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Sylvester-Gallai type theorems for quadratic
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Abstract: We prove Sylvester-Gallai type theorems for quadratic polynomials. Specifically,
we prove that if a finite collection Q, of irreducible polynomials of degree at most 2, satisfy
that for every two polynomials Q1,Q2 ∈ Q there is a third polynomial Q3 ∈ Q so that
whenever Q1 and Q2 vanish then also Q3 vanishes, then the linear span of the polynomials in
Q has dimension O(1). We also prove a colored version of the theorem: If three finite sets
of quadratic polynomials satisfy that for every two polynomials from distinct sets there is a
polynomial in the third set satisfying the same vanishing condition then all polynomials are
contained in an O(1)-dimensional space.

This answers affirmatively two conjectures of Gupta [Gup14] that were raised in the
context of solving certain depth-4 polynomial identities.

To obtain our main theorems we prove a new result classifying the possible ways that
a quadratic polynomial Q can vanish when two other quadratic polynomials vanish. Our
proofs also require robust versions of a theorem of Edelstein and Kelly (that extends the
Sylvester-Gallai theorem to colored sets).

Key words and phrases: Sylvester-Gallai theorem, quadratic polynomials, polynomial identity testing

1 Introduction

The Sylvester-Gallai theorem asserts that if a finite set of points has the property that every line passing
through any two points in the set also contains a third point in the set then all the points in the set are
colinear. Many variants of this theorem were studied: extensions to higher dimensions, colored versions,
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robust versions and many more. For a survey on the Sylvester-Gallai theorem and its variants see [BM90].
One specific extension that is relevant to our work is the following colored version that was obtained by
Edelstein and Kelly: If three finite sets of points satisfy that every line passing through points from two
different sets also contains a point from the third set, then, in this case too all the points belong to a low
dimensional space.

Another extension of the theorem that is relevant to our work was proved in [BDWY13, DSW14].
There the authors proved the following robust version of the Sylvester-Gallai theorem (along with other
robust versions of similar theorems): if a finite set of points satisfies that for every point p in the set there
is a δ fraction of other points so that for each of them, the line passing through it and p, spans a third
point in the set, then the set is contained in an O(1/δ )-dimensional space.

While these theorems may seem unrelated to computation at first sight they have important conse-
quences for locally decodable and locally correctable codes [BDWY13, DSW14], for reconstruction of
certain depth-3 circuits [Shp09, KS09a, Sin16] and for the polynomial identity testing (PIT for short)
problem, which we describe next.

The PIT problem asks to give a deterministic algorithm that given arithmetic circuit as input determines
whether it computes the identically zero polynomial. This is a fundamental problem in theoretical
computer science that has attracted a lot of attention both because of its intrinsic importance, its relation
to other derandomization problems [KSS15, Mul17, FS13, FGT19, GT17, ST17] and its connections to
lower bounds for arithmetic circuits [HS80, Agr05, KI04, DSY09, FSV18, CKS18]. For more on the
PIT problem see [SY10, Sax09, Sax14, For14].

The case most relevant to Sylvester-Gallai type theorems is when the input circuit is a depth-3 circuit
with small top fan-in. Specifically, a homogeneous Σ[k]Π[d]Σ circuit in n variables computes a polynomial
of the following form

Φ(x1, . . . ,xn) =
k

∑
i=1

d

∏
j=1

`i, j(x1, . . . ,xn) , (1)

where each `i, j is a linear form. Consider the PIT problem for Σ[3]Π[d]Σ circuits. I.e., Φ is given as in
Equation 1 and it has 3 multiplication gates, i.e. k = 3. If Φ computes the zero polynomial then we have,
for every j, j′ ∈ [d], that

d

∏
i=1

`1,i ≡ 0 mod `2, j, `3, j′ .

As the zero set of two linear functions is an irreducible variety, we get as a consequence that for every
j, j′ ∈ [d], the linear functions `2, j and `3, j′ span a linear function in {`1,1, . . . , `1,d}. In other words,
the three sets Ti = {`i,1, . . . , `i,d}, for i ∈ {1,2,3}, satisfy the conditions of the Edelstein-Kelly theorem
described above,1 and hence span a low dimensional space. Thus, if Φ ≡ 0 then we can rewrite the
expression for Φ using only constantly many variables (after a suitable invertible linear transformation).
This allows efficient PIT algorithms for such Σ[3]Π[d]Σ circuits. The case of more than 3 multiplication
gates is more complicated and satisfies a similar higher dimensional condition. This rank-bound approach
for PIT of ΣΠΣ circuits was raised in [DS07] and later carried out in [KS09b, SS13].2

1The theorem speaks about line through points rather than span of vectors, but it is not hard to see how to translate the
Edelstein-Kelly theorem to this setting as well. See Remark 17.

2The best algorithm for PIT of Σ[k]Π[d]Σ circuits was obtained through a different, yet related, approach in [SS12].
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While such rank-bounds found important applications in studying PIT of depth-3 circuits, it seemed
that such an approach cannot work for depth-4 ΣΠΣΠ circuits,3 even in the simplest case where there are
only 3 multiplication gates and the bottom fan-in is two, i.e., for homogeneous Σ[3]Π[d]ΣΠ[2] circuits that
compute polynomials of the form

Φ(x1, . . . ,xn) =
d

∏
j=1

Q1, j(x1, . . . ,xn)+
d

∏
j=1

Q2, j(x1, . . . ,xn)+
d

∏
j=1

Q3, j(x1, . . . ,xn) , (2)

where each Qi. j is a homogeneous quadratic polynomial. Indeed, we if try to reason as before then we get

d

∏
j=1

Q1, j(x1, . . . ,xn) = 0 mod Q2, j,Q3, j′ . (3)

However, unlike the linear case it is not clear what can be concluded now. Indeed, if a product of linear
functions vanishes modulo two linear functions, then we know that one function in the product must be
in the linear span of those two linear functions. For quadratic polynomials this is not necessarily the
case. For example, note that if for a quadratic Q we have that Q = 0 and Q+x2 = 0 then also Q+xy = 0,
and, clearly, we can find Q such that Q+ xy is not spanned by Q and Q+ x2. An even more problematic
difference is that it may be the case that Equation 3 holds but that no Q1, j always vanishes when, say,
Q2,1,Q3,1 vanish. For example, let

Q1 = xy+ zw , Q2 = xy− zw , Q3 = xw , Q4 = yz.

Then, it is not hard to verify that
Q3 ·Q4 ≡ 0 mod Q1,Q2.

but neither Q3 nor Q4 vanish identically modulo Q1,Q2. Thus, the PIT problem for sums of products of
quadratics seem much harder than the corresponding problem for depth-3 circuits. Indeed, currently no
efficient deterministic PIT algorithm is known for Σ[3]Π[d]ΣΠ[2] circuits.

In spite of the above, Beecken et al. [BMS13, Gup14] and Gupta [Gup14] conjectured that perhaps
the difference between the quadratic case and the linear case is not so dramatic. In fact, they suggested
that this may be the case for any constant degree and not just for quadratics. Specifically, Gupta observed
that whenever Equation 3 holds it must be the case that there are four polynomials in {Q1, j} whose
product vanishes identically. That is, for every ( j, j′) ∈ [d]2 there are i1, j, j′ , i2, j, j′ , i3, j, j′ , i4, j, j′ ∈ [d] so that

Q1,i1, j, j′ ·Q1,i2, j, j′ ·Q1,i3, j, j′ ·Q1,i4, j, j′ ≡ 0 mod Q2, j,Q3, j′ .

Gupta then raised the conjecture that whenever this holds for every j, j′ and for every two of the
multiplication gates, then it must be the case that the algebraic rank of the set {Qi, j} is O(1). More
generally, Gupta conjectured that this is the case for any fixed number of sets.

3Though we note that for multilinear ΣΠΣΠ circuits Saraf and Volkovich obtained an analogous bound on the sparsity of the
polynomials computed by the multiplication gates in a zero circuit [SV18].
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Conjecture 4 (Conjecture 1 in [Gup14]). Let F1, . . . ,Fk be finite sets of irreducible homogenous poly-
nomials in C[x1, . . . ,xn] of degree ≤ r such that ∩iFi = /0 and for every k−1 polynomials Q1, . . . ,Qk−1,
each from a distinct set, there are P1, . . . ,Pc in the remaining set such that whenever Q1, . . . ,Qk−1 vanish
then also the product ∏

c
i=1 Pi vanishes. Then, trdegC(∪iFi)≤ λ (k,r,c) for some function λ , where trdeg

stands for the transcendental degree (which is the same as algebraic rank).

The condition in the conjecture can be stated equivalently as

c

∏
i=1

Pi ∈
√
(Q1, . . . ,Qk−1),

where the object on the right hand side is the radical of the ideal generated by {Qi}k−1
i=1 (see subsection 2.1).

Note that for r = 1 we have also c = 1 and by the Edelstein-Kelly theorem λ is ≤ 2 in this case (and we
can replace algebraic rank with linear rank).

In [BMS13] Beecken et al. conjectured that the algebraic rank of simple and minimal Σ[k]Π[d]ΣΠ[r]

circuits (see their paper for definition of simple and minimal) is Ok(logd). We note that this conjecture is
weaker than Gupta’s as every zero Σ[k]Π[d]ΣΠ[r] circuit gives rise to a structure satisfying the conditions
of Gupta’s conjecture, but the other direction is not necessarily true. Beecken et al. also showed how to
obtain a deterministic PIT for Σ[k]Π[d]ΣΠ[r] circuits assuming the correctness of their conjecture.

As an approach towards solving Conjecture 4 Gupta set up a collection of conjectures, each of
which is a natural extension of a known Sylvester-Gallai type theorem for the case of higher degree
polynomials. The first conjecture is a direct analog of the Sylvester-Gallai theorem where we replace
the requirement that a line through two points contains a third with a more algebraic condition: that for
every two polynomials there is a third one so that whenever the two polynomials vanish then also the
third vanishes.

Conjecture 5 (Conjecture 2 of [Gup14]). Let Q1, . . . ,Qm ∈ C[x1, . . . ,xn] be irreducible and homogenous
polynomials of degree≤ r such that for every pair of distinct Qi,Q j there is a distinct Qk so that whenever
Qi and Q j vanish then so does Qk. Then trdegC(Q1, . . . ,Qm)≤ λ (r).

Note that Sylvester-Gallai’s theorem is equivalent to the special case r = 1. A more general conjecture
in [Gup14] is that a similar phenomenon holds when the polynomials come from different sets.

Conjecture 6 (Conjecture 30 of [Gup14]). Let R,B,G be finite disjoint sets of irreducible homogenous
polynomials in C[x1, . . . ,xn] of degree ≤ r such that for every pair Q1,Q2 from distinct sets there is a Q3
in the remaining set so that whenever Q1 and Q2 vanish then also Q3 vanishes. Then trdegC(R∪B∪G)≤
λ (r).4

The case r = 1 is the Edelstein-Kelly theorem. Both Conjecture 5 and Conjecture 6 were open, prior
to this work, for any degree r > 1.

4Here and in Conjectures 4 and 5 we actually need to assume that the polynomials are pairwise linearly independent.
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1.1 Our Results

Our main results give affirmative answers to Conjecture 5 and Conjecture 6 for the case r = 2. This shows
that a Sylvester-Gallai type phenomenon holds for degree 2 and we believe this indicates that this might
be the case for higher degrees as well. Specifically we prove the following two theorems. The first is an
extension of the Sylvester-Gallai theorem to quadratic polynomials. It confirms Conjecture 5 for the case
r = 2.

