
ar
X

iv
:1

80
6.

07
46

6v
2 

 [
cs

.D
S]

  8
 A

pr
 2

01
9

A unifying method for the design of algorithms

canonizing combinatorial objects

Pascal Schweitzer∗

TU Kaiserslautern

schweitzer@cs.uni-kl.de

Daniel Wiebking

RWTH Aachen University

wiebking@informatik.rwth-aachen.de

We devise a unified framework for the design of canonization algorithms. Using
hereditarily finite sets, we define a general notion of combinatorial objects that
includes graphs, hypergraphs, relational structures, codes, permutation groups, tree
decompositions, and so on.

Our approach allows for a systematic transfer of the techniques that have been
developed for isomorphism testing to canonization. We use it to design a canon-
ization algorithm for combinatorial objects in general. This result gives new fastest
canonization algorithms with an asymptotic running time matching the best known
isomorphism algorithm for the following types of objects: hypergraphs, hypergraphs
of bounded color class size, permutation groups (up to permutational isomorphism)
and codes that are explicitly given (up to code equivalence).

1 Introduction

The problem of computing a canonical form of a graph can be seen as the task to compute a
standard representative of the graph up to isomorphism. Specifically, given an input graph G,
a graph G′ isomorphic to G is to be computed such that the output graph G′ depends only on
the isomorphism class of G and not on the graph G itself. The problem is closely related to the
graph isomorphism problem, which reduces to the task of computing a canonical form: for two
given input graphs, we compute their canonical forms and check whether the canonical forms
are equal (rather than isomorphic).

In practice, a canonization algorithm is often preferable to an isomorphism test, as it allows
each graph to be treated separately, rather than having to compare graphs pairwise. For
example, when looking up a molecule in a chemical database, we do not wish to compare the
molecule individually to every graph that has been stored in the system.

∗The research leading to these results has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 820148).

1

http://arxiv.org/abs/1806.07466v2


While various computational problems related to symmetries of graphs are polynomial-time
equivalent to the isomorphism problem, for example the computation of the automorphism
group of a graph or the computation of the orbit partition [Mat79], it is unknown whether or
not canonization reduces to isomorphism in polynomial time.

It is usually not very difficult to turn combinatorial isomorphism tests into canonization
algorithms, sometimes the algorithms are canonization algorithms in the first place. However,
there are several isomorphism testing algorithms for which to date no canonization algorithms
with the same asymptotic running are known.

This seems to be in particular the case for isomorphism algorithms based on group theoretic
techniques pioneered by Luks [Luk82], who designed a polynomial time isomorphism algorithm
for graphs of bounded degree.

Luks’s framework and the result for bounded degree graphs were subsequently extended
to canonization [BL83]. In that paper, Babai and Luks lay the foundation for canonization
techniques using the string canonization problem and algorithmically exploiting cosets. The
original technique of Luks also sparked a series of isomorphism algorithms without respective
canonization algorithms. For example, Luks presented a 2O(∣V ∣)-time isomorphism algorithm for
hypergraphs [Luk99], but the best known canonization algorithm has the brute force running
time of ∣V ∣O(∣V ∣). A similar situation occurs for hypergraphs of bounded rank [BC08]. As
pointed out by Codenotti [Cod11] the reason is that these result are based on coset intersection,
for which no adequate canonization version is known. Finally, for Babai’s quasipolynomial
time isomorphism algorithm [Bab16] there was initially no canonization version. However,
concurrently to our work, he extended his result to canonization [Bab19]. For results building on
his algorithm [GNS18], there are still no known canonization versions. Also for the isomorphism
problem for groups, nearly all of the most recent results seem not to provide canonical forms
[BCQ12, LW12, RW15, GQ15, GQ17, BMW17].

Our Contribution In this paper, we devise a unified framework for the design of canonization
algorithms. To do so, we define, using hereditarily finite sets, a general notion of combinatorial
objects that includes graphs, hypergraphs, relational structures, codes, permutation groups, tree
decompositions, and more. To this end, we devise for various problems canonization algorithms
with an asymptotic running time matching the best isomorphism algorithm. For each of them,
no canonization algorithm with such a running time has been known before. Specifically, we
obtain canonization algorithms for

• hypergraphs on a vertex set V in time 2O(∣V ∣) matching the hypergraph isomorphism
algorithm of Luks [Luk99],

• hypergraphs X = (V,H) of color class size at most k in FPT time 2O(k)(∣V ∣ + ∣H ∣)O(1)

matching the best isomorphism algorithm of Arvind, Das, Köbler and Toda [ADKT15],

• explicitly given permutation groups ∆ (up to permutational isomorphism) on permuta-
tion domain V and of order ∣∆∣ in time 2O(∣V ∣)∣∆∣O(1) matching the best algorithm for
permutational isomorphism of Babai, Codenotti, and Qiao [BCQ12],

• explicitly given codes A (up to code equivalence) of code word length ∣V ∣ and code size ∣A∣
in time 2O(∣V ∣)∣A∣O(1) matching the best isomorphism algorithm from [BCGQ11, BCQ12],
and

• combinatorial objects over a ground set V in general in time 2O(∣V ∣)nO(1) where n is the
size of the object (formally defined in Section 3).

2



The new canonization algorithm for hypergraphs above solves an open problem that has
been repeatedly stated ([Luk99],[BC08] and [ADKT15]). As the input size of a hypergraph
can be as big as 2∣V ∣, when measured only in the size of the underlying vertex set, the simply
exponential running time is optimal. Of course, when measured also in the number of edges,
better algorithms with a more refined running time bound might be possible.

For combinatorial objects in general, neither canonization nor isomorphism has been consid-
ered before in this generality.

Our Technique We advocate a clear separation between unordered objects and ordered ob-
jects. In our framework, an unordered object is an object over a ground set of a priori indistin-
guishable vertices. In contrast to this, an ordered object is an object whose underlying vertex
set consists of integers which thus carries a natural linear order. It is easily argued, that this
induces a polynomial-time computable linear ordering on the class of all ordered objects (see
Lemma 1).

For canonization purposes, every unordered object is associated with an isomorphic ordered
one, its canonical form, and the ordering of the ordered objects thereby extends to unordered
objects. To compute the canonical form, we use the concept of a labeling coset, which is a
coset of maps from unordered to ordered objects. A labeling coset can be seen as a form of
partial canonization of an unordered object, through which various possible canonical forms
have already been ruled out. By representing labeling cosets compactly via generating sets,
we can employ the existing extensive library of efficient algorithms dealing with permutation
groups.

The fact that the ordered objects are totally ordered allows us to use deterministic subroutines,
used in isomorphism tests, on ordered objects in an isomorphism-invariant way. This framework
then allows for a systematic transfer of the techniques that have been developed for isomorphism
testing to the realm of canonization.

The most important feature of our framework is that it is possible to view these labeling cosets
as combinatorial objects themselves. The main technique (see Lemma 9) shows that under mild
assumptions it is possible to replace subobjects (such as subgraphs) by their labeling cosets
without losing or introducing global symmetries. This paradigm allows for a recursive approach
by computing canonical labelings of substructures first, then replacing the substructures by
their labeling cosets, and then computing a canonical labeling of a new global object that only
consists of the labeling cosets of the substructures rather than the substructures themselves.

For hypergraphs, with a relatively direct application of our framework, we obtain the canon-
ization algorithm mentioned above. However, for the canonization of objects in general the key
algorithm handles sets of labeling cosets. As the labeling cosets can describe global interdepen-
dencies, our technique of bundling and partitioning for the cosets is significantly more involved
and complicated (Section 7).

We also describe a technique of computing a canonical representation of ordered groups
which in turn allows us to associate a canonical string (encoding) to every ordered object (see
Lemma 22). This complements our framework and allows us to use arbitrary deterministic
algorithms for ordered objects as a black box in an isomorphism-invariant way.

Some of the techniques we describe here were used in a weaker, non-generic sense in [GNSW18]
to obtain the fastest known canonization algorithm for graphs of bounded tree width. In fact,
tree decompositions, nested tree decompositions, and treelike decompositions can also be viewed
as combinatorial objects in our framework.

3



Organization of the Paper The goal of the paper is to compute canonical labelings for ar-
bitrary objects X ∈ Objects(V ) formally defined in Section 3. In a bootstrapping manner, we
develop canonization algorithms for objects that are more and more complex. Each algorithm
uses the previous ones as a black box. In Section 4, we consider two easy cases of canonization
in which the object is a pair of atoms. First, we show how to compute a canonical labeling for
X in the case that X = (v,∆ρ) is a pair consisting of a vertex v ∈ V and a labeling coset ∆ρ.
Second, we show how to compute a canonical labeling for X in the case that X = (Θτ,∆ρ) is a
pair of two labeling cosets. In Section 6, we give the canonization algorithm for hypergraphs,
which uses the object replacement paradigm explained in Section 5. In Section 7, building on
that we show how to compute canonical labelings for X in the case that X = {∆1ρ1, . . . ,∆tρt}
is a set of labeling cosets. In Section 8, we bring all our tools together to compute canonical
labelings for arbitrary objects X ∈ Objects(V ). Finally, in Section 9, we describe the technique
of canonical generating sets which allows us to associate a canonical string (encoding) to every
ordered object and which (in a certain sense) allows arbitrary deterministic group theoretic
algorithms to be used within our framework in an isomorphism-invariant way.

2 Preliminaries

Set Theory For an integer t, we write [t] for {1, . . . , t}. For a set S and an integer k, we write
(S
k
) for the k-element subsets of S and 2S for the power set of S.

Group Theory We write composition of functions from left to right, e.g., for two functions
ϕ ∶ V → V ′ and ρ ∶ V ′ → V ′′, we write ϕρ for the function that first applies ϕ and then ρ. For a
set V , we write Sym(V ) for the symmetric group on V and for an integer t, we write Sym(t) for
Sym([t]). By StabΨ(A) ∶= {ψ ∈ Ψ ∣ ψ(a) ∈ A for all a ∈ A}, we denote the setwise stabilizer of
A ⊆ V in Ψ ≤ Sym(V ). We sometimes also drop the index and write Stab(A) for StabSym(V )(A).
For a vertex v ∈ V , we write StabΨ(v) for StabΨ({v}). We want to extend the definition
to tuples (A1, . . . ,At) where Ai ⊆ V and t ≥ 2. Inductively, we define StabΨ(A1, . . . ,At) as
StabStabΨ(A1)(A2, . . . ,At). Note that this way the stabilizer StabΨ(A1, . . . ,At) = {ψ ∈ Ψ ∣
ψ(a) ∈ Ai for all i ∈ [t] and a ∈ Ai} can be computed using an algorithm for the binary stabilizer
function Stab−(−) that gets an arbitrary permutation group Ψ and only one set A ⊆ V as an
input. A set A ⊆ V is called Ψ-invariant if StabΨ(A) = Ψ. For a permutation group Ψ ≤ Sym(V )
and a vertex v ∈ V , we write vΨ = {ψ(v) ∣ ψ ∈ Ψ} for the Ψ-orbit of v. The Ψ-orbit partition of
V is a partition V = V1 ⊍ . . . ⊍ Vt such that v,u ∈ Vi for some i ∈ [t], if and only if vΨ = uΨ. A
group Ψ ≤ Sym(V ) is transitive on a Ψ-invariant set A ⊆ V , if A consists of only one Ψ-orbit,
i.e., A = vΨ for some v ∈ V . Slightly abusing terminology, a coset of a set V is a set Λ of
bijections from V to a set V ′ such that Λ = ∆ρ = {δρ ∣ δ ∈ ∆} for some subgroup ∆ ≤ Sym (V )
and a bijection ρ ∶ V → V ′.

Generating Sets and Polynomial-Time Library For a set S ⊆ Sym(V ), we write ⟨S⟩ for the
smallest group Ψ ≤ Sym(V ) for which S ⊆ Ψ. In this case, S is called a generating set for Ψ.
We refer to [Ser03] for the basic theory of handling permutation groups algorithmically. Many
tasks can be performed efficiently when a group is given implicitly via a generating set. We list
the results we use.

1. Permutation groups and cosets can be represented implicitly via generating sets that can
be chosen of size quadratic in ∣V ∣.

4



2. The pointwise stabilizer StabΨ(v) of a vertex v ∈ V in a group Ψ ≤ Sym(V ) can be
computed with the Schreier-Sims algorithm in time polynomial in ∣V ∣.

3. A subgroup of a permutation group with polynomial time membership problem can be
computed in time polynomial in the index of the subgroup.

4. Let S = ∆1ρ1, . . . ,∆tρt be a sequence of cosets of V . We write ⟨S⟩ for the smallest coset
Λ such that ∆iρi ⊆ Λ for all i ∈ [t]. Given a representation for S, the coset ⟨S⟩ can
be computed in polynomial time. Furthermore, the computation of ⟨S⟩ is isomorphism
invariant w.r.t. S, i.e., ϕ−1⟨S⟩ = ⟨ϕ−1S⟩ for all bijections ϕ ∶ V → V ′ (see [GS15, Lemma
9.1]).

