ∈POS

(w̃ℓ−w̃next(ℓ))(Ck−tℓ)+ ≤ 31·CLPk, where the first inequality

follows from Claim 6.3 and the last inequality follows from (19).
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Now consider j ∈ D, and k ∈ N with ctr(k) = j. Then, c(k, F ) ≤ c(j, F ) + 4C̄k, so again utilizing

Claim 6.3, we have

h(θ+4)~t

(
w̃; c(k, F )

)
≤

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)(
c(j, F ) + 4C̄k − (θ + 4)tℓ

)+

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)(
c(j, F ) − θtℓ

)+
+ 4

∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)(
C̄k − tℓ

)+

≤ hθ~t
(
w̃; c(j, F )

)
+ 4 · CLPk. (20)

Adding up these inequalities for all k ∈ N with ctr(k) = j, and then over all j ∈ D gives∑
k∈N h(θ+4)~t

(
w̃; c(k, F )

)
on the LHS and

∑
j∈D djhθ~t

(
w̃; c(j, F )

)
+

∑
k∈N 4 · CLPk.

Proof of Lemma 9.11. For every client j ∈ D, we show that
∑

ℓ∈{0}∪POS
q̂
(ℓ)
j = (1 − ŷj). This would

imply q̂ satisfies (15)-(17), since ŷj ≥ 1/2, and y satisfies (23). q̂
(ℓ)
k satisfies (18) trivially. We also we show

that for every j ∈ D,
∑

ℓ∈{0}∪POS
w̃next(ℓ)aj q̂

(ℓ)
j ≤ 2h10~t(w̃; aj)(1− ŷj). Part (b) of the lemma will follow

from Claim 9.15 which is stated and proved below.

Fix j ∈ D. If aj ≤ 20tℓ for all ℓ ∈ {0}∪POS, then
∑

ℓ∈{0}∪POS
q̂
(ℓ)
j =

1−ŷj
aj
·∑ℓ∈{0}∪POS

(
min{aj , 10tℓ}−

10tnext(ℓ)
)+

. Noting that
∑

ℓ∈{0}∪POS

(
min{aj , 10tℓ} − 10tnext(ℓ)

)+
= aj (recall that tn+1 = 0) proves

part (a) in this case. Also,
∑

ℓ∈{0}∪POS
w̃next(ℓ)aj q̂

(ℓ)
j = (1 − ŷj) ·

∑
ℓ∈{0}∪POS

w̃next(ℓ)

(
min{aj , 10tℓ} −

10tnext(ℓ)
)+

= (1 − ŷj)h10~t(w̃; aj). The last equality uses the equivalent way of writing h~t(·) alluded to

in Section 7.

In the other case, let ℓ ∈ POS be the smallest index such that aj > 20tℓ. We have aj ≤ 20tℓ for

ℓ ∈ {0} ∪ POS iff ℓ < ℓ. So
∑

ℓ∈{0}∪POS
q̂
(ℓ)
j =

1−ŷj
aj−10tℓ

·∑ℓ∈{0}∪POS:ℓ<ℓ

(
min{aj , 10tℓ} − 10tnext(ℓ)

)+

and
∑

ℓ∈{0}∪POS:ℓ<ℓ

(
min{aj , 10tℓ}− 10tnext(ℓ)

)+
= aj − 10tℓ, so part (a) holds in this case as well. Since

aj
aj−10tℓ

≤ 2, we also have
∑

ℓ∈{0}∪POS
w̃next(ℓ)aj q̂

(ℓ)
j ≤ 2(1−ŷj)·

∑
ℓ∈{0}∪POS:ℓ<ℓ w̃next(ℓ)

(
min{aj , 10tℓ}−

10tnext(ℓ)
)+ ≤ 2(1 − ŷj)h10~t(w̃; aj).

As mentioned earlier, the lemma follows from the following easy claim.

Claim 9.15. We have h10~t(w̃; aj)(1− ŷj) ≤ 2 ·∑i h5~t(w̃; cij)xij for all j ∈ D.

Proof of Claim 9.15. Fix j ∈ D. For every i ∈ Fk, where k ∈ D, k 6= j, we have cjk ≤ cij + cik ≤ 2cij ,

and so aj = cjnbr(j) ≤ 2cij . Also ŷj ≥
∑

i∈Fj
xij , so 1 − ŷj ≤

∑
i/∈Fj

xij . So h10~t(w̃; aj)(1 − ŷj) ≤∑
i/∈Fj

h10~t(w̃; 2cij)xij ≤ 2 ·∑i/∈Fj
h5~t(w̃; cij)xij .

Proof of Lemma 9.13. Consider any ℓ ∈ POS, and any j ∈ D \ F . Lemma 9.12 implies ~cj ≤ 2aj . By

definition (step C3), we have that q̂
(ℓ)
j = 0 =

int

q
(ℓ)

j if aj > 20tℓ. So we have
∑

ℓ′∈POS:ℓ′≥ℓ ~cj
int

q
(ℓ′)

j ≤ 40tℓ.

Since j /∈ F , we have
∑

ℓ′∈{0}∪POS

int

q
(ℓ′)

j = 1. So (~cj − 40tℓ)
+ ≤∑

ℓ′∈{0}∪POS:ℓ′<ℓ ~cj
int

q
(ℓ′)

j . Therefore,

h40~t(w̃;~cj) =
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
(~cj − 40tℓ)

+

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

) ∑

ℓ′∈{0}∪POS:ℓ′<ℓ

~cj
int

q
(ℓ′)

j =
∑

ℓ′∈{0}∪POS

w̃next(ℓ)~cj
int

q
(ℓ′)

j .
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Note that the above bound also clearly holds if j ∈ F . Lemma 9.12 shows that ~cj ≤ 2aj for all j ∈ D. It

follows that
∑

j∈D djh40~t(w̃;~cj) ≤ 2 ·∑ℓ∈{0}∪POS
w̃next(ℓ) ·

∑
j∈D djaj

int

q
(ℓ)

j .

If q̂
(ℓ)
j > 0, we have ŷj < 1 and 10tnext(ℓ) < aj ≤ 20tℓ. We exploit constraint (OCl-4) to show that if

q̂
(ℓ)
j > 0, then dj ≤ next(ℓ). Suppose not. Consider constraint (OCl-4) for client j, r =

4aj
10 , and consider

index next(ℓ). Notice that k ∈ Nj implies that cjk ≤ 4aj
10 − tnext(ℓ). Since dj = |Nj | > next(ℓ), (OCl-4)

enforces that
∑

i:cij≤r
yi ≥ 1. But cij ≤ r implies that i ∈ Fj (otherwise, we would have aj ≤ 2r); this

means that y(Fj) ≥ 1, and so ŷj = 1, which yields a contradiction.

So q̂
(ℓ)
j > 0 implies that djaj ≤ 20next(ℓ)tℓ. By Theorem 7.1, we have that

∑
j∈D djaj

int

q
(ℓ)

j is at most
∑

j∈D djaj q̂
(0)
j if ℓ = 0, and at most

∑
j∈D djaj q̂

(ℓ)
j + 20next(ℓ)tℓ otherwise. Therefore

∑

ℓ∈{0}∪POS

w̃next(ℓ) ·
∑

j∈D

djaj
int

q
(ℓ)

j ≤
∑

ℓ∈{0}∪POS

w̃next(ℓ) ·
∑

j∈D

djaj q̂
(ℓ)
j + 20 ·

∑

ℓ∈POS

w̃next(ℓ)next(ℓ)tℓ.