Theorem 7. Let {Qi}i∈[m] be homogeneous quadratic polynomials over C such that each Qi is either
irreducible or a square of a linear function. Assume further that for every i 6= j there exists k 6∈ {i, j}
such that whenever Qi and Q j vanish Qk vanishes as well. Then the linear span of the Qi’s has dimension
O(1).

The second theorem is an extension of the theorem of Edelstein-Kelly to quadratic polynomials,
which gives an affirmative answer to Conjecture 6 for the case r = 2..

Theorem 8. Let T1,T2 and T3 be finite sets of homogeneous quadratic polynomials over C satisfying the
following properties:

• Each Q ∈ ∪iTi is either irreducible or a square of a linear function.5

• No two polynomials are multiples of each other (i.e., every pair is linearly independent).

• For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in the third set so
that whenever Q1 and Q2 vanish then also Q3 vanishes.

Then the linear span of the polynomials in ∪iTi has dimension O(1).

Note that what we proved is even stronger than what was conjectured in Conjectures 5 and 6. There
the conjecture is that there is an upper bound on the algebraic rank whereas our results give an upper
bound on the linear rank (which of course trivially implies an upper bound on the algebraic rank).

From the perspective of PIT our results do not imply Conjecture 4, even for the case of k = 3 and
r = 2, yet we believe they are a significant step in the direction of resolving this conjecture and obtaining
a PIT algorithm for Σ[3]Π[d]ΣΠ[2] circuits.

An important tool in the proof of Theorem 7 is a result of [BDWY13, DSW14] that gives a robust
version of the Sylvester-Gallai theorem (see subsection 2.2). For the proof of Theorem 8 we need the
following relaxation of the Edelstein-Kelly theorem. Roughly, three finite sets form a δ -EK configuration
if for every point p in one set a δ fraction of the points in a second set satisfy that the line connecting
each of them to p passes through a point in the third set.

Theorem 9. Let 0 < δ ≤ 1 be any constant. Let T1,T2,T3 ⊂ Cn be disjoint finite subsets that form a
δ -EK configuration. Then dim(span{∪iTi})≤ O(1/δ 3).

This theorem is similar in nature to the results proved in [BDWY13, DSW14] (see Theorem 15) but
it does not seem to directly follow from them.

5We replace a linear function with its square to keep the sets homogeneous of degree 2.
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1.2 Proof Idea

The basic tool in proving Theorems 7 and 8 is the following result that characterizes the different cases
when a quadratic polynomial is in the radical of the ideal generated by two other quadratics, i.e., that is
vanishes when the two quadratic polynomials vanish.

Theorem 10. Let Q,Q1,Q2 be such that whenever Q1 and Q2 vanish then also Q vanishes. Then one of
the following cases hold:

1. Q is in the linear span of Q1,Q2

2. There exists a non trivial linear combination of the form αQ1 + βQ2 = `2 where ` is a linear
function

3. There exist two linear functions `1 and `2 such that when setting `1 = `2 = 0 we get that Q,Q1 and
Q2 vanish.

The theorem guarantees that unless Q is in the linear span of Q1 and Q2 then Q1 and Q2 must satisfy
a very strong property, namely, they must span a square of a linear function or they have a very low rank
(as quadratic polynomials). The proof of this theorem is based on analyzing the resultant of Q1 and Q2
with respect to some variable. We now explain how this theorem can be used to prove Theorem 7.

Consider a set of polynomials T = {Qi} satisfying the condition of Theorem 7. If for every Q ∈ T for
at least, say, (1/100) · |T| of the polynomials Qi ∈ T there is a another polynomial in span(Q,Qi) then
the claim follows by the robust version of the Sylvester-Gallai theorem proved in [BDWY13, DSW14]
(Theorem 15). So let us assume this is not the case. And in fact, let us assume that there are two
polynomials Q1,Q2 ∈ T for which this does not hold. This means that at least 0.98 fraction of the
polynomials in T satisfy Case 2 or Case 3 of Theorem 10 with Q1 and Q2. This gives very strong
restriction on the structure of these 0.98 · |T| polynomials.

To use this structure we first show that the polynomials satisfying Case 2 of Theorem 10 with both
Q1 and Q2 also span a low dimensional space (Claim 38). The intuition is that every such polynomial can
be represented as both αQ1 + `2

1 and as βQ2 + `2
2. This gives rise to many different equations involving

Q1 and Q2. Analyzing those equations we show that all those `i span a low dimensional space.
The remaining polynomials must satisfy Case 3 of Theorem 10 with either Q1 or Q2. We then show

(Claim 44) that, under the conditions of Theorem 7, all the polynomials that satisfy Case 3 of Theorem 10
with, say, Q1 span a low dimensional space. The intuition is that if we map the linear functions in
some “minimal” representation of Q1 to a new variable z, then all these polynomials will be mapped to
quadratics of the form z · `i. We then show that these `i’s satisfy the usual Sylvester-Gallai condition and
hence get a bound on their span.

The proof outline of Theorem 8 involves more cases, but it is still similar in spirit and is based on
studying the case where our three sets do not satisfy the robust version of the Edelstein-Kelly theorem
(Theorem 9).

To prove Theorem 9 we would like to reduce to the robust version of the Sylvester-Gallai theorem
proved in [BDWY13, DSW14]. For example, if all our sets are of the same size then their union forms a
δ/3-SG configuration (see subsection 2.2) and we can conclude using the result of [BDWY13, DSW14].
Thus, the main issue is what to do when the sets are of very different sizes. When the largest set has size
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polynomial in the size of the smallest set then we prove that by sampling a random subset of appropriate
size from the largest set and taking its union with the two other sets we again get a δ/6-SG configuration.
This implies that the second largest and smallest sets live in an O(1)-dimensional space and hence all the
sets span an O(1)-dimensional space. The proof of the case where the largest set is much larger than the
smaller set is different and is based on a completely different covering argument.

1.3 Organization

The paper is organized as follows. section 2 contains basic facts regarding the resultant and some other
basic tools and notation, including the robust version of the Sylvester-Gallai theorem of [BDWY13,
DSW14]. In section 3 we define the notion of a δ -EK configuration and prove Theorem 9. section 4
contains the proof of our structure theorem (Theorem 10). In section 5 we give the proof of Theorem 7 and
in section 6 we prove Theorem 8. Finally in section 7 we discuss further directions and open problems.

2 Preliminaries

In this section we explain our notation, give some basic facts from algebra that will be useful in our
proofs and state a robust version of the Sylvester-Gallai theorem.

We will mostly use the following notation. Greek letters α,β , . . . denote scalars from the field.
Uncapitalized letters a,b,c, . . . denote linear functions and x,y,z denote variables (which are also linear
functions). We denote x = (x1, . . . ,xn). Capital letters such as A,Q,F denote quadratic polynomials
whereas V,U,W denote linear spaces. Calligraphic letters I,J,F,Q,T denote sets. For a positive integer n
we denote [n] = {1,2, . . . ,n}.

We will also need on the following version of Chernoff bound. See e.g. Theorem 4.5 in [MU05].

Theorem 11 (Chernoff bound). Suppose X1, . . . ,Xn are independent indicator random variables. Let
µ = E[Xi] be the expectation of Xi. Then,

Pr

[
n

∑
i=1

Xi <
1
2

nµ

]
< exp(−1

8
nµ).

2.1 Facts from algebra

A notation that will convenient to use is that of a radical ideal. In this work we only consider the ring
of polynomials C[x]. An ideal I ⊆ C[x] is an abelian subgroup that is closed under multiplication by
ring elements. We will denote with (Q1,Q2) the ideal generated by two polynomials Q1 and Q2. I.e.
(Q1,Q2) = Q1 ·C[x]+Q2 ·C[x]. The radical of an ideal I, denoted

√
I, is the set of all ring elements f

satisfying that for some natural number m, f m ∈ I. Hilbert’s Nullstellensatz implies that if a polynomial
Q vanishes whenever Q1 and Q2 vanish then Q ∈

√
(Q1,Q2) (see e.g. [CLO07]). We shall often use the

notation Q ∈
√
(Q1,Q2) to denote this vanishing condition.

A tool that will play an important role in the proof of Theorem 10 is the resultant of two polynomials.
As we only consider quadratic polynomials in this paper we restrict our attention to resultants of such
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polynomials. Let F,G∈C[x] be quadratic polynomials. View F,G as polynomials in x1 over C(x2, . . . ,xn).
I.e.

F = αx2
1 +ax1 +F0 and G = βx2

1 +bx1 +G0 .

Then, the resultant of F and G with respect to x1 is the determinant of their Sylvester matrix

Resx1(F,G) :=

∣∣∣∣∣∣∣∣


F0 0 G0 0
a F0 b G0
α a β b
0 α 0 β


∣∣∣∣∣∣∣∣ .

A useful fact is that if the resultant of F and G vanishes then they share a common factor.

Theorem 12 (See e.g. Proposition 8 in §5 of Chapter 3 in [CLO07]). Given F,G∈ F[x] of positive degree,
the resultant Resx(F,G) is an integer polynomial in the coefficients of F,G. Furthermore, F and G have
a common factor in F[x] if and only if Resx(F,G) = 0.

Finally, we shall define the rank of a quadratic polynomial as follows.

Definition 13. For a quadratic polynomial we denote with ranks(Q) the minimal r such that there are
2r linear functions {`i}2r

i=1 satisfying Q = ∑
r
i=1 `2i · `2i−1. We call such a representation a minimal

representation of Q.

This is a slightly different definition than the usual way one defines rank of quadratic forms, but it is
more suitable for our needs. We note that a quadratic Q is irreducible if and only if ranks(Q)> 1. The
next claim shows that a minimal representation is unique in the sense that the space spanned by the linear
functions in it is unique.

Claim 14. Let Q be an irreducible quadratic polynomial with ranks(Q) = r. Let Q = ∑
r
i=1 a2i−1 ·a2i and

Q = ∑
r
i=1 b2i−1 ·b2i be two different minimal representations of Q. Then span{ai}= span{bi}.

Proof. Note that if the statement does not hold then, w.l.o.g., a1 is not contained in the span of the bi’s.
This means that when setting a1 = 0 the bi’s are not affected on the one hand, thus Q remains the same
function of the bi’s, and in particular ranks(Q|a1=0) = r, but on the other hand ranks(Q|a1=0) = r− 1
(when considering its representation with the ai’s), in contradiction.

2.2 Robust Sylvester-Gallai theorem

We will need the following theorem of Dvir et al. [DSW14] that improves on an earlier work of Barak et
al. [BDWY13].

We say that the points v1, . . . ,vm in Cd form a δ -SG configuration if for every i ∈ [m] there exists at
least δm values of j ∈ [m] such that the line through vi,v j contains a third point in the set.

Theorem 15 (Theorem 1.9 of [DSW14]). If v1, . . . ,vm ∈ Cd is a δ -SG configuration then
dim(span{v1, ...,vm})≤ 12/δ .

An easy consequence of the theorem is the following.

DISCRETE ANALYSIS, 2020:13, 34pp. 8

http://dx.doi.org/10.19086/da


SYLVESTER-GALLAI TYPE THEOREMS FOR QUADRATIC POLYNOMIALS

Corollary 16. Let 0 < δ < 1. Assume v0,v1, . . . ,vm ∈ Cd are such that for every i ∈ [m] there exists
at least δm values of j ∈ [m] such that the line through vi,v j contains a third point in the set (i.e. the
condition holds for all the points except, possibly, v0). Then dimv0,v1, ...,vm < 50/δ .