3 Combinatorial Objects and Labeling Cosets

Labeling Cosets A labeling coset of V is set of bijective mappings ∆ρ = {δρ ∣ δ ∈ ∆}, where ρ
is a bijection from V to {1, . . . , ∣V ∣} and ∆ is a subgroup of Sym(V ). Let ρ ∶ V → {1, . . . , ∣V ∣} be
a bijection. We write Label(V ) for the labeling coset Sym(V )ρ = {σρ ∣ σ ∈ Sym(V )}. We say
that Θτ is a labeling subcoset of a labeling coset ∆ρ, written Θτ ≤ ∆ρ, if Θτ is a subset of ∆ρ
and Θτ again forms a labeling coset. For a labeling coset ∆ρ ≤ Label(V ) and a ∆-invariant set
A ⊆ V , we define the restriction of ∆ρ to A as (∆ρ)∣A ∶= {λ∣A ∣ λ ∈ ∆ρ}. Observe that (∆ρ)∣A
is not necessarily a labeling coset again since the image of λ̃ ∈ (∆ρ)∣A might be a set of natural
numbers different from {1, . . . , ∣A∣}. Let κ be the unique bijection from ρ(A) to {1, . . . , ∣A∣} that
preserves the standard ordering “<” of natural numbers. We define the induced labeling coset
of ∆ρ on A ⊆ V as (∆ρ)↓A ∶= (∆ρ)∣Aκ. Similarly, for a labeling coset Θτ ≤ Label(A), we define
the lifted labeling coset of Θτ to V ⊇ A as (Θτ)↑V ∶= {γ ∈ Label(V ) ∣ γ∣A ∈ Θτ}.

Hereditarily Finite Sets and Combinatorial Objects We inductively define hereditarily finite
sets over a ground set V . Each vertex X ∈ V and each labeling coset Y =∆ρ ≤ Label(V ) is called
an atom and is in particular a hereditarily finite set. Inductively, if X1, . . . ,Xt are hereditarily
finite sets, then X = {X1, . . . ,Xt} and also X = (X1, . . . ,Xt) are hereditarily finite sets where
t ∈ N∪ {0}. A (combinatorial) object is a pair (V,X ) where X is a hereditarily finite set over V .
The set of all (combinatorial) objects over V is denoted by Objects(V ). In the following, we
will usually assume that V is apparent from context and identify X with the object (V,X ), not
distinguishing between hereditarily finite sets and combinatorial objects.

We say that an object is ordered if the ground set V is a linearly ordered set. An object is
unordered if V is an (unordered) set. The linearly ordered ground sets considered in this paper
are always subsets of N with their standard ordering “<”. Additionally, we will never consider
partially ordered sets in which some but not all elements of V are in N.

The expressiveness of the object formalism is quite extensive. In particular, we can view
graphs G = (V,E) with E ⊆ (V

2
), hypergraphs X = (V,H) with H ⊆ 2V , and relational structures

Y = (V,R1, . . . ,Rt) with Ri ⊆ V
ki as unordered objects (over V ). A function f ∶ V → V ′ can be

encoded as a set of pairs {(v, f(v)) ∣ v ∈ V } and is thus an object. Note that a labeling coset
could in principle also be represented as a set of maps, and thus as an object in which all atoms
are of the type X ∈ V . However, we want to succinctly represent labeling cosets via generating
sets rather than as a set of labelings. This is precisely the reason why we model them as a
second kind of atom.

5



Applying Functions to Unordered Objects Let V and V ′ be ground sets where V is unordered
and V ′ is either unordered or ordered. Let µ ∶ V → V ′ be a bijection. For an object X ∈
Objects(V ), the image of X under µ, written X µ, is an object over V ′ defined as follows. For a
vertex X = v ∈ V , we define Xµ ∶= µ(v). For a labeling coset Y =∆ρ ≤ Label(V ), we define Y µ =
(∆ρ)µ ∶= µ−1∆ρ. Inductively, for an object X = {X1, . . . ,Xt}, we define X µ ∶= {Xµ

1 , . . . ,X
µ
t }.

Analogously, for an object X = (X1, . . . ,Xt), we define X µ ∶= (Xµ
1 , . . . ,X

µ
t ). For example, the

image of a graph G = (V,E) under µ is a graph Gµ = (V ′,Eµ) that has an edge {µ(v), µ(u)},
if and only if G has the edge {v,u}.

Automorphisms of Unordered Objects Two unordered objects X ∈ Objects(V ) and X ′ ∈
Objects(V ′) are isomorphic, written X ≅ X ′, if there is a bijection ϕ ∶ V → V ′ such that Xϕ = X ′.
In this case, ϕ is called an isomorphism. The set of all isomorphisms from X to X ′ is denoted by
Iso(X ;X ′). Note that we defined isomorphism only for unordered objects1. The automorphism
group of an unordered object X , written Aut(X ), consists of those σ ∈ Sym(V ) for which
X σ = X . For unordered objects, the automorphism group Aut(X ) often has a natural meaning,
e.g., Aut((Θτ,∆ρ)) = Θ∩∆ and Aut((A,∆ρ)) = Stab∆(A) where A ⊆ V and Θτ,∆ρ ≤ Label(V ).

The set Iso(V ;V ′) simply consists of all bijections from V to V ′. However, instead of talking
about bijections, we use the notation Iso(V ;V ′) to indicate and stress that both V and V ′ are
unordered sets and that for every object X , every map ϕ ∈ Iso(V ;V ′) is an isomorphism from X
to Xϕ.

Canonical Forms of Unordered Objects A canonical form is a function CF that assigns each
unordered object X ∈ Objects(V ) an ordered object CF(X ) ∈ Objects({1, . . . , ∣V ∣}) such that:

(CF1) X ≅ Y implies CF(X ) = CF(Y) for all objects X ,Y, and

(CF2) CF(X ) = X λ for some λ ∈ Label(V ).

Condition (CF1) is called isomorphism invariance and is equivalent to CF(X ) = CF(Xϕ) for
all ϕ ∈ Iso(V ;V ′) 2. Intuitively, Condition (CF2) means that X and CF(X ) are isomorphic if
we would forget about the linear ordering of the ground set of CF(X ).

Canonical Labelings of Unordered Objects A canonical labeling function CL is a function
that assigns each unordered object X ∈ Objects(V ) a labeling coset CL(X ) = Λ ≤ Label(V )
such that:

(CL1) CL(X ) = ϕCL(Xϕ) for all ϕ ∈ Iso(V ;V ′) and,

(CL2) CL(X ) = Aut(X )π for some (and thus for all) π ∈ CL(X ).

Again, Condition (CL1) is called isomorphism invariance. Note that (CL1) is equivalent to
CL(X )ϕ = CL(Xϕ). Roughly speaking, this means that CL is compatible with isomorphisms.
More precisely, this means that the following diagram commutes.

1 If we wanted to have a definition of isomorphisms for objects in general, we should require that an isomorphisms
of an object must also preserve the order of the corresponding ground set, which is consistent with the
framework.

2If we wanted to define an action of ϕ on ordered objects, we should define it to act trivially. In that case
isomorphism invariance could also be written as CF(X)ϕ = CF(Xϕ), which is more consistent with definitions
that follow.

6



X Xϕ

CL(X ) CL(X )ϕ

ϕ

CL CL

ϕ

Condition (CL2) means that X λ for an arbitrary labeling λ ∈ CL(X ) does not depend on the
choice of λ.

We give a connection between isomorphisms, canonical forms and canonical labelings. Decid-
ing isomorphism reduces to computing a canonical form. The computation of a canonical form in
turn reduces to computing canonical labelings as seen next. We claim that CF(X ) ∶= X λ, where
λ ∈ CL(X ) is an arbitrary labeling, defines a canonical form. First, observe that the canonical
form is well defined and does not depend on the choice of λ ∈ CL(X ) since (CL2) holds. Next,
we check (CF1) and (CF2). Condition (CF2) holds by definition. For (CF1) we need to show
that CF(X ) = CF(Xϕ) for all ϕ ∈ Iso(V ;V ′). Because of (CL1), we have that for all λ ∈ CL(X )
there is a λ′ ∈ CL(Xϕ) such that λ = ϕλ′. Therefore, CF(X ) = Xλ = (Xϕ)λ

′

= CF(Xϕ) which
was to show.

The notion of canonical forms and canonical labelings can be defined naturally also for an
isomorphism-closed class of objects (e.g., all hypergraphs). In a bootstrapping manner, we will
devise canonical labeling algorithms for certain classes of combinatorial objects until we finally
give an algorithm for objects in general. We will in each instance state specifically what the
requirements of (CL1) and (CL2) are.3

Representation of Objects For an object X ∈ Objects(V ), we define the transitive closure of X ,
written TClosure(X ), as all objects recursively occurring in X , i.e., TClosure(X) ∶= {X} for
X = v ∈ V or X =∆ρ ≤ Label(V ). And we define TClosure(X ) ∶= {X} ∪⋃i∈[t]TClosure(Xi) for
X = {X1, . . . ,Xt} or X = (X1, . . . ,Xt). As mentioned in the preliminaries, we represent labeling
cosets efficiently using generating sets. An object itself can be efficiently represented as colored
directed acyclic graph over the elements in its transitive closure. With this representation, the
input size (i.e., encoding length) of an object X is polynomial in ∣TClosure(X )∣ + ∣V ∣ + tmax

where tmax is the maximal length of a tuple appearing in TClosure(X ).

The Linear Ordering of Ordered Objects In contrast to the previous paragraphs, we will now
consider ordered objects where V ⊆ N. Such objects appear in the following context. When
evaluating a canonical form, the resulting object is ordered. In order to compare canonical
forms, it will be an important task to sort ordered objects in polynomial time. To do so, we
define a linear order “≺” on objects over the natural numbers. For two natural numbers (atoms)
X,Y ∈ N, we adapt the natural ordering, i.e., X ≺ Y if X < Y . We inductively extend our
definition. For two sets X = {X1, . . . ,Xs} and Y = {Y1, . . . , Yt}, we assume that the order
“≺” is already defined for the elements Xi and Yj. Then we say X ≺ Y if ∣X ∣ < ∣Y ∣ or if
∣X ∣ = ∣Y ∣ and the smallest element in X ∖ Y is smaller than the smallest element in Y ∖X . Let
X = (X1, . . . ,Xs) and Y = (Y1, . . . , Yt) be two tuples for which “≺” is already defined for the
entries. We say X ≺ Y if s is smaller than t or if s = t and for the smallest i ∈ [t] for which
Xi ≠ Yi, we have that Xi ≺ Yi. We extend the order to labelings over natural numbers. For two
permutations σ1, σ2 ∈ Sym({1, . . . , ∣V ∣}) we say σ1 ≺ σ2 if there is an i ∈ {1, . . . , ∣V ∣} such that
σ1(i) < σ2(i) and σ1(j) = σ2(j) for all 1 ≤ j < i. Last but not least, we extend the definition to
labeling cosets ∆ρ,Θτ ≤ Label({1, . . . , ∣V ∣}). We adapt the definition for sets, i.e., ∆ρ ≺ Θτ if

3We remark that in some papers on canonization there is a Condition (CL3) which we do not require in our
framework as we see labeling cosets as objects themselves.

7



∣∆ρ∣ ≤ ∣Θτ ∣ or if ∣∆ρ∣ = ∣Θτ ∣ and the smallest element of ∆ρ ∖Θτ is smaller than the smallest
element of Θτ ∖ ∆ρ. It is known that for two labeling cosets ∆ρ,Θτ ≤ Label({1, . . . , ∣V ∣})
given by generating sets, the order “≺” can be computed in time polynomial in ∣V ∣ ([GNSW18],
Corollary 22). For completeness, we define X ≺ Y ≺ X ≺ Y for all integers X ∈ N, all labeling
cosets Y = ∆ρ ≤ Label({1, . . . , ∣V ∣}), all tuples X and all sets Y. We write X ⪯ Y if X = Y or
X ≺ Y.

Lemma 1. The ordering “≺” on pairs of ordered objects can be computed in polynomial time.

Having defined an ordering for ordered objects that can be efficiently evaluated, we can use
it as follows. While we may not be able to distinguish non-isomorphic objects X and Y per
se, whenever we are given labelings λ ∈ CL(X ) and γ ∈ CL(Y), we can order the objects by
ordering the ordered versions X λ and Yγ w.r.t. “≺”.

4 Canonization of Atoms and Tuples

We are looking for a canonical labeling function for objects X in the case where the object is a
pair of atoms X = (v,∆ρ) consisting of a labeling coset and a distinguished vertex.

Problem 2. Compute a function CLPoint with the following properties:
Input (v,∆ρ) ∈ Objects(V ) where v ∈ V , ∆ρ ≤ Label(V ) and V is an unordered set.
Output A labeling coset CLPoint(v,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLPoint(v,∆ρ) = ϕCLPoint(ϕ(v), ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLPoint(v,∆ρ) = Stab∆(v)π for some (and thus for all) π ∈ Λ.

The reader may want to take a moment to convince themselves that for input objects X =
(v,∆ρ), the conditions (CL1) and (CL2) stated here agree with the condition (CL1) and (CL2)
described in the previous section.

Lemma 3. A function CLPoint solving Problem 2 can be computed in polynomial time.