Combining everything, we obtain that

∑

j∈D

djh40~t(w̃;~cj) ≤ 2 ·
∑

ℓ∈{0}∪POS

w̃next(ℓ) ·
∑

j∈D

djaj q̂
(ℓ)
j + 40 ·

∑

ℓ∈POS

w̃next(ℓ)next(ℓ)tℓ.

9.3 Improved primal-dual algorithm for ordered k-median

We now devise a much-improved (5 + ε)-approximation algorithm for ordered k-median. We sparsify the

weight vector w ∈ Rn
+ to w̃ taking δ = ε in Section 4, where 0 < ε ≤ 1. Let POS = POSn,ε ={

min{⌈(1 + ε)s⌉ , n} : s ≥ 0}. By Lemma 6.9, we may assume that we have ~t ∈ RPOS such that ~o↓ℓ ≤
tℓ ≤ (1 + ε)~o↓ℓ for all ℓ ∈ POS with ~o↓ℓ ≥

ε~o↓
1
n , and tℓ = 0 for all other ℓ ∈ POS. By Lemma 6.10, we

can then focus on the problem of finding an assignment-cost vector ~c minimizing
∑n

i=1 h~t(w̃;~cj). We now

consider the standard-k-median LP (Pρ) (i.e., we will not need constraints (OCl-4)), and its dual (Dρ). Since

w̃ is fixed throughout, we abbreviate h~t(w̃; ·) to h~t(·).

min
∑

j,i

h~t(cij)xij (Pρ)

s.t.
∑

i

xij ≥ 1 for all j (21)

0 ≤ xij ≤ yi for all i, j (22)
∑

i

yi ≤ k. (23)

max
∑

j

αj − k · λ (Dρ)

s.t. αj ≤ h~t(cij) + βij ∀i, j (24)
∑

j

βij ≤ λ ∀i (25)

α, λ ≥ 0.

Let OPT = OPT~t denote the common optimal value of (Pρ) and (Dρ). So OPT ≤ ∑
j h~t(~o

↓
j ).

Let lb denote a lower bound on opt such that log lb is polynomially bounded (e.g., we can take lb to be

w̃1·(estimate of optimal k-center objective)). We will be using the following claim which makes simple

observations about the h~t (·) function.

Claim 9.16. We have: (i) h~t(x) ≤ h~t(y) for any x ≤ y; (ii) hθ1~t(x) ≤ hθ2~t(x) for any θ1 ≥ θ2, and any x;

(iii) h(θ1+θ2)~t
(x+ y) ≤ hθ1~t(x) + hθ2~t(y) for any θ1, θ2, x, y.

Proof. Part (iii) is the only part that is not obvious. For any ℓ ∈ POS, by part (iii) of Claim 6.3, we If

h(θ1+θ2)~t
(x + y) = 0, then the inequality clearly holds; otherwise, h(θ1+θ2)~t

(x + y) =
∑

ℓ∈POS

(
w̃ℓ −

w̃next(ℓ)

)
(x− x− ρ1 + y − ρ2 ≤ (x− ρ1)

+ + (y − ρ2)
+.
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Our algorithm is based on the primal-dual schema coupled with Lagrangian relaxation. For each λ ≥ 0,

we describe a primal-dual algorithm to open a good set of facilities, and then vary λ to obtain a convex

combination of at most two solutions, called a bi-point solution that opens k facilities. Finally, we round

this bi-point solution. The primal-dual process for a fixed λ ≥ 0 is very similar to the Jain-Vazirani primal-

dual process for k-median, which was also used in [16].

P1. Dual-ascent. Initialize D′ = D, αj = βij = 0 for all i, j ∈ D, T = ∅. The clients in D′ are called

active clients. If αj ≥ h~t(cij), we say that j reaches i. (So if cij ≤ tn, then j reaches i from the very

beginning.)

Repeat the following until all clients become inactive. Uniformly raise the αjs of all active clients, and

the βijs for (i, j) such that i /∈ T , j is active, and can reach i until one of the following events happen.

· Some client j ∈ D reaches some i (and previously could not reach i): if i ∈ F , we freeze j, and

remove j from D′.
· Constraint (25) becomes tight for some i /∈ T : we add i to T ; for every j ∈ D′ that can reach i,

we freeze j and remove j from D′.
P2. Pruning. Initialize F ← ∅. We consider facilities in T in non-decreasing order of when they were

added to T . When considering facility i, we add i to F if for every j ∈ D with βij > 0, we have

βi′j = 0 for all other facilities i′ currently in F .

P3. Return F as the set of centers. Let i(j) denote the point nearest to j (in terms of cij) in F .

Define P (i) := {j ∈ D : βij > 0}; for a set S ⊆ F , define P (S) :=
⋃

i∈S P (i). The following theorem

states the key properties obtained from the primal-dual algorithm.

Theorem 9.17. The solution returned by the primal-dual algorithm satisfies the following.

(i) 3λ|F |+∑
j∈P (F ) 3h~t(ci(j)j) +

∑
j /∈P (F ) h3~t(ci(j)j) ≤ 3

∑
j αj

(ii) For any j ∈ D, there is a facility i ∈ F such that h3~t(cij) ≤ 3h~t(cij) ≤ 3αj , and αj ≥ αk for all

k ∈ P (i).

Proof. Part (i) follows from the analysis in [16], which we can simplify slightly using part (ii). For every

i ∈ F and j ∈ P (i), we have i(j) = i. So
∑

j∈P (F ) 3αj = 3
∑

j∈P (F )

(
βi(j)j + h~t(ci(j)j)

)
= 3λ|F | +∑

j∈P (F ) 3h~t(ci(j)j). Consider a client j /∈ P (F ). By part (ii), which we prove below, there is some i ∈ F
such that h3~t(cij) ≤ 3αj , and so h3~t(ci(j)j) ≤ 3αj (by Claim 9.16, (i)). This completes the proof of part (i).

Part (ii) is new and follows from our pruning step. Fix j ∈ D. Consider the facility i′ ∈ T that caused

j to freeze. If i′ ∈ F , we can take i = i′ and we are done. Otherwise, there must be some facility i ∈ T
that was added before i′ to T such that P (i) ∩ P (i′) 6= ∅. Let τi′ and τi denote the times when i′ and i were

added to T . Then, αj ≥ τi′ ≥ τi, and for any client k ∈ P (i), we have αk ≤ τi.

For λ = ub := (n + 1)hρ(maxi,j cij), the primal-dual algorithm opens only one facility. We now

perform binary search in [0, ub] to find the “right” λ. If during the binary search, we find some λ such

that the above primal-dual algorithm returns F with |F | = k, then part (i) of Theorem 9.17 shows that∑
j h3~t(ci(j)j) ≤ 3OPT ≤ 3

∑
j h~t(~o

↓), and so by Lemma 6.10, we have cost
(
w; {ci(j)j}j

)
≤ 3(1 +

ε)(1 + 2ε)opt .

Otherwise, we find two sufficiently close values λ1 < λ2, primal solutions (F1, i1 : D → F1), (F2, i2 :
D → F2), and dual solutions (α1, β1), (α2, β2), obtained for λ = λ1 and λ = λ2 respectively, such that

|F1| > k > |F2|. We show here how to utilize F1 and F2 to obtain a simpler 9-approximation, and defer the

proof of the following improved guarantee to Appendix E.