Proof. The only way that v0,v1, . . . ,vm fail to be a δ -SG configuration is if v0 does not satisfy the
condition. By considering all pairs (vi,v j) that lie on a line with v0 we conclude that either v0,v1, . . . ,vm

is a δ

2 -SG configuration or v1, . . . ,vm is. In any case, by Theorem 15, we get that dimv1, ...,vm ≤ 48/δ

and the total dimension is at most 50/δ .

Remark 17. In our application we will have that the span of two points contains a third point. This does
not change the theorems much as by picking a random subspace H, of codimension 1, and replacing each
point p with H ∩ span{p} we get that p3 ∈ span{p1, p2} iff H ∩ span{p3} is on the line passing through
H ∩ span{p1} and H ∩ span{p2}.

3 Robust Edelstein-Kelly theorems

In this section we prove Theorem 9 as well as some extensions of it, which give robust versions of the
following theorem of Edelstein and Kelly [EK66].

Theorem 18 (Theorem 3 of [EK66]). Let Ti, for i ∈ [3], be disjoint finite subsets of Cn such that for every
i 6= j and any two points p1 ∈ Ti and p2 ∈ T j there exists a point p3 in the third set that is on the line
passing through p1 and p2. Then, any such Ti satisfy that dim(span{∪iTi})≤ 3.

We would be interested in the case where the requirement in the theorem holds with some positive
probability. We say that the sets T1,T2,T3 ⊂Cn form a δ -EK configuration if for every i ∈ [3] and p ∈ Ti,
for every j ∈ [3]\{i} at least δ fraction of the points p j ∈ T j satisfy that p and p j span some point in the
third set.6 To ease the reading we state again Theorem 9.

Theorem (Theorem 9). Let 0 < δ ≤ 1 be any constant. Let T1,T2,T3 ⊂ Cn be disjoint finite subsets that
form a δ -EK configuration. Then dim(span{∪iTi})≤ O(1/δ 3).

Proof of Theorem 9. Denote |Ti|= mi. Assume w.l.o.g. that |T1| ≥ |T2| ≥ |T3|. The proof distinguishes
two cases. The first is when |T3| is not too small and the second case is when it is much smaller than the
largest set.

1. Case m3 > m1/3
1 :

Let T′1 ⊂ T1 be a random subset, where each element is samples with probability m2/m1 = |T2|/|T1.
By the Chernoff bound (Theorem 11) we get that, w.h.p., the size of the set is at most, say, 2m2.
Further, the Chernoff bound also implies that for every p ∈ T2 there are at least (δ/2) ·m2 points in
T′1 that together with p span a point in T3. Similarly, for every p ∈ T3 there are at least (δ/2) ·m2
points in T′1 that together with p span a point in T2. Clearly, we also have that for every point

6Note that here we use the notion of span rather than a line passing through points. However, as noted in Remark 17, this
does not make any real difference.
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p ∈ T′1 there are δm2 points in T2 that together with p span a point in T3. Thus, the set T′1∪T2∪T3
is a (δ/8)-SG configuration and hence has dimension O(1/δ ) by Theorem 15.

Let V be a subspace of dimension O(1/δ ) containing all these points. Note that in particular,
T2,T3 ⊂V . As every point p ∈ T1 is a linear combination of points in T2∪T3 it follows that the
whole set has dimension O(1/δ ).

1. Case m3 ≤ m1/3
1 :

In this case we may not be able to use the sampling approach from earlier as m2 can be too small
and the Chernoff argument from above will not hold.

We say that a point p1 ∈ T1 is a neighbor of a point p ∈ T2∪T3 if the space spaned by p and p1
intersects the third set. Denote with Γ1(p) the neighborhood of a point p ∈ T2∪T3 in T1.

Every two points p ∈ T2 and q ∈ T3 define a two-dimensional space that we denote V (p,q) =
span{p,q}.
Fix p ∈ T2 and consider those spaces V (p,q) that contain points from T1. Clearly there are at most
|T3| such spaces. Any two different subspaces V (p,q1) and V (p,q2) have intersection of dimension
1 (it is span{p}) and by the assumption in the theorem the union ∪q∈T3V (p,q) covers at least δm1
points of T1. Indeed, δm1 points q1 ∈ T1 span a point in T3 together with p. As our points are
pairwise independent, it is not hard to see that if q3 ∈ span{p,q1} then q1 ∈ span{p,q3}=V (p,q3)

For each subspace V (p,q) consider the set V (p,q)1 =V (p,q)∩T1.

Claim 19. Any two such spaces V (p,q1) and V (p,q2) satisfy that either V (p,q1)1 =V (p,q2)1 or
V (p,q1)1∩V (p,q2)1 = /0.

Proof. If there was a point p′ ∈ V (p,q1)1 ∩V (p,q1)1 then both V (p,q1) and V (p,q2) would
contain p, p′ and as p and p′ are linearly independent (since they belong to Ti’s they are not the
same point) that would make V (p,q1) =V (p,q2). In particular we get V (p,q1)1 =V (p,q2)1.

As conclusion we see that at most O(1/δ 2) different spaces {V (p,q)}q have intersection at least
δ 2/100 ·m1 with T1. Let I contain p and a point from each of the sets {V (p,q)1} that have size
at least δ 2/100 ·m1. Clearly |I| ≤ O(1/δ 2). We now repeat the following process. As long as
T2 6⊂ span{I} we pick a point p′ ∈ T2 \ span{I}. We add p′ to I along with a point from each large
set V (p′,q)1, i.e. subsets satisfying |V (p′,q)1| ≥ δ 2/100 ·m1, and repeat.

We next show that this process must terminate after O(1/δ ) steps and that at the end |I|= O(1/δ 3).
To show that the process terminates quickly we prove that if pk ∈ T2 is the point that was picked
at the k’th step then |Γ1(pk) \∪i∈[k−1]Γ1(pi)| ≥ (δ/2)m1. Thus, every step covers at least δ/2
fraction of new points in T1 and thus the process must end after at most O(1/δ ) steps.

Claim 20. Let pi ∈ T2, for i ∈ [k− 1] be the point chosen at the ith step. If the intersection of
V (pk,q)1 with V (pi,q′)1, for any q,q′ ∈ T3, has size larger than 1 then V (pk,q) =V (pi,q′) (and
in particular, V (pk,q)1 =V (pi,q′)1) and |V (pk,q)1| ≤ δ 2/100 ·m1.

Moreover, if there is another pair (q′′,q′′′) ∈ T2
3 satisfying |V (pk,q′′)1 ∩V (pi,q′′′)1| > 1 then it

must be the case that V (pi,q′) =V (pi,q′′′).
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Proof. If the intersection of V (pk,q)1 with V (pi,q′)1 has size at least 2 then by an argument similar
to the proof of Claim 19 we would get that V (pk,q) =V (pi,q′). To see that in this case the size of
V (pi,q′)1 is not too large we note that by our process, if |V (pi,q′)1| ≥ δ 2/100 ·m1 then I contains
at least two points from V (pi,q′)1. Hence, pk ∈V (pi,q′)⊂ span{I} in contradiction to the choice
of pk.

To prove the moreover part we note that in the case of large intersection, since V (pk,q) =V (pi,q′),
we have that pk, pi ∈V (pi,q′). If there was another pair (q′′,q′′′) so that |V (pk,q′′)1∩V (pi,q′′′)1|>
1 then we would similarly get that pk, pi ∈V (pi,q′′′). By pairwise linear independence of the points
in our sets this implies that V (pi,q′) =V (pi,q′′′).

Corollary 21. Let i ∈ [k−1] then

|Γ1(pk)∩Γ1(pi)| ≤ δ
2/100 ·m1 +m2

3.

Proof. The proof follows immediately from Claim 20. Indeed, the claim assures that there is at
most one subspace V (pk,q) that has intersection of size larger than 1 with any V (pi,q′)1 (and
that there is at most one such subspace V (pi,q′)) and that whenever the intersection size is larger
than 1 it is upper bounded by δ 2/100 ·m1. As there are at most m2

3 pairs (q,q′) ∈ T2
3 the claim

follows.

The corollary implies that

|Γ1(pk)∩
(
∪i∈[k−1]Γ1(pi)

)
| ≤ k((δ 2/100)m1 +m2

3)< (δ/2) ·m1,

where the last inequality holds for, say, k < 10/δ .7 As |Γ1(pk)| ≥ δ ·m1, for each k, it follows that
after k < 10/δ steps

|∪i∈[k] Γ1(pi)|> k(δ/2)m1.

In particular, the process must end after at most 2/δ steps.

As each steps adds to I at most O(1/δ 2) vectors, at the end we have that |I|= O(1/δ 3) and every
p ∈ T2 is in the span of I.

Now that we have proved that T2 has small dimension we conclude as follows. We find a maximal
subset of T3 whose neighborhood inside T1 are disjoint. As each neighborhood has size at least
δ ·m1 it follows there the size of the subset is at most O(1/δ ). We add those O(1/δ ) points to I

and let V = span{I}. Clearly dim(V ) = O(1/δ 3).

Claim 22. ∪iTi ⊂V .

Proof. We first note that if p ∈ T1 is in the neighborhood of some p′ ∈ I∩T3 then p ∈V . Indeed,
the subspace spanned by p′ and p intersects T2. I.e. there is q ∈ T2 that is equal to α p+β p′, where
from pairwise independence both α 6= 0 and β 6= 0. As both p′ ∈V and T2 ⊂V we get that also
p ∈V .

7It is here that we use the fact that we are in the case m3 ≤ m1/3
1 .
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We now have that the neighborhood of every p ∈ T3 \ I intersects the neighborhood of some
p′ ∈ I∩T3. Thus, there is some point q ∈ T1 that is in V (by the argument above as it is a neighbor
of p′) and is also a neighbor of p. It follows that also p ∈V as the subspace spanned by q and p
contains some point in T2 and both {q},T2 ⊂V (and we use pairwise independence again). Hence
all the points in T3 are in V . As T2∪T3 ⊂V it follows that also T1 ⊂V .

This concludes the proof of the case m3 ≤ m1/3
1 .

Remark 23. The bound O(1/δ 3) is probably not tight and we believe that the correct bound should be
O(1/δ ) but we did not try to get tight bounds here. The theorem also seems similar in spirit to the results
in [BDWY13, DSW14] but as far as we can tell it is not a direct corollary of any of the results there.

Remark 24. While Theorem 9 speaks about lines through points, a similar conclusion holds when we
replace the condition that p3 lies on the line through p1 and p2 with the condition p3 ∈ span{p1, p2}.

Similar to Corollary 16 we have the following variant of Theorem 9.

Theorem 25. Let 0 < δ ≤ 1 be any constant. Let T1,T2,T3 ⊂ Cn be disjoint finite subsets. Assume
that with the exception of at most c elements from ∪3

i=1Ti all other elements in ∪3
i=1Ti satisfy the δ -EK

property. Then dim(span{∪iTi})≤ Oc(1/δ 3).

Sketch. The proof is similar to the proof of Theorem 9 so we just explain how to modify it.

1. Case m3 > m1/3
1 : Here too we repeat the sampling argument and note, similar to Corollary 16 that

the sampled set give rise to an Ω(δ/2c)-SG configuration. Adding the c ’“bad” elements to the
subspace V gives a subspace of dimension Oc(1/δ ) spanning T2∪T3. The rest of the proof is the
same.