Proof. An algorithm for CLPoint(v,∆ρ):

Choose (arbitrarily) ρ∗ ∈∆ρ such that vρ
∗

∈ N is minimal.
Set vCan ∶= vρ

∗

.
(vCan is a minimal image of v under ∆ρ.)
Set ∆Can ∶= (∆ρ)ρ.
Return Λ ∶= ρ∗ Stab∆Can(vCan).

(CL1.) Assume for some bijection ϕ ∈ Iso(V ;V ′) that we have ϕ(v), ϕ−1∆ρ instead of v,∆ρ as
an input of the algorithm. Observe that ϕ−1ρ is a coset representative of ϕ−1∆ρ = ϕ−1∆ϕ(ϕ−1ρ).
We argue that the algorithm outputs ϕ−1Λ instead of Λ. Since vρ

∗

= ϕ(v)ϕ
−1ρ∗ , we now obtain

ϕ−1ρ∗δCan instead of ρ∗ where δCan is some element in Stab∆Can(vCan) (the choices for ρ∗ vary

up to elements in Stab∆Can(vCan)). The computed objects vCan = ϕ(v)ϕ
−1ρ∗δCan

and ∆Can =

(ϕ−1∆ρ)ϕ
−1ρ remain unchanged. The computed group Stab∆Can(vCan) remains unchanged.

Finally, the algorithm returns ϕ−1Λ instead of Λ. This gives CLPoint(ϕ(v), ϕ−1∆ρ) = ϕ−1Λ =
ϕ−1 CLPoint(v,∆ρ) which was to show.

(CL2.) This property holds by construction since ρ∗ Stab∆Can(vCan) = Stab∆(v)ρ∗.
(Running time.) The pointwise stabilizer Stab∆Can(vCan) can be computed with the Schreier-
Sims algorithm in polynomial time.

8



We want to point out here that the Schreier-Sims-algorithm is applied to ordered objects
only, and thus we do not need to worry about canonicity of its output.

We continue with the canonization of more interesting objects which we later use as subroutine
to canonize pairs of labeling cosets. A (partial) matching is a set M ⊆ V1 × V2 such that for all
(v1, v2), (u1, u2) ∈M with (v1, v2) ≠ (u1, u2), it holds that v1 ≠ u1 and v2 ≠ u2.

Problem 4. Compute a function CLMatch with the following properties:
Input (M,∆ρ) ∈ Objects(V ) where M ⊆ V1 × V2 is a matching, ∆ρ ≤ Label(V ), ∆ ≤

Stab(V1, V2) and V = V1 ⊍ V2 is an unordered set.
Output A labeling coset CLMatch(M,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLMatch(M,∆ρ) = ϕCLMatch(Mϕ, ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLMatch(M,∆ρ) = (Aut(M) ∩∆)π for some (and thus for all) π ∈ Λ.

The reader may again want to take a moment to convince themselves that for input objects
X = (M,∆ρ), the Conditions (CL1) and (CL2) stated here agree with Condition (CL1) and
(CL2) described in the previous section.

Lemma 5. A function CLMatch solving Problem 4 can be computed in time 2O(k2)∣V ∣O(1) where
k2 is the size of the largest ∆-orbit of V2 ⊆ V .

Proof. For the purpose of recursion, we use an additional input parameter. Specifically, we use
a subset A ⊆ V2 such that M ⊆ V1 ×A and ∆ ≤ Stab(V1,A). Initially, we set A = V2.

An algorithm for CLMatch(M,A,∆ρ):

If ∣M ∣ = 0: Return Λ ∶=∆ρ.

If ∣A∣ = 1: (Because of ∣M ∣ ≥ 1, it holds that ∣M ∣ = 1.)
Assume M = {(v1, v2)}.
Return Λ ∶= CLPoint(v1,∆ρ).

If ∆ is intransitive on A:
Partition A = A1 ⊍A2 where A1 is a ∆-orbit such that Aρ1 is minimal.
(Minimal w.r.t. the order “≺” defined in Section 3.)
Partition M =M1 ⊍M2 where Mi ∶= {(v1, v2) ∈M ∣ v2 ∈ Ai} for i = 1,2.
Compute Λ1 ∶= CLMatch(M1,A1,∆ρ) recursively.
Recurse and return Λ2 ∶= CLMatch(M2,A2,Λ1).

If ∆ is transitive on A:
Let ACan ∶= Aρ and ∆Can ∶= (∆ρ)ρ.
Partition ACan = ACan

1 ⊍ACan
2 such that ∣ACan

1 ∣ = ⌊∣ACan∣/2⌋ and ACan
1 is minimal.

(Minimal w.r.t. the order “≺” defined in Section 3.)
Compute ΨCan ∶= Stab∆Can(ACan

1 ,ACan
2 ).

(The group can be computed using a membership test as stated in the preliminaries.)
Decompose ∆Can into left cosets of ΨCan and write ∆Can = ⋃i∈[s] δCan

i ΨCan.

Compute ∆iρi ∶= CLMatch(M,A,ρδCan
i ΨCan) for each i ∈ [s] recursively.

Rename the indices in [s] such that:
(M,∆ρ)ρ1 = . . . = (M,∆ρ)ρr ≺ (M,∆ρ)ρr+1 ⪯ . . . ⪯ (M,∆ρ)ρs .
Return Λ ∶= ⟨∆1ρ1, . . . ,∆rρr⟩.
(This is the smallest coset containing these cosets as defined in the preliminaries.)

9



(CL1.) Assume we have Mϕ,Aϕ, ϕ−1∆ρ instead of M,A,∆ρ as an input. Observe that ϕ−1ρ is
a coset representative for ϕ−1∆ρ. We show that the algorithm outputs ϕ−1Λ instead of Λ.

In the base case ∣M ∣ = 0, we return ϕ−1∆ρ instead of ∆ρ.
Now, consider the case ∣A∣ = 1. We obtain ϕ(v1) and ϕ(v2) instead of v1 and v2, respectively.

By (CL1) of CLPoint, we return ϕ−1Λ instead of Λ.

In the intransitive case, we obtain Aϕ = Aϕ1 ⊍ A
ϕ
2 as a partition since A

ρ
1 = A

ϕϕ−1ρ
1 . By

induction, we obtain ϕ−1Λ1 instead of Λ1. Again, by induction, we return ϕ−1Λ2 instead of Λ2.
In the transitive case, observe that ACan and ∆Can remain unchanged since Aϕϕ

−1ρ = Aρ

and (ϕ−1∆ρ)ϕ
−1ρ = (∆ρ)ρ. Therefore, we still obtain ACan = ACan

1 ⊍ACan
2 and also ΨCan. We

obtain cosets ϕ−1ρδCan
i ΨCan instead of ρδCan

j ΨCan since the indexing is arbitrary. The calls we

do now are of the form CLMatch(Mϕ,Aϕ, ϕ−1δCan
i ΨCan) instead of CLMatch(M,A, δCan

j ΨCan).
By induction, we get ϕ−1∆iρi instead of ∆jρj . We obtain ϕ−1ρi instead of ρj. But since

(M,∆ρ)ρi = (Mϕ, ϕ−1∆ρ)ϕ
−1ρi we get the same ordered sequence. The computation of Λ is

isomorphism invariant and therefore we return ϕ−1Λ instead of Λ.

(CL2.) In the Case that M = ∅, it holds Aut(M) ∩∆ =∆.
In Case ∣A∣ = 1 and thus ∣M ∣ = 1, it holds that Aut(M) ∩∆ is actually equal to Stab∆(v1)

since {v2} = A is already stabilized by ∆.
For the intransitive case, we have Λ1 = (Aut(M1) ∩ ∆)π1 for some π1 ∈ Λ1 by induction.

Again, by induction, the returned coset is Λ2 = (Aut(M2) ∩Aut(M1) ∩∆)π2 for some π2 ∈ Λ2.
Since (M1,M2) is a ∆-invariant ordered partition of M , it holds that Λ2 = (Aut(M) ∩∆)π2.

For the transitive case, observe that (CL1) of CLMatch implies (Aut(M) ∩∆)π ⊆ Λ for some
π ∈ Λ. Next, we show the reversed inclusion Λ ⊆ (Aut(M)∩∆)π. We need to show that ρiρ

−1
j is

an element in Aut(M) ∩∆ for all i, j ∈ [r]. The membership ρiρ
−1
j ∈ Aut(M) follows from the

fact that Mρi =Mρj and the membership ρiρ
−1
j ∈∆ follows from the fact that (∆ρ)ρi = (∆ρ)ρj .

(Running time.) Let A∗ ⊆ A ⊆ V2 be a ∆-orbit of maximal size. We claim that the maximum
number of recursive calls R(∣A∗∣, ∣A∣) is at most T ∶= 26∣A∗∣∣A∣2. In the intransitive case, this is
easy to see by induction:

R(∣A∗∣, ∣A∣) ≤ 1 + ∑
j∈[2]

R(∣A∗∣, ∣Aj ∣)
induction
≤ 1 + 26∣A∗∣(∣A1∣2 + ∣A2∣2) ≤ T.

In the transitive case, it holds that A∗ = A and s ≤ 2∣A∣ and we obtain

R(∣A∣, ∣A∣) ≤ 1 + s ⋅R(⌈∣A∣/2⌉, ∣A∣)
induction
≤ 1 + 24∣A∣+3∣A∣2

2≤∣A∣
≤ T.

We consider the running time for one single call without recursive costs. All steps are polynomial
time computable, except the computation of ΨCan in the transitive case. The group ΨCan can
be computed in time polynomial in the index and ∣V ∣, i.e., 2O(∣A

∗∣)∣V ∣O(1). In total, we have
a running time of at most T ⋅ 2O(∣A

∗∣)∣V ∣O(1) ⊆ 2O(k2)∣V ∣O(1) where k2 is the size of the largest
∆-orbit of A ⊆ V2.

As next step, we demonstrate how to compute canonical labelings for objects X = (Θτ,∆ρ)
consisting of a pair of labeling cosets.

Problem 6. Compute a function CLInt with the following properties:
Input (Θτ,∆ρ) ∈ Objects(V ) where Θτ,∆ρ ≤ Label(V ) and V is an unordered set.
Output A labeling coset CLInt(Θτ,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLInt(Θτ,∆ρ) = ϕCLInt(ϕ−1Θτ,ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLInt(Θτ,∆ρ) = (Θ ∩∆)π for some (and thus for all) π ∈ Λ.

10



Figure 1: A graph G = (V,E,P ) with an ordered partition P = (EB,ER).

In fact, Condition (CL2) given here coincides with the general Condition (CL2) stated in the
preliminaries, i.e., CLInt(Θτ,∆ρ) = Aut((Θτ,∆ρ))π for some π. The problem can be seen as a
canonization analogue to the group-intersection problem which is often used for the purpose of
designing isomorphisms algorithms. The next example shows how the problem can be used for
canonization purposes.

Example 7. Let G = (V,E,P ) be a graph with an ordered partition P = (EB ,ER) of the
edges E = EB ⊍ ER. The partition can be seen as an edge coloring which has to be preserved
by automorphisms of the graph (see Figure 1). Let CL,CLInt be canonical labeling functions
and define ∆BρB ∶= CL(EB) and ∆RρR ∶= CL(ER). Then CLGraph(G) ∶= CLInt(∆BρB,∆RρR)
defines a canonical labeling for graphs with edges colored blue and red.

Lemma 8. A function CLInt solving Problem 6 can be computed in time 2O(k)∣V ∣O(1) where k
is the size of the largest ∆-orbit of V .

Proof. Let Ṽ ∶= {ṽ1, . . . , ṽ∣V ∣} be a set of size ∣V ∣ disjoint from V . The set Ṽ is essentially a

copy of V . Define U ∶= Ṽ ⊍ V . Let ∆UρU ≤ Label(U) be the labeling coset on U obtained
by Θτ acting on Ṽ and ∆ρ acting on V . More formally, we define ∆UρU ∶= {λU ∈ Label(U) ∣
∃γ ∈ Θτ,λ ∈ ∆ρ ∶ for all i, j ∈ {1, . . . , ∣V ∣} we have λU(ṽi) = γ(vi) + ∣V ∣ and λU(vj) = λ(vj)}.
Define a matching M ∶= {(ṽi, vi) ∣ i ∈ {1, . . . , ∣V ∣}} by pairing corresponding vertices. Define
ΛU ∶= CLMatch(M,∆UρU). We claim that Λ ∶= ΛU↓V defines a canonical labeling for (Θτ,∆ρ)
where “↓” denotes the induced labeling coset (as defined at the beginning of Section 3).

(CL1.) Assume we have ϕ−1Θτ,ϕ−1∆ρ instead of Θτ,∆ρ as an input. Following the construc-
tion, we obtain MϕU instead of M and ϕ−1

U ∆UρU instead of ∆UρU for some ϕU with ϕU ∣V = ϕ.
By (CL1) of CLMatch, we obtain ϕ−1

U ΛU instead of ΛU . Therefore, we obtain ϕ−1Λ instead of
Λ.