Theorem 9.18. Let 0 < ε ≤ 1. If we continue the binary search until λ2 − λ1 < εlb
n22n , then there is a way

of opening k facilities from F1∪F2 so that the resulting solution has cost(w; ·)-cost at most
(
5+O(ε)

)
opt .
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Obtaining a
(
9+O(ε)

)
-approximation. We continue the binary search until λ2−λ1 ≤ εlb/n (assuming

we do not find λ for which |F | = k). Let a, b ≥ 0 be such that ak1 + bk2 = k, a + b = 1. A convex

combination of F1 and F2 yields a feasible bi-point solution that we need to round to a feasible solution. Let

d1,j = h3~t(ci1(j)j) and d2,j = h3~t(ci2(j)j). Let C1 :=
∑

j d1,j and C2 :=
∑

j d2,j . Then,

aC1 + bC2 ≤ 3a
(∑

j

α1,j − k1λ1

)
+ 3b

(∑

j

α2,j − k2λ2

)

≤ 3a
(∑

j

α1,j − kλ2

)
+ 3b

(∑

j

α2,j − kλ2

)
+ 3ak1(λ2 − λ1) ≤ 3OPT + 3εlb.

If b ≥ 0.5, then C2 =
∑

j h3~t(ci2(j)j) ≤ 6
∑

j h~t(~o
↓
j ) + 6εlb, so F2 yields a solution of cost(w̃; ·)-cost at

most 6(1 + ε)(1 + 2ε)opt + 6εlb(1 + ε). So suppose a ≥ 0.5. The procedure for rounding the bi-point

solution is similar to that in the Jain-Vazirani algorithm for k-median, except that we derandomize their

randomized-rounding step by solving an LP.

B1. For every i ∈ F2, let σ(i) ∈ F1 denote the facility in F1 closest to i (under the cij distances). If

|σ(F2)| < k2, add facilities from F1 to it to obtain F 1 ⊆ F1 such that σ(F2) ⊆ F 1 and |F 1| = k2.

B2. Opening facilities. We will open either all facilities in F 1, or all facilities in F2. Additionally, we

will open k − k2 facilities from F1 \ F 1. We formulate the following LP to determine how to do this.

Variable θ indicates if we open the facilities in F 1, and variables zi for every i ∈ F1 \F 1 indicate if we

open facility i.

min
∑

j:i1(j)∈F 1

(
θd1,j + (1− θ)d2,j

)
+

∑

k:i1(k)/∈F 1

(
zi1(k)d1,k + (1− zi1(k))(2d2,k + d1,k)

)
(R-P)

s.t.
∑

i∈F1\F 1

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ F1 \ F 1. (26)

The above LP is integral, and we open the facilities specified by an integral optimal solution (as dis-

cussed above), and assign each client to the nearest open facility.

We prove that: (1) (R-P) has a fractional solution of objective value at most 2(aC1 + bC2), and (2) any

integral solution (θ̃,
int

z) to (R-P) yields a feasible solution with assignment-cost vector ~c such that
∑

j h9~t(~cj)

is at most the objective value of (θ̃,
int

z). Together with the bound on aC1 + bC2, using Lemma 6.10, these

imply that the solution returned has cost(w; ·)-cost at most (1 + ε)(1 + 2ε) · 9 · opt + 6εlb(1 + ε) ≤(
9 +O(ε)

)
opt .

For the former, consider the solution where we set θ = a, zi = a for all i ∈ F1 \ F 1. We have∑
i∈F1\F 1

zi = a(k1 − k2) = k − k2. Every client j with i1(j) ∈ F 1 contributes ad1,j + bd2,j to the

objective value of (R-P), which is also its contribution to aC1 + bC2. Consider a client k with i1(k) /∈ F 1.

Its contribution to the objective value of (R-P) is ad1,k + b(2d2,k + d1,k) ≤ d1,k + 2bd2,k , which is at most

twice its contribution to aC1 + bC2 (since a ≥ 0.5).

For the latter, suppose we have an integral solution (θ̃,
int

z) to (R-P). Let ~cj denote the assignment cost

of client j under the resulting solution. For every j with i1(j) ∈ F 1, either i1(j) or i2(j) is opened,

so h9~t(~cj) ≤ h3~t(~cj) ≤ θ̃d1,j + (1 − θ̃)d2,j . Now consider k with i1(k) /∈ F 1. If
int

z i1(k) = 1, then

h3~t(~ck) ≤ d1,k. Otherwise, ~ck is at most ci2(k)k + ci2(k)σ(i2(k)) ≤ ci2(k)k +(ci2(k)k + ci1(k)k) since σ(i2(k))
is the facility in F1 closest to i2(k). Applying Claim 9.16, we then have

h9~t(~ck) ≤ h6~t(2ci2(k)k) + h3~t(ci1(k)k) = 2d2,k + d1,k
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which is the contribution of k to the objective value of (θ̃,
int

z). Therefore,
∑

j h9~t(~cj) is at most the objective

value of (θ̃,
int

z).

10 Multi-budgeted ordered optimization and simultaneous optimization

In this section we show how the deterministic, weight-oblivious rounding can be used to obtain results for

multi-budgeted ordered optimization, which in turn, using the results of Goel and Meyerson [21], implies

constant-factor approximations to the best simultaneous optimization factor possible for any instance of the

unrelated load-balancing and k-clustering problem. We begin by formally defining these problems.

Definition 10.1 (Multi-budgeted ordered optimization). Given a optimization problem where a solution

induces a cost vector ~v, given N non-negative, non-increasing weights functions w(1), . . . , w(N), and N
budgets B1, . . . , BN ∈ R+, the multi-budgeted ordered optimization problems asks whether there exists a

solution inducing a cost vector ~v such that cost(w(r);~v) ≤ Br for all 1 ≤ r ≤ n.

A ρ-approximation algorithm for this problem would either assert no such solution exists, or furnish a

solution inducing a cost vector ~v such that cost(w(r);~v) ≤ ρ ·Br for all 1 ≤ r ≤ n.

Theorem 10.2. There are O(1)-factor approximation algorithms for the multi-budgeted ordered (unrelated

machines) load-balancing problem and for the multi-budgeted ordered k-clustering problem.

The following is a slight modification of the definition given in [21] where they used general monotone,

symmetric convex functions but their notion of approximation scaled the cost-vector by a factor and applied

the function on it. As discussed earlier, the definition below implies the same for the original [21] notion.

Definition 10.3 (Optimal simultaneous optimization factor). Given an instance I of an optimization prob-

lem, an simultaneous α-approximate solution induces a cost vector ~v such that g(~v) ≤ αopt(g) where

opt(g) = min~w g(~w) where ~w ranges over cost vectors induced by all feasible solutions. Let α∗I be the

smallest α for which an simultaneous α-approximate solution exists for the instance I . This is the best

simultaneous optimization factor for this instance.

A ρ-approximation to the best simultaneous optimization factor takes an instance I and returns a solution

~v such that g(~v) ≤ ραIopt(g) for any monotone, symmetric norm g.

The following theorem establishes the connections between the two problems via the work of Goel and

Meyerson [21].

Theorem 10.4. A ρ-approximation algorithm for the multi-budgeted ordered optimization problem implies

a ρ(1 + ε)-approximation to the best simultaneous optmization factor for any instance.

Proof. Using the terminology of Goel and Meyerson [21], a vector v ∈ Rn
+ is α-submajorized by w ∈ Rn

+

if and only if for all 1 ≤ ℓ ≤ n, Top-ℓ(v) ≤ α · Top-ℓ(w). That is, for any ℓ, the sum of the ℓ largest entries

of v are at most α times the sum of the ℓ largest entries of w. A cost vector v is globally α-balanced if

it is α-submajorized by any other feasible cost-vector w. Modifying the theory of majorization by Hardy,

Littlewood, and Polya [25], Goel and Meyerson [21] establish the following.

Theorem GM (Theorem 2.3, [21] (Paraphrased)). A solution inducing a cost vector v is simultaneous α-

approximate if and only if v is globally α-balanced.