2. Case m3 ≥ m1/3
1 : We repeat the covering argument only now we initiate I with the c ’“bad”

elements. It is not hard to see that the rest of the proof gives the desired result.

For the proof of Theorem 8 we would actually need the following extension of the theorem. The
extension speaks of a situation where some linear combinations fall into a subspace W and not just to one
of the sets.

Theorem 26. Let 0 < δ ≤ 1 be any constant. Let W ⊂ Cn be an r-dimensional space and let Wi ⊂W,
for i ∈ [3], be finite subsets of W. Let K1,K2,K3 ⊂ Cn \W be finite subsets. Let Ti =Ki∪Wi. Assume
that no two vectors in ∪iTi are linearly dependent.

Assume that with the exception of at most c elements from ∪3
i=1Ki all other elements satisfy the

following relaxed EK-property: If p ∈Ki is not one of the c exceptional points then for every j ∈ [3]\{i},
for at least δ fraction of the points q ∈ T j the span of p and q contains a point in Tk, for the third index k.
Then, there exists a linear subspace V of dimension dim(V ) = Oc(1/δ 3) such that span{∪iTi} ⊆W +V .
In particular, dim(span{∪iTi})≤ Oc(r+1/δ 3).
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Note that the theorem assumes nothing about the relation between the size of Wi and Ki. Furthermore,
it only asks that points in Ki satisfy the spanning property with points from T j =K j ∪Wj and that the
spanned point can belong to Tk =Kk∪Wk and not just to Kk.

Proof. As in the proof of Theorem 9 we denote the neighborhood of an element p ∈ ∪iKi in T j with
Γ j(p). I.e., q ∈ T j belongs to Γ j(p), for p ∈Ki (i 6= j), if p and q span a point in Tk where k 6∈ {i, j}.
Assume w.l.o.g. that |K1| ≥ |K2| ≥ |K3|. As in the proof of Theorem 9 we distinguish two cases.

1. Case |K3|> |K1|1/3:
Our first step is to project the space W to a random one-dimensional space W0 = span{w0} ⊂W .
We do so by projecting Cn to Cn−r+1 in a way that the kernel of the projection is in W . Note that if
we pick w0 ∈W at random (by, say, picking its coefficients uniformly from [0,1]r) then any two
vectors from ∪iKi remain linearly independent with probability 1. We also note that this projection
does not affect linear dependencies.

We abuse notation and use Ki to denote the set Ki after the projection. In contrast to the Ki’s, all
elements from W now become linearly dependent. Thus, if Wi was not empty then we now replace
it with the single vector w0.

We now proceed as in the proof of Theorem 9 and sample a random subset K′1 ⊆K1 of size roughly
|K2| (i.e. each element of K1 is added to the set with probability |K2|/|K1|). We would like to
show that the new sets satisfy the conditions of Theorem 25 with parameter δ/4 and c+ 1 bad
polynomials.

Claim 27. K′1∪K2∪K3∪{w0} satisfy the conditions of Theorem 25 with parameter δ/4 and at
most c+1 bad polynomials..

Proof. Consider an element p ∈ K′1 that is not exceptional. Then, before the projection to W0,
there were δ |T2| elements of T2 that each, together with p, spanned a point in K3 ∪W . I.e.,
|Γ2(p)| ≥ δ |T2|. Observe that some of the elements from Γ2(p) may have been projected to a
multiple of w0. We wish to show that in any case there are many points in K′1∪K2∪K3∪{w0}
that together with p span a third point in the set. We consider two cases.

(a) |Γ2(p)∩W | ≤ (δ/2)|T2|: In this case

|Γ2(p)∩K2|= |Γ2(p)|− |Γ2(p)∩W | ≥ δ |T2|− (δ/2)|T2|= (δ/2)|T2| ≥ (δ/2)|K2| .

(b) |Γ2(p)∩W |> (δ/2)|T2|: Observe that for any q ∈ Γ2(p)∩W the space spanned by p and
q must contain a point in K3 as otherwise we would get that p ∈W as well, contradicting
the assumption that K1 ⊂ Cn \W . Furthermore, all the points in K3 that are obtained in this
manner must be distinct. Indeed, if p spans q ∈K3 with w1,w2 ∈W2 then, as w1 and w2 are
linearly independent and so are p and q, we get that span{p,q}= span{w1,w2} and again it
follows that p ∈W . It therefore follows that p spans a point in W with at least

(δ/2)|T2| ≥ (δ/2)|K2|

elements of K3. As any two points in ∪iKi remained linearly independent after the projection
of W to W0, it follows that p spans w0 with at least (δ/2)|K2| elements of K3.
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Thus, in any case p has at least (δ/2) · |K2| points in K2∪K3 that together with it span a third
point in K′1∪K2∪K3∪{w0}.

A similar argument shows roughly the same result for p ∈K2∪K3, where now we also have to
remember to use the Chernoff bound to claim that the fraction of neighbors it has in K′1 is roughly
the same as in K1, namely, at least δ/2 (similarly to the proof of Theorem 9).

We therefore have a set of size at most, say, 4|K2|+1 that, with the possible exception of c+1
points (the original c points and w0), satisfy the condition of Theorem 25 with parameter δ/4 (we
lose a factor of 2 in δ when sampling K′1 and then another factor due to the projection to W0).

We continue with the proof of Theorem 26. Claim 27 and Theorem 25 imply that the projected set
K′1∪K2∪K3∪W0 is contained in a subspace V of dimension at most Oc(1/δ 3). As we projected W
to spanw0⊆W , it follows that K′1∪K2∪K3∪W ⊂V +W , and clearly dim(V +W )=Oc(r+1/δ 3).
All that is left is to extend the bound to include K1 instead of K′1 and this is done as in the
proof of Theorem 9 without losing much in the dimension of V (except a possible additive term
of c to dim(V )). We thus get that K1 ∪K2 ∪K3 ∪W ⊆ V +W . This of course implies that
T1∪T2∪T3 ⊆V +W and dim(V +W ) = Oc(r+1/δ 3) as claimed.

2. Case |K3| ≤ |K1|1/3:
The proof in this case is similar to the second case in the proof of Theorem 9.

Note that, since K1 is so large and every p ∈K2 has at least δ |T1| neighbors in T1, we get that p
also has at least (δ/2) · |K1| neighbors in K1. Indeed, as before if a neighbor q of p is in W1 then
the third point spanned by p and q cannot be in W3. Hence it must be in K3. Again it is easy to
show that all the elements in K3 that are obtained in this way must be distinct and since the set K3
is too small the claim follows.

We now proceed as in the proof of Theorem 9. For p ∈ K2 and q ∈ K3 we define the two
dimensional space V (p,q) = span{p,q} and denote V (p,q)1 =V (p,q)∩K1.

Let I contain the c exceptional points. Consider p1 ∈K2 that is not in the span of the points in I.
Add p1 to I as well as any q ∈K3 so that |V (p1,q)1|> ((δ/2)2/100) · |K1|. Continue this process
where at each step i we pick pi ∈K2 that is not in the linear span of the vectors in I. We continue
doing so noting that at east step the number of vectors in K1 that is covered by the neighborhoods
of the points pi that we picked grows by at least (1/2) · (δ/2) · |K1| (the argument is the same as in
the second case in the proof of Theorem 9). Hence, the process must terminate after O(1/δ ) steps
at which stage I is of size Oc(1/δ 3). As in the second case in the proof of Theorem 9 we conclude
that I spans all points in K2.

We continue as in the proof of Theorem 9. We find a maximal subset of K3 whose neighborhood
inside T1 are disjoint. As each neighborhood has size at least δ · |T1| it follows there the size of
the subset is at most O(1/δ ). We add those O(1/δ ) points to I and let V = span{I}. Clearly
dim(V ) = Oc(1/δ 3). As in the proof of Theorem 9 we have that T2 ⊂V +W .

Claim 28. ∪iTi ⊂V +W.
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Proof. As before, note that if p ∈ T1 is in the neighborhood of some p′ ∈ I∩K3 then p ∈V +W .
Indeed, the subspace spanned by p′ and p intersects T2. I.e. there is q∈ T2 that is equal to α p+β p′,
where from pairwise independence it follows that α 6= 0 and β 6= 0. As p′ ∈V and T2 ⊂V +W it
also holds that p ∈V +W .

We now have that the neighborhood of every p ∈ K3 \ I intersects the neighborhood of some
p′ ∈ I∩K3. Thus, there is some point q ∈ T1 that is in V +W (by the argument above, as it is
a neighbor of p′) and is also a neighbor of p. It follows that also p ∈ V +W as the subspace
spanned by q and p contains some point in T2 and since T2 ⊂V +W we get that p is in V +W as
well. Hence all the points in K3 are in V +W . As W2∪W3∪K2∪K3 ⊂V +W it follows that also
K1 ⊂V +W . The claim about the dimension of V +W is clear.

This concludes the proof of the second case and with it the proof of Theorem 26.

4 Structure theorem for quadratics satisfying Q ∈
√

(Q1,Q2)

An important tool in the proofs of our main results is the following theorem that classifies all the possible
cases in which a quadratic Q is in the radical of two other quadratics, where all quadratics are irreducible.

Before stating the theorem we explain the intuition behind the different cases. We would like to
understand when does a quadratic polynomial Q can belong to the radical of two other quadratics. Clearly,
if Q is a linear combination of Q1,Q2 then it is in their radical (and in fact, in their linear span). Another
option is that Q2 = αQ1 +b2 and then Q can be of the form βQ1 +b ·a. This case is clearly different
than the linear span case. Finally, another option is the following situation: Q′1 = xy, Q′2 = z(x+ z)
and Q′ = yz. It is not hard to verify that in this case too, Q′ ∈

√
(Q′1,Q

′
2). All these polynomials are

reducible of course, but by defining, e.g., Q1 = Q′1 +Q′2, Q2 = Q′1−Q′2 and Q = Q′+Q′1 +Q′2 we get
three irreducible polynomials that do not fall into any of the previous two cases. Thus, all the three cases
are distinct and can happen. What Theorem 10 shows is that, essentially, these are the only possible cases.
To ease the reading we repeat the theorem here with slightly different notation.

Theorem 29. Let Q,Q1,Q2 be such that Q ∈
√

Q1,Q2. Then one of the following cases hold:

1. Q is in the linear span of Q1,Q2

2. There exists a non trivial linear combination of the form αQ1 +βQ2 = b2 where b is a linear
function

3. There exist two linear functions b1 and b2 such that when setting b1 = b2 = 0 we get that Q,Q1
and Q2 vanish. In other words, Q,Q1,Q2 ∈

√
(b1,b2).

Proof. By applying a suitable linear transformation we can assume that for some r ≥ 1

Q1 =
r

∑
i=1

x2
i .
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We can also assume wlog that x2
1 appears only in Q1 as we can replace Q2 with any polynomial of the

form Q′2 = Q2−αQ1 without affecting the result. Indeed, Q ∈
√

(Q1,Q2) if and only if Q ∈
√
(Q1,Q′2).

Furthermore, all cases in the theorem remain the same if we replace Q2 with Q′2 and vice versa.
In a similar fashion we can replace Q with Q′ = Q−βQ1 to get rid of the term x2

1 in Q. Thus, wlog,
the situation is

Q1 = x2
1 +Q′1

Q2 = x1 ·b2−A (30)

Q = x1 ·b+B

where Q′1,A,B,b2 and b do not depend on x1.
The first case we handle is when the “new” Q2 does not depend on x1.