(CL2.) We need to show that (Aut(M)∩∆U )∣V = Θ∩∆. The inclusion Θ∩∆ ⊆ (Aut(M)∩∆U )∣V
follows from (CL1) of this reduction. We thus need to show the reversed inclusion (Aut(M) ∩
∆U)∣V ⊆ Θ∩∆. So assume δU ∈ Aut(M)∩∆U . Let f ∶ Ṽ → V be the bijection such that f(ṽi) =
vi. Since δU ∈ ∆U , there are some θ ∈ Θ, δ ∈ ∆ such that f(δU(ṽi)) = θ(vi) and δU(vi) = δ(vi)
for all i ∈ {1, . . . , ∣V ∣}. Since δU ∈ Aut(M), it holds that f(δU (ṽi)) = δU (f(ṽi)) = δU (vi) for all
i ∈ {1, . . . , ∣V ∣}. Both together imply that θ(vi) = f(δU (ṽi)) = δU (vi) = δ(vi) for all vi ∈ V . Thus
δU ∣V ∈ Θ ∩∆.

(Running time.) Observe that the exponential term in the running time of CLMatch just depends
on the size of the largest ∆U -orbit of V ⊆ U which is simply the size of the largest ∆-orbit of
V .

An algorithm similar to the one just described can be found [Mil83]. So far, we are able to
canonize a pair of two atoms. This is already sufficient to canonize tuples.

11



Figure 2: A graph G = (V,E,P ) with an (unordered) partition P = {EB,ER}.

Canonization of Tuples using Iterated Instances The three canonical labeling functions we
have defined so far take two inputs, namely some object as first input (a point/a matching/a
labeling coset) and a labeling coset as second input. We want to extend the definition to more
arguments replacing the first input by a tuple of objects. This is in analogy to our definition
of the stabilizer function Stab−(−). Let CL be a canonical labeling function for pairs of objects
(X ,∆ρ) where X ∈ Objects(V ) and ∆ρ ≤ Label(V ). For an object X1, we define CL(X1; ∆ρ)
as CL(X1,∆ρ). Inductively for t ≥ 2, we define the iterated instance CL(X1, . . . ,Xt; ∆ρ) as
CL(X2, . . . ,Xt; CL(X1,∆ρ)). To justify the definition, let X1, . . . ,Xt be a sequence of objects
and let ∆ρ ≤ Label(V ) be a labeling coset. Then CL(X1, . . . ,Xt; ∆ρ) defines a canonical labeling
for the tuple (X1, . . . ,Xt,∆ρ). In order to compute canonical labelings for tuples, it is therefore
sufficient to canonize pairs.

5 Object Replacement

A crucial advantage of the framework we have defined is that labeling cosets are objects them-
selves. The next lemma shows that for a given set X = {X1, . . . ,Xt} of pairwise isomorphic
objects Xi, we can replace the objects Xi by their canonical labeling cosets without losing or
introducing global symmetries of the object X . The benefit is that the canonical labelings of
the objects Xi can be computed using a recursive approach.

Lemma 9 (Object replacement). Let X = {X1, . . . ,Xt} be an object and let CL,CLSet be canon-
ical labeling functions and let ∆iρi ∶= CL(Xi) for each i ∈ [t] and X Set

∶= {∆1ρ1, . . . ,∆tρt}.
Assume that Xρi

i = X
ρj

j for all i, j ∈ [t]. Then CLObject(X ) ∶= CLSet(X Set) defines a canonical
labeling for X .

Proof. We have Xρi

i = X
ρj

j for all i, j ∈ [t]. Then, by (CL1) and (CL2) of the function CL,
it holds for all σ ∈ Sym(V ) that Xσ

i = Xj , if and only if CL(Xσ
i ) = CL(Xj), which in turn is

equivalent to (∆iρi)σ =∆jρj . This implies that Aut(X ) = Aut(X Set).

We extend Example 7 to (unordered) partitions by exploiting the object replacement lemma.

Example 10. Let G = (V,E,P ) be a graph with an (unordered) partition P = {EB ,ER} of the
edges E = EB⊍ER. In contrast to Example 7, the partition is not ordered. Here, there exists an
automorphism that maps the set of blue edges EB to the set of red edges ER (see Figure 2). Let
CL,CLSet be canonical labeling functions and let ∆BρB ∶= CL(EB) and ∆RρR ∶= CL(ER). By
Lemma 9, CLGraph(G) ∶= CLSet({∆BρB,∆RρR}) defines a canonical labeling for graphs with
(unordered) edge partitions.

To exploit the object replacement lemma, our upcoming algorithms in Sections 6 and 7 use
the following partitioning strategy.

12



General Strategy Assume we are given an object X = {x1, . . . , xt} that is to be canonized. Our
general strategy is to construct an (unordered) partition X = X1 ⊍ . . . ⊍Xs in an isomorphism-
invariant way. We call the parts Xi bundles. The isomorphism invariance of the partition into
bundles in particular ensures that the set {X1, . . . ,Xs} has the same automorphism group as
X. In the cases where this leads to a trivial partition (i.e., s = t or s = 1), we will use problem
specific arguments to instantly make some form of progress.

The tough case will occur when the partition is non-trivial. In this case, we will recursively
compute canonical labelings Θiτi for the bundles Xi. (Since s > 1 and thus Xi ⊊ X, we are
guaranteed to make progress on the recursive instance). This gives us canonical labelings for
each bundle independently, but we have not taken into account any interdependencies between
the bundles. This will be our next step.

First, assume that the bundlesXi are pairwise non-isomorphic. Since each bundle is canonized
separately, we are now able to sort the bundles according to their canonical forms. This gives an
ordered partition of the bundles X ∶= (X1, . . . ,Xs) that is obtained by renaming the indices such
that Xτi

i ≺X
τj

j , if and only if i < j ∈ [s]. Now, we can exploit the object replacement paradigm
and replace the bundles by their labeling cosets without losing any information. This leads
to a tuple of labeling cosets X Int

∶= (Θ1τ1, . . . ,Θsτs) for which we already have a canonization
technique in Section 4.

Second, assume the bundles Xi are pairwise isomorphic. Here, we have to deal with the
(unordered) partition X ∶= {X1, . . . ,Xs}. We exploit the object replacement lemma (Lemma 9)
again. We replace each bundle with its labeling coset and obtain a set of labeling cosets
X Set

∶= {Θ1τ1, . . . ,Θsτs}. Doing this, we do not lose any symmetries of the object X and
it is now sufficient to compute a canonical labeling for the object X Set rather than X . To
canonize X Set, we will use a recursive approach. (Since s < t and thus ∣X Set∣ < ∣X ∣, we are
guaranteed to make progress on the recursive instance).

In general, we would see a mixture of the cases with some bundles being isomorphic to others
but not to all. In this mixed case, we order the bundles according to their isomorphism type
and perform a mixture of the other two cases.

6 Canonization of Hypergraphs

As dictated by the object replacement lemma (Lemma 9), the key problem we need to solve is to
compute a canonical labeling function for objects X Set where the object X Set = {∆1ρ1, . . . ,∆tρt}
is a set of labeling cosets. Towards a solution of this, our next building block will be the following
more specialized problem, reminiscent of hypergraph canonization.

Problem 11. Compute a function CLHyper with the following properties:

Input (K,∆ρ) ∈ Objects(V ) where K = {(∆1ρ1, S1), . . . , (∆tρt, St)}, ∆iρi ≤ Label(V ),
∆ρ ≤ Label(V ), Si ⊆ V for all i ∈ [t], Si ≠ Sj for i ≠ j and V is an unordered set.

Output A labeling coset CLHyper(K,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLHyper(K,∆ρ) = ϕCLHyper(Kϕ, ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLHyper(K,∆ρ) = {δ ∈ ∆ ∣ ∃ψ ∈ Sym(t)∀i ∈ [t] ∶ (∆iρi, Si)δ = (∆ψ(i)ρψ(i), Sψ(i))}π

for some (and thus for all) π ∈ Λ.

As usual, Conditions (CL1) and (CL2) given here coincide with the general Condition (CL1)
and (CL2). In particular, CLHyper(K,∆ρ) = Aut((K,∆ρ))π for some π.

Lemma 12. A function CLHyper solving Problem 11 can be computed in time 2O(k)nO(1)

where n is the input size and k is the size of the largest ∆-orbit of V .

13



In an instance of Problem 11, each labeling coset ∆iρi comes with a subset Si of V and these
subsets are pairwise distinct. In the special case where ∆iρi = Label(V ) for all i ∈ [t], the
problem is equivalent to hypergraph canonization. However, we need the more general version
for a recursive approach. Nevertheless, we think of the sets Si as hyperedges. Before giving a
detailed proof we describe the general strategy.

Intuition for the Hypergraph Algorithm To solve Problem 11, we will maintain at any point
in time a ∆-invariant set A ⊆ V for which the following condition (Condition (A)) holds:
Si ∩A ≠ Sj ∩A for all i ≠ j. This set A measures our progress in the sense that the number of
hyperedges t is bounded by 2∣A∣. In the base case, if ∣A∣ is smaller than an absolute constant,
we have a constant number of hyperedges and can apply a brute force algorithm.

If ∆ acts transitively on A (the transitive case), we branch on all possible splits of A into
two equally sized sets A1,A2, shrinking ∆ in the process, and achieving that ∆ is not transitive
anymore.

The trickiest case is when ∆ does not act transitively on A. This gives us a canonical ∆-
invariant partition A = A1 ⊍ A2 (the intransitive case). Here, we need to apply recursion. A
primitive approach by recursing on A1 and subsequently on A2 does not work, since it would
not maintain the Condition (A) which ensures that we can handle the base case. Instead, we
define a partition into bundles K = K1 ⊍ . . . ⊍ Ks of the set K as proposed by our general
strategy. In the concrete situation for hypergraphs, we can define bundles as follows. We say
that two hyperedges Si and Sj are in the same bundle, if and only if the hyperedges agree in
the first part A1 (i.e., Si ∩A1 = Sj ∩A1) (see Figure 3). This gives an (unordered) partition of
the set of hyperedges K = K1 ⊍ . . . ⊍Ks, where each subset of hyperedges Ki corresponds to a
bundle. In the extreme case where each hyperedge forms its own bundle, and hence s = t, we
can restrict our focus A to the set A1 and we still maintain Condition (A), making progress.
In the other extreme, if all hyperedges correspond to the same bundle, and hence s = 1, we can
restrict our set A to the A2. It remains to explain the case in which we have a proper bundling.
For this observe that the bundles themselves form instances of our original problem so we can
compute a canonical labeling Θiτi ∶= CLHyper(Ki) for each of the bundles recursively. Following
our general strategy, we next compute a canonical labeling for the set of bundles taking the
relation between the bundles into account.

For the case that the bundles Kℓ are pairwise non-isomorphic, we directly follow our gen-
eral strategy. We order the bundles according to their isomorphism type and canonize them
sequentially using iterated instances from Section 4.

Assume now that the bundlesKi are pairwise isomorphic. In this case, we have an (unordered)
partition K ∶= {K1, . . . ,Ks} consisting of the pairwise isomorphic bundles. Here, we exploit
the object replacement paradigm (Lemma 9). We replace each bundle with its labeling coset
and obtain a set of labeling cosets KSet

∶= {Θ1τ1, . . . ,Θsτs}. Doing this, we do not lose any
symmetries of the hypergraph K and it is now sufficient to compute a canonical labeling of the
object KSet rather than K. To canonize KSet using recursion, we have to interpret this set of
labeling cosets as an instance of our hypergraph problem. For this, observe that restricted to
the set A1 ⊆ A ⊆ V the set KSet must induce a hypergraph structure since the bundles pairwise
disagree on A1 (see the left side of Figure 3). This allows us to compute the canonical labeling
for KSet recursively using our hypergraph algorithm.

In the general case, in which some bundles being isomorphic to others but not to all, we
perform a mixture of the two cases just described.

14



A1 A2

Figure 3: Bundling the hyperedges: six hyperedges are bundled into 3 bundles (shown in distinct
colors) each consisting of two hyperedges.

Comparison to Previous Algorithms The first 2O(∣V ∣)-time hypergraph-isomorphism algorithm
is due to Luks [Luk99]. In a dynamic programming fashion, he computed the isomorphisms by
intersecting cosets of isomorphisms between already computed subhypergraphs. This approach
makes use of the coset-intersection problem for permutation groups.

Using Luks’s approach as a starting point, in [ADKT15] an algorithm is developed for the
setting of bounded color classes. Indeed, the authors found a way to exploit ordered partitions
by using the bundling technique described here. However, within the color classes they used
essentially Luks’s dynamic programming algorithm to compute the isomorphisms.

The crucial novelty in our algorithm is the more general definition of the problem in which
labeling cosets occur as part of the input structure. This allows us to completely give up
dynamic programming, and instead use the bundling technique in a recursive way. Treating
cosets (which are the results of recursive canonization calls) as objects themselves allows us to
recurse on substructures.

This in turn allows us to compute canonical labelings for hypergraphs resolving the open
question of both papers.

Another advantage of our approach is that it allows for a polynomial-time algorithm if the
group ∆ is of a certain restricted structure (such as having bounded size composition factors,
see Corollary 25).