Fix an instance I of an optimization problem. For any 1 ≤ ℓ ≤ n, let opt ℓ := minw Top-ℓ(w) where

the minimization is over feasible cost vectors for this instance I . Let α∗I be the smallest α for which an

α-simultaneous approximate solution exists for the instance I . By Theorem GM, this means that there is a

solution inducing a cost vector ~v∗ such that for all 1 ≤ ℓ ≤ d, we have Top-ℓ(v∗) ≤ α∗I · opt ℓ.
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Now suppose we knew opt ℓ for all ℓ. Then we can use the ρ-approximate multi-budgeted optimization

algorithm to obtain a ρ-approximate instance optimal solution. There are n weight vectors where w(ℓ) has

ℓ ones and rest zeros. Via binary search, we find the smallest A such that setting budgets Bℓ := A · opt ℓ
and running our ρ-approximation algorithm, we get a feasible solution v Clearly, A ≤ α∗I since v∗ is the

certificate for it; and v is globally ρA-balanced. This implies v is a ρ-approximate instance-optimal solution

to the simultaneous optimization problem.

However, we don’t know opt ℓ. But once again we can use the sparsification tricks done throughout the

paper. First we observe that we need know only estimates of opt ℓ, and that only for the ℓ ∈ POSn,ε :=
{⌈(1 + ε)s⌉ , n}. The latter is because for any ℓ < i < next(ℓ), we have opt ℓ ≤ opt i ≤ (1 + ε)opt ℓ.
The first inequality follows from definition and the second inequality follows since in the solution inducing

the opt ℓ solution, the contribution of the coordinates from ℓ to i is at most εopt ℓ. So any vector v which

satisfies Top−ℓ(v) ≤ αTop-ℓ(w) for all w only for ℓ ∈ POS, is in fact also a global α(1+ε)-balanced vector.

Therefore, it suffices therefore to know opt ℓ only for the ℓs in POS. Furthermore, with another (1 + ε)-
loss, we need only know a non-increasing (valid) threshold vector ~t such that opt ℓ ≤ ~tℓ ≤ (1 + ε)opt ℓ for

ℓ ∈ POS. By Claim 5.3, there are only polynomially many guesses, and for each we perform the binary

search procedure described above (but only for |POS| many weight vectors.)

As a corollary, using Theorem 10.2, we get

Theorem 10.5. There is a constant factor approximation algorithm to the best simultaneous optimization

factor of any instance of the unrelated machines load balancing and the k-clustering problem.

We now prove Theorem 10.2.

Proof of Theorem 10.2. The theorem is a corollary of Theorem 8.7 and Theorem 9.6. We show the proof

for load balancing and the proof for clustering is analogous and is omitted from the extended abstract. First

we sparsify each weight to w̃ using Lemma 4.2. Suppose there is indeed an assignment ~o which matches

all the budgets. Using the enumeration procedure in Lemma 6.9 with ε = 1 and finding a ρ that is a power

of 2 such that ~o↓1 ≤ ρ ≤ 2~o↓1 , we assume that we have obtained a valid threshold vector ~t where all tℓs are

powers of 2 or 0, and which satisfies the conditions: ~o↓ℓ ≤ tℓ ≤ 2~o↓ℓ if ~o↓ℓ ≥
~o↓
1
m , and tℓ = 0 otherwise.

For each such guess, we try to find a feasible solution to the LP (which is very similar to (4))

(x, y, z) satisfies (OLB1) - (OLB5) (27)
∑

ℓ∈POS

(w̃
(r)
ℓ − w̃

(r)
next(ℓ))ℓtℓ + LP~t(w̃

(r);x, y, z) ≤ 3Br ∀r ∈ [N ] (28)

From the proof of Claim 8.8, we know that if there is an assignment σ∗ matching all the budgets, then for

some ~t the above LP is feasible. So, if all the LPs return infeasible, we can answer infeasible. Otherwise,

we get a solution (x, y, z) satisfying (OLB1) - (OLB5), and the threshold vector ~t satisfies the powers of 2
condition. Now we apply Theorem 8.7. We get an assignment σ̃, and as in the proof of Theorem 8.4, we get

for all r ∈ [N ], cost(w(r);
−−→
loadσ̃) ≤ 38(1 + δ)Br .
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Appendices

A Refined sparsification: proof of Lemma 4.2

Recall, POSn,δ :=
{
min{⌈(1 + δ)s⌉ , n} : s ≥ 0

}
and we abbreviate POSn,δ to POS in the remainder of

this section, and whenever n, δ are clear from the context. For ℓ ∈ POS, ℓ < n, define next(ℓ) to be the

smallest index in POS larger than ℓ. Similarly we define prev(ℓ). For every index i ∈ [n], we set w̃i = wi if

i ∈ POS; otherwise, if ℓ ∈ POS is such that ℓ < i < next(ℓ) (note that ℓ < n), set w̃i = wnext(ℓ) = w̃next(ℓ).

For notational convenience, we often extend POS to {0} ∪ POS ∪ {n + 1}; in that case, next(0) := 1 and

next(n) := n + 1. The weights are extended as w0 := w̃0 := ∞ and wn+1 := w̃n+1 = 0. Lemma 4.2

states that for any ~v ∈ Rn
+, we have cost(w̃;~v) ≤ cost(w;~v) ≤ (1 + δ)cost(w̃;~v). The simple direction

cost(w̃; v) ≤ cost(w; v) follows since since w̃ ≤ w.

To prove the other direction, fix a cost vector ~v. Let us make a few notation-simplifying definitions. For

every i ∈ [n], let αi := wi~vi and let βi := w̃i~vi. Thus, both α’s and β’s are non-increasing, and αℓ := βℓ,
for all ℓ ∈ POS. For each ℓ ∈ POS, we define the set Jℓ := {1, . . . , ℓ − 1}, and so J1 := ∅. Also note,

Jn+1 := [n]. The proof follows from this simple observation about ceilings.

Claim A.1. For any ℓ ∈ POS, |Jnext(ℓ)| ≤ (1 + δ)ℓ.

Proof. We need to show that next(ℓ) − 1 ≤ (1 + δ)ℓ since the LHS is the size of Jnext(ℓ). First observe

that the claim trivially holds for ℓ = n. So we may assume ℓ := ⌈(1 + δ)s⌉ for some s ≥ 0. We will use

the following observation, ⌈(1 + δ)z⌉ < 1 + (1 + δ) ⌈z⌉ for any non-negative z. This follows since the

ceiling of a number is at most one more than it, and the ceiling monotonically increases value. Now, note

that next(ℓ) ≤
⌈
(1 + δ)t

⌉
where t is the smallest integer > s such that

⌈
(1 + δ)t

⌉
6= ℓ. (The inequality may

occur if next(ℓ) = n instead). Now apply the observation with z := (1 + δ)t−1; ⌈z⌉ = ℓ by definition. So

we get, next(ℓ) ≤ 1 + (1 + δ)ℓ.

The proof of Lemma 4.2 now follows easily. First note,

cost(w;~v) =
n∑

i=1

αi ≤
∑

ℓ∈POS

|Jnext(ℓ)\Jℓ|αℓ =
∑

ℓ∈POS

αℓ

(
|Jnext(ℓ)| − |Jℓ|

)
=

∑

ℓ∈POS

|Jnext(ℓ)|
(
αℓ − αnext(ℓ)

)
,

where the inequality above follows since α’s are non-increasing. Now we use the fact that αℓ = βℓ for

ℓ ∈ POS, and Claim A.1, to get

cost(w;~v) ≤ (1 + δ)
∑

ℓ∈POS

ℓ
(
βℓ − βnext(ℓ)

)
= (1 + δ)

∑

ℓ∈POS

βnext(ℓ) (next(ℓ)− ℓ)

Using the fact that β’s are non-increasing, we get that the last summand in the RHS is at most the sum of all

the βi’s which is cost(w̃;~v). Together, we get cost(w;~v) ≤ (1 + δ)cost(w̃;~v).