Claim 31. If b2 = 0 then Case 2 of the theorem holds.

Proof. For any assignment satisfying A = 0 there are two solutions to Q1 = 0, unless Q′1 = 0, whereas Q
vanishes for only one value of x1. Thus, we must have Q′1 = 0 modulo A, which means that either A is a
square of a linear function and so Q1 and Q2 satisfy Case 2 of the theorem (as we assume b2 = 0), or
Q1 = α ·A for some nonzero constant α and then x2

1 is in the span of Q1 and Q2, and again Case 2 of the
theorem holds.

We next handle the case where the “new” Q2 is reducible.

Claim 32. If b2 divides A then the conclusion of the theorem holds.

Proof. If b2 divides A then Q2 = b2 ·b′2. Assume that b′2 is not a constant multiple of b2 (as otherwise
Case 2 of the theorem holds). Then, after a suitable invertible linear transformation we have Q2 = y · z.
Denote

Q1 = αy2 +β z2 + y · `1 + z · `2 +Q′′1

and
Q = α

′y2 +β
′z2 + γ

′yz+ y · k1 + z · k2 +Q′′,

where `1, `2,k1,k2,Q′′1,Q
′′ do not involve y nor z. Observe that since we can subtract a multiple of Q2

from Q1 we can assume that the term yz does not appear in Q1. Consider the assignment y = 0. This
simplifies Q1 and Q to:

Q1|y=0 = β z2 + z · `2 +Q′′1

and
Q|y=0 = β

′z2 + z · k2 +Q′′,

which are two polynomials not depending on y. We now have that any assignment that makes Q1|y=0
vanish, also makes Q|y=0 vanish. In other words Q|y=0 ∈

√
(Q1|y=0). This means that all irreducible

factors of Q1|y=0 divide Q|y=0. Thus, either Q|y=0 = δ ·Q1|y=0 for some constant δ , or Q1|y=0 = b2
3 and

Q|y=0 = b3 ·b′3 for some linear functions b3,b′3.
Notice that in the second case, if we set y = b3 = 0 then Q1 and Q2 vanish and hence Q also vanishes

and Case 3 of the theorem holds.
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So let us assume that Q1|y=0 divides Q|y=0. We repeat the same reasoning when setting z = 0 and
again assume that Q1|z=0 divides Q|z=0. By comparing coefficients we get that there are constants δ ,δ ′

such that β ′ = δβ ,k2 = δ`2,Q′′ = δQ′′1 and α ′ = δ ′α,k1 = δ ′`1,Q′′ = δ ′Q′′1 . It follows that either δ = δ ′

and we obtain that Q = δQ1 + γ ′Q2, which satisfies Case 1 of the theorem or that Q′′1 = Q1 = 0 in which
case Q1,Q2,Q all vanish when setting y = z = 0 as in Case 3 of the theorem.

Hence, from now on we assume that b2 is non-zero and does not divide A. Consider the resultant of
Q1,Q2 (as given in Equation 30) with respect to x1. It is equal to

Resx1(Q1,Q2) = A2 +b2
2 ·Q′1. (33)

We next study what happens when the resultant vanishes. I.e. when

Resx1(Q1,Q2) = A2 +b2
2 ·Q′1 = 0 . (34)

Claim 35. Whenever Resx1(Q1,Q2) = 0 it holds that A ·b+b2 ·B = 0.

Proof. If Resx1(Q1,Q2) = 0 then either b2 = 0, which also implies A = 0 and in this case the claim
clearly holds, or b2 6= 0. Consider the case b2 6= 0 and set x1 = A/b2 (we are free to select a value for x1
as Resx1(Q1,Q2) does not involve x1). Notice that for this substitution we have that Q2 = 0 and that

Q1|x1=A/b2 = (A/b2)
2 +Q′1 = Resx1(Q1,Q2)/b2

2 = 0.

Hence, we also have Q|x1=A/b2 = 0. In other words that

A ·b+b2 ·B = 0.

In other words, Claim 35 implies that

A ·b+b2 ·B ∈
√

(Resx1(Q1,Q2)).

Thus, there exists an integer k and a polynomial ψ so that

(A ·b+b2 ·B)k = ψ ·Resx1(Q1,Q2) = ψ · (A2 +b2
2 ·Q′1).

This means that all irreducible factors of A2 +b2
2 ·Q′1 divide A ·b+b2 ·B. As deg(A2 +b2

2 ·Q′1) = 4 and
deg(A ·b+b2 ·B) = 3 it follows, by examining the possible ways that a degree 4 polynomial can factor,
that one of the following cases must hold:

1. There is a quadratic polynomial C and a linear function a such that

A2 +b2
2 ·Q′1 =C2

b ·A+b2 ·B = a ·C
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2. For some scalar λ , a linear function a and a quadratic C

A2 +b2
2 ·Q′1 = a2 ·C (36)

b ·A+b2 ·B = λ ·a ·C

We next handle each of these cases.

Case 1: we have that

b2
2 ·Q′1 =C2−A2 = (C+A)(C−A).

If Q′1 is irreducible then αb2
2 = (C+A) and Q′1 = α(C−A), or αb2

2 = (C−A) and Q′1 = α(C+A)
for some α 6= 0. In the first case we get that Q′1 =−2αA+α2b2

2 and hence Q1+2αQ2 =(x+αb2)
2.

Similarly, in the second case we get Q′1 = 2αA+α2b2
2 and thus Q1−2αQ2 = (x−αb2)

2. In either
cases, Case 2 of the theorem holds.

If Q′1 is reducible, i.e. Q′1 = e · f , then either the analysis above continues to hold or it must be the
case that (w.l.o.g.) C+A = b2 · e and C−A = b2 · f . It follows that in this case b2 divides A and
we are done by Claim 32.

Case 2: From Equation 36 we learn that a2|Resx1(Q1,Q2) so in particular, when setting a = 0 we get
that the resultant is zero. Theorem 12 implies that, modulo a, either one of Q1,Q2 vanishes, or that
Q1 and Q2 share a linear factor.

As a does not involve x1, clearly Q1|a=0 6= 0. Further, for Q2 to vanish modulo a we need that b2 is
a multiple of a, and vice versa. This implies that b2 divides A and we are done by Claim 32.

We thus have to deal with the case that, modulo a, Q1 and Q2 share a linear factor. Let a′ be that
common linear factor. We get that by setting a = a′ = 0 both Q1 and Q2 vanish and hence also Q
vanishes and Case 3 of the theorem holds.

This concludes the proof of Theorem 29.

5 Sylvester-Gallai theorem for quadratic polynomials

In this section we prove Theorem 7. For convenience we repeat the statement of the theorem.

Theorem (Theorem 7). Let {Qi}i∈[m] be homogeneous quadratic polynomials such that each Qi is either
irreducible or a square of a linear function. Assume further that for every i 6= j there exists k 6∈ {i, j}
such that Qk ∈

√
(Qi,Q j). Then the linear span of the Qi’s has dimension O(1).

Remark 37. The requirement that the polynomials are homogeneous is not essential as homogenization
does not affect the property Qk ∈

√
(Qi,Q j).
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5.1 Some useful claims

In this section we look at some implications of Theorem 29. We do so by considering two irreducible
polynomials Q1 and Q2 and consider sets of polynomials that satisfy Case 2 or Case 3 of Theorem 29
with Q1 and Q2.

Claim 38. Let Q1,Q2 be two linearly independent quadratic polynomials and let F1, . . . ,Fm be quadratic
polynomials such that for every i there exist linear functions `i,bi and a scalar βi so that

Fi = Q1 + `2
i = βi ·Q2 +b2

i . (39)

Then, there exists a 4-dimensional space V such that for every i, {`i,bi} ⊆V .

Proof. If m≤ 2 then the claim is trivial. We consider two cases.

1. Case 1: For all i, βi = β1:
Let V = span{b1, `1}. From the two representations of F1 we get that

Q1−β1Q2 = b2
1− `2

1 = (b1− `1) · (b1 + `1) 6= 0, (40)

where the fact that the expression above is nonzero follows as Q1 and Q2 are linearly indepdent.
Similarly, by considering the two representations of Fj we get that

Q1−β1Q2 = b2
j − `2

j = (b j− ` j) · (b j + ` j).

Thus,
(b1− `1) · (b1 + `1) = (b j− ` j) · (b j + ` j) .

Unique factorization implies that b j, ` j ∈ span{bi, `1}=V as claimed.

2. Case 2: There is j such that β j 6= β1:
In this case we have that

F1 = Q1 + `2
1 = β1Q2 +b2

1,

Fj = Q1 + `2
j = β jQ2 +b2

j ,

and the matrix [
1 −β1
1 −β j

]
is invertible. It follows that

Q2,Q1 ∈ span{(b1− `1) · (b1 + `1),(b j− ` j) · (b j + ` j)}. (41)

Let
V = span{b1,b j, `1, ` j}.

Consider any index k. W.l.o.g. βk 6= β j. Thus, as before, we get that

Q1 ∈ span{(b j− ` j) · (b j + ` j),(bk− `k) · (bk + `k)}.
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Hence, either Q1 = α · (b j− ` j) · (b j + ` j) or, for some α3 and a nonzero α4,

Q1 = α3 · (b j− ` j) · (b j + ` j)+α4 · (bk− `k) · (bk + `k). (42)

We first handle the later case. Combining Equation 42 with Equation 41 we get that there exist
constants α1, . . . ,α4, with α4 6= 0 so that

α1 ·(b1−`1) ·(b1+`1)+α2 ·(b j−` j) ·(b j+` j) =α3 ·(b j−` j) ·(b j+` j)+α4 ·(bk−`k) ·(bk+`k).

By switching sides it is easy to see that both bk− `k and bk + `k are spanned by the functions
in V . In the former case where Q1 = α · (b j− ` j) · (b j + ` j), it follows from Equation 39 (for
i = j) that Q2 =

α1−1
β j
· (b j− ` j) · (b j + ` j). This contradicts the assumption that Q1,Q2 are linearly

independent.

Corollary 43. Under the hypothesis of Claim 38, there exist four linear functions a1,a2,a3,a4 such that
every Fi is a linear combination of Q1,{ai ·a j}i≤ j.

Proof. Let V be the subspace guaranteed by Claim 38. Let {a1, . . . ,a4} be such that V =
span{a1,a2,a3,a4}. The claim follows immediate from the fact that each `i is a linear combination
of a1,a2,a3,a4.

Claim 44. Let F1, . . . ,Fm′ be quadratics in our set8 that satisfy Case 3 of Theorem 29 with an irreducible
Q. Then there exists an O(1)-dimensional space V such that each Fi is a quadratic polynomial in the
linear functions in V .

Proof. As Q satisfies Case 3 of Theorem 29 and is irreducible it follows that ranks(Q) = 2 (recall
Definition 13). Thus, Q is a quadratic polynomial in at most 4 linear functions. Let V to be the space
spanned by the linear functions in a minimal representation of Q. By Claim 14 it follows that V is well
defined. Clearly dim(V )≤ 4.

Let z be a new variable. Set each basis element of V to a random multiple of z (say by picking the
multiples independently uniformly at random from [0,1]). Each Fi now becomes z ·bi for some nonzero
bi. Indeed, if we further set z = 0 then all linear functions in the representation of Q vanish and hence
also Fi vanishes (this again follows from Claim 14). Further, bi 6= 0 as we mapped the basis elements to
random multiples of z. We next show that unless all linear functions in the minimal representation of
Fi,Fj are in V then Fi,Fj remain linearly independent after this restriction.