Detailed Description of the Hypergraph Algorithm We proceed to prove Lemma 12 by giving
a detailed description and analysis of our hypergraph canonization algorithm.

Proof of Lemma 12. For the purpose of recursion, we need an additional input parameter.
Specifically, we use a subset A ⊆ V such that ∆ ≤ Stab(A). Initially, we set A = V . For
this parameter, we always require that

(A) Si ∩A ≠ Sj ∩A for all i ≠ j.

An algorithm for CLHyper(K,A,∆ρ):

If ∣A∣ ≤ 1: (Because of Property (A), it holds that ∣K ∣ ≤ 2.)

15



If ∣K ∣ = 1: Return CLInt(∆1ρ1,Label(S1)↑V ; ∆ρ).
(This is an iterated instance as defined in Section 4.)

If ∣K ∣ = 2:
Rename the indices of elements in K such that S1 ∩A = ∅ and S2 ∩A = A.
Return CLInt(∆1ρ1,Label(S1)↑V ,∆2ρ2,Label(S2)↑V ; ∆ρ).
(This is an iterated instance as defined in Section 4.)

If ∆ is intransitive on A:
Partition A = A1 ⊍A2 where A1 is a ∆-orbit such that Aρ1 is minimal.
(Minimal w.r.t. the order “≺” defined in Section 3.)
Define Si,1 ∶= Si ∩A1 for each i ∈ [t].
Define an (unordered) partition K ∶=K1 ⊍ . . . ⊍Ks with K ∶= {K1, . . . ,Ks} such that:
Si,1 = Sj,1, if and only if (∆iρi, Si), (∆jρj , Sj) ∈Kℓ for some ℓ ∈ [s].
If s = t: (Thus Si,1 ≠ Sj,1 for all i ≠ j.)

Recurse and return Λ ∶= CLHyper(K,A1,∆ρ).
If s = 1: (Thus Si,1 = Sj,1 for all i, j ∈ [t] and thus Si ∩A2 ≠ Sj ∩A2 for all i ≠ j.)

Recurse and return Λ ∶= CLHyper(K,A2,∆ρ).
If 1 < s < t: (Thus Si,1 = Sj,1 for some i ≠ j, but not for all i ≠ j.)

(We compute a canonical labeling for K.)
Compute Θiτi ∶= CLHyper(Ki,A2,∆ρ) for each i ∈ [s] recursively.
For each Ki pick a (∆jρj , Sj) ∈Ki and set Ri ∶= Sj,1.
(Here Ri does not depend on the choice of j.)
Let KHyper

∶= {(Θ1τ1,R1), . . . , (Θsτs,Rs)}.
Define an ordered partition KHyper = KHyper

1 ⊍ . . . ⊍K
Hyper
r such that

(Ki,∆ρ)τi ≺ (Kj ,∆ρ)τj , if and only if (Θiτi,Ri) ∈ KHyper
p and (Θjτj ,Rj) ∈ KHyper

q for
some p, q ∈ [r] with p < q.
Recurse and return Λ ∶= CLHyper((K

Hyper
1 ,A1), . . . , (KHyper

r ,A1); ∆ρ).
(This is an iterated instance as defined in Section 4.)

If ∆ is transitive on A:
Let ACan

∶= Aρ and ∆Can
∶= (∆ρ)ρ.

Partition ACan = ACan
1 ⊍ACan

2 such that ∣ACan
1 ∣ = ⌊∣ACan∣/2⌋ and ACan

1 is minimal.
(Minimal w.r.t. the order “≺” defined in Section 3.)
Compute ΨCan

∶= Stab∆Can(ACan
1 ,ACan

2 ).
(The group can be computed using a membership test as stated in the preliminaries.)
Decompose ∆Can into left cosets of ΨCan and write ∆Can = ⋃i∈[s] δCan

i ΨCan.

Compute ∆iρi ∶= CLHyper(K,A,ρδCan
i ΨCan) for each i ∈ [s] recursively.

Rename the indices in [s] such that:
(K,∆ρ)ρ1 = . . . = (K,∆ρ)ρr ≺ (K,∆ρ)ρr+1 ⪯ . . . ⪯ (K,∆ρ)ρs .
Return Λ ∶= ⟨∆1ρ1, . . . ,∆rρr⟩.
(This is the smallest coset containing these cosets as defined in the preliminaries.)

(A.) Towards showing correctness of the algorithm, we first argue that Condition (A) remains
satisfied in recursive calls. In the intransitive case, Condition (A) remains satisfied for the
recursive calls by construction of the partition of K. In the transitive case, K and A remain
unchanged, and therefore Condition (A) also remains satisfied.

(CL1.) As usual, Property (CL1) follows since all ordered sequences and all partitions are
defined in an isomorphism-invariant way.

16



(CL2.) Consider the Case ∣A∣ ≤ 1. If ∣K ∣ = 1, then Aut((K,∆ρ)) is equal to the intersection
∆1 ∩ Stab(S1)∩∆. Analogously, if ∣K ∣ = 2, then Aut((K,∆ρ)) is equal to ∆1 ∩ Stab(S1)∩∆2 ∩

Stab(S2) ∩∆.
We consider the intransitive case. In the Cases s = t and s = 1, (CL2) holds by induction.

We consider the Case 1 < s < t. By induction, it holds that Λ defines a canonical labeling for
(KHyper

1 , . . . ,K
Hyper
r ,∆ρ). Since Ri was chosen in an isomorphism-invariant way, Λ defines a

canonical labeling for (J Hyper
1 , . . . ,J

Hyper
r ,∆ρ) where J Hyper

i = {Λ ∣ (Λ,R) ∈RHyper
i } for i ∈ [r].

Because of the object replacement lemma (Lemma 9), it holds that Λ defines a canonical labeling
for (J1, . . . ,Jr,∆ρ) where J = J1 ⊍ . . . ⊍ Jr such that Ki ∈ Jℓ, if and only if Θiτi ∈ J

Hyper
ℓ

.
Since (J1, . . . ,Jr) is an isomorphism-invariant ordered partition of J = K, it holds that Λ
defines a canonical labeling for (K,∆ρ). Again, K = {K1, . . . ,Ks} is an isomorphism-invariant
(unordered) partition of K = K1 ⊍ . . . ⊍ Ks and therefore Λ defines a canonical labeling for
(K,∆ρ).

The transitive case is similar to the analysis in Lemma 5.

(Running time.) Let A∗ ⊆ A be a ∆-orbit of maximal size. We claim that the maximum number
of recursive calls given these parameters R(∣A∗∣, ∣A∣, ∣K ∣) is at most T ∶= 26∣A∗∣∣A∣∣K ∣3.

In the Case ∣A∣ ≤ 1, we do not have further recursive calls. The transitive case is similar to
the analysis in Lemma 5. In the intransitive cases if s = t or s = 1, there is only one recursive
call and the size of A decreases.

We consider the intransitive case when 1 < s < t. Here, we have recursive calls on K1, . . . ,Ks

and KHyper
1 , . . .K

Hyper
r . The cardinalities of ∣A∗∣ and ∣A∣ never increase for recursive calls.

R(∣A∗∣, ∣A∣, ∣K ∣) ≤ 1 +
r

∑
i=1

R(∣A∗i ∣, ∣A1∣, ∣KHyper
i ∣) +

s

∑
i=1

R(∣A∗∣, ∣A2∣, ∣Ki∣)

induction
≤ 1 +

r

∑
i=1

T (∣A∗i ∣, ∣A1∣, ∣KHyper
i ∣) +

s

∑
i=1

T (∣A∗∣, ∣A2∣, ∣Ki∣)

≤ 1 + T (∣A∗∣, ∣A∣,
r

∑
i=1

∣KHyper
i ∣) +

s

∑
i=1

T (∣A∗∣, ∣A∣, ∣Ki∣)

= 1 + 26∣A∗∣∣A∣(s3
+

s

∑
i=1

∣Ki∣3) ≤ T,

where for the last inequality we argue as follows: we use that s ≠ t and thus there is an i ∈ [s]
such that ∣Ki∣ ≥ 2. Without loss of generality, we assume ∣K1∣ ≥ 2. For i ≠ 1, we use ∣Ki∣ ≥ 1.

∣K ∣3 = (
s

∑
i=1

∣Ki∣)3 =
s

∑
i=1

∣Ki∣3 + ∑
2≤i,j,ℓ≤s
∣{i,j,ℓ}∣≥2

∣Ki∣∣Kj ∣∣Kℓ∣ + ∑
2≤i,j≤s

3∣K1∣∣Ki∣∣Kj ∣ + ∑
2≤i≤s

3∣K1∣2∣Ki∣

≥
s

∑
i=1

∣Ki∣3 + ((s − 1)3 − (s − 1)) + 6(s − 1)2 + 12(s − 1)

=
s

∑
i=1

∣Ki∣3 + s3
+ 3s2

+ 2s − 6
s>1
>

s

∑
i=1

∣Ki∣3 + s3

We consider the running time for one single call without recursive costs. Such a call can be
computed in time 2O(k)∣V ∣O(1) where k is the largest ∆-orbit of V . In total, we have a running
time of at most T ⋅ 2O(k)∣V ∣O(1) ⊆ 2O(k)nO(1) where n is the input size and k is the size of the
largest ∆-orbit of V .

17



Corollary 13. Canonical labelings for hypergraphs can be computed in time 2O(k)nO(1) where
n is the input size and k is the size of the largest color class of V .

Proof. Given a hypergraph with hyperedges {S1, . . . , St} and a coloring (C1, . . . ,Ct) of V =
C1 ⊍ . . . ⊍Ct, we use the previous algorithm to compute a canonical labeling for (K,∆ρ) where
K = {(Label(V ), S1), . . . , (Label(V ), St)} and ∆ρ = {λ ∈ Label(V ) ∣ ∀i, j ∈ [t], i < j∀vi ∈ Ci, vj ∈
Cj ∶ λ(vi) < λ(vj)}.

7 Canonization of Sets

In this section, we are looking for a canonical labeling function for objects X in the case where
X = ({∆1ρ1, . . . ,∆tρt},∆ρ). As we will see in Section 8, canonical labelings for objects in
general can be reduced to this case in polynomial time.

Problem 14. Compute a function CLSet with the following properties:
Input (J,∆ρ) ∈ Objects(V ) where J = {∆1ρ1, . . . ,∆tρt}, ∆iρi ≤ Label(V ) for all i ∈ [t],

∆ρ ≤ Label(V ) and V is an unordered set.
Output A labeling coset CLSet(J,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLSet(J,∆ρ) = ϕCLSet(Jϕ, ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLSet(J,∆ρ) = {δ ∈ ∆ ∣ ∃ψ ∈ Sym(t)∀i ∈ [t] ∶ δ−1∆iρi = ∆ψ(i)ρψ(i)}π for some (and

thus for all) π ∈ Λ.

As usual, Conditions (CL1) and (CL2) coincide with the general the conditions. In particular,
CLSet(J,∆ρ) = Aut((J,∆ρ))π for some π.

Lemma 15. A function CLSet solving Problem 14 can be computed in time 2O(k)nO(1) where n
is the input size and k is the size of the largest ∆-orbit of V .

Intuition for the Sets of Labeling Cosets Algorithm As it was the case for hypergraph
algorithm, we need a generalization of our problem for a recursive approach. We extend the
instances to sets of the form L = {(∆1ρ1,Θ1τ1), . . . , (∆tρt,Θtτt)}. For the initial instance,
Θiτi is simply set to equal ∆iρi. The labeling cosets Θiτi can be seen as an analogue to the
hyperedges Si in Problem 11 and are used to define a bundling of the instance L. Compared to
hyperedges Si the labeling cosets Θiτi can describe global interdependencies. While Condition
(A) for hypergraphs describes a local distinctness, for our new problem, we define adequate
Conditions (C) and (AC) describing a more refined distinctness of the cosets. But again, the
size of a set A ⊆ V is used to measure our progress in the sense that the size ∣L∣ is bounded in
terms of ∣A∣. Additionally, we will ensure a uniformity condition (Condition (D)) which helps
us in various situations. In the algorithm, following our general strategy, we heavily use the
partitioning techniques.

First, we consider the case in which at least one group Θi is intransitive on the set A. The
uniformity (D) implies that all groups Θi must be intransitive. In particular, each Θi can be
associated with the orbit Ai,1 ⊆ A that has minimal image under τi.

If all orbits Ai,1 and Aj,1 are distinct for i ≠ j, the sets Ai,1 ⊆ A form a hypergraph and we
apply our hypergraph algorithm. If the orbits Ai,1 and Aj,1 are equal for all i, j ∈ [t], we can
define a set A1 ∶= Ai,1 which does not depend on the choice of i ∈ [t]. This gives us a canonical
partition A = A1⊍A∖A1 of the set A we are focusing on. With a similar idea as for hypergraphs,
we are able to use the partition of A to define a partition L = L1 ⊍ . . .⊍Ls of L into bundles. In
the extreme cases (s = t or s = 1), we use the concrete definition of the partition to reduce the

18



size of the set A, making progress. The case of a proper partition can be handled by bundling
and recursion as usual (one has to be careful that (C) and (AC) are maintained for the recursive
call). Also in the remaining subcase where some of the orbits Ai,1 ⊆ A being equal to others
but not to all, we can define a partition into bundles and recurse on that.