B Proofs from Section 5

Proof of Lemma 5.1.

Part (i). Since f is a norm, we have f(2x) = 2f(x) and f(x/2) = f(x)/2. Since d is a subgradient

at x, we have f(x) = f(2x) − f(x) ≥ d⊤x implying, d⊤x ≤ f(x). On the other hand, −f(x)/2 =
f(x/2)− f(x) ≥ d⊤(−x/2), implying d⊤x ≥ f(x). Hence f(x) = dTx.

For any y ∈ Rn, since f(y) − f(x) ≥ dT (y − x), using f(x) = d⊤x we get that f(y) ≥ dT y. Also,

for any λ ≥ 0, f(y)− f(λx) = f(y)− f(x) + f(x)(1 − λ) ≥ dT (y − x) + dTx(1 − λ) = dT (y − λx).
Therefore d is a subgradient of f at λx.
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Part (ii). Let d̂ be a subgradient of f at x. Define d = (d̂)+ := {(d̂i)+}i∈[n]. We first claim that if xi > 0,

then d̂i ≥ 0. Suppose not. Let x(−i) denote the vector with x
(−i)
j = xj for all j 6= i, and x

(−i)
i = 0. So

f(x) ≥ f
(
x(−i)

)
by monotonicity. But f

(
x(−i)

)
− f(x) ≥ d̂i(−xi) > 0, which yields a contradiction.

Consider y ∈ Rn. Let I = {i ∈ [n] : d̂i ≥ 0}. Define y′i = yi if i ∈ I and 0 otherwise. By the above,

we know that xi = 0 for i /∈ I . By monotonicity, we have f(y) ≥ f(y′), so

f(y)− f(x) ≥ f(y′)− f(x) ≥
∑

i∈[n]

d̂i(y
′
i − xi) =

∑

i∈I

d̂i(y
′
i − xi) =

∑

i∈I

di(y
′
i − xi) =

∑

i∈[n]

di(yi − xi).

The last equality follows since di = 0 for all i /∈ I , and yi = y′i for all i ∈ I .

Part (iii). Suppose there are i, j ∈ [n] such that di < dj but xi > xj . Let x′ be the vector obtained from

x by swapping xj and xi: i.e., x′k = xk for all k ∈ [n] \ {i, j}, x′i = xj , x′j = xi. Then, f(x′) − f(x) ≥
dT (x′−x) = (di−dj)(xj −xi) > 0, but f(x′) = f(x) due to symmetry, which gives a contradiction. This

also implies that if di > dj , then xi ≥ xj . It follows that there is a common permutation κ : [n]→ [n] such

that dκ(1) ≥ . . . ≥ dκ(n) and xκ(1) ≥ . . . ≥ xκ(n). Hence, f(x) = dTx =
∑

i∈[n] dκ(i)xκ(i) = d↓ · x↓ =
cost(d↓;x).

We have f
(
x(π)

)
= f(x) = dTx = d(π) · x(π). For any y ∈ Rn, we have f(y) = f

(
y(π

−1)
)
≥

dT y(π
−1) = d(π) · y, so f(y)− f(x) ≥ d(π) · (y−x). This shows that d(π) is a subgradient of f at x(π).

Proof of Claim 5.3. Any non-decreasing sequence a1 ≥ a2 ≥ . . . ≥ ak, where ai ∈ {0} ∪ [N ] for all

i ∈ [k], can be mapped bijectively to the set of k + 1 integers N − a1, a1 − a2, . . . , ak−1 − ak, ak from

{0}∪ [N ] that add up to N . The number of such sequences of k+1 integers is equal to the coefficient of xN

in the generating function (1 + x+ . . . + xN )k. This is equal to the coefficient of xN in (1 − x)−k, which

is
(
N+k−1

N

)
using the binomial expansion. Let M = max{N, k − 1}. We have

(
N+k−1

N

)
=

(
N+k−1

M

)
≤( e(N+k−1)

M

)M ≤ (2e)M .

Proof of Theorem 5.4. We first bound the number of oracle calls toA. By Claim 5.3, since the enumeration

of u1, . . . , uℓ∗ involved inW ′ requires guessing a non-increasing sequence of O(log n/ε) exponents from a

range of size O
(
1
ε log(

n
ε )
)
, we have

|W ′| = O
(
|POS| · 1

ε
log(

n · ub · hi
lb

)(
n

ε
)O(1/ε)

)
= O

( log n
ε2

log(
n · ub · hi

lb
)(
n

ε
)O(1/ε)

)
.

The latter quantity is thus a bound on the number of calls to A and |W|.
We now prove parts (i) and (ii), from which the final guarantee will follow easily. For part (i), consider

any w ∈ W . If w = lb

n·hi1
n, then cost(w;~v) ≤ lb

n·hi

∑
i∈[n] ~vi. Otherwise, we know that Bopt(w) ≤

κ(1 + ε). So wT~v ↓/f(~v ↓) ≤ Bopt(w) ≤ κ(1 + ε). Hence, wT~v ↓ ≤ κ(1 + ε)f(~v ↓), or equivalently,

cost(w;~v) ≤ κ(1 + ε)f(~v).
For part (ii), it suffices to show, due to Lemma 5.2, that cost(d;~v) is at most the stated bound, for

every d ∈ C. So fix d ∈ C. If d1 < lb

n·hi , then d < lb

n·hi · 1n, so cost(d;~v) < cost
(

lb

n·hi · 1n; ~v
)
<

(1− ε)−1 maxw∈W cost(w;~v). So suppose otherwise.

Let ℓ∗ ∈ POS be the largest index for which dℓ ≥ εd1
n . Since d1 ∈

[
lb

n·hi , ub
]
, there is some w̃1 that is

a power of (1 + ε) such that d1 ≤ w̃1 ≤ (1 + ε)d1. For every ℓ ∈ POS, ℓ ≤ ℓ∗, we have dℓ ≥ εw̃1
n(1+ε) .

Hence, there are non-increasing w̃ℓ values that are powers of (1+ ε) satisfying w̃ℓ ≤ dℓ ≤ (1 + ε)w̃ℓ for all

ℓ ∈ POS, ℓ ≤ ℓ∗. Thus, there is some w̃ ∈ W ′ such that dℓ ≤ w̃ℓ ≤ (1 + ε)dℓ for all ℓ ≥ ℓ∗ in POS, and

w̃ℓ = 0 for all other ℓ ∈ POS.
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Next, we claim that w̃ ∈ W . For every x ∈ Rn
+, we have cost(d;x) ≤∑

i:di≥εd1/n
w̃ix

↓
i +

εd1
n ·nx

↓
1 , so

(1 − ε)cost(d;x) ≤ cost(w̃;x). Also, since w̃ ≤ (1 + ε)d, we have cost(w̃;x) ≤ (1 + ε)cost(d;x). Since

d ∈ C, we have maxx∈B+(f) d
Tx = maxx∈B+(f) cost(d;x) = 1. It follows that

max
x∈B+(f)

w̃Tx = max
x∈B+(f)

cost(w̃;x) ∈
[
(1−ε) max

x∈B+(f)
cost(d;x), (1+ε) max

x∈B+(f)
cost(d;x)

]
= [1−ε, 1+ε].

Therefore, the point x̂ ∈ B+(f) returned byA on w̃ satisfies w̃T x̂ ∈
[
(1−ε)/κ, 1+ε

]
showing that w̃ ∈ W .