Claim 45. Let V be a linear space of linear functions. Let F = v1 · `1 + v2 · `2 and G = v3 · `3 + v4 · `4 be
two linearly independent irreducible quadratics, where for every i, vi ∈V . If span{`1, . . . , `4} 6⊆V then
with probability 1, F and G remain linearly independent even after we map the basis elements of V to
random multiples of a new variable z (say, by picking the multiples uniformly and independently from the
segment [0,1]).

8I.e. they are a subset of the {Qi} from the statement of Theorem 7.
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We postpone the proof of Claim 45 and continue with the proof of Claim 44. We next show that the
linear functions {bi}i∪{z} satisfy the “usual” Sylvester-Gallai condition, i.e., that any two of them span
a third function in the set (with the possible exception of z). In fact, we will add to this set all quadratics
in our set that are now of the form z · ` for a linear `.

Consider two quadratics Q1 = zb1,Q2 = zb2 so that neither b1 nor b2 is a multiple of z. If {b1,b2}
span z then we are done. Otherwise, assume that Q3 vanishes when Q1 and Q2 vanish. Then clearly z
divides Q3. Thus Q3 = zb3 and b3 is in our set. Further, when we set b1 = b2 = 0 both Q1 and Q2 vanish
and hence Q3 vanishes as well. Since z 6∈ span{b1,b2} this implies that b3 ∈ span{b1,b2} and in this case
too b1 and b2 span a third linear function in {bi}i∪{z}. Note also that, by Claim 45, b3 is not a multiple
of b1 nor of b2 as this would imply that Q3 and Q1 (or Q2) are linearly dependent in contradiction to our
assumption.

From Corollary 16 (recalling Remark 17) we get that the dimension of all those {bi}i is O(1).
We now repeat the same argument again for a different random mapping of the basis elements of V to

multiples of z. As before each Fi is mapped to a polynomial of the form z ·b′i and again the dimension of
{b′i}i is O(1). Let U be the subspace containing the span of V ∪{bi}i∪{b′i}i. Clearly dim(U) = O(1).
We next show that every Fi is a polynomial in the linear functions in U . Indeed, let F = v1 ·u1 + v2 ·u2 be
arbitrary polynomial from {Fi}i, where v1,v2 ∈V . Assume the first mapping mapped vi 7→ αi · z and the
second mapping is vi 7→ βi ·z. Then, F was mapped to z ·b under the first mapping where b = α1u1+α2u2
and to z ·b′ under the second mapping where b′ = β1u1 +β2u2. As α1,α2,β1,β2 where chosen uniformly
independently at random from [0,1] it follows that the determinant∣∣∣∣[α1 α2

β1 β2

]∣∣∣∣ 6= 0

and hence u1,u2 ∈ span{b,b′} ⊆U . As we also have v1,v2 ∈V ⊆U the claim follows.
This concludes the proof of Claim 44.

We now give the proof of Claim 45.

Proof of Claim 45 . Let x1, . . . ,xk, for some 1≤ k ≤ 4 be a basis for span{`1, . . . , `4} such that for some
0 < t ≤ k, xt+1, . . . ,xk for a basis to span{`1, . . . , `4}∩V . We can rewrite F and G as

F =
t

∑
i=1

xiui +F ′ and G =
t

∑
i=1

xiwi +G′

where ui,wi ∈ V and F ′,G′ are defined over V , and, w.l.o.g., for every i, at least one of ui and wi is
nonzero. Observe that F and G are linearly independent (over C) if and only if the two vectors

uF = (u1, . . . ,ut ,F ′) and wG = (w1, . . . ,wt ,G′)

are linearly independent over C(V ), the function field generated by adding the linear functions in V to C.
Indeed, if F and G are linearly dependent over C then clearly uF and wG are linearly dependent over C,
and hence over C(V ). If on the other hand uF and wG are linearly dependent over C(V ) then this means
that for some polynomials f (V ) and g(V ) we have

f · (u1, . . . ,ut ,F ′) = g · (w1, . . . ,wt ,G′).
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This implies that all the 2×2 determinants vanish, i.e. that ui ·w j−u j ·wi = 0, for every i and j, and
ui ·G′−wi ·F ′ = 0. By unique factorization we get that there are two possible cases:

1. There is α ∈ C so that ui = αwi for some i: The equality ui ·w j−u j ·wi = 0 implies that for every
j we actually have u j = αw j, and the fact that ui ·G′−wi ·F ′ = 0 gives F ′ = αG′ and thus uF and
wG are linearly dependent over C and indeed F and G are linearly dependent.

2. There are constants αi such that for every i, ui = αiu1 and wi = αiw1: In this case, since F is
irreducible, it holds that u1 does not divide F ′. As u1 ·G′−w1 ·F ′ = 0, by unique factorization it
follows that u1 is a multiple of w1 and we are thus in the previous case again.

It therefore follows that the matrix

M =

[
u1 . . . u j F ′

w1 . . . w j G′

]
is full rank over C(V ). Thus the determinant of9 M ·M† is a nonzero polynomial over V . The Schwartz-
Zippel-DeMillo-Lipton lemma now implies that sending each basis element of V to a random multiple
of z will make the determinant nonzero with probability 1. This also means that F and G remain linear
independent after such mapping.

5.2 An important special case

Before proving Theorem 7, we prove a special case where there is a set of quadratics I, and a vector
space of linear forms V , and each quadratic in our set is a linear combination of quadratics from I and
a quadratics defined over V , and, all nonzero polynomials in the span of I remain of rank at least 2
even when we set the functions in V to zero. We show that in this case the linear forms in L satisfy the
Sylvester-Gallai condition among themselves.

Claim 46. Let Q∪L satisfy the assumption of Theorem 7 where

1. Q consists of irreducible quadratics.

2. There is a set of polynomials I and an O(1)-dimensional space V such that every polynomial in
Q is in the linear span of I and quadratics over V . Furthermore, no nonzero linear combination
of the polynomials in I can be expressed as xa+ yb+F(V ) where F is any quadratic over V and
x,a,b,y are any four linear forms.

3. L is a set of squares of linear functions.

Then, the dimension of the space spanned by the functions whose squares are in L has dimension O(1).

Proof. Denote L′ = L \V . We shall prove that the linear functions in L′ satisfy the Sylvester-Gallai
condition and hence their span has dimension O(1) as claimed.

Let x,y∈L′. Let Q be such that Q∈
√
(x,y). Thus, there exist linear functions a,b so that Q= xa+yb.

We next consider two cases for Q.
9M† is the conjugate transpose of M.
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If Q ∈ Q then Q = Q′+G(V ), where Q′ is a linear combination of the polynomials in I. In particular,
Q′ = xa+ yb−G(V ). This implies that Q′ = 0 as otherwise we get a contradiction to the assumptions on
I and V . Hence, xa+ yb = Q = G(V ). As Q is irreducible it must hold that x,y ∈V (by Claim 14). This
is in contradiction to the definition of L′.

The remaining case is when Q ∈ L. Thus, Q = `2 for some linear `, and it follows that ` ∈ span{x,y}.
Note however that we may have ` ∈ V . To overcome this we apply a random projection to the linear
functions in V so that they are all equal to some multiple of a new variable z. As before it is not hard to
see that even after this projection any two linear functions from L′ are projected to linearly independent
linear functions. Hence, in the case above, there is a third linear function in L′ ∪{z} that is spanned
by x,y. It follows that L′∪{z} satisfy the conditions of Corollary 16 (with, say, δ = 1/2) and hence
dim(L′) = O(1) as claimed.

5.3 The proof

We are now ready to prove Theorem 7. The proof follows the outline sketched in subsection 1.2 and it
relies on the claims proved in subsection 5.1 and on Corollary 16.

Proof of Theorem 7. Partition the polynomials to two sets. Let L be the set of all squares and let Q be
the subset of irreducible quadratics. Denote |Q|= m1.

We next focus on polynomials in Q. We prove that they are contained in an O(1)-dimensional space
of a special form.

Call a polynomial Q ∈ Q bad if there are less than, say, m1/100 pairs (Q1,Q2) ∈ Q×Q so that
Q2 ∈

√
(Q,Q1) and Q,Q1 satisfy item 1 of Theorem 29 (i.e. Q2 is in their linear span). If Q ∈ Q is not

bad then we call it a good polynomial. We handle two cases according to whether there is at most one
bad polynomial or more than that.

1. There is at most one bad polynomial:

In this case, from Corollary 16 we get that the linear span of the polynomials in Q has dimension
O(1).

Assume Q1, . . . ,Qk for some k = O(1) span Q. We now repeat the following process. We start with
I= {Q1, . . . ,Qk} and V = /0. If there is some nontrivial linear combination of the polynomials in I

that is equal to a quadratic of the form a1b1 +a2b2, where ai,bi are linear functions then we add
a1,a2,b1,b2 to V and remove one of the polynomials that participated in the linear combination
from I. We continue doing so according to the following rule. If there exists a linear combination
of the polynomials in I that is equal to a polynomial of the form F(V )+ab+a′b′, where F(V )
is a quadratic polynomial over linear functions in V , then we add a,b,a′,b′ to V and remove
some polynomial participating in the linear combination from I. We do so until no such linear
combination exists or until I is empty. At the end |V | ≤ 4k = O(1). Abusing notation we now think
of V as the space spanned by the linear functions in it. Clearly dim(V )≤ 4k = O(1).

The argument above implies that the conditions of Claim 46 are satisfied by our I, V , Q and L. We
thus obtain that dim(L) = O(1). Combined with the fact that |I|= O(1) this completes the proof
for the case when there is at most one bad polynomial. We handle the other case next.
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2. There are at least two bad polynomials:

Claim 47 (At least two bad polynomials). If Q contains at least two bad polynomials, Q1 and Q2,
then there is a space V of linear functions of dimension O(1) so that every polynomial in Q is a
linear combination of Q1 and a quadratic over V .

Proof. Notice that for Q1 there are 0.99m1 polynomials in Q that even together with Q1 do not
span any other polynomial in Q. The same holds for Q2. Consider a polynomial Q j so that Q1 and
Q j do not span any other polynomial in Q. We conclude that Q1 and Q j satisfy Case 2 or Case 3 of
Theorem 29. Indeed, if Q1 and Q j satisfy Case 1 of Theorem 29 then they span some polynomial in
L and in particular they span a square, but this means that they also satisfy Case 2 of Theorem 29.

From the discussion above it follows that there are at least 0.98m1 polynomials in Q satisfying
Case 2 or Case 3 of the theorem with Q1 and Q2. Let F be the set of these polynomials. Partition F

to three sets I,J,K so that those polynomials in I satisfy Case 3 of Theorem 29 with Q1, those in J

satisfy Case 3 of Theorem 29 with Q2 and those in K satisfy Case 2 of Theorem 29 with both Q1
and Q2. From Corollary 43 and Claim 44 we conclude that there is a an O(1)-dimensional space
V ′ of linear functions such that all those 0.98m1 polynomials are in the linear span of quadratics
over V ′ and Q1.

To simplify things further, if it is the case that Q1 = F(V ′)+aa′+bb′, i.e. that Q1 can be written
as a quadratic over V ′ plus two products of linear forms, then we add a,a′,b,b′ to V ′ and we do not
consider Q1 any more.10

We now consider the remaining 0.02m1 polynomials in Q. In fact, consider those polynomials that
cannot be spanned by quadratics over V ′ and Q1 and call this set Fc (abusing notation).