Second, we consider the case in which all groups Θi are transitive on the focus set A. A
crucial difference here is that instead of splitting the underlying vertex A by decomposing only
one single group, we split all the labeling cosets Θiτi by decomposing them into left cosets. This
leads to the case of intransitive groups Θi which we already handled.

Detailed Description of the Sets of Labeling Cosets Algorithm Proving Lemma 15, we give
a detailed description and analysis of the algorithm for sets of labeling cosets.

Proof of Lemma 15. We generalize the problem and instead of J we take as an input a set
of pairs of labeling cosets L = {(∆1ρ1,Θ1τ1), . . . , (∆tρt,Θtτt)}. For the purpose of recursion,
we need some additional input parameters. Specifically, we use subsets A,C ⊆ V such that
Θi ≤ Stab(A,C) for all i ∈ [t]. Initially, we set A = V and C = ∅ and Θiτi = ∆iρi for all i ∈ [t].
Furthermore, we require that

(C) Θiτi∣C = Θjτj ∣C for all i, j ∈ [t], and

(AC) Θiτi∣A∪C ≠ Θjτj ∣A∪C for all i ≠ j.

An algorithm for CLSet(L,A,C,∆ρ):

If ∣L∣ = 0: Return CLInt(Label(A)↑V ,Label(C)↑V ; ∆ρ).
(This is an iterated instance as defined in Section 4.)

If ∣A∣ ≤ 1:
Rename the indices in [t] such that Aτ1 ≺ . . . ≺ Aτt .
(The ordering is strict, for a proof see (Correctness.) below the algorithm.)
Return Λ ∶= CLInt(∆1ρ1, . . . ,∆tρt,Θ1τ1, . . . ,Θtτt; ∆ρ).
(This is an iterated instance as defined in Section 4.)

Let ACan
i ∶= Aτi ,CCan

i ∶= Cτi and ΘCan
i ∶= (Θiτi)τi for each i ∈ [t].

If (ACan
i ,CCan

i ,ΘCan
i ) ≠ (ACan

j ,CCan
j ,ΘCan

j ) for some i, j ∈ [t]:
Define an ordered partition L = L1 ⊍ . . . ⊍Ls such that:
(ACan

i ,CCan
i ,ΘCan

i ) ≺ (ACan
j ,CCan

j ,ΘCan
j ), if and only if

(∆iρi,Θiτi) ∈ Lp and (∆jρj ,Θjτj) ∈ Lq for some p, q ∈ [s] with p < q.
Recurse and return Λ ∶= CLSet((L1,A,C), . . . , (Ls,A,C); ∆ρ).
(This is an iterated instance as defined in Section 4.)

Now, we have the following property (D): (ACan
i ,CCan

i ,ΘCan
i ) = (ACan

j ,CCan
j ,ΘCan

j ) for all i, j ∈
[t].

If Θi is intransitive on A for some (and because of (D) for all) i ∈ [t]:
For each i ∈ [t] write A = Ai,1⊍Ai,2 where Ai,1 is a Θi-orbit and such that Aτi

i,1 is minimal.
(Minimal w.r.t. the order “≺” defined in Section 3.)

If Ai,1 = Aj,1 for all i, j ∈ [t]:
Let A1 ∶= Ai,1 for some (and thus all) i ∈ [t].
Let Λi ∶= Θiτi∣A1∪C for each i ∈ [t].
Define an (unordered) partition L = L1 ⊍ . . . ⊍Ls with L ∶= {L1, . . . ,Ls} such that:
Λi = Λj , if and only if (∆iρi,Θiτi), (∆jρj,Θjτj) ∈ Lℓ for some ℓ ∈ [s].

19



If s = t: (Thus Λi ≠ Λj for all i ≠ j.)
Recurse and return Λ ∶= CLSet(L,A1,C,∆ρ)

If s = 1: (Thus Λi = Λj for all i, j ∈ [t].)
Recurse and return Λ ∶= CLSet(L,A2,A1 ∪C,∆ρ)

If 1 < s < t: (Thus Λi = Λj for some i ≠ j, but not for all i ≠ j.)
(We compute a canonical labeling for L.)
Compute Πiηi ∶= CLSet(Li,A2,A1 ∪C,∆ρ) for each i ∈ [s] recursively.
For each Li pick a (∆jρj,Θjτj) ∈ Li and set Γ̂i ∶= Λj .
(The set Γ̂i does not depend on the choice of j, but Γ̂i is not a labeling coset.)
Let Γi ∶= {γ ∈ Label(V ) ∣ γ∣A1∪C ∈ Γ̂i} ≤ Label(V ).
(The definition of Γi rectifies that Γ̂i is not a labeling coset.)
Set LSet

∶= {(Π1η1,Γ1), . . . , (Πsηs,Γs)}.
Define an ordered partition LSet = LSet

1 ⊍ . . . ⊍LSet
r such that:

(Li,∆ρ)ηi ≺ (Lj ,∆ρ)ηj , if and only if (Πiηi,Γi) ∈ LSet
p and (Πjηj,Γj) ∈ LSet

q for
some p, q ∈ [r] with p < q.
Recurse and return Λ ∶= CLSet((LSet

1 ,A1,C), . . . , (LSet
r ,A1,C); ∆ρ).

(This is an iterated instance as defined in Section 4.)

If Ai,1 ≠ Aj,1 for some i, j ∈ [t]:
Define an (unordered) partition L = L1 ⊍ . . . ⊍Ls with L ∶= {L1, . . . ,Ls} such that:
Ai,1 = Aj,1, if and only if (∆iρi,Θiτi), (∆jρj,Θjτj) ∈ Lℓ for some ℓ ∈ [s].
(Observe that 1 < s ≤ t.)
(We compute a canonical labeling for L.)
Compute Πiηi ∶= CLSet(Li,A,C,∆ρ) for each i ∈ [s] recursively.
For each Li pick a (∆jρj,Θjτj) ∈ Li and set Si ∶= Aj,1.
(The set Si does not depend on the choice of j.)
Set LHyper

∶= {(Π1η1, S1), . . . , (Πsηs, Ss)}.
Define an ordered partition LHyper = LHyper

1 ⊍ . . . ⊍L
Hyper
r such that:

(Li,∆ρ)ηi ≺ (Lj ,∆ρ)ηj , if and only if (Πiηi, Si) ∈ LHyper
p and (Πjηj, Sj) ∈ LHyper

q and
p < q ∈ [r].
Return Λ ∶= CLHyper((L

Hyper
1 , V ). . . . , (LHyper

r , V ); ∆ρ) using Lemma 12.
(This is an iterated instance as defined in Section 4.)

If Θi is transitive on A for some (and because of (D) for all) i ∈ [t]:
Let ACan

∶= ACan
i ,CCan

∶= CCan
i and ΘCan

∶= ΘCan
i for some i ∈ [t].

(Because of (D), the definitions do not depend on the choice of i ∈ [t].)
Partition ACan = ACan

1 ⊍ACan
2 such that ∣ACan

1 ∣ = ⌊∣ACan∣/2⌋ and ACan
1 is minimal.

(Minimal w.r.t. the order “≺” defined in Section 3.)
Define ΨCan

∶= StabΘCan(ACan
1 ,ACan

2 ).
(The group can be computed using a membership test as stated in the preliminaries.)
Decompose ΘCan into left cosets of ΨCan and write ΘCan = ⋃i∈[s] θCan

i ΨCan.

Let ΘCan
C ∶= ΘCan∣CCan and ΨCan

C ∶= ΨCan∣CCan .
Decompose ΘCan

C into left cosets of ΨCan
C and write ΘCan

C = ⋃i∈[r] θCan
C,i ΨCan

C .
(Observe that r ≤ s.)
For some j ∈ [t], define a set of cosets N ∶= {Γ1, . . . ,Γr} where Γi ∶= τj ∣CθCan

C,i ΨCan
C .

(Because of (C), the set N does not depend on the choice of j ∈ [t].)
Define Li ∶= {(∆jρj , τjθ

Can
ℓ ΨCan) ∣ j ∈ [t], ℓ ∈ [s], (τjθCan

ℓ ΨCan)∣C = Γi} for each i ∈ [r].
Compute Πiηi ∶= CLSet(Li,A,C,∆ρ) for each i ∈ [r] recursively.

20



Rename the indices of elements in N = {Γ1, . . . ,Γr} such that:
(L,∆ρ)η1 = . . . = (L,∆ρ)ηq ≺ (L,∆ρ)ηq+1 ⪯ . . . ⪯ (L,∆ρ)ηr .
(The ordering does not depend on the choice of the ηi, for a proof see (CL1.).)
Return Λ ∶= ⟨Π1η1, . . . ,Πqηq⟩.
(This is the smallest coset containing these cosets as defined in the preliminaries.)

(Correctness.) We consider the case ∣A∣ ≤ 1. We show that we obtain a strict ordering indeed.
If A = ∅, then because of (C) and (AC), it holds that ∣L∣ = 1, so the ordering is strict. Let
us assume that ∣A∣ = 1. Since A is Θi-invariant and consists of one element, it holds that
Θi∣A∪C is a direct product of Θi∣A and Θi∣C for all i ∈ [t]. But because of (C), it holds that
(Θiτi)∣A ≠ (Θjτj)∣A for all i ≠ j and therefore the ordering is strict.

(C and AC.) We show that (C) and (AC) remain satisfied for the recursive calls. Consider the
case (ACan

i ,CCan
i ,ΘCan

i ) ≠ (ACan
j ,CCan

j ,ΘCan
j ). Observe that if (C) and (AC) hold for the set

L, then they also hold for each subset of Li ⊆ L. Therefore, in this case (C) and (AC) remain
satisfied.

Consider the intransitive case, when Ai,1 = Aj,1. In the cases s = t and s = 1, the conditions
(C) and (AC) hold for chosen subsets of A by construction. In the Case 1 < s < t, the labeling
cosets Γi satisfy (C) and (AC) by construction of the partition.

Consider the intransitive case, when Ai,1 ≠ Aj,1. Here, we only have recursive calls for subsets
Li ⊆ L with A and C unchanged.

Consider the transitive case. Condition (C) holds by construction. Next, we show that also
(AC) remains satisfied. Condition (D) implies ΘCan

i ∣ACan

i
∪CCan

i
= ΘCan

j ∣ACan

j
∪CCan

j
which means

that Θiτi∣A∪C and Θjτj ∣A∪C are cosets of the same group. Together with (AC), this implies
that Θiτi∣A∪C ∩ Θjτj ∣A∪C = ∅. For this reason, also subsets of these cosets are disjoint, i.e.,
τiθ

Can
ℓ ΨCan∣A∪C ∩ τjθCan

ℓ′ ΨCan∣A∪C = ∅ for i ≠ j and ℓ, ℓ′ ∈ [s]. The same disjointness holds
for i = j and ℓ ≠ ℓ′ since (θCan

ℓ ∣ACan∪CCan)−1θCan
ℓ′ ∣ACan∪CCan ∈ ΨCan∣ACan∪CCan implies ℓ = ℓ′. In

particular, the cosets τiθ
Can
ℓ ΨCan∣A∪C and τjθ

Can
ℓ′ ΨCan∣A∪C are distinct for (i, ℓ) ≠ (j, ℓ′).

(CL1.) This is not hard to see as almost all ordered sequences and all partitions are defined in
an isomorphism-invariant way. There is only one case that needs attention. In the transitive
case, we define an ordering that might a priori depend on the choice of ηi for i ∈ [r]. To
prove that this is indeed not the case, we claim that Aut(Li) ⊆ Aut(L). Let σ ∈ Aut(Li) for
i ∈ [r]. Let j ∈ [t]. There is at least one ℓ ∈ [s] such that (∆jρj, τjθ

Can
ℓ ΨCan) ∈ Li since

{(τjθCan
ℓ ΨCan)∣C ∣ ℓ ∈ [s]} = {τj ∣CθCan

C,i ΨCan
C ∣ i ∈ [r]} = {Γ1, . . . ,Γr}. By definition of Aut(Li),

there are j′ ∈ [t] and ℓ′ ∈ [s] such that (∆jρj , τjθ
Can
ℓ ΨCan)σ = (∆j′ρj′ , τj′θ

Can
ℓ′ ΨCan). This

implies (∆jρj ,Θjτj)σ = (∆j′ρj′ ,Θj′τj′). Since for all j ∈ [t], there is such a j′ ∈ [t], this implies
σ ∈ Aut(L).
(CL2.) In the Case ∣A∣ ≤ 1, the strict ordering of the sequence implies that σ−1Θiτi ≠ Θjτj for
all σ ∈ Aut(A) and all i ≠ j. Therefore, Aut((L,A,C,∆ρ)) = ∆1 ∩ . . . ∩∆t ∩ Θ1 ∩ . . . ∩ Θt ∩

Stab(A,C) ∩∆ where Stab(A,C) can be omitted since Θ1 ≤ Stab(A,C).
We consider the Case (ACan

i ,CCan
i ,ΘCan

i ) ≠ (ACan
j ,CCan

j ,ΘCan
j ). Here, L = (L1, . . . ,Ls) is an

isomorphism-invariant ordered partition of L = L1 ⊍ . . . ⊍Ls and therefore Aut(L) = Aut(L).
Consider the intransitive case, when Ai,1 = Aj,1 and s = t or s = 1. Condition (D) and L ≠ ∅

also ensure Aut(L) ≤ Stab(A,C). Therefore, changing these parameters in an isomorphism-
invariant way does not affect the automorphism group. In the Case 1 < s < t, the labeling
coset Λ defines a canonical labeling for (LSet

1 , . . . ,LSet
r ,∆ρ) by induction. Since Γi was chosen

in an isomorphism-invariant way, Λ defines a canonical labeling for (J Set
1 , . . . ,J Set

r ,∆ρ) where
J Set
i = {Λ ∣ (Λ,Γ) ∈ LSet

i } for i ∈ [r]. Because of the object replacement lemma (Lemma 9), it

21



holds that Λ defines a canonical labeling for (J1, . . . ,Jr,∆ρ) where J = J1⊍. . .⊍Jr such that Li ∈
Jℓ, if and only if Πiηi ∈ J

Set
ℓ . Since (J1, . . . ,Jr) is an isomorphism-invariant ordered partition

of J = L, it holds that Λ defines a canonical labeling for (L,∆ρ). Again, L = {L1, . . . ,Ls} is
an isomorphism-invariant (unordered) partition of L = L1 ⊍ . . . ⊍ Ls and therefore Λ defines a
canonical labeling for (L,∆ρ).