Finally, since cost(d;~v) ≤ cost(w̃;~v)/(1−ε), this implies that cost(d;~v) ≤ (1−ε)−1 maxw∈W cost(w;~v).
The final approximation guarantee of the theorem now follows easily. The optimum of the min-max

ordered-optimization problem is at most maxw∈W cost(w;~o), which by part (i) is at most max
{
κ(1 +

ε)opt , lb

n·hi · n · ~o
↓
1} ≤ κ(1 + ε)opt . Therefore, maxw∈W cost(w; ṽ) ≤ γκ(1 + ε)opt . By part (ii), this

implies that f(ṽ) ≤ γκ · 1+ε
1−ε · opt ≤ γκ(1 + 3ε)opt .

C Proofs from Section 6

Proof of Claim 6.7. Consider the difference prox~t(w̃; v)− prox~t′(w̃; v). Since ~t ≤ ~t′, only the second term

in (1) has a nonnegative contribution to this difference, and only indices ℓ ∈ POS for which tℓ ≤ t′ℓ con-

tribute non-negatively The total contribution from such indices is at most
∑

ℓ∈POS:tℓ≤t
′
ℓ
(w̃ℓ−w̃next(ℓ))

∑n
i=1 ∆ ≤

nw̃1∆. Similarly, only the first (i.e., constant) term in (1) has a nonnegative contribution to the difference

prox~t′(w̃; v) − prox~t(w̃; v), and this contribution is at most
∑

ℓ∈POS:tℓ≥t
′
ℓ
(w̃ℓ − w̃next(ℓ))ℓ∆ ≤ nw̃1∆.

Proof of Lemma 6.10. The second inequality follows immediately from the first one and Lemma 4.2, so

we focus on showing the first inequality. By Claim 6.5, we have

cost(w̃; v) ≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · θtℓ +

n∑

i=1

hθ~t(w̃; vi)

≤
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
θℓtℓ + γ

n∑

i=1

h~t(w̃;~o
↓
i ) +M

≤ max{θ, γ}prox~t(w̃;~o↓) +M ≤ max{θ, γ}(1 + 2ε)cost(w̃;~o) +M.

The last inequality follows from Lemma 6.8.

D Iterative rounding of linear system: proof of Theorem 7.1

We first prove some properties of an extreme point of (Q). We call the constraints Bq ≤ d, budget con-

straints. Let N be the number of budget constraints.

Lemma D.1. Let q′ be an extreme point of (Q). Then either q′ is integral, or there is some tight budget

constraint (∗) with support S such that
∑

j∈S:q′j>0(1− q′j) ≤ k.

Proof. Let T denote the support of q′. It is well known (see, e.g., [39]) that then there is an invertible sub-

matrix A′ of the constraint-matrix of (Q), whose columns correspond to he support T , and rows correspond

to |T | linearly-independent constraints that are tight at q′. So if q′′ denotes the vector comprising the qj vari-

ables for j ∈ T , and g denotes the right-hand-sides of these tight constraints, then q′ is the unique solution

to the system A′q′′ = g.
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If A′ does not consist of any budget constraints, then the supports of the rows of A′ from a laminar

family, and it is well known that such a matrix is totally unimodular (TU). So since
(
b1
b2

)
is integral, q′ is

integral. So if q′ is not integral, then A′ contains at least one budget constraint.

LetL denote the laminar family formed by the supports of the rows of A′ corresponding to the A1q ≤ b1,

A2q ≥ b2 constraints. Consider the following token-assignment scheme. Every j ∈ T supplies q′j tokens

to the row of A′ corresponding to the smallest set of L containing j (if such a row exists), and (1 − q′j)/k
tokens to the at most k budget constraints of A′ where it appears. Thus, every j ∈ T supplies at most one

token unit overall, and the total supply of tokens is at most |T |.
Notice that every row i of A′ corresponding to a constraint from A1q ≤ b1 or A2q ≥ b2 consumes at

least 1 token unit: let L ∈ L is the support of row i, and L′ ( L be the largest set of L ∪ {∅} strictly

contained in L. If L′ 6= ∅, let i′ be the row of A′ corresponding to set L′. Row i consumes
∑

j∈L\L′ q′j
tokens, which is equal to (A′q′)i − (A′q′)i′ if L′ 6= ∅, and equal to (A′q′)i otherwise. This quantity is an

integer, and strictly positive (since all q′js are positive), so is at least 1. Suppose for a contradiction that, for

every row i corresponding to a budget constraint of A′,
∑

j∈T :A′
ij>0(1 − q′j) > k. Then every constraint of

A′ consumes at least 1 token unit, and at least one constraint consumes more than 1 token unit. This yields

a contradiction since the total consumption of tokens is larger than (number of constraints of A′) = |T |.
Hence, if q′ is not integral, there must be some tight budget constraint (∗) (in fact, a budget constraint of

A′) with support S such that
∑

j∈S:q′j>0(1− q′j) ≤ k.

The iterative-rounding algorithm for rounding q̂ is as follows. We initialize q = q̂, and our current

system of constraints to the constraints of (Q). We repeat the following until we obtain an integral solution.

I1. Move from q to an extreme-point q′ of the current system of constraints no greater objective value (under

(Q)) whose support is contained in the support of q. If q′ is not integral, by Lemma D.1 there is some

tight budget constraint (∗) with support S such that
∑

j∈S:q′
j
>0(1− q′j) ≤ k.

I2. Set q ← q′. If q is not integral then update the system of constraints by dropping (∗) (and go to

step 8.10); otherwise, return
int

q := q.

We prove that the above process terminates, and the point
int

q returned satisfied the stated properties. In

each iteration, we drop a budget constraint, and there are N budget constraints, so we terminate in at most

N iterations. By definition, we terminate with an integral point. We never increase the objective value,

and always stay within the support of q̂, so properties (a) and (b) hold. We never drop a constraint from

A1q ≤ b1, A2q ≥ b2 from our system, so the final point
int

q satisfies these constraints. Since qj ≤ 1 is an

implicit constraint implied by these constraints (and
int

q is integral), this implies that
int

q ∈ {0, 1}n.

Finally, we prove part (d). Consider a budget constraint (Bq)i ≤ di. If we never drop this budget

constraint during iterative rounding, then
int

q satisfies this constraint. Otherwise, consider the iteration when

we drop this constraint and the extreme point q′ obtained in I1 just before we drop this constraint. Then, if

S is the support of this budget constraint, it must be that (Bq′)i ≤ di and
∑

j∈S:q′j>0(1− q′j) ≤ k. Also, the

support of
int

q is contained in the support of x′. Therefore,

∑

j

Bij
int

qj ≤
∑

j∈S:q′j>0

Bij =
∑

j∈S:q′j>0

Bijq
′
j +

∑

j∈S:q′j>0

Bij(1− q′j)

≤ (Bq′)i + k
(

max
j∈S:q′

j
>0

Bij

)
≤ (Bq′)i + k

(
max
j:q̂j>0

Bij

)
= di + k

(
max
j:q̂j>0

Bij

)
.

The last inequality follows since q′j > 0 implies that q̂j > 0.
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E Improved
(
5 + O(ε)

)
-approximation for ordered k-median

In this section, we prove Theorem 9.18. Recall that we continue the binary search until λ2−λ1 <
εlb

n22n
. For

r = 1, 2, and i ∈ F , define P r(i) := {j ∈ D : βr
ij > 0}; for a set S ⊆ F , define P r(S) :=

⋃
i∈S P r(i). A

continuity argument from [17] shows the following; we defer the proof to the end of this section.