Claim 48. For each Q ∈ Fc there are at least 0.96m1 polynomials in F that satisfy either Case 2
or Case 3 of Theorem 29 with Q.

Proof. If Q and F ∈ F span a polynomial in L then we say that Q satisfies Case 2 with F . Thus, if
Q and F ∈ F satisfy item 1 of Theorem 29 then the third polynomial is not in F (as by switching
sides we will get that Q is also in F). Hence, this polynomial must be in Fc. Assume that Q′ is
this polynomial. Notice that there is no other F ′ ∈ F that together with Q spans Q′ as in such a
case Q would be in F. Indeed, let α1Q+F = Q′ and α2Q+F ′ = Q′. Since F and F ′ are linearly
independent we get that 0 6= (α1−α2)Q = F ′−F in contradiction to the assumption that Q is in
Fc. Thus, Q can satisfy item 1 of Theorem 29 with at most |Fc| ≤ 0.02m1 polynomials. It follows
that there are at least 0.96m1 polynomials in F that satisfy either Case 2 or Case 3 of Theorem 29
with Q.

We next show that all polynomials Q ∈ Fc satisfy Case 3 of Theorem 29 with some polynomial
in F. Indeed, if this is not the case then there must be a polynomial Q that satisfy Case 2 of
Theorem 29 with all polynomial in F. Let F1,F2 ∈ F. Then, after rescaling, there are a1,a2 so that

10This step is not crucial at this point, it just makes some later argument a bit simpler.

DISCRETE ANALYSIS, 2020:13, 34pp. 24

http://dx.doi.org/10.19086/da


SYLVESTER-GALLAI TYPE THEOREMS FOR QUADRATIC POLYNOMIALS

Q+a2
1 = F1 and Q+a2

2 = F2. Hence, a2
1−a2

2 = F2−F1. As F2−F1 is a linear combination of Q1
and quadratics over V ′, it must be the case that F2−F1 are defined over V ′ alone as otherwise we
would have replaces Q1 with two linear functions as described above. Thus, a2

1−a2
2 = F(V ′) and it

follows that a1,a2 ∈V ′ and hence Q ∈ F in contradiction.

We now bound the dimension of Fc. By an argument similar to the proof of Claim 44 it follows
that there is an O(1)-dimensional space of linear functions, V ′′ such that all polynomials in Fc

are quadratics over V ′′: We send V ′ to a random multiple of a new variable z. This makes all
polynomials in Fc to be of the form zbi and as before the linear functions {bi}i∪{z} satisfy the
usual Sylvester-Gallai condition and we conclude using Corollary 16 (as in the proof of Claim 44
we repeat this twice for two independent mappings etc.). Set V be the span of V ′′ ∪V ′. This
completes the proof of Claim 47

It remains to bound the dimension of L. This however, follows immediately from Claim 46.

This concludes the proof of the case of two bad polynomials and with it the proof of Theorem 7.

6 Edelstein-Kelly theorem for quadratic polynomials

In this section we prove Theorem 8. We repeat its statement for convenience.

Theorem (Theorem 8). Let T1,T2 and T3 be finite sets of homogeneous quadratic polynomials over C
satisfying the following properties:

• Each Q ∈ ∪iTi is either irreducible or a square of a linear function.

• No two polynomials are multiples of each other (i.e., every pair is linearly independent).

• For every two polynomials Q1 and Q2 from distinct sets there is a polynomial Q3 in the third set
such that Q3 ∈

√
(Q1,Q2).

Then the linear span of the polynomials in ∪iTi’s has dimension O(1).

Remark 49. As before, the requirement that the polynomials are homogeneous is without lost of generality
as homogenization does not affect the property Qk ∈

√
(Qi,Q j).

The proof follows a similar outline to the proof of Theorem 7.

Proof of Theorem 8. Partition the polynomials in each Ti to two sets. Let Li be the set of all squares and
Qi be the rest. Denote |Qi|= mi.

Call a polynomial Q ∈ Q1 bad for Q2 if there are less than m2/100 polynomials Q2 ∈ Q2 so that
span{Q,Q2} contains a polynomial from Q3, i.e., Q and Q2 satisfy Case 1 of Theorem 29 (but not Case 2).
We say that Q ∈ Q1 is bad for Q3 if the equivalent condition is satisfied. We say Q ∈ Q1 is bad if it is bad
for both Q2 and Q3. We call the polynomials in Q2,Q3 bad and good in a similar way.

We handle two cases according to whether there is at most one bad polynomial for each Qi or not.
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1. There is at most one bad polynomial for each Q j:
In this case, in a similar fashion to the first case of Theorem 7, we get from Theorem 25 that the
linear span of the polynomials in Q := Q1∪Q2∪Q3 has dimension O(1).

As in the proof of Theorem 7 we next extend the bound to also include the linear functions in ∪iTi.
Assume Q1, . . . ,Qk for some k = O(1) span Q. We now repeat the following process. We start with
I = {Q1, . . . ,Qk} and V = /0. If there is some nontrivial linear combination of the polynomials
in I that is equal to a quadratic of the form F(V )+a1b1 +a2b2, where ai,bi are linear functions
then we add a1,a2,b1,b2 to V and remove one of the polynomials that participated in the linear
combination from I. We continue doing so until no such linear combination exists or until I is
empty. At the end |V | ≤ 4k = O(1). As before we abuse notation and think of V as the linear space
spanned by the linear functions in it.

It remains to bound the dimension of L :=L1∪L2∪L3. We do so in a similar fashion to the proof
of Claim 46. Denote L′ = L\V .

First, we apply a random projection to the linear functions in V so that they are all equal to some
multiple of z. We next show that the set L′∪{z} satisfies the Sylvester-Gallai condition and hence
its dimension is O(1) as needed (we abuse notation and denote with L′ the projection of L′, which,
as before, still consists of pairwise independent linear functions).

Let x,y ∈ L′ come from two different Li. Let Q be such that Q ∈
√

(x,y). If Q ∈ Q then
Q = Q′+G(z), where Q′ is a linear combination of the polynomials in I. Note however, that
by definition of V , Q′ must be zero as otherwise we would have a linear combination of small rank
and then the set I would be different. Hence, Q = G(z). It follows that z ∈ span{x,y} and so x,y,z
are linearly dependent as required. If, on the other hand, Q ∈ L then Q = `2 and it follows that
` ∈ span{x,y}. In either case, there is a third linear function in L′∪{z} that is spanned by x,y as
claimed.

Note that if L⊆ Li for some i then we easily conclude this case by picking any x ∈ L and any Q in
a different set and as above conclude that x ∈ span{z}.

2. There are at least two bad polynomial for some Q j:
To ease notation assume w.l.o.g. that there are at least two bad polynomials for Q3. The next claim
gives something similar to the first part in the proof of Claim 47.

Claim 50. Assume Q1,Q2 ∈ Q1∪Q2 are bad for Q3, then there is a space V of linear functions of
dimension O(1) so that at least 0.98m3 of the polynomials in Q3 are in the linear span of Q1 and
quadratic polynomials over V .

Proof. Notice that for Q1 there are 0.99m3 polynomials in Q′ ∈ Q3 that even together with Q1 do
not span any other polynomial in Q2. The same holds for Q2. Consider a polynomial Q′ ∈ Q3 so
that Q1 and Q′ do not span any other polynomial in Q2. We conclude that Q1,Q′ satisfy Case 2 or
Case 3 of Theorem 29. Indeed, if Q1 and Q′ satisfy item 1 of Theorem 29 then they span some
polynomial in L2 and in particular they span a square of a linear function, but this means that they
also satisfy Case 2 of Theorem 29.
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From the discussion above it follows that there are at least 0.98m3 polynomials in Q3 satisfying
Case 2 or Case 3 of the theorem with Q1 and Q2. Let F3 be the set of these polynomials in Q3. We
partition F3 to three sets I3,J3,K3 so that those polynomials in I3 satisfy Case 3 of Theorem 29
with Q1, those in J3 satisfy Case 3 of Theorem 29 with Q2 and those in K3 satisfy Case 2 of
Theorem 29 with both Q1 and Q2. As before we would like to apply Corollary 43 and Claim 44 to
conclude that there is a an O(1)-dimensional space V ′ of linear functions such that all those 0.98m3
polynomials of F3 are in the linear span of quadratics over V ′ and Q1. The only problem is that
the proof of Claim 44 should be tailored to the colored case, which is what we do next (indeed,
Claim 38 can be applied without any changes and therefore also Corollary 43).

Note that if Q ∈ Q1 satisfies Case 3 of Theorem 29 with some polynomial in Q3 then it also satisfies
the same case with a polynomial in Q2.

Claim 51. Let I2⊆Q2 and I3⊆Q3 be irreducible quadratics that satisfy Case 3 of Theorem 29 with
an irreducible Q ∈ Q1. Then, there exists an O(1)-dimensional space V such that all polynomials
in I2∪ I3 are quadratic polynomials in the linear functions in V .

We postpone the proof of the claim to subsection 6.1 and continue with the proof of Claim 50. By
applying Claim 51 first to I3 and then to J3 we conclude that I3∪J3 are quadratics over a set of
O(1) linear functions V . Corollary 43 implies that every quadratic in K3 is in the linear span of Q1
and quadratics over an O(1)-sized set V ′. combining V and V ′ the claim follows. This completes
the proof of Claim 50.

Let V be the O(1)-dimensional space and F3 ⊆ Q3 the set of polynomials guaranteed by Claim 50.

To continue we again have to consider two cases. The first is when there are two polynomials that
are bad for Q1 or for Q2 (so far we assumed there are at least two bad polynomials for Q3). The
second case is when at most one polynomial is bad for Q1 and at most one polynomial is bad for
Q2.

(a) There are two bad polynomials for some Qi, i ∈ [2]:
Assume w.l.o.g. that i = 2. As before Claim 50 implies that there is a polynomial Q2 and an
O(1)-dimensional space U such that 0.98m2 of the polynomials in Q2 are in the linear span of
Q2 and quadratics over U . Call those polynomials F2. Let W =U+V be an O(1)-dimensional
space containing both U and V .

We now check whether there is any nontrivial linear combination of Q1 and Q2 that is of
the form a ·b+a′ ·b′+F(W ). If such a combination exists then we add a,a′,b,b′ to W (and
abusing notation call the new sets W as well) and replace one polynomial that appeared in
this combination with the other. I.e. if Q2 appeared in such a combination then we think of
the space that is spanned by Q1 and W rather than by Q2 and W . We continue to do so once
again if necessary.
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Assume further, w.l.o.g., that |Q2| ≥ |Q3|. Partition the set Q1 to three sets I,J,K so that:

Each Q ∈ I satisfies Case 3 of Theorem 29 with at least one polynomial in F2. (52)

Each Q ∈ J satisfies Case 2 of Theorem 29 with at least two polynomials in F2.

Each Q ∈K satisfies Case 1 of Theorem 29 with all except possibly one polynomial in F2.

Claim 53. With the notation above we prove the following claims.

(i) The linear span of all polynomials in I has dimension O(1).
(ii) All polynomials in J are polynomials over W.

(iii) All polynomials in K are in the linear span of Q1,Q2 and quadratics over W.