Consider the intransitive case, when Ai,1 ≠ Aj,1. Here, the proof is analogous to the previous

Case 1 < s < t. Also here, Λ defines a canonical labeling of (LHyper
1 , . . . ,L

Hyper
r ,∆ρ). Since Si

was chosen in an isomorphism-invariant way, the labeling coset Λ defines a canonical labeling for
(J Hyper

1 , . . . ,J
Hyper
r ,∆ρ) where J Hyper

i = {Λ ∣ (Λ, S) ∈ LHyper
i } for i ∈ [r]. Because of the object

replacement lemma (Lemma 9), it holds that Λ defines a canonical labeling for (J1, . . . ,Jr,∆ρ)
where J = J1 ⊍ . . . ⊍ Jr such that Li ∈ Jℓ, if and only if Πiηi ∈ J

Hyper
ℓ

. Since (J1, . . . ,Jr)
is an isomorphism-invariant ordered partition of J = L, it holds that Λ defines a canonical
labeling for (L,∆ρ). Again, L = {L1, . . . ,Ls} is an isomorphism-invariant (unordered) partition
of L = L1 ⊍ . . . ⊍Ls and therefore Λ defines a canonical labeling for (L,∆ρ).

Consider the transitive case. We claim that Λ = Aut((L,∆ρ))π for some (and thus for all)
π ∈ Λ. The inclusion Aut((L,∆ρ))π ⊆ Λ follows from (CL1) of this algorithm. It remains to
show Λ ⊆ Aut((L,∆ρ))π. We need to show that ηiη

−1
j is an element in Aut((L,∆ρ)) for all

i, j ∈ [q]. The membership follows from the fact that (L,∆ρ)ηi = (L,∆ρ)ηj .

(Running time.) Let A∗ ⊆ A be a Θi-orbit of maximal size over all i ∈ [t]. We claim that
the maximum number of recursive calls given these parameters R(∣A∗∣, ∣A∣, ∣L∣) is at most T ∶=
214∣A∗∣∣A∣∣L∣3.

In the Case (ACan
i ,CCan

i ,ΘCan
i ) ≠ (ACan

j ,CCan
j ,ΘCan

j ) and in the intransitive cases, we make
progress on ∣A∣ or ∣L∣ similar to the analysis of Lemma 12.

We consider the transitive case. Here, we have recursive calls on L1, . . . ,Lr. Observe that

∑ri=1 ∣Li∣ = s∣L∣ ≤ 2∣A∣∣L∣. For the recursive calls, we make progress on ∣A∗∣ = ∣A∣.

R(∣A∣, ∣A∣, ∣L∣) ≤ 1 +
r

∑
i=1

R(⌈∣A∣/2⌉, ∣A∣, ∣Li ∣)

induction
≤ 1 +

r

∑
i=1

T (⌈∣A∣/2⌉, ∣A∣, ∣Li ∣)

≤ 1 + T (∣A∣/2 + 1/2, ∣A∣,
r

∑
i=1

∣Li∣) ≤ 1 + 210∣A∣+7∣A∣∣L∣3
2≤∣A∣
≤ T.

This gives at most T recursive calls for the instance (L,A,C,∆ρ).
Summing up, our argument so far shows a bound of 214∣A∗∣∣A∣∣L∣3 on the number of recursive

calls, where A∗ is the maximum size Θi-orbit within A. Applying the algorithm on an instance
(J,∆ρ) gives us a bound of 2O(k)∣V ∣∣J ∣3 on the number of recursive calls, where k is the size of
the largest ∆i-orbit of V over all i ∈ [t]. However, the running time claimed by the theorem is in
terms of the largest ∆-orbit rather than the ∆i-orbits. To achieve this, we add a preprocessing
step before the algorithm that ensures that the ∆i-orbits are no larger than the ∆-orbits.

Given the instance (J,∆ρ), this can be done as follows. Compute ∆′iρ
′
i ∶= CLInt(∆iρi,∆ρ)

for each ∆iρi ∈ J . Set J ′ ∶= {∆′1ρ
′
1, . . . ,∆

′
tρ
′
t}. Then define an ordered partition J ′ = J ′1 ∪ . . .∪ J

′
s

such that: (∆iρi,∆ρ)ρ
′

i ≺ (∆jρj ,∆ρ)ρ
′

j , if and only if ∆′iρ
′
i ∈ J

′
p and ∆′jρ

′
j ∈ J

′
q and p < q ∈ [s].

This gives a new (iterated) instance (J ′1, . . . , J
′
s,∆ρ) which can be processed by our algorithm

that we just presented. A canonical labeling for the new instance defines a canonical labeling
also for (J,∆ρ) by the object replacement lemma. Furthermore, the new instance has the
property that for all ∆′iρ

′
i ∈ J

′
j and all j ∈ [s] the ∆′i-orbits are not larger than the ∆-orbits.

22



8 Canonization of Objects

As argued in Lemma 9, for the purpose of a canonical labeling, objects can be replaced with
their canonical labelings. With Lemma 15, we are able to compute canonical labelings for a
set of labeling cosets. In this section, we will combine both techniques to compute a canonical
labeling function for objects in general.

Problem 16. Compute a function CLObject with the following properties:

Input (X ,∆ρ) ∈ Objects(V ) where ∆ρ ≤ Label(V ) and V is an unordered set.
Output A labeling coset CLObject(X ,∆ρ) = Λ ≤ Label(V ) such that:
(CL1) CLObject(X ,∆ρ) = ϕCLObject(Xϕ, ϕ−1∆ρ) for all ϕ ∈ Iso(V ;V ′).
(CL2) CLObject(X ,∆ρ) = Aut((X ,∆ρ))π for some (and thus for all) π ∈ Λ.

Theorem 17. A function CLObject solving Problem 16 can be computed in time 2O(k)nO(1)

where n is the input size and k is the size of the largest ∆-orbit of V .

Proof. An algorithm for CLObject(X ,∆ρ):

If X = v ∈ V : Return CLPoint(v,∆ρ).

If X = Θτ ≤ Label(V ): Return CLInt(Θτ,∆ρ).

If X = (X1, . . . ,Xt):
Compute ∆iρi ∶= CLObject(Xi,∆ρ) for each i ∈ [t] recursively.
Return Λ ∶= CLInt(∆1ρ1, . . . ,∆tρt; ∆ρ) using the algorithm from Lemma 8.
(This is an iterated instance as defined in Section 4.)

If X = {X1, . . . ,Xt}:
Compute ∆iρi ∶= CLObject(Xi,∆ρ) for each i ∈ [t] recursively.
Set X Set

∶= {∆1ρ1, . . . ,∆tρt}.
Define an ordered partition X Set = X Set

1 ∪ . . . ∪X Set
s such that:

X
ρi

i ≺X
ρj

j , if and only if ∆iρi ∈ X
Set
p and ∆jρj ∈ X

Set
q for some p, q ∈ [s] with p < q.

Return Λ ∶= CLSet(X Set
1 , . . . ,X Set

s ; ∆ρ) using the algorithm from Lemma 15.
(This is an iterated instance as defined in Section 4.)

(CL1.) This is easy to see as the partition of X Set is defined in an isomorphism-invariant way.

(CL2.) The Case X = {X1, . . . ,Xt} follows from the object replacement lemma (Lemma 9).
The other cases use canonical labeling functions we described in previous sections.

(Running time.) With a dynamic programming approach, we build up a table in which we store
a canonical labeling for each (Y,∆ρ) with Y ∈ TClosure(X ). Note that in each recursive call
to CLObject the coset ∆ρ remains unchanged and thus each recursive call is indeed of the form
(Y,∆ρ) with Y ∈ TClosure(X ). We thus get at most ∣TClosure(X )∣ ∈ O(n) recursive calls. For
the (non-recursive) calls to CLInt and CLSet, we use the respective algorithms from the previous
sections to compute the solutions within the desired running time.

Corollary 18. Canonical labelings for combinatorial objects can be computed in time 2O(k)nO(1)

where n is the input size and k is the size of the largest color class of V .

Proof. Given an object X ∈ Objects(V ) and a coloring (C1, . . . ,Ct) of V = C1 ⊍ . . . ⊍Ct, we use
the previous algorithm to compute a canonical labeling for (X ,∆ρ) where ∆ρ = {λ ∈ Label(V ) ∣
∀i, j ∈ [t], i < j∀vi ∈ Ci, vj ∈ Cj ∶ λ(vi) < λ(vj)}.

23



Canonization of Strings and Codes A string or code word with positions V over a finite
alphabet Σ is a function x ∶ V → Σ. A code is a set of code words.

Isomorphism of codes, also known as code equivalence, was considered in [BCGQ11] and
in [BCQ12]. With our general result for objects, we achieve the same time bound even for
canonization.

Corollary 19. Canonical labelings for codes can be computed in time 2O(∣V ∣)∣A∣O(1) where ∣V ∣
is the length of the code words and ∣A∣ is the size of the code (i.e., the number of code words).

Proof. We need to explain how to encode a string with our formalism. Observe that Σ is an
alphabet which has to be fixed pointwise by automorphisms. For this reason, we can encode
the elements in Σ as ∅,{∅},{{∅}}, . . . and so on. A string x can be encoded as a function and
thus as a set of pairs {(v, x(v)) ∣ v ∈ V }.

We can also draw conclusions for canonization of permutation groups up to permutational
isomorphism.

Corollary 20. Canonical labelings for permutation groups (up to permutational isomorphism)
can be computed in time 2O(∣V ∣)∣∆∣O(1) where V is the permutation domain and ∣∆∣ is the order
of the group.

Proof. We encode an element δ ∈ ∆ ≤ Sym(V ) explicitly as permutation over V by using the
set M(δ) ∶= {(v, vδ) ∣ v ∈ V }. Canonizing {M(δ) ∣ δ ∈∆} is the same as canonizing the group ∆
up to permutational isomorphism.

9 Canonical Generating Sets

The algorithms we have described throughout the paper canonize combinatorial objects. When
given an unordered object as an input, they produce a canonical ordered object as an output.
However, this does not immediately give us a canonical encoding of the output (i.e., is does not
provide a canonical output string) as there may be multiple ways to represent the same ordered
object. Indeed, in Section 3, we described how we represent objects using generating sets and
colored directed graphs. Usually it is not very crucial which encoding we use to translate the
generating sets and colored directed graphs into a binary string which can be processed by an
algorithm or a Turing machine. However, especially in the context of canonization, it would
be desirable to ensure that if two implicitly given ordered objects X ,Y ∈ Objects({1, . . . , ∣V ∣})
are equal, then they also have the same string encoding enc(X ) = enc(Y). For explicitly given
objects X over {1, . . . , ∣V ∣}, this can be achieved since all elements in TClosure(X ) are linearly
ordered by “≺”. Therefore, the crucial question is how to uniquely encode the implicitly given
labeling cosets ∆ρ ≤ Label({1, . . . , ∣V ∣}). To answer this question, we make use of canonical
generating sets.

Lemma 21 ([AGvM+18], Lemma 6.2, [GNSW18], Lemma 21). There is a polynomial-time
algorithm that, given a labeling coset ∆ρ ≤ Label({1, .., ∣V ∣}) via a generating set, computes a
generating set for ∆ρ. The output only depends on ∆ρ (and not on the given generating set).

With this lemma, we can find a canonical generating set for labeling cosets over natural
numbers. Using the order “≺”, we can thus compute for every ordered object a string that
uniquely encodes the object.

24



Lemma 22. There is an injective encoding enc ∶ Objects({1, . . . ∣V ∣}) → {0,1}∗ that maps or-
dered objects to (0-1)-strings. The encoding enc and its inverse are polynomial-time computable
(for objects given via generating sets and colored directed graphs).