Lemma E.1 ([17]). We have ‖α1 − α2‖∞ ≤ 2n(λ2 − λ1) ≤ εlb
n2 . Hence, for any i ∈ F1 ∪ F2, and any

r ∈ {1, 2}, we have
∑

j β
r
ij ≥ λ2 − εlb

n .

For every i ∈ F , j ∈ D, define αj := max{α1
j , α

2
j}, and βij := max{β1

ij , β
2
ij}; note that βij =(

αj − h~t(cij)
)+

.

To obtain the improvement, we utilize insights from the 4-approximation algorithm for k-median in [17].

The idea is to first augment F1 using facilities from F2 (that are approximately paid for by (α1, β1), and

then open facilities in a similar manner as before. The augmentation step will ensure that for every client j,

there is some facility i that is opened with h5~t(cij) ≤ 5αj , and this leads to the 5-approximation guarantee.

D1. Augmenting F1. Augment F1 to a maximal set F ′1 ⊇ F1 by adding facilities from F2 while preserving

the following property: for every j ∈ D, there is at most one i ∈ F ′1 with β1
ij > 0. For every j ∈ D,

redefine i1(j) to be the facility in F ′1 that is closest (in terms of cij) to j.

D2. Let k′1 = |F ′1|, k2 = |F2|. For every i ∈ F2, let σ(i) ∈ F ′1 denote the facility in F ′1 closest to i (which

will be i if i ∈ F ′1). Let F 1 ⊆ F ′1 be an arbitrary set such that σ(F2) ⊆ F 1 and |F 1| = k2.

D3. Opening facilities. As before, we will open either all facilities in F 1 or all facilities in F2, and we

will also open k − k2 facilities from F ′1 \ F 1. To do this, we utilize an LP with the same variables

and constraints as (R-P): variable θ to indicate if we open the facilities in F 1, and variables zi for

every i ∈ F ′1 \ F 1 to indicate if we open facility i. But we use a different objective function. For

each client j, we define an expression Aj

(
θ, z := {zi}i∈F ′

1\F 1

)
that will serve as an upper bound on

h5~t(assignment cost of j) when θ and z are integral, and our LP will seek to minimize
∑

j Aj(θ, z).
Define

Aj(θ, z) =





θh~t(ci1(j)j) + (1− θ)h~t(ci2(j)j) i1(j) ∈ F 1, j ∈ P 1(F ′1) ∩ P 2(F2);

h~t(ci1(j)j) + (1− zi1(j)) · 2h~t(ci2(j)j) i1(j) /∈ F 1, j ∈ P 1(F ′1) ∩ P 2(F2);

(1− θ)h~t(ci2(j)j) + θ · 5αj j ∈ P 2(F2) \ P 1(F ′1);

(1− θ)h3~t(ci2(j)j) + θ · 5αj j /∈ P 1(F ′1) ∪ P 2(F ′2);

θ · h~t(ci1(j)j) + (1− θ) · 5αj i1(j) ∈ F 1, j ∈ P 1(F ′1) \ P 2(F ′2);

zi1(j) · h~t(ci1(j)j) + (1− zi1(j)) · 5αj i1(j) /∈ F 1, j ∈ P 1(F ′1) \ P 2(F ′2);

We solve the following LP:

min
∑

j

Aj(θ, z) s.t.
∑

i∈F1\F 1

zi ≤ k − k2, θ ∈ [0, 1], zi ∈ [0, 1] ∀i ∈ F ′1 \ F 1. (O-P)

The above LP is integral, and we open the facilities specified by an integral optimal solution (as dis-

cussed above), and assign each client to the nearest open facility.

Analysis. The road map of the analysis is as follows. Recall that αj = max{α1
j , α

2
j} and βij = max{β1

ij , β
2
ij}.

We first show that by combining Lemma E.1 and Theorem 9.17, we can infer two things (see Lemma E.2):

(1) for both the F ′1 and F2 solutions,
∑

j 3αj can be used to pay for the λ2-cost of all open facilities and
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∑
j h3~t(assignment cost of j); (2) for every client j, due to our augmentation step C1, we have facilities

i ∈ F2, i′ ∈ F ′1 such that i is close to j, and i′ is close to i.
Next, we show that the optimal value of (O-P) is (roughly) at most 5OPT ( Lemma E.3). Finally, we

show that if we have an integral solution (θ̃,
int

z) to (O-P), then this yields a solution
∑

j h5~t(assignment cost of j)

is (roughly) bounded by
∑

j Aj(θ̃,
int

z) ( Lemma E.4). Here, we use property (2) above to argue that for ev-

ery client j, there is some facility i opened in our final solution with h5~t(cij) bounded by (roughly) 5αj .

Combining Lemmas E.3 and E.4 yields Theorem 9.18.

Lemma E.2. The following hold.

(i) 3λ2|F ′1|+
∑

j∈P 1(F ′
1)
3h~t(ci1(j)j) +

∑
j /∈P 1(F ′

1)
h3~t(ci1(j)j) ≤ 3

∑
j αj + 3εlb.

(ii) 3λ2|F2|+
∑

j∈P 2(F2)
3h~t(ci2(j)j) +

∑
j /∈P 2(F2)

h3~t(ci2(j)j) ≤ 3
∑

j αj .

(iii) For any j ∈ D, there are facilities i ∈ F2 and i′ ∈ F1 such that h3~t(cij) ≤ 3αj , and h2~t(cii′) ≤
2αj +

2εlb
n2 .

Proof. Part (ii) follows immediately from part (i) of Theorem 9.17.

Consider part (i). Since F ′1 ⊆ F1∪F2, by Lemma E.1, for every i ∈ F ′1, we have that
∑

j β
1
ij ≥ λ2− εlb

n .

When adding facilities to F1 in step C1, we ensure that the sets {P 1(i)}i∈F ′
1

remain pairwise disjoint. For

every client j, we know that if β1
ij > 0 for some i ∈ F ′1, then i1(j) = i; we also know from part (ii) of

Theorem 9.17 that h3~t(ci1(j)j) ≤ 3α1
j . So

∑

j

3αj ≥
∑

j

3α1
j ≥

∑

i∈F ′
1

∑

j∈P 1(i)

3
(
β1
ij + h~t(cij)

)
+

∑

j /∈P 1(F ′
1)

h3~t(ci1(j)j)

3λ2|F ′1| −
3|F ′1|εlb

n
+

∑

j∈P 1(F ′
1)

3h~t(ci(j)j) +
∑

j /∈P 1(F ′
1)

h3~t(ci1(j)j).

To prove part (iii), consider any client j. By Theorem 9.17 (ii), we know that there is some i ∈ F2 such

that h3~t(cij) ≤ 3α2
j ≤ 3αj , and α2

j ≥ α2
k for all k ∈ P 2(i). If i ∈ F ′1, then taking i′ = i finishes the proof.

Otherwise, since i was not added to F ′1 in step C1, it must be that there is some client k and some facility

i′ ∈ F1 such that β1
ik, β

1
i′k > 0. So we have

h2~t(cii′) ≤ h~t(cik) + h~t(ci′k) ≤ 2α1
k ≤ 2α2

k +
2εlb

n2
≤ 2α2

j +
2εlb

n2
≤ 2αj +

2εlb

n2
.

Lemma E.3. The optimal value of (O-P) is at most 5OPT + 5εlb
(
1 + 1

n2

)
.

Proof. Let a, b ≥ 0 be such that ak′1 + bk2 = k and a+ b = 1. Define chargej = a · 5β1
i1(j)j

+ b · 5β2
i2(j)j

.