Proof. The proof of item (i) follows exactly as in Claim 51.
To show item (ii) we proceed as in the discussion following the proof of Claim 48. Consider a
polynomial Q∈ J. Let F1,F2 ∈Q2 satisfy Case 2 of Theorem 29 with Q. Then, after rescaling,
there are a1,a2 so that Q+a2

1 = F1 and Q+a2
2 = F2. Hence, a2

1−a2
2 = F2−F1. As F2−F1 is

a linear combination of Q and quadratics over W , it must be the case that F2−F1 are defined
over W alone as otherwise we would have replaced Q2 with two linear functions as described
above. Thus, a2

1− a2
2 = F(W ) and it follows that a1,a2 ∈W and hence Q is a polynomial

over W .
Finally, to prove item (iii) we note that for every Q ∈ K there are at least 0.98m2 − 1
polynomials Q2 ∈ F2 so that for each of them there is Q3 ∈ Q3∩ span{Q,Q2}. If there exists
such a combination where Q3 ∈ F3 then it follows that Q is a linear combination of Q1,Q2
and quadratics over W (as all polynomials in F2 and F3 are). If we always get Q3 6∈ F3
then as |Q3 \F3| ≤ 0.02m3 ≤ 0.02m2 < (1/2) · |F2| there exist Q2,Q′2 ∈ F2 and Q3 ∈ Q3
so that Q3 ∈ span{Q,Q2},span{Q,Q′2}. As every two polynomials in our set are linearly
independent this implies that Q ∈ span{Q2,Q′2}, and in particular it is in the span of Q2 and
quadratics over W , as claimed.

A similar argument will now show that Q2 and Q3 are also contained in an O(1)-dimensional
space. We thus showed that there is an O(1)-dimensional space containing all polynomials in
Q1∪Q2∪Q3. It remains to bound the dimension of the linear functions in L1∪L2∪L3. This
can be done at exactly the same way as before. This concludes the proof of Theorem 8 in this
case.

(b) At most one polynomial is bad for Q1 and at most one polynomial is bad for Q2

In this case we reduce to the extended robust Edelstein-Kelly theorem (Theorem 26).
For each i ∈ [2] partition Qi to Ii,Ji and Ki as in Equation 52 except that we now consider F3
instead of F2 when partitioning. It follows, exactly as in the proof of Claim 53, that there is
an O(1)-dimensional space U that all polynomials in I1∪J1∪ I2∪J2 are in the linear span
of Q1 and quadratics over U .
Let W be the space spanned by Q1 and quadratics over U . Clearly dim(W ) = O(1).
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For i∈ [2] let K′i ⊂Ki be those polynomials in Ki that are not in W . Similarly, define K′3 ⊂Q3.
Let Wi =W ∩Qi, for i ∈ [3].
We now observe that the sets Q1 =K′1∪W1,Q2 =K′2∪W2,Q3 =K′3∪W3 satisfy the conditions
in the statement of Theorem 26 (where the Ki in the statement of the theorem is our K′i), with
parameters r = O(1), c = 2 and δ = 1/100, when we identify our quadratic polynomials with
their vectors of coefficients.
Indeed, as we are in the case where there is at most one bad polynomial for Q1 and at most one
bad polynomial for Q2 we see that there are at most 2 “exceptional” vectors defined that way.
Furthermore, from the definition of K′1,K

′
2 (Equation 52) no point in them is “exceptional”

when considering Q3.
Thus, Theorem 26 guarantees the existence of a space Y of dimension Oc(r+1/δ 3) = O(1)
that spans all vectors in the set Q1∪Q2∪Q3. We are almost done - we still have to deal with
the linear function in L1∪L2∪L3. This however is done exactly as before.

This completes the proof of Theorem 8 (modulo the proof of Claim 51 that we give next).

6.1 Missing proof

In this section we give the proof of Claim 51. For convenience we repeat the statement of the claim.

Claim (Claim 51). Let I2 ⊆ Q2 and I3 ⊆ Q3 be irreducible quadratics that satisfy Case 3 of Theorem 29
with an irreducible Q ∈ Q1. Then, there exists an O(1)-dimensional space V such that all polynomials in
I2∪ I3 are quadratic polynomials in the linear functions in V .

Proof of Claim 51. Let I2 = {Fi}i and I3 = {Gi}i. As before we take V ′ to be the space spanned by the
linear functions in a minimal representation of Q. Clearly dim(V ′)≤ 4. Let z be a new variable. Set each
basis element of V ′ to a random multiple of z (as before, we pick the multiples independently, uniformly
at random from [0,1]). Each Fi,Gi now becomes z ·bi for some nonzero bi. Indeed, if we further set z = 0
then all linear functions in the representation of Q vanish and hence Fi and Gi also vanish.11 Furthermore,
for any i 6= j, bi and b j are linearly independent (as in Claim 45), unless they both equal to multiples of z.

Let I1 be the set of quadratics in Q1 that after making the restriction become quadratics of the form
z ·b. Clearly Q1 is such a polynomial.

We next show that the linear functions {bi}i∪{z}, where the bi are the linear functions coming from
I1∪ I2∪ I3 as described above, satisfy the usual Sylvester-Gallai condition and conclude by Theorem 15
that their rank is O(1).

Claim 54. If some polynomial in I2 (I3) is projected to z · b where b is linearly independent of z then
there is some polynomial in I3 (I2) that is projected to z · c for some c linearly independent of z.

Proof. Consider any polynomial Q′ ∈ I2 that was projected to z ·b, where b is linearly independent of
z, and let Q′′ ∈ I3 be in

√
(Q1,Q′). Assume for a contradiction that Q′′ was projected to z2. Claim 45

implies that if this is the case then all linear functions in a minimal representation of Q′′ belong to V ′.

11Here too we use the fact that Q is irreducible and hence the two linear functions that make Fi (or Gi) vanish appear in V ′

(Claim 14).
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We thus have that Q′′ = Q′′(V ′). We can also assume w.l.o.g. that Q′ = Q′(V ′,b) (by completing
V ′∪{b} to a basis for the entire space of linear functions and projecting the other basis elements to random
multiples of b). We next show that Q′′ ∈

√
Q1, which implies Q′′ is a multiple of Q1 in contradiction.

We again resort to Theorem 29. It is clear that Q′′ 6∈ span{Q1,Q′}. So we are left with the two other
cases.

1. Q1 and Q′ span a square of a linear function: It is not hard to see that in this case we must have
(after rescaling) that Q′ = b2 + `(V ′) ·b+A′(V ′). Consider any assignment to V ′ that makes Q1
vanish. Clearly there is a value to b that also makes Q′ vanish for that assignment. Thus Q′′ also
vanishes. Therefore, any assignment that makes Q1 = 0 also makes Q′′ = 0 which is what we
wanted to prove.

2. There are two linear functions v1,v2 ∈V ′ so that Q1,Q′,Q′′ ∈
√
(v1,v2): Denote Q1 = v1 ·u1 +v2 ·

u2, Q′+ v1 ·b1 + v2 ·b2 and Q′′ = v1 ·w1 + v2 ·w2, where wi,ui ∈V ′. Project v1 and v2 to random
multiples of a new variable y. Then, our new polynomials are now Q1 = y · u, Q′ = y · b′ and
Q′′ = y ·w, where u,w ∈V ′ (where we abuse notation and refer to the projection of V ′ also as V ′)
and, with probability 1, b′ 6∈V ′. Consider the assignment u = b′ = 0. It follows that we also get
y ·w = 0. However, as y,w,u ∈ V ′ and b′ 6∈ V ′ it must be the case that y ·w = 0 modulo u. Thus,
after this projection we get that Q′′ ∈

√
(Q1). This implies however that Q′′ is a multiple of Q1

as it cannot be the case that Q1 was projected to a square (as this would imply that it was only a
function of v1 and v2 and hence a reducible polynomial). Claim 45 implies that this was also the
case before the projection, in contradiction.

We continue with the proof of Claim 51. Claim 54 establishes that either all polynomials in I2∪ I3
were projected to z2 or that both I2 and I3 contain polynomials that were projected to quadratics of the
form z ·b where b is linearly independent of z.

We are now ready to show that the linear functions {bi}i∪{z}, where bi are the linear functions in
I1∪ I2∪ I3, satisfy the usual Sylvester-Gallai condition.

Consider any two quadratics A2 = z ·b2 ∈ I2,A3 = z ·b3 ∈ I3 so that neither b2 nor b3 is a multiple
of z. If b2 and b3 span z then we are done. So assume that z 6∈ span{b2,b3}. Let A1 vanish when A2,A3
vanish. Then clearly z divides A1. Thus A1 = z · b1 is in I1 and so b1 is in our set. Further, when we
set b2 = b3 = 0 both A2,A3 vanish and hence also A1 vanishes. Since z 6∈ span{b1,b2} this implies that
b1 ∈ span{b2,b3} and so in this case b2 and b3 span a third linear function in our set. Note also that
by Claim 45 b1 is not a multiple of b2 nor of b3 as this would imply that A1 and A2 (or A3) are linearly
dependent in contradiction to our assumption.

This argument shows that whenever b2 and b3 are not a multiple of z (and they come from different
sets), the set {bi}i ∪ {z} contains a nontrivial linear combination of them. In a similar fashion to
Corollary 16 and Theorem 26 we get that the dimension of all those linear functions is O(1).12

12We note that we cannot apply Theorem 26 as is as it may be the case that z appears in all three sets. However, it is not hard
to see that a small modification of it will capture this case as well.
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As in the proof of Claim 44 we repeat this argument again for a different random mapping to
multiples of z and conclude in the same way that every polynomial in I2∪ I3 is a polynomial over some
O(1)-dimensional space V .

This completes the proof of Claim 51.

7 Conclusions and future research

In this work we proved analogs of theorems of Sylvester-Gallai and Edelstein-Kelly for quadratic
polynomials. These results directly relate to the problem of obtaining deterministic algorithms for testing
identities of Σ[3]Π[d]ΣΠ[2] circuits. As mentioned in section 1 in order to obtain PIT algorithms we need
even stronger extensions of these results - something in the line of Conjecture 4 that was proposed by
Gupta [Gup14].

It is quite likely that Theorems 7 and 8 could be extended to obtain a positive answer to Conjecture 4
for r = 2 and k = 3. Indeed, there is an analog of Theorem 10 that suits the condition of the conjecture
(for r = 2 and k = 3). Peleg [Pel19] used this extension of Theorem 10 to generalize Theorem 7 to the
case where for every Qi and Q j it holds that whenever they vanish the product of the other Qk’s vanishes
as well. This is a significant step towards resolving Conjecture 4 (for r = 2 and k = 3).

However, extending our approach to the case of more than 3 multiplication gates (or more than 3
sets as in Theorem 8) seems more challenging. Indeed, the structure theorem gets more complicated in
the sense that there are many more cases to consider and it seems unlikely that a similar approach will
work for “higher values of 3”. Similarly, while proving a structural theorem for degree 3 polynomials is
possible, it seems that extending the exact same approach to significantly higher degrees may be less easy.
Thus, we believe that a different proof approach may be needed in order to obtain PIT algorithms for
Σ[O(1)]Π[d]ΣΠ[O(1)] circuits.

Another interesting question is, stated vaguely, understanding the conditions under which we get
a Sylvester-Gallai kind of behavior. By now many variants of the theorem are known: The original
Sylvester-Gallai theorem, the colored version of it (Edelstein-Kelly theorem), robust versions of it (by
[BDWY13, DSW14]), extensions to subspaces [DH16], k-wise dependencies [Han65, BDWY13], our
results for quadratic polynomials and more. It is an intriguing question whether there is a common
generalization of all these cases or some framework that contain all these different results.
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