There is a second application of canonical generating sets in our context. For this, let us
consider the bottleneck of our canonization algorithms. The recursions perform efficiently,
except for the transitive cases. The concrete situation is that we have some group ∆Can ≤
Sym({1, . . . , ∣V ∣}) acting transitively on a set ACan ⊆ {1, . . . , ∣V ∣}. In this case, the algorithm
computes a subgroup ΨCan ≤∆Can, decomposes ∆Can into cosets of ΨCan and recurses. Here, the
branching degree of the algorithm is the index of the subgroup ΨCan in ∆Can. However, progress
is made since the ΨCan-orbits on ACan are smaller than the ∆Can-orbits on ACan. Luks’s group
theoretic framework [Luk82], which solves isomorphism for bounded degree graphs in polynomial
time, attacks this bottleneck. He used group theoretic insights to argue that if ∆Can is of a
group of a certain type (a so called Γd-group), then there is a subgroup of relatively small
index and small orbit size. Babai’s algorithm in turn, attacks the bottleneck of Luks’s approach
which is characterized by giant homomorphisms from ∆Can to some symmetric group. In the
rest of this section, we discuss how these approaches can be employed within our canonization
framework by the use of canonical generating sets.

A block system B = {B1, . . . ,Bt} for a group ∆ ≤ Sym(V ) is a ∆-invariant partition B of
V = B1 ⊍ . . . ⊍Bt. For a group ∆ ≤ Sym(V ), the composition width of ∆, denoted as cw(∆),
is the smallest integer k such that all composition factors of ∆ are isomorphic to a subgroup of
Sym(k). Luks’s approach exploits that one can efficiently compute a minimal block system for
a given group. One then computes the subgroup Ψ that stabilizes all the blocks setwise. Babai,
Cameron and Pálfy [BCP82] showed that for groups of bounded composition width such a Ψ is
of relatively small index. Therefore, going down to the subgroup Ψ is not too costly, but still
reduces the size of the orbits in the recursive calls significantly. Together these results prove
the following.

Theorem 23 ([Luk82] and [BCP82],[BKL83]). Let ∆ ≤ Sym(V ) be a group that is transitive
on a set A ⊆ V . There is a subgroup Ψ ≤∆ and b ∈ N such that:

(1) The size of the Ψ-orbits on A is bounded by b.

(2) The index [∆ ∶ Ψ] is bounded by (∣A∣/b)O(cw(∆)).

Furthermore, there is an algorithm A that given A ⊆ V and a generating set for ∆, computes a
generating set for a subgroup Ψ ≤∆. The algorithm runs in time ∣V ∣O(cw(∆)).

Proof sketch. Let B = {B1, . . . ,Bt} be a minimal block system for A ⊆ V and let b ∶= ∣A∣/t = ∣B1∣.
Define Ψ ∶= Stab∆(B1, . . . ,Bt). The bound on the index follows from a bound of the size of
primitive permutation groups of degree t. While Babai, Cameron, Pálfy [BCP82] implicitly
proved a bound of tω(cw(∆)) where ω ∈ O(n log n), it was later observed that ω can be chosen
linear as stated in [BKL83], see [LS99].

For us, a crucial detail here is that the minimal block system and thus Ψ is not unique. For
an isomorphism algorithm, it is usually sufficient to compute an arbitrary subgroup Ψ ≤ ∆
with Properties (1) and (2). However, for the purpose of canonization, we will need that for
each group ∆ one particular subgroup Ψ ≤ ∆ will be computed and the choice of Ψ has to be
consistent across different calls of algorithm A. More precisely, we need that for two inputs
I and I ′ which are both encodings for the pair (A,∆), the algorithm A with input I has the
same output as A with input I ′. For canonization algorithms as in [BL83] this consistency was

25



achieved by computing one particular, so called smallest, minimal block system B∗. However,
such an approach needs some insight into the proof of Theorem 23 and one has to argue that
the proof can be extended rather than using the theorem as a black box only.

Using canonical generating sets for objects over natural numbers, we can reformulate the
theorem. The difference is that in the reformulation the subgroup can be chosen in a unique
way. This method is quite general as it indeed uses Theorem 23 as a black box only.

Theorem 24 ([BL83] and [BCP82],[BKL83]). Let ∆Can ≤ Sym({1, . . . , ∣V ∣}) be a group that is
transitive on a set ACan ⊆ {1, . . . , ∣V ∣}. There is a subgroup ΨCan ≤∆Can and b ∈ N such that:

(1) The size of the ΨCan-orbits on ACan are bounded by b.

(2) The index [∆Can
∶ ΨCan] is bounded by (∣ACan∣/b)O(cw(∆Can)).

Furthermore, there is an algorithm B that given ACan ⊆ {1, . . . , ∣V ∣} and a generating set for
∆Can, computes a generating set for the subgroup ΨCan ≤ ∆Can. The group ΨCan only depends
on ACan and ∆Can (and not on the given generating set for ∆Can). The algorithm runs in time

∣V ∣O(cw(∆Can)).

Proof. Let (δCan
1 , . . . , δCan

t ) be a canonical generating set of ∆Can ordered according to “≺”. We
execute the algorithm A from Theorem 23 with input (ACan, (δCan

1 , . . . , δCan
t )) and return its

output.

Using the result of the previous theorem, we can achieve a running time for canonization
expressible in terms of the composition width of ∆.

Corollary 25. A function CLObject solving Problem 16 can be computed in time kO(cw(∆))nO(1)

where n is the input size and k is the size of the largest ∆-orbit of V .

Proof. In the transitive case of the algorithms for CLMatch, CLHyper and CLSet, we are in the
situation of a group ∆Can (or ΘCan respectively) that is transitive on a set ACan. To achieve the
running time, we replace the line “Define ΨCan

∶= Stab∆Can(ACan
1 ,ACan

2 )” with “Define ΨCan as
the output of algorithm B from Theorem 24 with input ACan and ∆Can”.

(Running time.) The critical point for the running time analysis is that a recursion of the type
R(∣A∗∣) ≤ (∣A∗∣/b)O(cw(∆))R(b) leads to some function R(∣A∗∣) ∈ ∣A∗∣O(cw(∆)).

We remark that there is a particular technique [BKL83] to improve the running time for
isomorphism algorithms from kO(cw(∆))nO(1) to kO(cw(∆)/ log cw(∆))nO(1). As this technique
exploits the precise structure of large primitive groups and needs some detailed background, we
will not describe it here.

10 Outlook and Open Questions

We presented a general framework to devise canonization algorithms for combinatorial objects.
It allows for the use of various other algorithms developed in the context of isomorphism prob-
lems, without having to worry about isomorphism invariance. We believe that it not only
should be possible to use the framework to design further canonization algorithms, but that the
framework will simplify the task. Especially the use of canonical generating sets simplifies the
task to adapt theorems used for isomorphism to adequate canonization variants. Naturally, the
bounded degree isomorphism algorithm of [GNS18] should then be amenable to canonization.
However, this remains as future work.

26



We ask whether canonization of combinatorial objects can be performed in time npolylog(∣V ∣)

where n is the size of the object. Such a running time is of deep interest for a canonization
algorithm for graphs of tree width at most k running in time ∣V ∣polylog(k) which in turn would
generalize Babai’s quasipolynomial time bound. However, even for the isomorphism-version of
this problem we have no such algorithm yet.

A different question to this end is whether the time bound that we presented in this paper
(of 2O(∣V ∣)nO(1) for objects of size n) can be improved to moderately exponential 2O(∣V ∣

1−ε)nO(1)

for some ε > 0.
It remains an open problem whether isomorphism of permutation groups over a permutation

domain V (that however are implicitly given via a generating set) can be decided in time
2O(∣V ∣) regardless of the order of the groups [BCGQ11, Cod11]. Our framework might help
to design such an isomorphism algorithm. Indeed, in Section 8, we showed how codes and
permutation groups can be encoded as combinatorial objects. However, we did so by explicitly
listing all elements. To encode implicitly given permutation groups, our framework can readily
be extended to allowing implicitly represented cosets of V to the set V itself as a new third
form of atom, but at this point we do not see how to handle the arising objects efficiently.

References

[ADKT15] Vikraman Arvind, Bireswar Das, Johannes Köbler, and Seinosuke Toda. Colored
hypergraph isomorphism is fixed parameter tractable. Algorithmica, 71(1):120–138,
2015.

[AGvM+18] Eric Allender, Joshua A Grochow, Dieter van Melkebeek, Cristopher Moore, and
Andrew Morgan. Minimum circuit size, graph isomorphism, and related problems.
SIAM Journal on Computing, 47(4):1339–1372, 2018.

[Bab16] László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In
Daniel Wichs and Yishay Mansour, editors, Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA,
June 18-21, 2016, pages 684–697. ACM, 2016.

[Bab19] László Babai. Canonical form for graphs in quasipolynomial time. In Proceedings
of the 51th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019. ACM, 2019. To appear.

[BC08] László Babai and Paolo Codenotti. Isomorhism of hypergraphs of low rank in
moderately exponential time. In 49th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA,
pages 667–676. IEEE Computer Society, 2008.

[BCGQ11] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code
equivalence and group isomorphism. In Dana Randall, editor, Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2011, San Francisco, California, USA, January 23-25, 2011, pages 1395–1408.
SIAM, 2011.

[BCP82] László Babai, Peter J. Cameron, and Péter P. Pálfy. On the orders of primitive
groups with restricted nonabelian composition factors. J. Algebra, 79(1):161–168,
1982.

27



[BCQ12] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism
test for groups with no abelian normal subgroups - (extended abstract). In ICALP
(1), volume 7391 of Lecture Notes in Computer Science, pages 51–62. Springer,
2012.

[BKL83] László Babai, William M. Kantor, and Eugene M. Luks. Computational complexity
and the classification of finite simple groups. In 24th Annual Symposium on Foun-
dations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages
162–171. IEEE Computer Society, 1983.

[BL83] László Babai and Eugene M Luks. Canonical labeling of graphs. In Proceedings
of the fifteenth annual ACM symposium on Theory of computing, pages 171–183.
ACM, 1983.

[BMW17] Peter A. Brooksbank, Joshua Maglione, and James B. Wilson. A fast isomorphism
test for groups whose lie algebra has genus 2. Journal of Algebra, 473:545 – 590,
2017.

[Cod11] Paolo Codenotti. Testing isomorphism of combinatorial and algebraic structures.
The University of Chicago, 2011.

[GNS18] Martin Grohe, Daniel Neuen, and Pascal Schweitzer. A faster isomorphism test for
graphs of small degree. CoRR, abs/1802.04659, 2018.

[GNSW18] Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. An im-
proved isomorphism test for bounded-tree-width graphs. CoRR, abs/1803.06858,
03 2018.

[GQ15] Joshua A. Grochow and Youming Qiao. Polynomial-time isomorphism test of
groups that are tame extensions - (extended abstract). In Khaled M. Elbassioni and
Kazuhisa Makino, editors, Algorithms and Computation - 26th International Sym-
posium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, volume
9472 of Lecture Notes in Computer Science, pages 578–589. Springer, 2015.

[GQ17] Joshua A. Grochow and Youming Qiao. Algorithms for group isomorphism via
group extensions and cohomology. SIAM J. Comput., 46(4):1153–1216, 2017.

[GS15] Martin Grohe and Pascal Schweitzer. Isomorphism testing for graphs of bounded
rank width. CoRR, abs/1505.03737, 2015.

[LS99] Martin Liebeck and Aner Shalev. Simple groups, permutation groups, and proba-
bility. Journal of the American Mathematical Society, 12(2):497–520, 1999.

[Luk82] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in
polynomial time. J. Comput. Syst. Sci., 25(1):42–65, 1982.

[Luk99] Eugene M. Luks. Hypergraph isomorphism and structural equivalence of boolean
functions. In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson
Leighton, editors, Proceedings of the Thirty-First Annual ACM Symposium on The-
ory of Computing, May 1-4, 1999, Atlanta, Georgia, USA, pages 652–658. ACM,
1999.

28



[LW12] Mark L. Lewis and James B. Wilson. Isomorphism in expanding families of indis-
tinguishable groups. Groups Complexity Cryptology, 4(1):73–110, 2012.

[Mat79] Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process.
Lett., 8(3):131–132, 1979.

[Mil83] Gary Miller. Isomorphism testing and canonical forms for k-contractable graphs (a
generalization of bounded valence and bounded genus). In Foundations of Compu-
tation Theory, pages 310–327. Springer, 1983.

[RW15] David J. Rosenbaum and Fabian Wagner. Beating the generator-enumeration
bound for p-group isomorphism. Theor. Comput. Sci., 593:16–25, 2015.

[Ser03] Ákos Seress. Permutation group algorithms, volume 152 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2003.

29


	1 Introduction
	2 Preliminaries
	3 Combinatorial Objects and Labeling Cosets
	4 Canonization of Atoms and Tuples
	5 Object Replacement
	6 Canonization of Hypergraphs
	7 Canonization of Sets
	8 Canonization of Objects
	9 Canonical Generating Sets
	10 Outlook and Open Questions
	Bibliography