Then, we have

∑

j

chargej = a
∑

j∈P 1(F ′
1)

5β1
i1(j)j

+ b
∑

j∈P 2(F2)

5β2
i2(j)j

≥ a
(
5λ2k

′
1 − 5εlb

)
+ b · 5λ2k2 = 5kλ2 − 5εlb

where the inequality follows from Lemma E.1. Set θ = a and zi = a for all i ∈ F ′1 \ F 1. We show that

chargej+Aj(θ, z := {zi}i∈F ′
1\F 1

) ≤ 5αj for every client j. This will complete the proof since this implies

that

5kλ2 +
∑

j

Aj(θ, z) ≤ 5αj + 5εlb ≤ 5α2
j + 5εlb

(
1 + 1

n2

)
,

and
∑

j α
2
j − kλ2 ≤ OPT since (α2, β2, λ2) is a feasible solution to (Dρ).

To prove the claim, consider any client j. Recall that a ≥ 0.5. Observe that:
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· if j ∈ P 1(F ′1), then h~t(ci1(j)j) + β1
i1(j)j

= α1
j ;

· if j ∈ P 2(F2), then h~t(ci2(j)j) + β2
i2(j)j

= α2
j , and otherwise, we have h3~t(ci2(j)j) ≤ 3α2

j .

By considering each case in the definition of Aj , and plugging in the above bounds, we obtain the claimed

bound on chargej +Aj(θ, z).

Lemma E.4. Let (θ̃,
int

z) be an integral solution to (O-P). Let Xj denote its assignment cost under the

resulting solution. We have
∑

j h5~t(Xj) ≤
∑

j Aj(θ̃,
int

z) + 2εlb
n .

Proof. Consider any client j. We abbreviate Aj(θ̃,
int

z) to Aj . We show that h5~t(Xj) ≤ Aj +
2εlb
n2 , which will

prove the lemma. We first note the following. By Lemma E.2 (iii), there are facilities i ∈ F2, i′ ∈ F1 such

that h3~t(cij) ≤ 3αj and h2~t(cii′) ≤ 2αj +
2εlb
n2 . If θ̃ = 1, then we know that σ(i) is open. Hence,

h5~t(Xj) ≤ h5~t(cσ(i)j) ≤ h3~t(cij) + h2~t(ciσ(i)) ≤ h3~t(cij) + h2~t(cii′) ≤ 5αj +
2εlb

n2
.

Consider each case in the definition of Aj .

· i1(j) ∈ F 1, j ∈ P 1(F ′1) ∩ P 2(F2). If θ̃ = 1, then i1(j) is open, and if θ̃ = 0, then i2(j) is open, so

h~t(Xj) ≤ Aj .

· i1(j) /∈ F 1, j ∈ P 1(F ′1) ∩ P 2(F2). If
int

z i1(j) = 1, then the bound clearly holds. Otherwise, either i2(j) is

open, or i := σ(i2(j)) is open. We have cii2(j) ≤ ci1(j)i2(j) ≤ ci1(j)j+ci2(j)j , and so Xj ≤ 2ci2(j)j+ci1(j)j
holds in both cases. So h3~t(Xj) ≤ h2~t(2ci2(j)j) + h~t(ci1(j)j) = Aj .

· j ∈ P 2(F2) \ P 1(F ′1). If θ̃ = 0, clearly h~t(Xj) ≤ Aj . Otherwise, as shown above, we have h5~t(Xj) ≤
5αj +

2εlb
n2 = Aj +

2εlb
n2 .

· j /∈ P 1(F ′1) ∪ P 2(F ′2). If θ̃ = 0, then i2(j) is open and h3~t(Xj) ≤ Aj . Otherwise, as above, we have

h5~t(Xj) ≤ Aj +
2εlb
n2 .

· i1(j) ∈ F 1, j ∈ P 1(F ′1) \ P 2(F ′2). If θ̃ = 1, then clearly h~t(Xj) ≤ Aj . Otherwise, i2(j) is open, and

h3~t(Xj) ≤ 3αj ≤ Aj .

· i1(j) /∈ F 1, j ∈ P 1(F ′1) \ P 2(F ′2). If
int

z i1(j) = 1, then clearly h~t(Xj) ≤ Aj . Otherwise, if θ̃ = 0, then

i2(j) is open, and h3~t(Xj) ≤ h3~t(ci2(j)j) ≤ 3αj ≤ Aj . If θ̃ = 1, then as shown at the beginning, we have

h5~t(Xj) ≤ 5αj +
2εlb
n2 = Aj +

2εlb
n2 .

Proof of Finishing up the proof of Theorem 9.18. Let Xj be the assignment cost of client j in the solu-

tion returned. Combining Lemmas E.3 and E.4, we obtain that
∑

j h5~t(Xj) ≤ 5OPT + εlb
(
5 + 2

n + 5
n2

)
.

Since OPT ≤ ∑
j h~t(~o

↓
j ), combining this with Lemma 6.10 shows that cost(w; ·)-cost of the solution

returned is at most 5(1 + ε)(1 + 2ε)opt + (1 + ε)εlb
(
5 + 2

n + 5
n2

)
.

Proof of Lemma E.1. We mimic the proof in [17]. We use x− to denote a quantity infinitesimally smaller

than x. Let δ = λ2 − λ1. Sort the clients in increasing order of their α0
j := min{α1

j , α
2
j} value. So

α0
1 ≤ . . . ≤ α0

n. We prove that |α1
j − α2

j | ≤ 2j−1δ for all j = 1, . . . , n, which implies the lemma.

We proceed by induction on j. Consider running the dual-ascent phase of the primal-dual algorithm for

λ = λ1 and λ = λ2 in parallel. For the base case, suppose that α0
1 = αr

1, where r ∈ {1, 2}. Consider

the time point τ = α0
1 in the two executions. By definition, at time τ−, all clients are active in the two

executions. So at time τ , we have α1
j = α2

j = t for all j, and so β1
ij = β2

ij for all i, j. Client 1 froze in

execution r at time t, because at that time it can reach some facility f for which constraint (25) became tight

at time τ ; we say that f got paid for at time t (in the execution r). Let r = 2−r. We have
∑

j β
r
fj =

∑
j β

r
fj

43



at time τ , so
∑

j β
r
fj can increase by at most δ beyond time t. Hence, αr

1 can increase by at most δ beyond

time τ (since any increase in αr
1 translates to the same increase in βr

f1 as αr
1 ≥ h~t(cf1) at time τ ).

Suppose we have shown that |α1
j − α2

j | ≤ 2j−1δ for all j = 1, . . . , ℓ − 1 (where ℓ ≥ 2). Now

consider client ℓ. The induction step follows from a similar argument. Consider time point τ = α0
ℓ in both

executions. By definition, all clients j ≥ ℓ are active at time τ− in the two executions. So at time τ , we have

α1
j = α2

j = τ for all j ≥ ℓ. Suppose α0
ℓ = αr

ℓ , where r ∈ {1, 2}, and let r = 2− r. In execution r, client ℓ
froze at time t due to some facility f , where either: (1) f was paid for by time τ , and ℓ reached f at time τ ;

or (2) f got paid for at time τ , and ℓ reached f at or before time τ . At time τ , we have βr
fj ≥ βr

fj − 2j−1δ

for all j < ℓ by the induction hypothesis, and β1
fj = β2

fj for all j ≥ ℓ. Therefore, the contribution
∑

j β
r
fj

from clients to the LHS of (25) at time t is at least λ1 −
∑ℓ−1

j=1 2
j−1δ. So this contribution can increase by

at most δ +
∑ℓ−1

j=1 2
j−1δ = 2ℓ−1δ beyond time τ in execution r. So since αr

ℓ = αr
ℓ ≥ h~t(cfℓ) at time τ , it

follows that αr
ℓ can increase by at most 2ℓ−1δ beyond time τ .
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